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General comments 

I read with interest this research paper investigating the effect of evapotranspiration on physically 

based models for rainfall-induced landslides. The topic is scientifically significant for the landslide 

hazard mitigation. I think this paper can be an interesting contribution and is worth to be published 

but need some major reworking before publication. 

Dear Referee, thank you for the effort spent for the Revision and the valuable suggestions. We have 

addressed your suggestions whenever possible. You can find the modified parts in the revised text in 

red. For details comment, pages and lines where text has been modified to accomplish your 

suggestions are specifically indicated. 

First, the introduction is not detailed enough: it lacks of significant contributions in the context of: 

(1) hillslope hydrology and slope stability and (2) parameters transfer from physical models to real 

world.  

Regarding point (1), we have revised the Introduction considering references to work dealing with 

hillslope hydrology and slope stability for rainfall-induced landslides in Campania Region and other 

geomorphological contexts. Regarding point (2), parameters transfer from physical models to real 

world represents a key issue in geotechnical problems. Model parameters are typically quantified in 

laboratory at a scale much smaller than field conditions. In this perspective, according the Authors’ 

view, a strength point of the paper is represented by using for calibration and validation of parameters 

the findings retrieved by a physical model involving 1 m3 of material forced by realistic boundary 

conditions provided by actual meteorological evolution, instead of the traditional procedures based 

on small specimen subject to artificial boundary conditions. In this perspective, a deep comparison 

among laboratory, lysimeter and field conditions on the same soil involved in the work is reported in 

Pirone et al. (2016) [doi: 10.1016/j.proeng.2016.08.427]. In addition, the satisfying performances of 

the model using so calibrated parameters for interpreting the landslide event is a further indication 

about the reliability of the whole methodology, worthy to be proposed as a general frame to quantify 

soil parameters for silty volcanic covers. 



Second, methodology and results should be discussed in more detail specifying some possible limits 

of the assumptions made. This will lead to more convincing conclusions.  

Assumptions and constraints have been reported in the manuscript revised version when methodology 

and results are discussed and have been summarized in Conclusions. 

Third, some figures need to be modified, some merged, and some are redundant.  

The proposed modifications have been addressed in the revised paper; specifically a merging is 

proposed for Figures 9 and 10 and for Figures 16,17 and 18. 

Overall, the paper merges very important aspects of the hillslope hydrology and stability coupling 

measurements, physical model, and modeling approaches. For this reason I believe it will be suitable 

for publication and I hope the comments will help the authors to improve the quality and the impact 

of their manuscript.  

Details 

To my opinion specific improvements need to cover the following topic: 

a) Literature review is limited. In page 2 (line 15 to 20) the authors list a group of physically based 

hydrological models that neglect evapotranspiration effect. Montgomery and Dietrich, 1994 present 

a model that uses steady-state hydrology (not suitable for early warning). Moreover, they specify that 

they use Peff i.e. net rainfall (precipitation less evaporation). Baum et al., 1998 is not the last version 

of the model and was modified by the Baum et al., 2008 version. It is an event based hydromechanical 

model, it is not suitable for long term simulation (the report available to: 

https://pubs.usgs.gov/of/2008/1159/downloads/pdf/OF08-1159.pdf states “TRIGRS is not suitable 

for modeling long-term effects of alternating periods of rainfall and evapotranspiration, and choosing 

the correct initial conditions for a given storm is critical to obtaining accurate results”). Formetta et 

al., 2014 was not correctly cited. It takes into account of evapotranspiration by using the GEOtop 

model which solves the coupled heat and water balance equations (see Endrizzi et al., 2014). Finally, 

in the review there is a lack of hydrological models accounting for evapotranspiration (some of them 

in a simplified way and some of them in a more rigorous way), e.g. Casadei et al. (2003), Šim°unek 

et al., (2006), Rosso et al., (2006), Ebel et al., (2010), Arnone et al., (2011). I think this is more fair 

stating both the aspect in the introduction, i. e.: 1) some applications (and models) neglect 

evapotranspiration because it is considered not the most relevant process in the analyzed conditions 

(e.g. Baum et al., 2008; Pagano et al., 2010; Formetta et al., 2016); 2) some applications consider the 

effect of evapotranspiration with different degree of simplification (Casadei et al. (2003), Rosso et 

al., (2006), Šim°unek et al., (2006), Ebel et al., (2010), Formetta et al., 2014; Capparelli and Versace 



(2011); Arnone et al., (2011)) Moreover literature needs to give: i) examples of paper that adopted 

the same technique of estimating hydrological model parameters in a physical model and use them in 

real world applications; ii) examples of papers that performed a similar analysis (i.e. evaluation of 

the effect of evaporation on hillslope hydrology and stability) in other locations or in the same area, 

stating what make peculiar the current paper (and findings) compared to them. 

Based on suggestions of Referee, more space will be given to reference literature works including 

both references suggested by Referee and others referring to Campania pyroclastic covers (Page 2 

line 16-19; Page 2 line 23-31). 

b) The methodology section should give more emphasis to the novelty presented in this paper. 

Subsection 2.1 and 2.2 are long description of Rianna et al., 2014a,b; Pagano et al., 2010. It is not 

clear if the authors are adding something new to that papers: if yes they should point it out more 

explicitly to facilitate the reader; if not, although it is clear that the background provided by 

subsections 2.1 and 2.2 is important, authors should consider to summarize them in the main text and 

detail them in appendix. Same considerations apply to figures 2 to 7: are they showing new data-

results compared to Rianna et al., 2014a,b; Pagano et al., 2010?  

We have addressed the suggestions of the Referee identifying in clearer way the novelty elements 

presented in the paper; in particular, the idea of i) characterizing the hydrological-thermal evolution 

in site conditions related to safety conditions as an extrapolation of the behavior of a reconstituted 

layer, subject to actual meteorological evolution; ii) adopting the same model for early warning 

purposes. (Page 3 line 16-17) 

Moreover, works by Rianna et al. (2014 a,b) report data related to the description of the physical 

model and to the first two hydrological years (2010-2012). Then, firstly, the paper displays two 

further years of experimental data concerning water storage, water content and suction, unpublished 

on other journals. The paper also reports the unpublished evolution of soil temperatures. Under such 

clarifications, the Authors would prefer to maintain the consistency of Subsection 2.1 and 2.2 and 

Figure 2 to 7. The revised version better specifies what data are going to be published for first time. 

c) Authors should include in their Discussion and Conclusion considerations concerning the 

hypothesis used in the paper:  

i) considering an homogeneous soil whereas many other studies in the area deals with stratified soils;  

We have addressed this point in the revised version of the paper, highlighting how the proposed 

procedure could be valid only for a homogeneous layer; indeed, only under such assumption 1D 

conditions can be assumed, as numerically demonstrated by comparing results coming from 1D and 



2D analysis (Pagano et al., 2010). However, in this geomorphological context, this condition is 

widespread resulting also applicable to frequent cases of single homogeneous layers resting on 

pumices, as the presence of pumices may be replaced by suitable boundary conditions (Reder et al., 

2017). Further research works could also extend the procedure to more complex inhomogeneous 

cases; the eventual assumption of 1D water fluxes has however to be proved, for instance comparing 

suction predicted in two 2D and 1D hypothesis. At present, studies by Damiano et al. 2017, show that 

one-dimensionality of water fluxes could take place also through sloping layered volcanic soils, so 

that it is likely that one-dimensionality may be extended at some cases involving layered conditions. 

(Page 5 line 15-20). 

ii) effect of the hysteresis which is evident in the physical model data (Fig. 9-a); 

The hysteresis has been neglected in the present study by assuming a unique soil-water characteristic 

curve fitting all the available observations on calibration time span; the accuracy loss of the prediction 

due to neglecting hysteresis is at present topic of new researches (Page 10 line 3-5; Page 15 line 1-3). 

iii) transfer in a real world application the same parameters estimated in the physical model (e.g. is 

there any limit in using the same hydraulic conductivity, how about preferential flow?); 

The question raised by the Reviewer about scale problems related to different hydraulic conductivity 

arising at different scales (from laboratory to field) is challenging and involve all geotechnical 

problems. Hydraulic conductivity is often measured for small specimens (micro-scale) and then 

referred to the site (macro-scale) where the scale change may involve different values. It is worth 

noting however that the “specimen” adopted in the present study is two order of magnitude larger 

than those typically adopted, and that hydraulic-conductivity is hence measured at a mesoscale, a 

condition that should make determined values quite close to site ones. Also about such issue, different 

elements are debated in Pirone et al. (2016) that will be properly cited in revised version (Page 11 

line 22-25). 

iv) the assessment of hillslope stability by a threshold approach neglecting the soil mechanic 

parameters such as cohesion and friction angle; 

The chain of events resulting in a landslide of a silty volcanic covers consists in rainfalls, suction 

drops and induced strength reductions, locally triggering instability due to an internal or external 

cause, and then propagation of local trigger throughout the cover. The approach followed in the work 

is aimed to detect the suction levels throughout the slope at which a state predisposing to slope failure 

is attained. In other words, the philosophy of the approach is that of not dealing with what particular 

triggering cause able to determine the landslide but, rather, what generalized suction drop determined 



a slope state prone to propagate a local instability. The suction level at which a predisposing state to 

landslide takes place depends obviously on strength parameters other than apparent cohesion relating 

to suction. These are very difficult to characterize and quantify, due to the presence of mechanical 

effects exerted by root plants. These effects are major, perhaps more significant than other strength 

contribution, as, in these soils, vegetation is abundant over the entire year. In order to overcome the 

problems related to characterize vegetation effects and, consequently, set a deterministic slope 

stability analysis modelling root effects, the approach followed was that to set the early warning 

prediction straightforwardly on suction levels (or variables relating to suction, as water storage). 

