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Abstract. This study focused on landslides in a catchment with mountain roads that were caused by Nanmadol (2011) and
Kong-rey (2013) typhoons. Image interpretation techniques were employed to interpret satellite images captured before and
after the typhoons to derive the surface changes. A multivariate hazard evaluation method was adopted to establish a
landslide susceptibility assessment model. The evaluation of landslide locations and relationship between landslide and
predisposing factors is preparatory for assessing and mapping landslide susceptibility. The results can serve as a reference

for preventing and mitigating slope disasters on mountain roads.

1 Introduction

Taiwan is an island of which three quarters of its land area consists of slope land that is 100 m above sea level, or is less than
that but has an average gradient of 5% above (Soil and Water Conservation Bureau, 2012). Much of this sloped land has a
steep gradient and fragile geological formations. Taiwan is hit by an average of 3.4 typhoons every year during years 1911 to
2016 (Central Weather Bureau, 2017). In additions, an average annual rainfall reach 2,506 mm in years 1949 to 2012 (Water
Resources Agency, 2017). Typhoons usually occur between July and October, and 70%-90% of the annual rainfall is
composed of heavy rain directly related to typhoons (SWCB, 2012). Concentrated rainfall causes heavy landslides and debris
flows every year (Dadson et al., 2004). The threat of disaster currently influences industrial and economic development and
the road networks in endangers areas; thus, establishing disaster evaluation mechanisms is imperative.

Landslide susceptibility can be evaluated by analysing the relationships between landslides and various factors that are
responsible for the occurrence of landslides (Brabb 1984; Guzzetti et al., 1999a, Guzzetti et al., 2005). In general, the factors
affect landslides including predisposing factors (e.g., geology, topography, and hydrology) and triggering factors (e.g.,
rainfall, earthquakes, and anthropogenic factors) (Chen et al., 2013a; Chen et al., 2013b; Chue et al., 2015). Geological
factors include lithological factors, structural conditions, and soil thickness; topographical factors include slope, aspect, and
elevation; and anthropogenic factors include deforestation, road construction, land development, mining, and alterations of
surface vegetation (Chen et al., 2013a; Chen et al., 2013b; Chue et al., 2015). The method used to assess landslide
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susceptibility can be divided into qualitative and quantitative. Qualitative methods are based completely on field
observations and an expert’s priori knowledge of study area (Stevenson, 1977; Anbalagan, 1992; Gupta and Anbalagan,
1997). Some qualitative approaches incorporate ranking and weighting, and become semi-quantitative (Ayalew and
Yamagishi, 2005). For examples the Analytic Hierarchy Process (AHP) (Saaty, 1980; Barredo et al., 2000; Yoshimatsu and
Abe, 2006; Kamp et al., 2008; Yalcin, 2008; Kayastha et al., 2013; Zhang et al., 2016) and the weighted linear combination
(WLC) (Jiang and Eastman, 2000; Ayalew et al., 2005; Akgiin et al., 2008). Quantitative methods apply mathematical
models to assess the probability of landslide occurrence, and thus define hazard zones on a continuous scale (Guzzetti et al.,
1999b). Quantitative methods developed to detect the areas prone to landslide can be divided mainly into two categories:
deterministic approach and statistical approach. The deterministic approach is based on the physical laws driving landslides
(Okimura and Kawatani, 1987; Hammond et al., 1992; Montgomery and Dietrich, 1994; Wu and Sidle, 1995; Gokceoglu and
Aksoy, 1996; Pack et al., 1999; lverson, 2000; Guimardes et al., 2003; Xie et al., 2004) and are generally more applicable
when the underground conditions are relatively homogeneous and the landslides are mainly slope dominated. The statistical
approach is based on the relationships between the affecting factors and past and present landslide distribution (Van Westen
et al., 2008). Statistical methods analyze the relation between predisposing factors affecting the landslide which include
bivariate statistical models (Van Westen et al., 2003; Sizen and Doyuran, 2004; Thiery et al., 2007; Bai et al., 2009;
Constantin et al., 2011; Yilmaz et al., 2012), multivariate statistical approaches as discriminant analysis (Baeza and
Corominas, 2001; Carrara et al., 2003; Carrara et al., 2008; Pellicani et al., 2014), and linear and logistic regression (Dai and
Lee, 2002; Ohlmacher and Davis, 2003; Ayalew and Yamagishi, 2005; Yesilnacar and Topal, 2005; Greco et al., 2007;
Carrara et al., 2008; Lee et al., 2008; Pellicani et al., 2014), as well as nonlinear methods such as artificial neural networks
(ANN) (Lee et al., 2004; Yesilnacar and Topal, 2005; Kanungo et al., 2006; Wang and Sassa, 2006; Li et al., 2012),
multivariate hazard evaluation method (MHEM) (Su et al., 1998; Lin et al., 2009). The MHEM is a nonlinear mathematical
model that presents an instability index to indicate landslide susceptibility (Lin et al., 2009). In additions, some studies,
landslide susceptibility analyses have focused on man-made facilities such as roads and railroads and have examined the
landslide susceptibility of surrounding environments (Das et al., 2010; Pantelidis, 2011; Das et al., 2012; Devkota et al.,
2013; Martinovi¢ et al., 2016; Pellicani et al., 2016; Pellicani et al., 2017). The aforementioned studies on the landslide
susceptibility of areas surrounding man-made facilities have not investigated characteristics such as the location and scale
(area) of landslides occurring in upper or lower slopes, and such characteristics thus constituted one of the objectives of the
present study.

