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 1 

ABSTRACT To manage natural risks, an increasing effort is being put in the development 2 

of early warning systems (EWS), namely, approaches facing catastrophic phenomena 3 

by timely forecasting and alarm spreading throughout exposed population. Research 4 

efforts aimed at the development and implementation of effective EWS should 5 

especially concern the definition and calibration of the interpretative model. This paper 6 

analyses the main features characterizing predictive models working in early warning 7 

systems, by discussing their aims and, consistently, their features in terms of model 8 

accuracy, evolution stage of the phenomenon at which the prediction is carried out, 9 

and model architecture. Original classification criteria based on these features are 10 

developed throughout the paper and shown in their practical implementation through 11 

examples referred to flow-like landslides and earth flows, both characterized by rapid 12 

evolution and quite representative of many applications of EWS. 13 
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1. Introduction 1 

Different natural hazards turning into catastrophes have occurred widespread in Italy 2 

in the recent past as well as in the last centuries. Seismic and volcanic phenomena have 3 

affected sporadically large areas, while rainfall-induced landslides, floods and snow 4 

avalanches have frequently hit sites spread all over the territory. Structural mitigation 5 

approaches are inapplicable throughout the entire territory at risk and might be 6 

planned only for areas relevant from a socio-economic point of view. 7 

Hence, to manage natural risks, an increasing effort is being put in the development of 8 

non-structural approaches, based on timely forecasting the catastrophic phenomena 9 

from precursors or indicators, so to early spread the alarm throughout the exposed 10 

areas (early warning) and temporarily eliminate or, at least, reduce the exposure of 11 

people, preventing or limiting victims (Basher, 2006). The increasing importance of 12 

Early Warning Systems (EWS) is testified by the fact that they are among the priorities 13 

adopted by the United Nations, International Strategy for Disaster Reduction (ISDR) 14 

(UN-ISDR, 2005; 2006). 15 

EWS indeed present undeniable advantages, among which are their fast, simple and 16 

low-cost implementation, and environmental friendliness. Focusing on water-related 17 

hazards, significant examples of operational early warning systems are currently found 18 

in the field of floods, landslides, snow avalanches, earth fill failures. A recent review of 19 

EWS operating in Europe for water-related hazards can be found in Alfieri et al. (2012). 20 

As it will be described in detail hereinafter, the architecture of an EWS is strictly related 21 

to the time needed for the deployment of the mitigation measures, compared to the 22 

time of evolution of the hazardous event. In this respect, EWS for floods present quite 23 

different features if they are established along large or small rivers. In the first case, 24 

rainfall measurements or predictions are supplemented with river stage measurements 25 

in upstream sections (e.g. Rabuffetti and Barbero, 2005), and flood routing models can 26 

be run in cascade of hydrological models (e.g. Cranston and Tavendale, 2012). The lead 27 

time of prediction, which depends on the length of the river and on the extension of its 28 

catchment, can extend up to several days or weeks. In the case of small streams, the 29 

time lapse between rainfall and peak discharge may be so short that weather 30 

nowcasting is needed for the warning to be launched in due time (e.g. Alfieri and 31 

Thielen, 2015; de Saint-Aubin et al., 2016). 32 

So far, most of the EWS dealing with rainfall-induced landslides are based on rainfall 33 

measurements, sometimes supported by weather forecasts (e.g. Keefer et al., 1987; 34 

Ponziani et al., 2012), rarely integrated with monitoring of some soil variables (e.g. 35 

Ortigao and Justi, 2004; Chleborad et al., 2008; Baum and Godt, 2010). Rainfalls are 36 
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interpreted often merely statistically, with an empirical quantification of rainfall 1 

thresholds for landslide initiation (e.g. Sirangelo and Versace, 1996; Sirangelo and 2 

Braca, 2004; Guzzetti et al., 2007, 2008; Capparelli and Tiranti, 2010; Tiranti and 3 

Rabuffetti, 2010;  Martelloni et al., 2012; Segoni et al., 2014; Tiranti et al., 2014; Piciullo 4 

et al., 2016). In rare cases, physically based approaches are adopted for the 5 

interpretation of the effects of rainfall history. The few examples of inclusion of slope 6 

infiltration and stability modelling in the assessment of the safety conditions are mostly 7 

still at a prototypal stage (e.g. Schmidt et al., 2008; Capparelli and Versace, 2011; 8 

Ponziani et al., 2012; Eichenberger et al., 2013;Pumo et al., 2016). 9 

EWS operating for snow avalanches monitor snow accumulation and the melting 10 

processes, with the former basing essentially on interpreting precipitation and air 11 

temperature records, and the latter on air (or snow) temperature(e.g. Liu et al., 2009). 12 

Even in the field of man-made systems, early warning is assuming a prominent role in 13 

the assessment of the risk associated with failure. For instance, in the field of earth 14 

dams, with regard to all possible collapse mechanisms, i.e. slope instability and internal 15 

erosion phenomena, or even earthquake-induced effects, risk mitigation is de-facto 16 

based on early warning systems (e.g., Pagano and Sica, 2013; Ma and Chi, 2016). The 17 

wide monitoring system commonly installed to characterize time-by-time the behavior 18 

of these structures, carried out essentially in terms of displacements, pore water 19 

pressure, seepage flows, and accelerations, is pointed towards a continuous checking 20 

of dam safety conditions, aimed at evacuating downstream settlements in case of 21 

predicted collapse. 22 

Literature indicates that common elements, which typically characterize an early 23 

warning system (e.g. Intrieri et al., 2012; Intrieri et al., 2013; Calvello and Piciullo, 2016), 24 

are: 25 

1. a field monitoring system, recording physical quantities related to the phenomenon 26 

in hand, and transmitting them to a collection-elaboration center; measured 27 

variables may conveniently be distinguished into two categories: cause variables, 28 

leading to the initiation of the phenomenon; effect variables that, affected by the 29 

formers, characterize the phenomenon itself during its evolution and at its 30 

triggering, allowing also to recognize its intensity; 31 

2. a predictive model, formalizing mathematically the relationships linking cause and 32 

effect variables, allowing to catch the evolution stage of the phenomenon and 33 

assess system safety conditions; 34 
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3. thresholds for the variables related to safety conditions of the system; these 1 

thresholds correspond to different alert levels, with the highest one activating the 2 

spread of the alarm message, aimed at eliminating people exposure; 3 

4. different actions related to each alert level defined at 3. 4 

Research efforts aimed at the development and implementation of effective EWS 5 

should concern, above all, the definition, calibration and validation of the predictive 6 

model (Michoud et al., 2013). It should be as accurate as possible and, at the same time, 7 

capable of rapidly carrying out the turning of the monitored quantities into the 8 

assessment of system safety conditions. In many applications, dealing with rapidly 9 

evolving natural hazards, a real-time working system is in fact required, in order to 10 

maximize the lead time available to reduce/eliminate people exposure to the hazard. 11 