Taking into consideration that mechanical root effects should in turn be related to suction levels 

strengthening soils and roots and progressively disappear with suction reductions (Page 11 line 26-

33; Page 12 line 1-4). 

v) the assumption of one dimensional flow: is the early warning threshold (estimating neglecting the 

lateral flow influence) valid for the entire hillslope? Is there any changes in flow behavior at the toe 

of the hillslope or in the less steep locations, where lateral flow could be important? 

The answer is in part contained in the discussion to the previous points. In general, the comparison 

between typical depths of quite homogeneous pyroclastic covers and slope length make reliable for 

this geomorphological context the assumption of 1D conditions. However, on field, actual conditions 

may depart from those assumed, (lateral flow influence, fracture increasing flow rate etc.). Local 

features assumed by the slope hydrology should not affect however that average suction levels 

throughout the slope making it prone to propagate a local triggering. Generally, local hydrological 

conditions may be responsible for local triggering, but they are supposed to not affect the state 

predisposing to propagation (Page 5 line 15-20). 

 d) The authors should acknowledge explicitly that the analysis presented for the real case application 

does not use any measured time series of soil suction or soil water content to validate the model. 

This point has been clarified in the presentation of the section treating the discussion of analysis 

results (Page 15 line 18-20). 

Specific comments 

1) Page 1 line 20: Could you please define “cover” when you use it the first time and use it consistently 

in the text. 

We have modified the manuscript following Reviewer indication (Page 1 line 20-23). 

2) Page 2 lines 15 to 20: please consider to update and extend the literature review here. 



Literature review has been updated and extended considering the Reference suggested by Referee 

(Page 2 line 16-19; Page 2 line 23-31). 

3) Page 2 line 27 could the Authors please explain which type of model they use. 

We have specified which type of model we have adopted (Page 3 line 2). 

4) Page 2 line 28: can the Authors please specify in which location those data are collected? Where 

the landslide happened or in the physical model? 

We have indicated in which location data are collected; specifically, data are obtained from a weather 

station located where the landslide happened (Page 3 line 6-8). 

5) Page 3 line 5: could the Authors specify which parameters or at least which type of model 

parameters they use? 

We have specified which models we adopt; the models are introduced as suggested by Reviewer in 

(item 3) so for this comment we have only slightly modified the text (Page 3 line 12). 

6) Page 3 line 5: are these procedures new in some theoretical aspect? if yes please specify the novelty, 

otherwise is better to say “applied” and to reference the procedure applied; 

The procedures used for the work in hand are new in some theoretical aspect; we have specified this 

issue (Page 3 line 16-17). 

7) Page 3 and 4: please consider to summarize the sections 2.1 and 2.2. 

Works by Rianna et al. (2014a,b) show data related to the physical model description and first two 

hydrological years (2010-2012). Then, firstly, the paper displays two further years of experimental 

data concerning water storage, water content and suction, unpublished on other journals. The paper 

also reports the unpublished development of time of soil temperatures. Under such clarifications, the 

Authors would prefer to maintain the consistency of Subsection 2.1 and 2.2 and Figure 2 to 7. The 

revised version will better specify what data are going to be published for first time. (Page 4 line 28-

29). 

8) Page 3 line 20: can you spell the hydrological variables? Are the data the same used in Pagano et 

al., 2010? 

We have indicated the hydrological variables reported in Figure 3; we have specified that only 

precipitation is reported and used in Pagano et al. (2010) (Page 3 line 31-32 Page 4 line 1) 



9) Page 5 section 2.3: Is the model been applied in other similar experiment? If yes, can you cite 

them? 

Details about previous applications of such model are reported in the revised manuscript (Page 7 line 

19-21). 

10) Page 5 line 23: Could the authors please add the units to each variable they use? 

Units have been added for all the variables used (Page 6 line 2-5, line 11-12, line 19-19 Page 7 line 

10-11). 

11) Page 5 line 24: Could the authors please spell the name and type of the function 

Ssoil water characteristic curve (SWCC) and hydraulic conductivity function (HCF) have been 

obtained using the Van Genuchten (1980) and Mualem-Van Genuchten (Mualem, 1976) equations. 

The model parameters for both functions have been summarized in Table 1. 

12) Page 6 line 2: Could the authors please spell the name and type of the function 

Thermal functions have been obtained using ad-hoc exponential equations whose parameters have 

been summarized in Table 1. 

13) Page 8 line 6-15: could the authors specify if the procedure has been used for the first time in this 

paper or could you please reference it? 

The procedure used to obtain soil parameters involves for some variables novelty in interpretation 

stages. This is the case for example of Ch. This point has been reported in the revised manuscript 

(Page 8 line 26). 

14) Page 8 line 16: could you please spell the remaining calibrated parameters and the calibration 

algorithm used? And could you please provide a table of the main parameter values? 

We have specified the remaining calibrated function (HCF) and provided the parameter values in 

Table 1 (Page 9 line 5). 

15) Page 8 line 19: could the authors please provide a quantification of the agreement in calibration 

and verification period: for example providing a goodness of fit indices (such as Nash–Sutcliffe, 

Kling Gupta Efficiency, Root mean square error, etc); this applies also to soil temperature 

simulations. 

As suggested by the Reviewer, three goodness of fit indices are employed to assess the model’s 

performances (Nash–Sutcliffe, Kling Gupta Efficiency and coefficient of determination); they are 



discriminated for calibration and validation period. Results are reported in Table 2. The findings result 

to be very encouraging. Brief details about indices and results will be added in revised version (Page 

9 line 29-32 Page 10 line 115). 

16) Page 9 line 13: Could the authors please motivate the choice of the experimental set up: why 4.5 

mm for 60 days? Are those typical value in the study area? 

The value 4.5 mm represents the mean evaporative atmospheric demand estimated through available 

weather forcing for Summer (JJA) on time span 2010-2014 (Page 10 line 13-14). 

17) Figure 15-c shows that the models tend to behave differently starting from around 10000 KPa. 

How often the soils experiment those value? Looking at the Figure 9-a the soils had suction values 

between 1 and 100 KPa and correctly the authors extend the soil water retention curve up to 1000 

KPa. However the latter is lower than the 10000 KPa where the models tends to differ (Figure 15-a). 

Can the Authors comment on this point? 

The soil cover usually experiences such values only in the shallower layers during the dry season (see 

for example Wilson et al., 1994; 1997); nevertheless, the differences between the two approaches are 

not related in differences in SWCC but, as reported in the text, mainly to reference soil depth from 

which water is simulated to be extracted according the two interpretative approaches. (Page 11 line 

10-14). We have also added a comment for SWCC (Page 8 line 15-17) and modified Figure 9(a) 

extrapolating data up to 10000kPa. 

18) Pag 10 line 13: Quantifying the model parameters. Does it mean: using the model parameters 

estimated thanks to the physical model measurements? Moreover, how the values of the optimal 

parameter set used in the simulation compares with at-site parameter values used in other studies? Is 

the order or magnitude the same? 

We have entered a new section (3.2.1 Preliminary assumptions and considerations) in which, among 

the others, this item has been specified referring to Pirone et al. (2016). Such work compares 

laboratory, lysimeter and field monitoring for the soil in hand showing how the lysimeter represents 

an excellent tool for assessing soil hydraulic properties. (Page 11 line 23-25) . 

19) The authors should specify the time step of each simulation (physical model and real case both 

for the input/output variables, and for the inner model time step). In the text (page 5) is it hourly 

whereas in the figures it seems daily (see captions). If this is true, how this contrasts with the early 

warning applications? Is there a need of a sub-daily time step? 



We have specified time step of each simulation for input/output and inner model time step (Page 8 

line 5-6). 

20) Please include the NEM model results in Figures 16 and 17 in order to have all the model results 

in the same figures. 

As suggested also by Reviewer 2, we have merged Figure 15, 16 and 17 in one Figure (see Figure 

15). 

21) Page 12 line 10: Please include in the discussion on the threshold values how it will be influenced 

by the fact that only one event is considered? How the threshold changes in case of multi-events? 

We have included a discussion on threshold value focusing on the influence that it is based only on 

one event and how the threshold could change for multi-events (Page 15 line 8-17). 

22) Please include some of the limitations of the approaches in the conclusion section and discuss 

them (see General comments c and d) 

Limitation of the approaches with discussion has been included (Page 14 line 24-30 Page 15 line 1-

6). 

23) Figure 10 could be a sub-figure of Figure 9. 

We have merged Figure 10 with Figure 9. Figure 10 is now Figure 9c. 

24) The paper need to be proof-read possible by a native English speaker. Among them: 

- Pag1 line 8: Promptness consider to replace with timeliness; 

- Pag1 line 10: Evaporation fluxes consider to replace with evaporative fluxes 

- Pag1 line 21: Founding part of their instability: consider to rephrase it 

- Pag2 line 1: ranfalls consider to replace with rainfall 

- Pag2 line 2-3: Analysys results to triggering cause: rephrase it. 