Technological progress has provided various advanced tools and techniques for land use monitoring. In recent years, aerial
photos or satellite images have been commonly used in post disaster interpretations and assessments of landslide damage on
large-area slopes (Erbek et al., 2004; Lillesand et al., 2004; Nikolakopoulos et al., 2005; Lin et al., 2005; Chen et al., 2009;
Otukei and Blaschke, 2010; Chen et al., 2013a). Satellite images offer the advantages of short data acquisition cycles, swift
understanding of surface changes, large data ranges, and being low cost, particularly for mountainous and inaccessible areas.

With the assistance of computer analysis and geographic information system (GIS) platforms, researchers can quickly
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determine land cover conditions. Thus, satellite images are suitable for investigating large areas and monitoring temporal
changes in land use (Liu et al., 2001). Satellites can capture images of the same area multiple times within a short period.
Studies have indicated that land surface change detection is the process of exploring the differences between images captured
at different times (Liu et al., 2001; Chadwick et al., 2005; Chen et al., 2009; Chue et al., 2015). With multispectral satellite
images, land surface interpretations involve comparisons of multitemporal images that are completely geometrically aligned.
We selected part of the catchment area of Laonung River which include Provincial Highway No. 20 in southern Taiwan as
our study area. Regarding time, we focused on periods before and after landslides that occurred in the study area as a result
of Typhoon Nanmadol (2011) and Typhoon Kong-rey (2013). We applied the maximum likelihood method to interpret and
categorize high-resolution satellite images, thereby determining the land surface changes and landslides in the study area
before and after the rainfall events. By using a GIS platform, we constructed a database of the rainfall and natural
environment factors. Subsequently, we developed a landslide susceptibility assessment model by using the MHEM, the
model performance then was verified by historical landslides. In additions, we extracted the locations of landslide areas to

explore the relationship between the natural environment and the spatial distribution of the scale of these areas.

2 Methodology
2.1 Maximum likelihood

The maximum likelihood classifier is a supervised classification method (SCM). SCMs include three processing stages:
training data sampling, classification, and output. The underlying principle of supervised classification is the use of spectral
pattern recognition and actual ground surface data to determine the types of data required and subsequently select a training
site, which has a unique set of spectral patterns. To accurately estimate the various spectral conditions, the spectral patterns
of the same type of feature are combined into a coincident spectral plot before the class of the training site is selected. Once
training has been completed, the entire image is classified based on the spectral distribution characteristics of the training site
by using statistical theory for automatic interpretation (Lillesand et al., 2004).