Aim of the paper is to address the main features of predictive models for water-related 12 

natural hazards. The proposed frame is quite general and applicable to other types of 13 

natural hazards, thus references will be briefly made throughout the paper also to 14 

applications different from water-related hazards. In particular, based on the precise 15 

definition of the aims of the EWS, this work addresses the importance of identifying the 16 

evolution stage of the catastrophic event at which the prediction should be 17 

implemented, so to maximize its effectiveness. For the first time the evolution stage at 18 

which the predictive model is implemented is considered as one of its features, along 19 

with the other traditional approach distinguishing between physically- or empirically-20 

based models.  21 

In principle, any predictive model might be referred to any spatial scale, which is thus 22 

not considered as a valid classification element for EWS models. Rather, the 23 

classification criteria proposed throughout the paper may be referred to all scales. The 24 

choice to show specific examples all referred to rainfall-induced landslides at a slope 25 

scale is not performed in the light to reduce generality to the proposed criteria but, 26 

rather, in the attempt to select an application field which representativeness poses 27 

challenges extendible to other natural phenomena.  28 

 29 

2. Prediction uncertainty and the minimization of the costs of missing and false 30 

alarms of an EWS  31 

Whatever the predictive model adopted, it will never be capable of providing certainty 32 

about the occurrence of a catastrophic event. A model yields variables systematically 33 

affected by a given uncertainty degree due to the following possible causes: 34 
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- incompleteness of information about the physical system supposed to cause 1 

catastrophes; 2 

- various error types associated with the measurements provided by the monitoring 3 

system; 4 

- unavoidable simplifications of reality always introduced in building the predictive 5 

model; 6 

- randomness of some of the processes involved in the genesis of the catastrophic 7 

event. 8 

It is obvious that the uncertainties of the predicted variables related to the physical 9 

system affect the assumption of different alert stages. With reference to the last stage, 10 

it may occur that the early warning system issues an alarm, but no dangerous 11 

phenomenon occurs (false alarm) or, conversely, that a dangerous phenomenon takes 12 

place without any issued alarm (missing alarm). Both false and missing alarms are costly 13 

to the community served by the EWS. A lower uncertainty degree in the prediction is 14 

required to minimize their number and, consequently, costs during the system 15 

operation. Efficiency of the EWS is therefore considered with respect to its economic 16 

value for the community, rather than merely to the provided safety performance. In 17 

this sense, alarm activation has to account for the uncertainties associated with each 18 

alert threshold and its overcoming, so to minimize false and missing alarms and related 19 

costs. 20 

Decisional rules regarding actions associated with each alert threshold should be based 21 

not only on the mere quantification of thresholds themselves, but also on criteria 22 

defining the sensitivity of the EWS, intended as setting the activation of the system at 23 

some probability of a given threshold to be exceeded. 24 

The most suitable strategy to quantify such probability of threshold exceedance cannot 25 

be generalized. It is in fact strongly affected by the following peculiarities characterizing 26 

the EWS in hand: 27 

- the uncertainty of the prediction, which may be reduced by increasing the initial 28 

investment (by preliminary acquiring more information about physical system 29 

features, implementing a more reliable monitoring system with higher spatial and 30 

temporal resolution, elaborating a more sophisticated and accurate predictive 31 

model);  32 

- the costs suffered by the community in case of false alarm, in turn depending also on 33 

the kind of actions planned in case of threshold exceedance;  34 
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- the costs resulting from a missing alarm, depending on both the event (type and 1 

intensity) and resilience of the exposed goods (related to their nature as well as to 2 

socio-economic aspects). 3 

In setting up the EWS sensitivity , it should be taken into account that too many false 4 

alarms would discredit the system, implying that, over time, the served community 5 

would contribute less in carrying out all the required actions after alerts. In short, the 6 

sensitivity has to be calibrated on the basis of a cost-benefit analysis, which can be 7 

properly carried out only if the uncertainty of model predictions can be estimated after 8 

an adequate period of monitoring of the physical system. 9 

 10 

3. Evolution stages of a natural hazard: when should the model do the prediction? 11 

In order to generalize a typical architecture for the predictive model, it comes useful to 12 

account for a conventional sequence of stages describing the evolution of a natural 13 

phenomenon resulting into a catastrophe (Figure 1):  14 

(a) the predisposing stage: the cause variables are subject to such changes to induce 15 

significant modifications of effect variables; 16 

(b) the triggering and propagation stage: the failure occurs locally (triggering time)and 17 

propagates from point to point throughout the physical system up to involve it 18 

entirely; 19 

(c) the paroxysmal stage: the physical system collapses and the kinematics of the 20 

system goes on, eventually hitting the exposed goods. 21 

 22 

The duration of each stage may greatly vary, depending on both the kind of 23 

phenomenon and on the features of the physical system involved. 24 

In an earthquake hitting structures located at a given site “S”, the predisposing stage 25 