- Pag2 line 17: neglect: remove it 

- Pag2 line 19: consider to rephrase as: such an assumption can only be considered reasonable 

- Pag2 line 25: arises whether consider to replace with arises as to whether 

- Pag2 line 26: The study consider to replace with this study 

- Pag3 line 30: obtained consider to replace with used 



- Pag4 line 9: between soil consider to replace with between the soil. 

- Pag 5 lines 11-13: consider to rephrase it. 

- Pag 5 line 25: remove the new paragraph 

- Pag 5 line 27: taking into account the possibility of changes consider to replace with taking into 

account possible changes 

- Pag 6 line 6: Remove the 

- Pag 6 line 19: cut of: please consider to rephrase it. 

- Page 7 line 5: It proves consistent with literature consider to replace with This is consistent with the 

literature 

- Page 7 line 8: dry hot consider to replace with dry and hot 

- Page 7 line 10: particularized into please consider to rephrase it 

- Page 7 line 12: in the atmosphere temperature consider to replace with in the atmospheric 

temperature 

- Page 9 line 13: remove maintained 

- Page 9 line 17: with that water amount consider to replace with with the water amount 

- Page 9 line 17: remove that 

- Page 9 line 24-25: please rephrase it 

- Page 10 line 19: by IEM consider to replace with by the IEM 

All the points have been accomplished. 
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Interactive comment on “Physically based  approaches incorporating evaporation for early  

warning predictions of rainfall-induced  landslides” by Alfred Reder et al. 

Anonymous Referee #2 

Received and published: 12 October 2017 

Dear Referee, thank you for the effort spent for the Revision and the valuable suggestions. We have 

addressed your suggestions; the modified parts have been reported in the revised text in red. For 

details comment, pages and lines where text has been modified to accomplish your suggestions are 

specifically indicated. 

Based on my reviewing, I think this manuscript at least needs some revisions before being accepted 

for publishing. The improvements should be addressed as following: 

1) In the methodology part, after introduction of the 3 models (BEM, IEM and NEM), an index or a 

combination of several indexes which will be used for judging the landslide occurring or not should 

be clearly pointed out in the text, then readers can find these criterions in the following result part and 

related figures, and have a better understanding the improvement of the BEM, IEM models. 

Based on your suggestion, we have added a new section (§3.2.1 Preliminary assumptions and 

considerations) in which the proxies for judging the landslide occurring or not have been pointed out. 

This section is preliminary to the Results part (§3.2.2) (Page 12 line 5-9). 

2) More detail discussions should be provided in the result part, especially for the possible limits of 

the models. As it is stated in the conclusion part, “The models’ performance  has been assessed by 

using them to interpret the case history of a landslide and examine  their ability to indicate any 

hydrological peculiarity at the time of the landslide”,  then arising a question: does the threshold 

approach in this manuscript is a universal  criterion or just feasible in the study area with the soil 

combination shown in Figure 2?  More explaining about the models limitation will make the 

conclusion more convincing. 

We have discussed this item in the Conclusion part, in which models limitation and evaluation of 

threshold have been introduced (Page 14 line 24-30 Page 15 line 1-17). 

3) It would be better if the assessment of slope stability under different models conditions can be 

provided. How does the suction influence on the slope stability? 

We have explained how the suction influences on the slope stability. The chain of events inducing a 

rainfall-induced landslides of silty volcanic sloping covers are constituted by (1) a generalized suction 



drop, (2) a suction-induced strength reduction, (3) trigger of local instability due to local peculiarities, 

internal or external to the slope, (4) propagation of local trigger throughout the cover. The approach 

followed in interpreting the NIL2005 in view of structuring an early warning prediction consists in 

analysing the stage (1) in an attempt to limiting analysis to the characterization of suction levels 

predisposing to instability, rather than ongoing the study forward, up to an assessment of the slope 

safety factor. Converting suction distribution into prediction of slope safety factor through a slope 

stability analyses would in fact involve the complex task of characterizing soil strength and the 

complex strength action exerted by roots, which is very difficult to quantify. In addition, the aleatory 

of a local trigger cause would intrinsically make difficult carrying out of stability analyses. As root 

strength action also founds on suction levels (root-soil bonds are mostly promoted by suction), the 

approach followed limits prediction to a full suction-dependent predisposing stage to landslide, which 

is well predictable through physically based approaches. This issue has been introduced in the revised 

manuscript (Page 11 line 26-33 Page 12 line 1-4). 

4) Suction level or value is an important alarm threshold for landslides induced by rainfall, as these 

words appear many times in the methodology part, result part, but they are missed in the conclusion 

part. Conclusion part should include the special important thing which obtained from the study. 

The Conclusion part has been reorganized including also this item (see Conclusion). 

5) The units to variables in the equations are missed. 

Units have been added for all the variables used (Page 6 line 2-5, line 11-12, line 19-19 Page 7 line 

10-11). 

6) Can Figures 16, 17and 18 be shown in one Figure (e.g. 3 model results are shown in one Figure)? 

Then the difference of 3 models results can be told obviously as well as the novelty of the BEM, IEM 

models. 

We have merged the Figures 16, 17 and 18 in one Figure (see Figure 15). 

7) Figure 3, the sub-title of (e) is missed. 

We have added the sub-title. 
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Abstract. In the field of rainfall-induced landslides on sloping covers, models for early warning predictions require an adequate 

trade-off between two aspects: prediction accuracy and timeliness. When a cover’s initial hydrological state is a determining 

factor in triggering landslides, taking evaporative losses into account (or not) could significantly affect both aspects. This study 

evaluates the performance of three physically based predictive models, converting precipitation and evaporative fluxes into 10 

hydrological variables useful in assessing slope safety conditions. Two of the models incorporate evaporation, with one 

representing evaporation as both a boundary and internal phenomenon, and the other only a boundary phenomenon. The third 

model totally disregards evaporation. Model performances are assessed by analysing a well-documented case study involving 

a two-meter thick sloping volcanic cover. The large amount of monitoring data collected for the soil involved in the case study, 

reconstituted in a suitably equipped lysimeter, makes it possible to propose procedures for calibrating and validating the 15 

parameters of the models. All predictions indicate a hydrological singularity at the landslide time (alarm). Comparison of the 

models’ predictions also indicates that the greater the complexity and completeness of the model, the lower the number of 

predicted hydrological singularities when no landslides occur (false alarms).  

1 Introduction 

In Italy, many sloping deposits of sand or silty sand, constituting covers also several meters thick, experience unsaturated 20 

conditions throughout the hydrological year; such state condition permits them to be stable also for slope angles exceeding 

friction angles thanks to additional strength provided by suction (usually, they are characterized by low/null true cohesion 

values). The sequence of rainfall events occurring over the wet season induces a general reduction in suction levels, increasing 

the cover’s susceptibility to an exceptional rainfall event. On the other hand, evaporative fluxes reduce susceptibility to sliding 

by increasing suction levels. The antecedent period, during which the contrast between rainfall and evaporation affects suction 25 

levels, may last weeks or months depending on the hydraulic properties of the soils involved and the climate regime of the 

area. 

The 2005 Nocera Inferiore landslide [hereinafter “2005NIL”] was interpreted (Pagano et al., 2010) by merely referring to 

precipitation recorded by a meteorological station placed near the landslide area (Fig. 1). Richards’ equation (1931) in 1-D 
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flow conditions was adopted to convert hourly precipitation records into the evolution of soil suction at various depths. This 

simple approach highlighted the crucial role of antecedent rainfall (945 mm of rainfall over 4.5 months), which had reduced 

soil suction to very low values before the occurrence of the major event (143 mm of rainfall over 16 hours). By the numerical 

analyses, it arises how suction vanishing throughout the entire cover depth can induce the attainment of slope failure conditions. 

Virtual scenarios built with modified antecedent rainfalls were analysed, and they indicated that the phenomenon would have 5 

not occurred if the antecedent periods had been drier. The crucial factor affecting soil suction at triggering time was the weather 

conditions over the previous four months.  

A meteorological window of such long influence implies that it would not be reasonable to neglect evaporative fluxes, as their 

persistency could result in significant drying processes even during the cold season, when evaporation is at its lowest (about 

1-2 mm/day in winter). Rianna et al. (2014a) measured infiltrating precipitation and actual evaporation induced by the actual 10 

weather conditions on a layer placed in a lysimeter, made using the same soil that was involved in the 2005NIL. Monitoring 

showed that the amounts of actual evaporation and infiltrating precipitation over a hydrological year occur to the same order 

of magnitude (hundreds of millimeters). 

Increasing efforts are being made to develop early warning systems to mitigate the risks of rainfall-induced landslides. Their 

success strongly depends on the performance of the predictive models they implement in terms of timing and accuracy of 15 

prediction. In tens of centimetres thin and/or coarse-grained soil covers, prediction accuracy does not require an account for 

evaporation as the latter plays a minor role in the hydrological balance which might result in a landslide (Brand et al., 1984; 

Chatterjea, 1989; Morgenstern, 1992).  