To facilitate the calculation of probability in the classification of unknown pixels, the maximum likelihood method assumes
a normal distribution in the various classes of data. Under this assumption, the data distribution can be expressed using
covariance matrices and mean vectors, both of which are used to calculate the probability of a pixel being assigned to a land
cover class. In other words, the probability of X appearing in class i is calculated using Eq. (1), and the highest probability is

used to determine the feature of each pixel (Lillesand et al., 2004).

p(Xie,)~(2r) "5 o) - (- 2, (x )| (1)
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In this equation,
d denotes the number of features;
X denotes a sample expressed using features and has d dimensions;
p(X|C;) denotes the probability that X originates from class i;
¥; denotes the covariance matrix of class i;
¥;* denotes the inverse matrix of %;;
|Zi| denotes the determinant of ¥;;
L denotes the mean vector of classification i;
(X - w)" denotes the transpose matrix of (X - p;); and
Sij denotes the covariance of classes i and j.
During classification, the maximum value of the probability density functions of sample X in each class is used to determine

which class the sample belongs to. The maximum likelihood classification decision is shown in Eg. (2).

XeC, mc{2--k}

if

p(x[c,)=max{p(x[c,)  j=12.-k] @

in which, k denotes the number of classes. The question in classification is how to effectively separate the classes in the
feature space, or in other words, how to divide the feature space. Maximum likelihood is a common approach that offers

fairly good classification accuracy (Bruzzone and Prieto, 2001; Chen et al., 2004). Thus, we adopted maximum likelihood to

interpret and classify the satellite images.

2.2 Accuracy assessment

This study employed the aforementioned maximum likelihood method to classify satellite images. To determine whether the
accuracy of image classification was acceptable, we adopted an error matrix to test for accuracy. An error matrix is a square
matrix that presents error conditions in the relationship between ground surface classification results and reference data
(Verbyla, 1995). Such a matrix contains an equal number of columns and rows, and the number is determined by the number
of classes. For example, Table 1 contains four classes. The columns show the reference data, and the rows show the
classification results. The various elements in the table indicate the quantity of data corresponding to each combination of

classes.



10

15

20

25

In the Table 1, Xy, represents the amount of data that was interpreted as Class A but actually belongs to Class B, whereas X,
indicates the amount of data that was interpreted as Class B but actually belongs to Class A. X3; and X,, represent the amount
of data accurately classified as Class A and Class B, respectively. An error matrix is generally used to check the quality of
classification results in statistics (Congalton, 1991; Verbyla, 1995). In the present study, we evaluated the accuracy of the
classification results based on the overall accuracy and Kappa value (Cohen, 1960), which is the coefficient of agreement
derived from the relationship between the classification results and training data. These two parameters are explained as

follows.

1 Overall Accuracy (OA)
OA is the simplest method of overall description. For all classes, OA represents the probability that any given point in the
area will be classified correctly.

OA = [ﬁ n o Xii } x100% 3)

In Eg. (3), N denotes the total number of classifications, n denotes the total number of rows in the matrix and X is the

number of correctly classified checkpoints.

2 Kappa coefficient

The Kappa (K ) coefficient indicates the degree of agreement between the classification results and reference values and
shows the percentage reduction in the errors of a classification process compared with the errors of a completely random
classification process. Generally, the Kappa coefficient ranges from 0 to 1, and a greater value indicates a higher degree of

agreement between the two sets of results, as shown in Eq. (4):

NEM Xii = X0 (Xiy x X45)
N - {]:1(Xi+ x ><+i)

K = x100% (4)
in which, X;. is the total number of pixels for a given class on actual ground surface and X, is the number of pixels classified
to that class. As reported by Landis and Koch (1977), a Kappa coefficient greater than 0.8 signifies a high degree of

accuracy, whereas a coefficient between 0.4 and 0.8 or less than 0.4 indicates moderate or poor accuracy, respectively.