(a) is determined by the occurrence of the seismic event at the epicenter and is 26 

indicated by the first arrival of the seismic waves at the seismometers nearest to the 27 

epicenter. The triggering and propagation stage (b) is determined by acceleration 28 

values exceeding the threshold for first local damages to structural elements and is 29 

monitored by seismic stations located at “S”; the paroxysmal stage (c) consists of the 30 

collapse of parts of the structures. For this specific example, the duration of stages (a) 31 

and (b) is few tens of seconds, while the duration of stage (c) depends on the system 32 

considered, spanning from seconds for systems like buildings, rock slopes, gas conduits 33 

etc., until hours or even days for natural earth slopes, dams, and, in general, systems 34 
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which collapse is determined by a slow redistribution or propagation of earthquake-1 

induced effects. 2 

In a rainfall-induced landslide, the predisposing stage (a) is determined by the sequence 3 

of rainfall events and by the hydrological processes leading to increase of pore water 4 

pressure and worsening slope stability conditions (e.g. Bogaard and Greco, 2015). The 5 

triggering and propagation stage (b) spans from the first local slope failure until the 6 

formation of a slip surface. The paroxysmal stage(c) is the sliding of the mobilized soil 7 

mass downhill along the slip surface. In this second example, the duration of each stage 8 

is strongly related to the geomorphology of the specific slope and to the kind of 9 

landslide (Varnes, 1978), and may vary from minutes (e.g., flow slides in slopes covered 10 

with shallow coarse grained soils) to even years (e.g., some earth flows in slopes of fine 11 

grained soils). 12 

In a snow-avalanche, the predisposing stage (a) is determined by snow accumulation 13 

and temperature increments; the triggering and propagation stage (b) starts when 14 

local failures take place within the snow aggregate and ends with a slip surface 15 

formation. The paroxysmal stage (c) starts when the mass slides downhill. In this 16 

example, the duration of stage (a) may be of hours or days, depending on the evolution 17 

of atmospheric variables, the duration of stage (b) results undetectable, and the 18 

paroxysmal stage lasts only few seconds.  19 

For the case of an overflow in a river, the predisposing stage (a) is a sequence of 20 

precipitation events within the watershed, causing a progressive increase of the water 21 

level along the river course; in this case, the triggering and propagation stage (b) and 22 

the paroxysmal stage (c) are hardly distinguishable from each other. In fact, both stages 23 

start when the first local overflow takes place, and both develop with the flood 24 

propagating around the river. The stage duration depends on the extension and 25 

geomorphology of the watershed. The entire phenomenon may last tens of minutes 26 

(e.g., flash floods in small streams with relatively small catchment) to several days (e.g., 27 

large rivers with large watershed).  28 

It is also important to highlight that for most phenomena the triggering event has to be 29 

considered as random and, as such, time and location of its occurrence can be predicted 30 

only with a probabilistic approach. On the other hand, the predisposing stage can be 31 

usually described with physical laws, so that its spatial and temporal evolution can be 32 

predicted deterministically by mathematical models.  33 

For instance, the strategies followed for early warning with respect to snow avalanches 34 

(e.g., Bakkeoi, 1987) neglect the detection of any possible triggering factor. These may 35 

be internal to the physical system (related to some peculiar morphologies favoring the 36 
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susceptibility to local failures) or external (e.g., a skier path cutting transversally the 1 

snow layer slope or a rock-mass falling onto the layer). The randomness of such kind of 2 

triggering factors makes them undetectable and useless for early warning purposes. 3 

However, it should be noted that these factors may become effective only if a 4 

predisposing state takes place in terms of snow layer thickness and temperature. This 5 

leads to define the different alert levels on the basis of these two variables, for which 6 

experimental quantification is easy and reliable. Consequently, the warning does not 7 

deal with exactly identifying when, where and what specific triggering factor might 8 

generate an avalanche. 9 

In general, early warning prediction can be carried out during any of the above-defined 10 

evolution stages. The choice of the particular stage should obviously consider that 11 

elapsed times needed to predict the event, spread the alarm and reduce people and 12 

goods exposure must not exceed the time after which the destructive event occurs. On 13 

the other side, the limited time available in-between prediction and event should 14 

indicate which kind of actions could be reasonably carried out. So, only in some cases 15 

it will be possible to consider the opportunity to evacuate all buildings of an entire 16 

neighborhood or forbid all exposed streets to traffic and people access. In some cases, 17 

the small available time only allows some short actions, such as the interruption of 18 

dangerous supplied services (gas and electricity) or closure of important infrastructures 19 

highly exposed, such as railways or highways. 20 

The first step that has to be followed in the development of the predictive tool is hence 21 

the detailed study of the mechanisms that control the evolution of the phenomenon in 22 

hand, and identify which phenomenon stage is the most suitable for the assessment of 23 

safety conditions. For some problems, the choice necessarily falls into a specific stage, 24 

while for others the choice may be multiple. For instance, the slow kinematics of 25 

landslides in fine grained soils allows to place the predictive tool in any of the above 26 

defined three stages, while the rapid kinematics of rainfall-induced landslides in coarse 27 

grained soils prevents considering the paroxysmal stage. 28 

 29 

4. The architecture of the predictive model 30 

The second step of the development of the predictive tool is choosing the predictive 31 

model. Promptness and reliability are mandatory requirements of the prediction. The 32 

promptness is usually obtained by introducing model simplifications, which should 33 

however not imply excessive accuracy losses, because they would increase 34 

uncertainties and, consequently, false and missing alarms. An increase of model 35 

complexity usually corresponds to a reduction in the observational scale of the 36 
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phenomenon. Complex models can only be applied to slope scale problems, while, 1 

increasing the observational scale from local to regional, progressive simplifications 2 

have to be introduced in the model and, consistently, less ambitious goals have to be 3 

set in terms of reliability.  4 

The wide variety of applications for EWS makes it difficult to generalize criteria to guide 5 

the choice of the predictive model. It is only possible to refer to some classification 6 

criteria, aiming at clarifying the philosophy of the chosen approach, and what 7 

ingredients it requires for its best implementation.  8 

A first classification criterion distinguish between empirical and physically-based 9 

models. Empirical models extract relationships among cause and effect variables from 10 

available monitoring data taken over a prolonged time interval. Once set up the 11 

empirical relationships, they typically do not take into any account the physics 12 

governing the phenomenon. Their reliability essentially depends on the amount, 13 

accuracy and representativeness of the available data-set. 14 

On the other hand, physically-based models relate cause and effect variables through 15 