In several meters thick silty covers accounting for evaporation is instead supposed to increase prediction accuracy. In principle, 

modelling evaporation requires coupling water and heat flows. Geotechnical engineers and geologists are still too unfamiliar 20 

with heat flow modelling in particular, as it entails a number of thermal parameters and boundary conditions that are difficult 

to calibrate and validate. In addition, governing equations need non-widespread numerical codes while, at the same time, high 

non-linearity involves significant efforts to achieve numerical solutions. This implies that in several applications evaporation 

is neglected at all (e.g., Baum et al., 2008; Pagano et al., 2010; Formetta et al., 2016) or taken in to account following simplified 

approaches (Casadei et al., 2003; Rosso et al., 2006; Šimunek et al., 2006; Ebel et al., 2010; Formetta et al., 2014; Capparelli 25 

and Versace, 2011; Arnone et al., 2011). Complete approaches, modelling internal and boundary evaporation basing on 

hydrothermal approaches, were taken into account in studies referred to slopes in fine-grained soils differing substantially from 

those involved in the case in hand (Cui et al., 2005; An et al., 2017; Song et al., 2016). Concerning the hydrological behaviour 

of silty volcanic sloping covers, several Authors adopted approaches incorporating evaporation for the interpretation of 

monitoring results (Pirone et al., 2015a) and/or back-analysis of previous events (Greco et al., 2013; Napolitano et al., 2016). 30 

In such studies, however, evaporative fluxes were modelled as a boundary phenomenon only. 

The question naturally arises whether, for silty volcanic sloping covers, the accuracy of the early warning prediction will be 

significantly reduced if evaporation is neglected, resulting in too many false alarms.  
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This study attempts to address this by comparing results yielded by three different models, either taking evaporation into 

account as only superficial or also internal phenomenon (Wilson et al., 1994) or neglecting it (Richards, 1931), in the 

interpretation of the 2005NIL case study. 

For this study, in addition to hourly precipitation values, the availability of air relative humidity and air temperature records 

makes it possible to estimate the evaporative fluxes potentially experienced by the cover involved in the landslide, 5 

complementing precipitation in characterizing the fluxes that have affected the hydrological state of the cover over time. Data 

are retrieved by a weather station located very close to the investigated slope (Figure 1a); it provided hourly records over the 

timespan 1 January 1998-1 November 2008. Two of the models account for evaporation: one based on a coupled (heat-water 

flow) approach, and the other based on an isothermal approach. The third model neglects evaporation entirely. It represents an 

update to the approach previously adopted in Pagano et al. (2010). Suction and other hydrological variables predicted by using 10 

all the selected models are presented and discussed in an attempt to characterize their various performances.  

Since these three cited models are presumed to be operating in real time, namely receiving recorded meteorological variables 

as input data and returning variables relating to slope safety conditions as output data, they need to be applied to simplified 

geometrical and mechanical patterns to save as much analysis time as possible. The paper also discusses which simplifications 

are able to accelerate predictions without excessively reducing accuracy of prediction.  15 

Considerable effort has been made in this study to develop original procedures for calibrating model parameters from the 

interpretation of the experimental results provided by the above-mentioned lysimeter.  

The paper begins with a description of the case study and presents the lysimeter data. After describing the selected models and 

simplifications carried out to save analysis time, it illustrates all the procedures followed to calibrate the parameters. Lastly, it 

presents and compares the results of the analyses, discussing model performance from the point of view of their possible use 20 

as early warning predictors. 

2 Methods 

2.1 Field experimental data: the Nocera Inferiore 2005 landslide 

2005NIL involved a triangular shaped area of 24,600 m2 and a soil mass of 33,000 m3 covering a 36° open slope (Fig. 1c). In 

the uppermost part of the landslide, in the triggering zone, the slope angle approaches 39° (de Riso et al., 2007) and the 25 

pyroclastic cover is made up of 2 m thick loose non-plastic silty sand (volcanic ash) (Fig. 2). The bedrock consists of highly 

fractured limestone located at a depth ranging from 1 to 2 m, approaching the maximum values at the apical zone.  

The landslide triggered in the apical zone, spreading downward. The rapid post-failure movement caused the death of three 

people whose house was destroyed by the impact of the soil mass, which then covered a wide area (20,000 m2) at the toe of 

the slope (Fig. 1c). In the same zone, two smaller landslides occurred less than 1 km from the main one at the same time. 30 

Figure 3 plots the evolution of precipitation, air temperature and air relative humidity, at the landslide site over a time span of 

about ten years (1998-2008), including the investigated landslide (4 March 2005) in the second part (precipitation until the 
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landslide time are reported in Pagano et al., 2010). Changes in daily air temperature (Fig. 3a) and air relative humidity (Fig. 

3b) are used to estimate the daily potential evaporation (Fig. 3d) by following the FAO guidelines (Allen et al., 1998). The 

potential evaporation intensities occur much lower than precipitation intensities (Fig. 3c). However, potential evaporation 

persistency makes cumulated values (Fig. 3e) significant even during winter, when the flux is minimum.  

Figure 3e shows that the hydrological year in which the landslide took place is associated with the highest cumulated 5 

precipitation. The most significant spread between cumulated values of precipitation (1200 mm) and potential evaporation 

(380 mm) is observed (see vertical segment with rows in Fig. 3e) at the time of the landslide. 

2.2 Experimental data provided by the physical model 

An extensive description of the physical model and the experimental data used may be found in Rianna et al. (2014a, b). A 

wooden tank (Fig. 4) houses a 0.75 m thick layer of non-plastic sandy-silt volcanic soil. This soil was selected and placed in 10 

such a way as to try to reproduce the intrinsic properties and field porosities (around 70%) of the material involved in 2005NIL 

(Fig. 2). A geotextile bounds the bottom of the layer. It acts as a capillary barrier as its voids are larger than those of the 

overlying soil (Reder et al., 2017). The behaviour at the bottom should therefore be consistent with that of fractured bedrock 

with partly empty fractures or a gravel layer (pumice). 

The monitoring scheme implemented in the physical model (Fig. 4) makes it possible to obtain potential fluxes (total 15 

precipitation and potential evaporation), actual fluxes developing across the uppermost layer surface (actual evaporation and 

infiltrated precipitation), and the effects induced by these fluxes within the layer (suction, volumetric water content, 

temperature). Fluxes are quantified by a meteorological station, the continuous weighting of the layer by three load cells 

sustaining the tank and sensors measuring all the energetic terms involved in the energy exchanges between the soil and 

atmosphere (radiometer, pyrometer, heat flux plate, thermistors). Matric suctions (by jet-fill tensiometers and heat dissipation 20 

probes), volumetric water contents (using TDRs), and soil temperatures (using thermistors) are monitored at four depths within 

the layer. 

The physical model was exposed to the atmosphere over four hydrological years in bare conditions, and it returned a number 

of behavioural patterns for the evolution of the layer’s hydrological and thermal states. These patterns suggest the ingredients 

that a predictive model should include, allow quantification of soil properties, and they ultimately represent a useful reference 25 

framework against which to compare predictions in order to assess their reliability.  

The reference behavioural pattern considered here is represented by the evolution of water storage (WS) in the layer (Fig. 5), 

soil suction (at two depths – Fig. 6a), and temperature (three depths – Fig. 7) over four hydrological years (the first two years 

of WS and suction records are by Rianna et al., 2014a; the first two years of temperature records are by Rianna et al., 2014b).  

WS, expressed in terms of overall water volume in the layer divided by the layer surface (Fig. 5a), increases at the onset of 30 

wet periods due to precipitation (Fig. 5b) infiltrating the layer. For prolonged wet periods, such as those occurring during the 

first, third, and fourth years, WS tends to stabilize at a wet level (Fig. 5a, “wet threshold” line) placed just below the maximum 

saturation value in the layer (Fig. 5a, “saturation” line). Above this wet level, drainage is often observed during, and 
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immediately after, rainfall events, whereas drainage has never been observed below it. During dry periods, water storage 

decreases due to evaporation (Fig. 5c), and during prolonged dry periods it tends to reach a minimum at the dry threshold. Soil 

suction (Fig. 6a) measured at different depths is consistent with water storage evolution (Rianna et al., 2014a). It progressively 

increases during the dry period, resulting in asynchronous fluctuations, indicating a slow propagation through the sample of 

changes in the atmospheric conditions. Suction values exceed the jet-fill tensiometer full scale during the summer periods, but 5 

reduce to few kPa during the wet season, resulting in this case in synchronous fluctuations, in line with prompt propagation 

throughout the layer of changes in boundary conditions determined by the atmosphere.  

Temperature (Fig. 7) measured at the four depths follows an evolution consistent with atmospheric temperature. Fluctuations 

in the temperature of the atmosphere tend to reduce as depth increases due to greater soil filter action. 