2.3 Rainfall analysis method

In previous studies regarding the influence of rainfall on landslides, rainfall intensity and accumulated rainfall have been
most commonly used as predisposing factors of landslides (Giannecchini, 2006; Chang et al., 2007; Giannecchini et al., 2012;
Ali et al., 2014). Therefore, we adopted effective accumulated rainfall and intensity of rolling rainfall as rainfall indices and

predisposing factors of landslides in the present study. These two indices are explained as follows.
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1 Effective Accumulated Rainfall (EAR)

Generally, rainfall is considered the trigger of slope collapse, whereas previous rainfall can be regarded as a potential factor
of a landslide. Previous rainfall influences the water content of the soil, which in turn affects the amount of rainfall required
to trigger a landslide (Seo and Funasaki, 1973).

Figure 1 shows an illustration of rainfall events defined based on EAR (Seo and Funasaki, 1973). The diagram shows a
concentrated rainfall event with no rainfall in the preceding or subsequent 24 hours and can thus be considered a continuous
rainfall event. A continuous rainfall event that occurs simultaneously with a landslide is the main rainfall event. The
beginning of the main rainfall event is defined as the time point when the rainfall first reaches 4 mm. The calculation of
accumulated rainfall ends at the time when the landslide occurs. However, because the exact time of a landslide cannot be
precisely determined, we regarded the hour with the maximum rainfall during the main rainfall event as the time when the
landslide occurred in this study.

In accordance with previous studies, we defined EAR as the sum of direct and previous indirect rainfall. Previous indirect
rainfall is the rainfall accumulated during the 7 days prior to the main rainfall event and can be expressed as follows (Seo
and Funasaki, 1973; Crozier and Eyles, 1980):

Y K"P =Ry (5)

where Py, denotes the previous indirect rainfall, P, denotes the rainfall during the n days prior to the main rainfall event (mm),
and k denotes a diminishing coefficient set as 0.9 in this study (Chen et al., 2005). Direct rainfall encompasses the
continuous rainfall accumulated during the rainfall events, starting from the first rainfall to the time of landslide occurrence.
Direct rainfall has a direct and effective impact on landslide occurrence and is thus not diminished. Therefore, EAR could be

expressed as follows in this study:

EAR =P, + R, (6)
where P, (mm) represents the rainfall accumulated during the main rainfall event from the first rainfall to the time of
landslide occurrence, and P, (mm) represents the previous indirect rainfall.

2 Intensity of Rolling Rainfall (Ig)

Rainfall intensity refers to the amount of rainfall within a unit of time. It is considered a crucial index for evaluating disasters
because greater intensity or longer durations have considerable impacts on slope stability. Furthermore, rainfall-induced
landslides may be triggered by several hours of continuous rainfall. The raw rainfall data in this study was hourly

precipitation; thus, Iz (mm/h) can be expressed as follows:

_5m _
IR =2 mea! = lemer Hlemmaa ++ 1y )
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where | denotes rainfall intensity, m denotes the number of rolling hours of rainfall (set as 3 hours in this study), I,z denotes

the Iz during m hours, and I, denotes the rainfall intensity during hour t.

2.4 MHEM

The MHEM is a diverse non-linear mathematical model. Based on relative relationships, the MHEM presents an instability
index (Dy) to indicate susceptibility in different areas. The objective is to estimate the variance of predisposing factors and
then to determine the weight of each factor according to the value of variance, finally to derive a suitable landslide
susceptibility assessment model (Su, et al., 1998; Lin et al., 2009; Chue, et al., 2015).