mathematical relationships derived straightforwardly from the physical principles 16 

governing the considered phenomenon. The mathematical description of the model 17 

typically involves the assumption of simplifications that could strongly affect the 18 

accuracy of the prediction. 19 

These two categories may also be used contextually in setting up predictive tools 20 

consisting of physically-based as well as of empirical steps. 21 

The second criterion of classification refers essentially to physically-based models, and 22 

is strictly related to the need for a rapid prediction. It distinguishes between on-line and 23 

out-of-line predictions. The formers consist in real-time solving of the model equations, 24 

updated continuously over time with changes in boundary conditions indicated by field 25 

monitoring. The latter, instead, define simple mathematical equations or abaci relating 26 

cause and effect variables, by solving the governing equations preliminarily for a 27 

number of possible scenarios in terms of initial and boundary conditions (e.g, Pagano 28 

and Sica, 2013). These simple mathematical equations or abaci represent the predictive 29 

tools adopted to rapidly interpret the data from field monitoring. 30 

Strictly related with the selection of the model is, finally, the design of the monitoring 31 

system. It has to be consistent with all the choices made about the previously illustrated 32 

points. The considered specific stage of phenomenon evolution, as well as the choice 33 

of the predictive model, unequivocally identify the physical variables to be monitored, 34 

their location and, finally, the number of measurement points. 35 
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In the following sections, the different features above highlighted will guide along the 1 

illustration of some application cases developed in the field of rainfall-induced flow-like 2 

landslides.  3 

 4 

5. Examples of set up and calibration of the predictive model for early warning 5 

In Italy the destructive potential of rainfall-induced rapid flowslides and debris flows is 6 

sadly known. The significance of the problem in terms of number of events and victims 7 

becomes clear by merely referring to the disasters occurred over the last years in 8 

Campania (Cascini and Ferlisi, 2003, Calcaterra et al., 2004; Pagano et al., 2010; Santo 9 

et al., 2012), Piedmont (Villar Pellice, occurred in 2008), Liguria (Cinque Terre, occurred 10 

in 2011) and Sicily (Maugeri et al., 2011). The rapid kinematics characterizing the post-11 

failure behavior of these phenomena implies that the setup of an early warning system 12 

may not rely on the analysis of the short-lasting paroxysmal stage (Figure 2).  13 

Exception is made for early warning systems implemented along some roads or 14 

railways, where the probability that the sliding mass detaching from a slope directly 15 

impacts vehicles is small, while the probability that vehicles crash against previously 16 

fallen mass obstructing the road is much higher. In such cases, the alarm might be 17 

launched in case of the feared road invaded by fallen masses. Hence, the alarm itself 18 

could be based on promptly gathering the occurrence of slope instabilities by carrying 19 

out monitoring of displacements, and inhibiting road access in case of recorded 20 

movements exceeding some threshold (Mannara et al., 2009).  21 

If the exposed goods are instead likely to be directly impacted by the sliding mass, the 22 

triggering of the instability must be predicted in due advance. The time span required 23 

to reduce exposure, typically some hours, implies that the prediction should be based 24 

on monitoring and interpretation of triggering precursors, carried out already during 25 

the predisposing stage.  26 

The phenomena in hand typically involve the mobilization of shallow covers rarely 27 

exceeding 2 meters in thickness, induced by rainfall infiltration and related suction 28 

drop. Further physical variables governing the phenomenon are effect variables 29 

describing soil cover wetting (e.g. degree of saturation, water content, water storage).  30 

The predictive model may be built on empirical bases whereas, for the reference 31 

geographical context, historical rainfall related to their effects are available. 32 

Alternatively, it is possible to adopt physically-based approaches through which 33 

turning, at any time, rainfall into effect variables related to slope stability conditions. 34 

Different levels of these effect variables (or, alternatively, of slope stability indices 35 
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derived from them), may be chosen as the alert thresholds of the early warning system. 1 

If the mathematical model of the slope has been properly simplified, it may be possible 2 

to operate “on line” by performing model simulations in few minutes. 3 

Recent advances in field monitoring of effect variables, in particular soil suction and/or 4 

water content, nowadays offer an alternative approach to the interpretation of rainfall 5 

effects. Sensors like tensiometers, heat dissipation probes and TDR probes, in principle 6 

could directly deliver all the effect variables needed for the assessment of slope stability 7 

conditions. However, the spatial variability of soil properties likely makes an EWS 8 

relying only on field monitoring of effect variables unreliable. Field data are in fact 9 

always affected by local issues, and so they are poorly representative of the whole 10 

monitored area, unless an extremely rich network of sensors is installed, which in most 11 

cases is unfeasible. Hence, field monitoring should be deployed supplementing, rather 12 

than replacing, the estimation of effect variables by means of a more or less simplified 13 

estimation of rainfall effects. 14 

The following application examples refer to single slopes, with extension of few 15 

hectares, located in the Lattari Mountains (Campania, southern Italy) and in the basin 16 

of Stura di Lanzo (Piedmont, northern Italy).  17 

As already pointed out in the Introduction section, the choice of presenting examples 18 

all referred to slope scale does not imply that the proposed classifications and 19 

procedures are limited to this case. The scale of the system does not intrinsically relate 20 

to model features but, rather, to the spatial resolution of the available input data, which 21 

affects the entire structure of the EWS. In the following examples, the choice of the 22 

slope scale is indeed made to show how, when high resolution data are available, the 23 

adopted models and procedures for their calibration could be different and, in 24 

principle, applicable to any scale.  25 

 26 

5.1 Empirical approach based on rainfall records 27 

The example herein reported refers to the chain of Lattari Mountains and, in particular, 28 

to an area spreading in-between the towns of Pagani and Nocera Inferiore (Campania, 29 

southern Italy). An intensely fractured calcareous bedrock covered by silty volcanic soils 30 

characterizes the geology of the site. Volcanic covers have formed due to pyroclastic 31 

air-fall deposits generated by eruptions, mainly those of the volcanic complex of 32 