2.3 Predictive models 10 

Three different models (Fig. 8) were selected to convert the meteorological evolution (Fig. 3) recorded at the landslide area 

into hydrological variables for the cover. Shared features are:   

- the one-dimensionality of water fluxes; this hypothesis, formulated in order to save analysis time in early warning 

applications, should also lead to realistic estimations of the hydrological state of the cover in line with indications of previous 

works; in particular, according to Pagano et al. (2010) this hypothesis is reliable for homogeneous cover, as 1D and 2D 15 

numerical analyses yield in this case very comparable results; reliability should be extended also for the frequent cases of 

homogeneous layers resting on pumices, as pumices effects may be reduced to suitable boundary conditions (Reder et al., 

2017); Papa et al. (2009) observed the one-dimensionality of the water flux also throughout layered volcanic slopes, by plotting 

water flux vectors obtained from field monitoring of suction at the site of Monteforte Irpino; also Damiano et al. (2017) 

confirmed that one-dimensionality of water fluxes is common throughout layered volcanic slopes; 20 

- the rigidity of the domain; neglecting the effects of deformational processes induced by suction changes is suggested by the 

stiff volumetric response observed under swelling-reloading paths, which should speed up re-equilibrium processes so that 

hydraulic response is unaffected by the consolidation delay; 

- modelling of hourly rainfall as hydraulic boundary conditions at the top surface of the domain; there a water flux condition 

equal to rainfall intensity is maintained if pore water pressure at the top is less than zero (a positive value would indicate 25 

ponding formation); otherwise, a null pore water pressure condition is assumed and maintained if the computed entering water 

flux is less than rainfall intensity; on the contrary, entering flux is again applied at the rainfall intensity.  

- surface seepage is applied at the bottom boundary; this condition corresponds to the hypothesis that the bedrock the volcanic 

layer rests on is intensely fractured and that the fractures are filled only by air (Reder et al., 2017).  

The more comprehensive approach adopted couples the water balance equation with the heat balance equation and 30 

thermodynamic equilibrium (Wilson et al., 1994) and is applied using the Vadose/W code (GeoSlope, 2008).  

The water balance equation is expressed as: 
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1

𝜌𝑤𝑔

𝜕(𝑢𝑎 − 𝑢𝑤)

𝜕𝑡
=

1

𝜌𝑤𝑔𝑚2
𝑤 [

𝜕

𝜕𝑧
(𝑘𝑤 +

𝑘𝑤

𝜌𝑤𝑔

𝜕(𝑢𝑎 − 𝑢𝑤)

𝜕𝑧
) + (

𝑃𝑎 + 𝑢𝑣

𝑃𝑎𝜌𝑤

)
𝜕

𝜕𝑧
(𝐷𝑣

𝜕𝑢𝑣

𝜕𝑧
)] (1) 

 

where 𝑢𝑤  (M L−1 T−2 ) = liquid pore water pressure, 𝑢𝑎 (M L−1 T−2 ) = pore air pressure, 𝑢𝑣 (M L−1 T−2 ) = partial pressure of 

vapor pore water, 𝑚2
𝑤  (L T2 M-1) = slope of soil water characteristic curve (SWCC), 𝑃𝑎  (M L−1 T−2) = total atmospheric 

pressure, 𝑘𝑤 (L T−1) = hydraulic conductivity function (HCF), 𝐷𝑣  (T) = function of vapor diffusivity through the soil, 𝜌𝑤 (M 

L−3) = liquid water density, 𝑔 (L T-2) = gravitational acceleration. 5 

In comparison with the traditional form of water balance equation, describing the flow of liquid water through porous media, 

equation (1) contains an additional term (the second one in square brackets) considering possible changes in the water phase. 

The heat balance equation is expressed as: 

 

𝐶ℎ

𝜕𝑇

𝜕𝑡
=

𝜕

𝜕𝑧
(𝜆

𝜕𝑇

𝜕𝑧
) − 𝐿𝑣 (

𝑃𝑎 + 𝑢𝑣

𝑃𝑎

)
𝜕

𝜕𝑧
(𝐷𝑣

𝜕𝑢𝑣

𝜕𝑧
) (2) 

 10 

where 𝑇 (Θ) = soil temperature, 𝐶ℎ (ML-1T-2Θ-1) = function of volumetric specific heat, 𝜆 (MLT-3Θ-1) = function of thermal 

conductivity, 𝐿𝑣 (L2T-2) = latent heat of water vaporization. 

In this equation, the last term accounts for the amount of energy spent on water vaporization and represents the coupling with 

the water balance equation. 

Thermodynamic equilibrium is expressed as: 15 

 

𝑢𝑣 = 𝑢𝑣0 𝑒𝑥𝑝 (
(𝑢𝑎 − 𝑢𝑤)𝑀𝑤𝑔

𝑅𝑇
) (3) 

 

where 𝑢𝑣0 (M L−1 T−2) = saturated partial pressure of pore vapour, 𝑀𝑤 (M N-1) = water molecular weight, 𝑅 (ML2T-2N-1Θ-1) = 

ideal gas constant. 

The described model requires the following boundary conditions: 20 

- soil suction (𝑢𝑎 − 𝑢𝑤)𝑠  or, alternatively, liquid water flux (𝑣𝑤)𝑠  at the top-boundary; infiltrating precipitation was 

reproduced as already described in this section, and actual evaporation 𝐴𝐸 was reproduced according to the FAO approach 

described in what follows; 𝑢𝑎 is assumed to be the same as the atmospheric pressure; 

-vapor pressure (𝑢𝑣)𝑠 or, alternatively, vapor water flux (𝑣𝑣)𝑠; the boundary value problem was addressed by quantifying the 

former from air relative humidity 𝑅𝐻 and air temperature 𝑇𝑎 records; 𝑅𝐻 provides the ratio (𝑢𝑣)𝑠 (𝑢𝑣0)𝑠⁄ , while 𝑇𝑎 provides 25 

the partial pressure of the vapor phase in saturated conditions (𝑢𝑣0)𝑠 using the Tetens equation (Tetens, 1930); 

- temperature 𝑇𝑠 is assumed to equal air temperature 𝑇𝑎 measured two meters above the surface of the ground, in line with the 

approach followed by Wilson et al. (1997). 
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Maximum values of Actual evaporation 𝐴𝐸 correspond to atmospheric demand Potential evaporation 𝑃𝐸; however, according 

soil moisture conditions AE can be reduced according to the falling law proposed by Wilson et al. (1997) 

 

𝐴𝐸 = 𝑘 𝑃𝐸 (4) 

 

where k is equal to: 5 

 

𝑘 =  
𝑒𝑥𝑝 (

(𝑢𝑎 − 𝑢𝑤)𝑠𝑀𝑤𝑔
𝑅𝑇𝑠

) − 𝑅𝐻

1 − 𝑅𝐻
 

(5) 

 

and the 𝑃𝐸 expression of the FAO approach (Allen et al., 1998): 

 

𝑃𝐸 = 𝑘𝑐𝑟𝑜𝑝 [
0.408 Γ (𝑅𝑛 − 𝐺) + 𝜂

900
𝑇𝑎 + 273

𝑢2𝑚(𝑢𝑣0
𝑎𝑖𝑟 − 𝑢𝑣

𝑎𝑖𝑟)

Γ + 𝜂(1 + 0.34𝑢2𝑚)
] (6) 

where 𝑘𝑐𝑟𝑜𝑝  (-) = crop coefficient, Γ  (ML-1T-2Θ-1) = slope of the vapor pressure curve, 𝜂  (ML-1T-2Θ-1) = psychrometric 10 

constant, 𝑅𝑛 (ML-2T-3) = net radiation flux, 𝐺 (ML-2T-3) = soil heat flux, 𝑢2𝑚 (L T-1) = wind speed measured two meters above 

the surface of the ground. The FAO approach takes the various crop conditions into account thanks to the 𝑘𝑐𝑟𝑜𝑝 coefficient 

that transforms the potential evaporation of the reference surface (in square brackets) into 𝑃𝐸 in relation to the actual surface 

(a bare surface in the case at hand). This coefficient was quantified in Rianna et al. (2014b) as 𝑘𝑐𝑟𝑜𝑝 = 1.15 by using 𝑃𝐸 

measurements provided by the physical model. This is consistent with the literature indications (Allen et al., 1998; Allen et 15 

al., 2005).  

It is important to highlight that the model described above incorporates evaporation as both a superficial and an internal 

phenomenon, suited to reproducing the possible deepening of the water state-change surface over dry and hot periods. 

Hereafter, this model will be referred to as the “Internal Evaporation Model” or “IEM.” Such modelling has been successfully 

adopted for investigating different issues: e.g. embankment stability analysis (Gitirana, 2005; Briggs et al., 2016), soil-structure 20 

interaction (Al Qadad et al., 2012), generic soil-water budget (Cui et al. 2005). 

Richards equation constitutes a simplified version of the described model. It consists of the water balance equation (1) for 

liquid water, thus removing the vapor flow term, and equation (4), specified by equation (5) and (6). This isothermal approach 

only takes into account changes in atmospheric temperature through eq. (5), where it is assumed that 𝑇𝑠 = 𝑇𝑎 (an approach 

called “isothermal model with atmospheric coupling”, by Fredlund et al., 2012). The model takes only evaporation into account 25 

as a boundary phenomenon, which occurs only at the top-boundary, with no possibility of a downward shift of the water state-

change surface. Hereafter, this model will be referred to as the “Boundary Evaporation Model” or “BEM”. 
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A further simplification often adopted in single applications (Pagano et al., 2010) or in a number of codes developed to estimate 

slope stability conditions over extensive sloping territory (Iverson, 2000; Montgomery and Dietrich, 1994; Baum et al., 1998) 

corresponds to the latter (Richards equations) approach applied without accounting for evaporation. This model will 

subsequently be referred to as the “No Evaporation Model” or “NEM”. 

All the simulations were performed using an input/output hourly time step; moreover, the adaptive time stepping scheme 5 

proposed by Milly (1982) was adopted for inner time step. 