The predisposing factors in the MHEM are rated based on the frequency of landslide occurrence, which is calculated as

follows:
r.
R =—-L 8
: r-|- ( )

where R; represents the landslide pixel ratio of the various factors in class i, r; represents the number of landslide pixels in

class i, and ry represents the total number of pixels. Thus, landslide percentage X; is expressed as

R:

Xj=—i—
2R

9)

where X; denotes the landslide percentage of class i and ZR; denotes the sum of the landslide pixel ratios.
Based on the landslide percentages of the various classes for each predisposing factor, the normalized score value of classes

for each factor (d,,) can be calculated using Eq. (10), and presented in relative values ranging from 1 to 10.

9(Xi - Xmin)

d =
" (Xmax_ Xmin)

+1 (10)

In Eq. (10), X; represents the causal rate of the sample region and X, and Xy, represent the maximum and minimum
landslide percentages of the factor in the various sample regions, respectively.

To estimate the weight of influence of each predisposing factor, the coefficient of variation (V) of the landslide ratios derived
from the class of the predisposing factors is used to represent the sensitivity of landslide ratios in different predisposing
factor classes. A smaller coefficient of variation denotes higher similarity among the landslide probabilities in the various
classes, which indicates that this factor grading method cannot determine which areas have higher or lower landslide
probabilities. By contrast, a greater coefficient of variation denotes that this factor grading method can be used to describe
the influence of factor classes on landslides. Thus, the coefficient of variation among the predisposing factors can indicate

the factor weights. The coefficient of variation is calculated as shown in Eq. (11):
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where ¢ is the standard deviation and X is the mean landslide percentage of the various factor classes.

We divided the coefficient of variation of each individual factor by the total coefficient of variation of all factors to derive
the factor weight, which represented the degree of influence of the factor on landslide occurrence. The factor weight can be
calculated as shown in Eq. (12), where W is the factor weight and V is a coefficient of variation.

Vi

SVEVAYE (12)
Vi +Vy +--+V,

i
Finally, the weight (W;) of each factor is determined by the rank of its variance (V), and each factor is assigned a different

weight. Subsequently, a nonlinear mathematical model can be derived as follows:
Dy =d]\-Nl ><d\2N2 xdgv3 dev"' ><d¥v5 ...... devn (13)

where D is the instability index of the samples, expressed using relative values ranging from 1 to 10. A cumulative value
closer to 10 indicates greater landslide potential, whereas a cumulative value closer to 1 indicates lower landslide potential.
By using the concept of log-normal distribution in statistics, we converted the levels of instability index derived using the
MHEM into probabilities of landslide occurrence. The calculation formula of the log-normal distribution is shown in Eqg.
(14):

I

Xov 21

P(F) = (14)

where x denotes the level of the instability index and x and o denote the mean and standard deviation of the level of the
instability index, respectively. After calculating the probabilities of landslide occurrence by using the log-normal distribution,

we normalized the probabilities to range from 0 to 1 for convenience. The normalization formula is shown in Eq. (15).

' Xi =X
P(F) =M (15)

In Eq. (15), X; represents the factor being normalized and X and Xpin represent the maximum and minimum values of the
factor, respectively.

3 Study area

We referred to the historical data on road disasters from the NCDR (2017) and considered road sections where rainfall-

induced landslides occurred frequently in southern Taiwan. We focused on the periods before and after Typhoon Nanmadol
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(2011) and Typhoon Kong-rey (2013) hit southern Taiwan, and we selected part of the catchment area of Laonung River in
southern Taiwan as our study area (Fig. 2), which includes part of areas from three districts in Kaohsiung City (Jiashian,
Liouguei, and Taoyan). The Laonung River flows SW cross over the southern of study area which originating from the Jade
Mountain. The study area is located in a tropical monsoon climate zone. According to the climate statistics (1983 - 2012)
recorded from the Central Weather Bureau, the average annual rainfall is approximate 2,758 mm. Provincial Highway No.
20 is east-west direction, the starting point of the highway is Tainan City in southern Taiwan, and the ending point is Degao
Community in Guanshan Town, Taitung County, with a total length of 203.982 km. Within the study area, Highway No. 20
starts from Liouguei District (76K + 000) in the west and goes to Taoyan Village (87K + 500) in the Taoyan District.
According to the survey data from the Directorate General of Highways (2016), the road width of the Highway No. 20
passing through the study area is about 8.8 meters. The average traffic flow and the total number of vehicles carried per day
for both directions are 2,260 PCU (Passenger Car Unit) and 1,434, respectively. In the study area, most of the traffic
vehicles are sedans, followed by trucks and buses.