Somma-Vesuvius, occurred over the last 40000 years. Several rainfall-induced flow-like 33 

landslides have interested these covers over centuries. Numerous phenomena also 34 
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occurred in the recent past (Table 1), usually triggered along slopes with inclination 1 

angle between 30° and 40°. 2 

A pluviometer installed in 1950, around 3 Km far from the downslope area, provides a 3 

daily rainfall series spanning over 50 years (Pagano et al., 2010). During this period, 4 

three significant flow-like landslides occurred in 1960, 1972 and 1997 (Table 1). Daily 5 

rainfall heights triggering the three phenomena were 87, 77 and 110 mm, respectively. 6 

Figure 3 shows all the observed daily rainfall heights larger than the minimum value 7 

followed by a landslide (hdL =77mm; hdL=minimum daily rainfall associated with a 8 

landslide), plotted in ascending order. It may be noticed that the condition hds>hdL 9 

(hds=significant daily rainfall, with “significant” intended as exceeding hdL) was met 39 10 

times, but only twice a landslide was actually triggered. This low correspondence 11 

between daily rainfalls and landslides depends on the existence of additional 12 

influencing factors, related to the conditions of the soil cover at the onset of triggering 13 

rainfall, which are neglected if only daily rainfall height is considered. Antecedent 14 

precipitation, in particular, is supposed to play a crucial role, as it determines the 15 

amount of water stored in the cover and lowering soil suction significantly, before the 16 

crucial suction drop induced by the triggering rainfall.  17 

The effects of antecedent precipitations may be taken into account by assuming that, 18 

besides the rainfall directly triggering the event (usually identified with rainfall fallen 19 

during the last day), they also play an important role in establishing the predisposing 20 

conditions for the triggering of a landslide. The duration “x” of the antecedent period 21 

may be chosen as the one minimizing the number of events (hds, hx) characterized by hx 22 

similar to the antecedent precipitation, hxL, accumulated before the three observed 23 

landslides. The minimization yielded x=2 months. This corresponds to h2mL values for all 24 

three landslides of about 500 mm. Over the reference period only 5rainfall histories 25 

(hds, h2m) resulted similar to the three (hdL, h2mL) which were followed by a landslide. If 26 

this double threshold criterion had been virtually implemented as early warning 27 

criterion in the considered area, it would have produced 5 false alarms over 50 years. 28 

 29 

 30 

 31 

5.2 Stochastic approach 32 

Few examples of real-time predictions of the probability of triggering of rainfall-induced 33 

landslides in a small area (i.e. a slope or a small catchment) can be found in the 34 

literature (e.g. Sirangelo and Versace, 1996; Sirangelo and Braca, 2004; Schmidt et al., 35 
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2008; Greco et al., 2013; Capparelli et al., 2013; Terranova et al., 2015; Manconi and 1 

Giordan, 2016; Ozturk et al., 2016). This is due to the intrinsic difficulty of having 2 

available historical data sets of rain storms and corresponding landslides occurred in a 3 

small area, with enough data to allow reliable estimation of the probability of landslide 4 

triggering during extreme (and thus rare) rainfall events. Usually, only few landslides 5 

occur at a site during an observation period of typically some decades, so that 6 

probabilistic landslide initiation thresholds are mostly defined at regional scale, so to 7 

have a rich data set of observed landslides (e.g. Terlien, 1998; Guzzetti et al., 2007; 8 

2008; Jakob et al., 2012; Ponziani et al., 2012; Segoni et al., 2015; Iadanza et al., 2016). 9 

The use of physically based models of infiltration and slope stability can help in the 10 

prediction of slope response under conditions different from those actually 11 

encountered during the observation period, thus allowing the definition of site-specific 12 

landslide initiation thresholds (e.g. Arnone et al., 2011; Ruiz-Villanueva et al., 2011; 13 

Tarolli et al., 2011; Papa et al., 2013; Peres and Cancelliere, 2014; Posner and 14 

Georgakakos, 2015; Greco and Bogaard, 2016), which can be useful for carrying out 15 

stochastic predictions. However, the application of such physically based approaches in 16 

operational early warning systems still suffers the involved computational burden, 17 

which makes difficult carrying out in real time the calculations required for landslide 18 

probability assessment. Consequently, empirical models of the relationship between 19 

rainfall and slope stability are still preferred for early warning purposes (Sirangelo and 20 

Braca, 2004; Greco et al., 2013; Manconi and Giordan, 2016; Ozturk et al., 2016).  21 

An example of setting up an early warning predictive model taking into account the 22 

uncertainty of the prediction has been developed by coupling a stochastic predictive 23 

model of precipitations (Giorgio and Greco, 2009) with the empirical model FLaIR 24 

(Sirangelo and Versace, 1996), which yields predictions of the triggering time for 25 

rainfall-induced landslides. The same coupling approach may be used with other 26 

recently proposed empirical models, such as GA-SAKe (Terranova et al., 2015). 27 

The FlaIR model associates landslide triggering conditions with values of a mobility 28 

function Y(t), obtained by a convolution integral of the rainfall history R(t) with a 29 

suitable transfer function (t), which allows to model a wide variety of 30 

geomorphological contexts, taking into account predisposing conditions generated by 31 

antecedent rainfalls (Iiritano et al., 1998; Sirangelo et al., 2003). 32 

The choice of the transfer function and calibration of its parameters are carried out 33 

based on the historical rainfalls data records in a way that the Y(t) function may result 34 

as a suitable proxy of slope stability conditions. In particular, parameters are calibrated 35 

so that peaks of Y(t) correspond to historical landslides, so to identify a threshold Ycr 36 

that, if exceeded, indicates landslide occurrence. 37 
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The FLaIR model is currently implemented as predictive model in early warning systems 1 

provided for different thresholds of attention, alert and alarm, corresponding to a 2 

progressive approach of Y(t) to the Ycr threshold. As an example, for the case of Sarno 3 

(pyroclastic slopes in southern Italy) the three mentioned thresholds where suggested 4 

at values of 0.4Ycr, 0.6Ycrand 0.8Ycr, respectively (Sirangelo and Braca, 2004). 5 