2.4 Calibration and model parameters 

The IEM model is a generalization of the other two, implying that the soil properties and parameters it contains also pertain to 

BEM and NEM. Calibration refers to both thermal (soil thermal conductivity and volumetric specific heat) and hydraulic 

properties (the soil water retention curve and the hydraulic conductivity function), the latter being common to the other two 10 

approaches.  

Parameters were calibrated from the results provided by the physical model over the first two years. The results collected over 

the subsequent two years were adopted to validate the calibration.  

Some of the soil properties were quantified directly from measurements. This is the case of the SWCC, which was obtained as 

best fit function of (water content) – (suction) points recorded at all depths by TDRs and jetfill tensiometers (Fig. 9a). The 15 

SWCC adopted interpolates experimental data available up to suction values of around 90 kPa and extrapolates them to much 

higher suction levels, adopting as asymptote the lowest volumetric water content measured locally by TDRs.  

This is also the case of the thermal conductivity function (𝜆), which was derived as best-fit function (Fig. 9b) of (water content) 

– (thermal conductivity) points recorded at all depths. Thermal conductivity values were obtained using heat dissipation probes, 

referring to the relationship relating probe energization  𝑞, to  𝑞-induced temperature changes Δ𝑇 (Shiozawa and Campbell, 20 

1990): 

 

𝑞 = 4𝜋 ln(Δ𝑇) 𝜆 (7) 

 

which contains 𝜆 as a single unknown. 

The volumetric specific heat 𝐶ℎ and hydraulic conductivity functions, on the other hand, were quantified following articulated 25 

and novel interpretation procedures of experimental data based on back-analysis works. 

𝐶ℎ  was determined by solving the heat equation at sublayers with the thicknesses demarcated by triples of temperature 

measurement points. By assuming that the energy spent for evaporation within each sublayer is negligible, and 𝜆 is constant 

at the mean value assumed throughout the sublayer (𝜆̅ ), the heat equation may be rewritten as: 

 30 
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𝜕𝑇

𝜕𝑡
=

𝜆̅

𝐶ℎ

𝜕2𝑇

𝜕𝑧2
 (8) 

 

This equation was solved by regarding the two external temperature measurements of the sublayer as boundary conditions and 

considering internal measurement 𝑇∗, a reference for calibrating 𝜆̅ 𝐶ℎ⁄  , as the value that gives the best fit of the evolution of 

𝑇∗ over the first two years of observations. Preliminary knowledge of 𝜆̅ then makes it possible to obtain 𝐶ℎ (Fig. 9c). 

Having established SWCC and thermal properties, the HCF was calibrated via a back-analysis of the hydrological behaviour 5 

of the layer observed over the first two years. A domain of the same thickness (0.75m) as the layer placed in the physical 

model was assumed to be subject to boundary conditions at the top surface reproducing the recorded atmospheric variables. 

Figure 10 shows that the agreement between measurements and predictions obtained from the back-analysis is satisfactory 

both in terms of water storage (Fig. 10a) and suction (Fig. 10b). Predictions match observations not only within the calibration 

range but also outside it (validation phase). Figure 11 plots the hydraulic conductivity function resulting from back analysis. 10 

The hydraulic conductivity of the material drops by three orders of magnitude (from 10-6 to 10-9 m/s), with suction increasing 

from 0 to 100 kPa. 

Table 1 lists parameter values obtained from calibration based on experimental results provided by the physical model. 

Hydraulic conductivity function and water retention curve are fully consistent with those indicated for the same soil type by 

Nicotera et al. (2010) and Pirone et al. (2015b). Thermal parameters for these soils are instead quantified in this work for first 15 

time. 

Upon completion of parameter calibration, thermal functions 𝜆 and 𝐶ℎ  were further validated by checking their ability to 

reproduce the observed thermal behavior under the effects of the recorded atmospheric variables. Figure 12 shows that the 

model yields temperature predictions fully consistent with temperature measurements at all depths over the four years of 

available observations. 20 

As stated previously, IEM calibration also implies automatic BEM and NEM calibration. Figures 13a and 13b add the 

predictions yielded by the BEM model in terms of WS and suction to the plots of Figure 10. It may be observed that even the 

approach incorporating evaporation as only a boundary phenomenon performs well in reproducing the recorded hydrological 

pattern. The predictions yielded by the two approaches (IEM and BEM) match during winter and early spring, in the meanwhile 

that actual evaporation attains potential levels, and evaporation really configures as a boundary phenomenon. They depart 25 

instead during late spring, summer and autumn, when internal evaporation phenomena take place, or the effects of their 

previous occurrence are felt. During these periods, IEM predictions reproduce observations better than BEM ones, as the latter 

overestimates (or underestimates) water storage (suction).  

A synthetic overview about the capability of calibrated approach in reproducing observed values is reported in Table 2. It 

reports an evaluation of goodness-of-fit for WS, suction and temperature obtained by using Nash-Sutcliffe (Nash and Sutcliffe, 30 

1970), Kling-Gupta (Gupta et al., 2009) and the coefficient of determination. Advantages and constraints of such approaches 

are largely investigated in literature (Krause et al., 2005; Bennet et al., 2013). The results are differentiated considering 
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calibration and validation periods as separately as jointly. In general, satisfying results are achieved for WS and temperature 

where over all periods the three indices never fall below 0.74 (over 0.88 for WS); on the other hand, worse performances arise 

considering suction especially adopting Nash-Sutcliffe approach. These discrepancies are likely to be due to disregarding 

hydraulic hysteretic dynamics that, in such soils, could play a relevant role (Rianna et al., 2017) using a unique hydraulic 

characterization aimed to catch the average behaviour of soil in wetting and drying paths. 5 

3 Results and discussion 

3.1 Patterns of AE predictions under simplified PE evolutions 

In order to further investigate differences in the predictions yielded by the IEM and BEM models and their possible 

implications for the prediction of the evolution of the hydrological state, the model responses were compared under much 

simpler boundary conditions than those (Fig. 13) considered in reproducing the behaviour of the physical model. With the 10 

models calibrated as described above, the two approaches incorporating evaporation were used to predict actual evaporative 

fluxes (AE) they return under the effects of the same virtual potential evaporation (PE) flux applied at the top boundary, acting 

with an intensity of 4.5 mm per day and constant over 60 days. Such value represents the mean evaporative atmospheric 

demand estimated through available weather forcing for summer during the physical model monitoring. The response of the 

two models was plotted in terms of both AE evolution (Fig. 14a) and hydraulic conductivity evolution at the top surface (Fig. 15 

14b). The AE values yielded by the two models coincide when AE is equal to PE, in line with what was illustrated above in 

discussing the trends in Figure 13. There is a time, under such forcing, when AE departs from PE in the two predictions. It 

corresponds to the moment when upward water fluxes are no longer able to fully supply the top surface with the water amount 

satisfying the hypothesized atmospheric demand for evaporation (4.5 mm per day). After this time, the two AE predictions 

also diverge and follow a substantially different evolution. A drop in AE typifies the BEM model response. This is due to the 20 

fact that the model generates vapour only from liquid water reaching the top surface. When AE diverges from PE, a shallow 

thin zone placed below the top surface desaturates more than the interior. With increasing suction, hydraulic conductivity 

decreases and hydraulic gradients increase, with the former having a greater effect on flow reduction (Fig. 14b). In turn, this 

reduction slows the upward water flux, so that that water losses induced by the PE action in this shallow thin zone are no 

longer compensated by water supplied from the interior. In this way, under the effect of desaturation dynamics the shallow-25 

thin zone shortly reaches the residual water content conditions very low hydraulic conductivity values. At this point, the upward 

water flux from the interior is almost totally inhibited, in a sort of barrier effect exerted by the shallow thin zone, implying the 

vanishing of AE. This barrier effect inhibits further desaturation processes inside the domain. Consistently, suction attains very 

high values within the cap zone, remaining at low levels inside the domain.  

On the other hand, the IEM model is suited to reproduce the occurrence of internal evaporation as soon as the zone placed 30 

below the top surface desaturates more than the interior at the time of PE-AE divergence. Vapor starts to generate within the 

interior of the domain other than at the boundary, in an automatic and progressive deepening of the water phase-change surface. 
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Interior vapour forms and migrates upward at a rate that is now regulated by vapour conductivity, which unlike with hydraulic 

conductivity, progressively increases as the degree of saturation decreases so that vapour migration takes place at a rate that 

maintains AE at significant levels. It follows that AE reduction is gradual in the IEM predictions as it is effectively supplied 

by the interior vapour generation. Furthermore, as internal vapour approaches the top-surface, it also reduces suction levels 

there as a consequence of thermodynamic equilibrium (Eq. 3). This contributes to maintaining hydraulic conductivity at levels 5 

much higher than those associated with the BEM prediction. Boundary evaporation also occurs at a consistently higher rate, 

or, in other words, the formation of any barrier effect is prevented. Compared with BEM prediction, in the IEM prediction, 

vapor migration produces suction levels (Fig. 15c) that are lower near the top surface and higher within the domain interior 

when desaturation processes are more significant.  

It is worth highlighting that the high suction values predicted by the above numerical analyses at the top-surface are not only 10 

theoretically based (see for example Wilson et al., 1994; 1997), but they could be experienced by silty pyroclastic covers 

during the dry-hot season. For instance, Pagano et al. (2014) measured suction at the layer topsoil by heat dissipation probes 

up to 10000 kPa. Both numerical and experimental results hence indicate that during the hot-dry season very high topsoil 

suction merge with moderately lower interior suction values.  

3.2 Interpretative analyses of the Nocera Inferiore 2005 landslide 15 

3.2.1 Preliminary assumptions and considerations 

In order to investigate the potential of the IEM and BEM models in interpreting the 2005NIL and establishing their reliability 

as predictive tools in early warning systems, a two-meter thick domain corresponding to the thickness of the cover in the zone 

where the landslide triggered was analysed, by assuming one-dimensionality of water fluxes.  

The reliability of the one-dimensional assumption has already been discussed at the beginning of §2.3. The analyses were 20 

carried out according to the hypotheses formulated in §2.3, quantifying the model parameters from experimental data provided 

by the lysimeter (Table 1). For the case in hand, hydraulic properties estimated from laboratory and lysimeter experiments 

were compared with those obtained by field monitoring (Pirone et al., 2016). Consistency of results encouraged in using 

lysimeter-based quantification of parameters for field predictions, overcoming reliability issues typically arising when 

hydraulic properties quantified at small or meso scales are used for prediction carried out at a field scale.  25 

The chain of events inducing a rainfall-induced landslide in a silty volcanic sloping cover may schematically be illustrated in 

subsequent or contextual stages as follows (Pagano et al., 2008): (1) a generalized suction drop, (2) a suction-induced strength 

reduction, (3) trigger of instability due to local peculiarities, internal or external to the slope, (4) propagation of local trigger 

throughout the cover. The approach followed in interpreting the NIL2005 in view of structuring an early warning prediction 

consists in analysing the stage (1) in the attempt to focus on the characterization of suction levels predisposing to instability, 30 

rather than ongoing the study forward, up to an assessment of the slope safety factor. Converting suction distribution into 

prediction of slope safety factor would involve a slope stability analyses and, consequently, the complex task of characterizing 

soil strength and the strength action exerted by roots, which is very difficult to quantify. In addition, the aleatory of a local 
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trigger cause would intrinsically make difficult carrying out stability analyses. As root strength action also founds on suction 

levels (root-soil bonds are mostly promoted by suction), the approach followed limits to predict the suction-dependent 

predisposing stage by physically based approaches. WS may also be used in place of suction, as it is function of suction 

distribution.  

The evolution of meteorological variables recorded at the landslide site over the whole ten years (Fig. 3), including the time 5 

of the landslide, was then converted into the evolution of WS and suction in the middle of the domain analysed (to a depth of 

1 m) via the IEM and BEM predictions. In possibly using these models for physically based early predictions, these variables 

were considered as proxies from which different alert thresholds can be defined.  

 

3.2.2 Results 10 

Figure 15a plots the WS evolutions yielded by the IEM and BEM analyses. Both are able to reproduce the typical WS patterns 

that develop over a hydrological year, so as shown by the experimental data provided by the physical model: WS fluctuates 

during the year, increasing during autumn, winter and early spring due to precipitation, and reducing during late spring and 

summer due to evaporation.  

The IEM and BEM trends differ systematically during the dry seasons as a result of the different AE mechanisms that activate 15 

as soon as significant drying processes cause AE to diverge from PE (see §3.1). The minimum WS values predicted by the 

two models during the dry periods are different, as already observed in the results meant to fit the data for the physical model 

(Fig. 13a). However, differences in minimum values are now higher than those previously computed, essentially due to the 

different domain thicknesses analysed (2 m instead 0.75 m). The 0.75 m domain is so small that the meteorological forcing 

typical of the dry periods produces water content to attain residual value throughout the whole thickness. Most of the drying 20 

processes (WS reductions) are regulated by AE=PE. Only a residual part of the WS (from the point of departure down to the 

minimum) occurs because of internal evaporation. Under these conditions, IEM and BEM effectively work in a similar way 

most of the time, producing a small gap at the lowest WS. A 2-meter thick domain, under the effects of similar meteorological 

forcing, does not achieve residual water content at all depths during the dry season. WS losses regulated by internal evaporation 

are far from minor and represent a significant part of the evaporated water, so that a significant gap is present at the lowest 25 

WS. This is of around 150 mm for the years characterized by matching WS during the wet season.  

WS gaps attained during the dry season are reflected in WS differences during the subsequent wet season (autumn), when 

landslide susceptibility is usually moderate. These differences tend to be gradually attenuated with the passing of time due to 

the higher potential infiltration in the IEM domain caused precisely by its drier state: the WS trend yielded by IEM is marked 

by higher hydraulic gradients. In some seasons, IEM predictions always remain below those of the BEM, while in others the 30 

WS gaps disappear. The occurrence of one or the other condition depends essentially on rainfall cumulating over the autumn 

wet season. When the IEM prediction and the BEM match, AE=PE usually occurs, so that IEM and BEM predictions coincide 

over the entire subsequent wet period. This happened during the four consecutive hydrological years from September 2002 to 

the August 2006 landslide, including the landslide year. 
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A peak at record is yielded by both IEM and BEM analyses at the time of the landslide (Fig. 15a). By enlarging the scale and 

looking at high WS values in order to isolate and highlight peaks (Fig. 15b), it may be observed that the peaks attained at the 

time of the landslide are higher than the peaks attained over other years. This encourages the assumption that both predictions, 

as they clearly indicate a peculiarity in the hydrological response in the cover at the time of the landslide, would have worked 

satisfactorily if they had been adopted as predictive tools in an early warning system. In fact, they would have been able to 5 

indicate a situation of alarm at the time of the landslide without generating a significant number of false alarms if the alarm 

threshold had been placed slightly below the peak attained at landslide time.  

Figure 15c,d show the IEM and BEM predictions for the evolution of suction at a depth of 1 m. It reveals that suction predicted 

also at the middle of the layer may work as a proxy for slope safety conditions, as the hydrological behaviour it depicts is 

consistent with everything indicated by the integral variable WS. Suction or WS may therefore both be used as reference 10 

variables for early warning.  

Figure 15a,b show the water storage evolution yielded by the simplest model (NEM) adopted, which neglects evaporation 

entirely (Pagano et al., 2010; Reder et al., 2017). In this case, it is not possible to carry out a continuous analysis of the 

hydrological response of the cover over the whole ten years, due to the inability of the model to predict water losses from the 

domain during the dry periods. Analysis needs to be restarted at the beginning of each hydrological year in order to reinitialize 15 

the hydraulic variables. Unfortunately, these become additional input data that have to be set. It would be necessary, in theory, 

to monitor suction or water content in the field to quantify initial conditions. The initial quantification of suction has a particular 

impact on the reliability of the analysis during the periods of landslide susceptibility occurring not far from the start time 

(considered at the beginning of the hydrological year), as the effects of the starting conditions are lost after a period of around 

four months (Pagano et al., 2010). In these predictions, suction re-initialization at the beginning of each hydrological year is 20 

achieved by adopting suction values yielded by the IEM model, as it is information obtained by monitoring suction in the field. 

The NEM prediction has a peak at the time of the landslide, once again at record levels both in terms of water storage and 

suction, but the peak is not as high as a large number of other significant peaks. From the point of view of performance, NEM 

by itself must therefore be considered less effective than the IEM and BEM predictions together. 

The performances of the three adopted approaches may be judged by taking the number of alerts and alarms they would have 25 

yielded if they had been adopted as predictive tools in an early warning system within the specific reference period analysed. 

Differences in performance obviously depend on the levels at which the thresholds for water storage or suction are set to limit 

the different alert stages and spread the alarm. The alarm threshold can be identified by interpreting the landslide phenomenon 

by the models, referring to the prediction yielded by the most complete one (IEM) in terms of the lowest suction level not 

associated with a landslide (around 3.5kPa). A possible pre-alarm alert level is 5 kPa, obtained by increasing the alarm 30 

threshold by around 50%. This double choice permits a quantitative comparison of model performance, with the IEM model 

performing the best, returning 0 alarms and 1 alert (1 every 11 years). The BEM comes second, returning 3 false alarms (1 

every 3.7 years) and 5 alerts (1 every 2.2 years). The NEM model performs worst, returning 5 false alarms (1 every 2.2 years) 

and 12 alerts (0.9 for year). 
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4 Conclusions 

This paper has investigated the performance of three physically based models taken from the literature with a view to using 

them for early warning predictions. Two of them incorporate evaporative fluxes, but the other neglects them. Particular care 

has been taken with the simplification of the models so as to respect the accuracy of the predictions they provide, establishing 

procedures to calibrate the parameters and to characterize the hydrological patterns they predict. The models’ performance has 5 

been assessed by using them to interpret the case history of a landslide and examine their ability to indicate any hydrological 

peculiarity at the time of the landslide.  