The coupling with a stochastic predictive model of rainfall allows adopting the FLaIR 6 

model as a predictor of the probability of occurrence of future landslides (Capparelli et 7 

al., 2013). In fact, the convolution integral may be separated into two parts, one 8 

deterministic, the other random. The first integral computes the convolution of the 9 

rainfall history Robs(t) until the time at which the prediction is carried out. The second 10 

integral computes the convolution of the rainfall history Rpre(t) predicted for the future 11 

time interval tpre, the upper bound of which represents the lead time of the prediction: 12 

𝑌(𝑡) = 𝑌𝑑𝑒𝑡 + 𝑌𝑝𝑟𝑒 = ∫ Ψ(𝑡 − 𝜏)𝑅𝑜𝑏𝑠(𝜏)𝑑𝜏
𝑡−𝑡𝑝𝑟𝑒
−∞

+ ∫ Ψ(𝑡 − 𝜏)𝑅𝑝𝑟𝑒(𝜏)𝑑𝜏
𝑡

𝑡−𝑡𝑝𝑟𝑒
 (1) 13 

The prediction of Ypre is carried out by evaluating the probability conditioned to the 14 

trend of the rainfall observed before prediction. To this aim, the model DRIP 15 

(Disaggregated Rectangular Intensity Pulse) is adopted (Heneker et al., 2001). It defines, 16 

through an alternating renewal process, the observed alternation of rainfall and dry 17 

periods. This process guarantees, in fact, the stochastic independence of a rainfall event 18 

from the duration of the immediately preceding dry period as well as from the duration 19 

and the total rainfall height of the previous rainstorm. This allows carrying out the 20 

conditioned prediction Ypre by only taking into account the rainfall history observed 21 

during the current event, when the prediction is being carried out. 22 

The prediction Ypre is carried out by a non-parametric approach, by selecting within the 23 

historical data set only the Ni rainfall events meeting the following two conditions: their 24 

duration was equal or longer than the observed part of the current rainstorm; along a 25 

time interval as long as the lead time, tpre, before the prediction, the mobility function 26 

increased in the same proportion as it occurred during the last observed tpre interval of 27 

the current rainfall event. 28 

The rainfall events selected by following this procedure allow computing the expected 29 

value of Ypre and the probability that, at the end of the interval tpre, the condition Y>Y* 30 

occurs, whatever Y*. Hence, once alert and alarm thresholds of the mobility function 31 

are defined, the sensitivity of the early warning system can be adjusted by setting up 32 

the probability of threshold exceedance at which the relevant messages are launched 33 

(activation probability), so to obtain the best trade-off between false and missing 34 

alarms (Greco et al., 2013).Low values of the activation probabilities result in high 35 
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number of alerts and alarms, and may lead to wrong activations of the system (false 1 

alert/alarms). Conversely, a less sensitive system unavoidably increases the number of 2 

erroneous non-activations of the system (missing alerts-alarms). 3 

The choice of the more suitable values at which setting the activation probabilities 4 

represents an important and crucial feature in the setting of an effective early warning 5 

system. As already specified, the system sensitivity has to take into account all 6 

consequences relating with false and missing alarms. For the alert level, it is usually 7 

better to set a high sensitivity, since actions determined by alert activations usually do 8 

not imply high costs, nor a significant involvement of the served community. The same, 9 

however, cannot be stated for the alarm level, as the procedures resulting from alarm 10 

spreading usually imply high costs and discomfort for the community. As an example, 11 

evacuation of people involve stopping all activities and interruption of all 12 

infrastructures and services of public utility. 13 

The described approach has been applied to the slope of Pessinetto, 40km North-East 14 

of Turin. The slope, oriented towards South-West, with inclination angle between 30° 15 

and 35°, is part of the watershed of the river Stura di Lanzo. It is constituted by a 16 

metamorphic bed-rock intensively fractured, covered by a clayey-silt. Six debris flows 17 

of different magnitude occurred there, within an area of about 1 km2, from November 18 

1962 to October 2000. The thickness of mobilized soils ranged between 1.5 and 2.0 m, 19 

with soil volumes between few hundreds to 10000 m3. 20 

For the calibration of the stochastic model and of the alert system, the pluviometer 21 

data recorded in Lanzo, located 6.5 km east of the slope, were available. In particular, 22 

the calibration has been carried out by interpreting the hourly rainfall heights recorded 23 

between 1 January 1956 and 10 September 1991, during which four of the six recorded 24 

landslides occurred. The subsequent data, from 11 September 1991 to 15 June 2004, 25 

have been adopted to validate the predictive model and the performance of an EWS 26 

based on its predictions. 27 

The critical value for the mobility function, estimated over the calibration period, was 28 

Ycr=168.4 mm. 29 

The minimum duration of a dry period in-between two rainfall events has been set 30 

equal to 10 hours. By assuming only rainfall events exceeding 5 mm to be significant for 31 

early warning purposes, a series of 1102 rainfall events meeting the requirements in 32 

terms of stochastic independency was selected within the calibration period. These 33 

selected events were characterized by durations between 1 hour and 182 hours and 34 

rainfall heights between 5 mm and 615 mm (Greco et al., 2013).The validation period 35 

of the EWS included 456 rain events selected as for the calibration period. 36 
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The EWS has been implemented through the definition of two different operational 1 

levels: an alert level and an alarm level. The alert triggers as soon as the mobility 2 

function is predicted to approach the value of Ya=0.75Ycr with a probability higher than 3 

a predefined threshold P1. The alarm is issued when the probability that Y exceeds the 4 

critical value Ycr is higher than a second threshold P2. The two thresholds are two 5 

examples of possible choices of warning thresholds. As it will be shown hereinafter, for 6 

a given choice of warning thresholds, the sensitivity of the EWS depends both on the 7 

chosen probability thresholds. Predictions are updated with a hourly frequency and 8 

refer to a lead time interval from 1 to 6 hour later than the prediction time. 9 

Two examples of the potentiality of the predictions of the probability of exceeding the 10 

two defined thresholds are given for two rainfall events occurred during the validation 11 

period, both followed by landslides. In particular, the reported predictions were carried 12 

out with lead times of up to 5 hours.   13 

The first event occurred between 22 and 25 September 1993, and Ya and Ycr were 14 

overtaken54 and 58 hours after the beginning of the rain, respectively. A landslide was 15 

triggered after 60 hours. In the second example, a rainfall event occurred between the 16 

12 and 15 October 2000, Ya was passed 39 hours after the beginning of the rain storm, 17 

Ycr after 45 hours, and the landslide occurred after 46 hours.  18 

The effectiveness of the stochastic approach for early warning is shown in figures 4 and 19 

5. The graphs give the probability of exceeding the alert and alarm thresholds in the 20 

following five hours, predicted in real time. During the two considered rainfall events, 21 

the system predicted high values of the probability of exceeding both thresholds several 22 

hours in advance. In particular, assuming the activation probabilities P1=P2=0.3, in both 23 

cases (25 September 1993, figure 4; 14 October 2000, figure 5) the alert would have 24 

been issued about 9 hours before the landslide, while the alarm would have been 25 

launched already 6 hours earlier than the triggering time. 26 

Hence, for the chosen values of Ya and Ycr, by properly setting P1 and P2, the EWS would 27 

have been capable to issue, in both cases, the alert and alarm messages several hours 28 

before the actual landslide triggering. Tables 2 and 2 show the influence of different 29 

choices for P1 and P2 on the performance of the EWS, evaluated in terms of total 30 

numbers of missing and false alerts and alarms during the entire validation period. It 31 

looks clear that, once the alert and alarm thresholds Ya and Ycr are defined, the 32 

sensitivity of the EWS depends on the chosen activation probability: higher probabilities 33 

correspond to larger numbers of missing alarms, and smaller numbers of false alarms. 34 

The optimal choice of P1 and P2should be identified by comparing the costs deriving 35 

from false and missing alerts and alarms, with the benefits of the true alarms. As already 36 
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pointed out in the previous sections, such a cost-benefit analysis is of course peculiar 1 

of the particular considered case. 2 

The capability of issuing the alert some hours earlier than the triggering time is a non-3 

trivial feature of the system, when it is implemented to mitigate risks from phenomena 4 

characterized by a very rapid evolution, such as debris flows and other types of fast 5 

landslides, as well as flash floods. In these cases, effective measures to prevent 6 

damages and victims may be successfully implemented only if the alarm is issued 7 

sufficiently earlier than the triggering time of the phenomenon. 8 

 9 

5.3 Physically based approach 10 

In the town of Nocera Inferiore a rain gauge, installed in 1997, recorded hourly rainfalls 11 

500 m far from the slope where on 4 March 2005 a large landslide  was triggered (Figure 12 

6). The slope had an inclination angle of 40° and was covered with a 2 meters thick layer 13 

of silty volcanic soils. Rainfall records are adopted in this example to validate a 14 

physically based approach (Pagano et al., 2010), suitable to take into account a number 15 

of known influencing factors (e.g. triggering event, antecedent precipitation, 16 

instantaneous rainfall intensity, evolution of potential infiltration) (Pagano et al., 2008; 17 

Rianna et al., 2014a). 18 

In modelling the problem, only factors considered of minor importance were neglected, 19 

according to Pagano et al. (2010). In particular, a one-dimensional infiltration problem 20 

through an unsaturated rigid medium was set through Richards equations, solved by 21 

the FEM code SEEP/W (GEOSLOPE 2004). 22 

Hourly rainfall records were adopted to quantify boundary fluxes at the uppermost 23 

boundary, while at the lowermost boundary two different limit boundary conditions 24 

were assumed (Reder et al., 2017) to account for the possible effects exerted by the 25 

fractured bedrock on the silty volcanic cover: a seepage surface condition, which 26 

simulates the capillary barrier effect under the hypothesis that fractures are empty; a 27 

flux regulated by the unit gradient, which instead approaches the case of fractures filled 28 

with the same material as that constituting the cover. The hydraulic properties of the 29 

soil, i.e. water retention curve and hydraulic conductivity function, were obtained by 30 

means of laboratory tests (Nicotera and Papa, 2007), as well as by coupled 31 

measurements of soil matric suction (Jet-fill tensiometers) and volumetric water 32 

content (TDR) carried out in a lysimeter (Rianna et al., 2014b). 33 

Results yielded by the analyses (Reder et al., 2017) in terms of suction evolution refer 34 

to the hydrological year 2004-2005 (Figure 7), which includes the landslide event. They 35 
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clearly show how the predictions indicate a singularity at the triggering time, consisting 1 

in a drop of suction throughout the cover below3kPafor both boundary condition-types 2 

assumed at the bottom. Analyses conducted for the whole historical series of recorded 3 

rainfalls, covering a time interval of 10 years including the landslide (Pagano et al., 4 

2010), indicate that the same singularity is yielded by the prediction only once more. 5 

Hence, if this singularity (suction below 3 kPa throughout the cover) had been adopted 6 

as an alarm criterion, the number of false alarms would have resulted significantly low. 7 

Furthermore, the short time required to update the prediction (few minutes) is 8 

consistent with the requirement of promptness of an EWS and allows carrying out “in 9 

line” predictions.  10 

 11 

6. CONCLUSIONS 12 

After preliminarily analyzing the reasons which may lead a community to adopt an EWS, 13 

in place of structural approaches, to mitigate risks associated with natural hazards, the 14 

paper identifies the key elements of an EWS, which make it effective in accomplishing 15 

the task of continuously checking the safety of a system. In particular, the work 16 

highlights the importance of the accuracy of the prediction of the future evolution of 17 

the system, which is the feature allowing the minimization of false and missing alarms. 18 

Then, the definition of three evolution stages of natural hazards is proposed, so to set 19 

rational criteria to identify the time at which the prediction should be carried out within 20 

an EWS. In fact, depending on the characteristics of the hazardous phenomenon and 21 

on the time required for the prediction, the chosen stage should allow deploying in due 22 

time the actions aiming at reducing people and goods exposure.  23 

Two further classification criteria are also adopted throughout the paper: the well-24 

known distinction between empirical and physically-based models; and the distinction 25 

between on-line and off-line predictions, never adopted in the field of water-related 26 

natural hazards. 27 

The practical application of the proposed evolution framing requires detailed physical 28 

knowledge of how the phenomenon develops over time and of the variables which can 29 

be used as a proxy of its evolution. This novel framework for EWS setting up  attempts 30 

to bring some order in their design procedures, and is introduced with reference to 31 

various kinds of natural hazards, as in principle it is suitable of general application. 32 