In analysing model performances, the work structures an entire procedure for early warning prediction. It bases on the 

following key points:  

(1) the assumption of WS or, alternatively, suction as proxies of slope safety evolution, overcoming the huge problems 10 

of characterizing complex strength factors and dealing with aleatory and undetectable local conditions that might 

generate landslide trigger; 

(2) the quantification of soil parameters at a mesoscale level, by interpreting experimental results from a 1 m3 large layer 

subject to realistic boundary conditions, rather than, as usual, from small laboratory specimens subject to artificial 

boundary conditions; in particular, the paper suggests an experiment typology and elaborates theoretical interpretation 15 

procedures for parameter calibration; for all contexts similar to that here analysed (homogeneous layers made of soils 

similar to that investigated), parameter values provided are ready for use and hence, they could greatly simplify the 

task of setting an early warning prediction;  

(3) the key assumption of one-dimensionality of water flux, able to save time by preserving, at the same time, prediction 

reliability. 20 

The study shows that all models taken into consideration, if used as early warning predictive tools, would then be able to 

signal the alarm at the time of a landslide. Increased complexity and completeness of the models, however, would clearly 

result in a lower number of false alarm predictions. 

The following limitations should however be warned, in order to prevent from referring the same procedure to 

inappropriate contexts: 25 

(a) at present, the procedure may be confidentially applied to homogeneous sloping layers made of non-plastic silty 

volcanic soils; the possibility for extending it to other contexts has to be preliminarily investigated; premises 

encourage for extending the procedure to all contexts susceptible to rainfall-induced landslides 

(b) the one-dimensional assumption is validated for homogeneous layer; in layered contexts the procedure should be 

validated; works cited in this paper encourages to follow such way; 30 
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(c) the hydraulic hysteresis of the soil has been neglected in the present study, by assuming a unique SWCC fitting all 

the available observations over the calibration time span; the accuracy loss of the prediction due this simplification is 

at present topic of new research; 

(d) the assumed lowermost boundary condition (seepage surface) might be not realistic in contexts differing from that 

here considered. For instance, fractured formations filled with fine material transported from downward flux should 5 

be more appropriately analysed by assuming a unit gradient or infinite layer condition. 

 

As concerns the setting of early warning thresholds, the implementation of the procedure could face, in several cases, with 

the unavailability of meteorological evolutions associated with landslides. In such a case, first trial thresholds in terms of 

suction or WS might be fixed conservatively on the base of the lowest suction levels (highest WS) ever predicted in 10 

converting the real meteorological evolution. On the other hand, among the several meteorological evolutions available 

some of them could relate with a landslide. It is worth noting at this point that even a single well-documented case, as it 

was for the present study, represents a very lucky circumstance. The first trial alarm thresholds may then be based on 

suction or WS levels predicted at landslide time. In both circumstances (availability or not of a landslide case-study), 

initial calibrated thresholds should be continuously validated and, eventually, updated over time as the site of interest 15 

could be subject to substantial geomorphological modifications affecting, in increase or decrease, its susceptibility to 

rainfall induced landslides. 

For the site here considered, monitoring of field hydrological variables were not available so to allow a validation of model 

prediction based on field measurement. For monitored sites, a more accurate calibration/validation procedure could also 

be based on procedures based on fitting monitored quantities. 20 
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Figure 1: The 2005 Nocera Inferiore Landslide (2005NIL): (a) map indicating the landslide location and zones homogeneous with 

that of the landslide for soils, cover thicknesses and slope gradients; (b) plan view (DigitalGlobe 2012. http://www.earth.google.com), 

indicating the landslide area and the location of the weather station; (c) frontal view of the landslide area. (Pagano et al., 2010, 

modified). 5 
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Figure 2: Grain-size distribution of the Nocera Inferiore volcanic ash (Pagano et al., 2010) 
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Figure 3: Meteorological variables recorded at the 2005NIL site between January 1998 and August 2008: (a) mean daily air 

temperature, Ta; (b) mean daily air relative humidity, RH; (c) daily precipitations, P; (d) daily potential evaporation, PE; 

precipitation, P, and potential evaporation PE, cumulated during each hydrological year 
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Figure 4: Monitoring devices installed in the physical model (Rianna et al., 2014a, modified). 
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Figure 5: Evolution of variables recorded by the physical model of lysimeter: (a) layer water storage, WS; (b) daily precipitations, 

P; (c) daily potential evaporation, PE. (Records taken over the first two hydrological years are from Rianna et al., 2014a). 
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Figure 6: Evolution of variables recorded by the physical model of lysimeter: (a) matric suction at depth=15 cm; (b) matric suction 

at depth=50 cm; (c) daily precipitations, P; (d) daily potential evaporation, PE. (Over the first two hydrological years records are 

from Rianna et al., 2014a) 
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Figure 7: Evolution of temperature, T, recorded by the physical model of lysimeter: (a) soil temperature at depth=5 cm; (b) soil 

temperature at depth=15 cm; (c) soil temperature at depth=50 cm. 
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Figure 8: Model schemes adopted for early warning predictions. 
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Figure 9: Calibration of model parameters: (a) experimental point versus fitting water retention curve; (b) experimental point versus 

fitting thermal conductivity function; (c) volumetric specific heat function 
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Figure 10: Back-analysis of the observed layer hydrological behavior by the IEM model: (a) measured versus IEM-predicted water 

storage, WS; (b) measured versus IEM-predicted suction at depth=15cm; (c) measured versus IEM-predicted suction at 

depth=50cm. 
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Figure 11: The hydraulic conductivity function obtained from the IEM-back-analysis of the hydrological behaviour. 
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Figure 12: Measured versus IEM-predicted temperature (T) evolutions at three different depths indicated. 
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Figure 13: Comparison between IEM-predicted, BEM-predicted and observed hydrological behaviour: (a) comparisons in terms of 

water storage, WS, evolutions; (b) comparisons in terms of suction evolutions at depth=15cm; (b) comparisons in terms of suction 

evolutions at depth=50cm. 



33 

 

 

Figure 14: Comparison of variables yielded by IEM and BEM predictions under PE=4.5 mm/day: (a) comparisons between actual 

evaporative fluxes, AE; (b) comparisons between hydraulic conductivities at the top-surface and evolution of vapor conductivity at 

the top-surface; (c) comparisons between evolutions of suction at the top surface and at depth=5cm. 
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Figure 15: NEM, BEM and IEM predictions of the hydrological behaviour evolution for the layer involved in the 2005NIL: (a) 

prediction within the WS full range; (b) prediction for WS levels higher than 1300 mm; (c) prediction within the suction full range; 

(d) prediction for suction levels lower than 10 kPa. 
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Table 1. Soil functions and estimated parameters for investigated soil 

Soil water characteristic curve Hydraulic conductivity function 
Volumetric specific heat 

function 

Thermal conductivity 

function 

𝜃 − 𝜃𝑟

𝜃𝑠 − 𝜃𝑟

= 𝑆𝑒 = [1 + (𝛼 |𝑢𝑎 − 𝑢𝑤|)𝑛]−(1−
1
𝑛

)
 

(Van Genuchten, 1980) 

 

𝑆𝑒 = effective saturation degree 

𝜃𝑠 = residual water content = 0.696 

𝜃𝑟 = saturated water content = 0.100 

𝛼 = inverse of air entry suction = 0.047 

𝑛 = fitting parameter = 1.760 

 

𝐾𝑤 = 𝐾𝑤𝑠(𝑆𝑒)𝑙  {1 − [1 − (𝑆𝑒)
1
𝑚 ]

𝑚

}
2

 

(Mualem, 1976 - Van Genuchten, 1980) 

 

𝐾𝑤𝑠 = saturated hydraulic 

conductivity = 1×10-6 m/s 

𝑙 = fitting parameter = -0.5 

𝐶ℎ = 𝐶ℎ0 + 𝛼0𝑒𝑥𝑝(𝑏0𝜃) 

 

 
𝐶ℎ0, 𝛼0, 𝑏0 fitting parameters 

 

𝐶ℎ0 = 0.055 

𝛼0 = 0.025 

𝑏0 = 5.252 

𝜆 = 𝜆1 + 𝛼1𝑒𝑥𝑝(𝑏1𝜃) 

 

 
𝜆1, 𝛼1, 𝑏1 fitting parameters 

 

𝜆1 = 0.148 

𝛼1 = 0.013 

𝑏1 = 5.406 

 

 

Table 2. Nash-Sutcliffe, Kling Gupta Efficiency and Coefficient of determination assessed for proxy variables (WS, suction and 

temperature at different depths) considering all period, only calibration period (First and Second Hydrological Year), only 5 
validation period (Third and Fourth Hydrological Year) 

 

 
Nash-Sutcliffe Kling Gupta Efficiency Coefficient of determination 

All Cal Val All Cal Val All Cal Val 

WS 0.89 0.91 0.88 0.93 0.94 0.92 0.93 0.93 0.93 

Suc_15 0.54 0.43 0.68 0.58 0.53 0.72 0.85 0.86 0.83 

Suc_30 0.57 0.55 0.55 0.72 0.71 0.73 0.74 0.75 0.69 

Suc_50 0.36 0.45 0.04 0.65 0.71 0.50 0.61 0.62 0.54 

Suc_70 0.44 0.39 0.39 0.68 0.68 0.65 0.63 0.60 0.62 

Temp_5 0.75 0.74 0.76 0.75 0.73 0.77 0.97 0.97 0.97 

Temp_15 0.82 0.82 0.83 0.80 0.80 0.81 0.98 0.97 0.98 

Temp_30 0.92 0.91 0.93 0.83 0.81 0.86 0.97 0.98 0.97 

Temp_50 0.93 0.93 0.93 0.90 0.89 0.91 0.95 0.95 0.94 

Temp_70 0.96 0.96 0.96 0.93 0.93 0.93 0.96 0.97 0.96 

 