Nonetheless, the paper is mainly focused on water-related natural hazards, and 33 

particularly to landslides, for which some application examples are given. 34 
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With reference to two different landslide phenomena, namely flow-like landslides and 1 

debris flows, both characterized by rapid evolution, the paper describes examples of 2 

application of the proposed framework. First, the considered natural hazards are 3 

analyzed in terms of their possible evolution stages. Then, the most suitable stage for 4 

implementing the prediction is identified, along with cause and effect variables suitable 5 

to characterize its evolution and to assess system safety conditions. The presented 6 

examples show how either empirical or physically-based models may be adopted, and 7 

how prediction uncertainty can be considered in setting up the sensitivity of an EWS. 8 

The proposed frame and examples of application show how, to design and set-up an 9 

effective EWS (i.e. choosing the predictive model, the prediction time, the alert and 10 

alarm thresholds and their sensitivity, the mitigation actions allowed by the obtained 11 

lead time of prediction), an in-depth analysis of the physical characteristics of the 12 

hazardous phenomenon is mandatory.   13 

 14 
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 25 

Location Town Date 
(y.m.d) 

H 
(m) 

L (m) V 
(m3) 

S. Pantaleone Pagani 1960.12.08    

Scrajo Vico Equense 1966. 11.23 220 300 10,000 
Monte 

Pendolo 
Gragnano 1971.01.02 205 375 7,500 

S. Pantaleone Pagani 1972.03.06 90 180 5,000 

Codice campo modificato

http://www.unisdr.org/eng/hfa/docs/Hyogo-framework-foraction-english.pdf
http://www.unisdr.org/eng/hfa/docs/Hyogo-framework-foraction-english.pdf
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S. Pantaleone Pagani 1997.01.10 135 240 4,500 
Pozzano Castellammare 

di Stabia 
1997.01.10 440 750 40,000 

Monte 
Pendolo 

Gragnano 1997.01.10 125 210 4,500 

Monte 
Pendolo 

Pimonte 1997.01.10 125 135 4,300 

Corsara Corbara 1997.01.10 160 135 750 

Ospedaletto Ospedaletto 1997.01.10 250 450 10,000 
S. Egidio M. 

Albino 
S. Egidio 1997.01.10 215 500 10,000 

Molina di 
Vietri 

Vietri sul Mare 1998.05.05 570 1700 9,000 

S.Egidio M. 
Albino 

Nocera Inferiore 2005.03.04 295 530 33,000 

Table 1 1 

 2 

dpre [h] 
P1=0.2 P1=0.25 P1=0.3 

N1L N1F N1M N1L N1F N1M N1L N1F N1M 
2 23 7 2 19 3 2 18 2 2 

4 27 11 3 22 7 4 21 6 4 

6 31 12 3 25 7 4 22 5 5 
Table 2 

 

 

 

dpre [h] 
P2=0.2 P2=0.25 P2=0.3 

N2L N2F N2M N2L N2F N2M N2L N2F N2M 

2 16 4 0 14 2 0 11 1 2 

4 22 10 0 17 5 0 15 4 1 
6 29 16 1 20 7 1 13 4 5 

Table 3 

 

CAPTIONS 3 

Figure 1. Evolution stages of a collapse mechanism 4 
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Figure2. Evolution stages of collapse mechanism in rainfall-induced landslides featured 1 

by rapid kinematic 2 

Figure 3 - Daily and antecedent-bi-monthly rainfalls recorded at the Nocera Inferiore 3 

site and corresponding to significant events (red circles are associated with landslide 4 

triggering, green circle with rainfall histories similar to those resulting in landslides ) 5 

 6 

Figure 4. Stochastic approach to early warning: probability of exceeding alert and alarm 7 

thresholds of the mobility function at the slope of Pessinetto, predicted in real time (the 8 

upper panel reports the observed hyetograph) during the storm of 22.09.1993, when 9 

an earth flow occurred 60 hours after the beginning of the rain. 10 

 11 

Figure 5. Stochastic approach to early warning: probability of exceeding alert and alarm 12 

thresholds of the mobility function at the slope of Pessinetto, predicted in real time (the 13 

upper panel reports the observed hyetograph) during the storm of 12.10.2000, when 14 

an earth flow occurred 46 hours after the beginning of the rain. 15 

 16 

Figure6. The Nocera Inferiore 2005 landslide area (Pagano et al., 2010, modified)  17 

Figure7. Prediction of suction evolution over the hydrological year of the Nocera 18 

Inferiore 2005 landslide at four different depths and for two different hydraulic 19 

conditions at the lowermost boundary (Reder et al., 2017, modified) 20 

 21 

Table 1. Major flow-like landslides triggered since 1950 in the Mts. Lattari  (H = 22 

difference in elevation between the main crown and the tip of the accumulation zone; 23 

L = projection on the horizontal plane of the distance between the crown and the tip; V 24 

= volume of the landslide body) (modified from de Riso et al., 2007) 25 

 26 

Table 2.Stochastic approach to early warning: numbers of launched (N1L), false (N1F) and 27 

missing (N1M) alerts at the slope of Pessinetto for three different lead times tpre and 28 

three different choices of the probability of alert activation P1.For each lead time, the 29 

system carried out 964 predictions between 11 September 1991 and 15 June 2004 30 

(validation period). 31 

 32 
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Table 3. Stochastic approach to early warning: numbers of launched (N2L), false (N2F) 1 

and missing (N2M) alarms at the slope of Pessinetto for three different lead times tpre 2 

and three different choices of the probability of alarm activation P2. For each lead time, 3 

the system carried out 964 predictions between 11 September 1991 and 15 June 2004 4 

(validation period). 5 
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