4 Image interpretation and classification
4.1 Preprocessing of satellite images

This study employed and interpreted satellite images taken by FORMOSAT-2 (FM2). FM2 images have been extensively
used to identify natural disasters and land use (e.g., Lin et al., 2004; Lin et al., 2006; Liu et al., 2007; Chen et al., 2009, Lin
et al., 2011; Chen et al., 2013a). The FORMOSAT-2 satellite has a circular and sun synchronous orbit. With its high torque
reaction wheels for all axes, the FORMOSAT-2 is able to point to a £45° along track and £45° across track, and is thus able
to capture any scene each day in all of Taiwan if necessary (Liu et al., 2007). FORMOSAT-2 images are available in 2 m
resolution in panchromatic (pan) and 8 m in multispectral (ms) from visible to near-infrared with a coverage of 24 kmx24
km. In the present study, prior to interpretation, the satellite images underwent spectral fusion, coordinate positioning,
cropping, and cloud removal. The images taken by FM2 are multispectral with blue, green, red, and near-infrared (NIR)
wavelengths (Chen et al., 2013a; Chue et al., 2015). Image fusion and coordinate positioning were conducted using the
import data and coordinate positioning tool of ERDAS IMAGINE (2013). Then, we used the image analysis tool of ArcGIS

to remove clouds from the images.

4.2 Training site selection and mapping

To map the sample areas required for image interpretation, we overlapped the high-resolution, preprocessed satellite images
of the study area before and after the typhoons and mapped the training sites by using a GIS platform. Based on field
investigations and relevant studies (Chen et al., 2009; Chen et al., 2013a; Chue et al., 2015), we selected areas with water,
roads, buildings, crops, vegetation, river channels, and bare land within the study area as the sample area factors for

interpretation training.
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4.3 Image interpretation and accuracy assessment

Image interpretation and classification were conducted using the Maximum Likelihood module in ERDAS IMAGINE. The
interpretation and classification results of the satellite images before and after Typhoon Nanmadol in 2011 and Typhoon
Kong-rey in 2013 are shown in Fig. 3. The different colors in the images represent different interpretation factors.

To verify the accuracy of the results, we randomly extracted 25 points from the satellite images for each training factor as
checkpoints and tested the accuracy by using the aforementioned error matrix approach. With the satellite images before and
after Typhoon Kong-rey in 2013 as an example, Table 2 shows the error matrix and accuracy assessment results of the
satellite image interpretation and classification processes. Table 3 presents the Kappa values and OA results of the satellite
images captured before and after the two typhoons. As mentioned, Kappa values ranging from 0.4 to 0.8 indicate moderate

accuracy, and thus the interpretation results had moderate to high accuracy.

5 Landslide susceptibility assessment

To evaluate the landslide susceptibility of slopes within the study area, we constructed 8 m x 8 m grids by using the GIS
platform along with the interpretation results of the two typhoons. We also constructed an 8 m x 8 m digital elevation model
(DEM) and input the classification results, thematic map of predisposing factors, and rainfall data into the pixel to aid

subsequent landslide susceptibility assessments.

5.1 Predisposing factor selection and factor correlation test

1 Predisposing factor selection

Referring to Chen et al. (2009), we divided the predisposing factors of landslides into three categories: natural environment,
land disturbance, and rainfall.

A. Natural environment factors

(A) Elevation

The influence of elevation varies with the climate and thus affects the distribution of vegetation on the slope and type of
weathering. In addition, elevation reflects the influence of geological structure, stress, and time. The highest and lowest
elevations in the study area were 1481 and 365 m, respectively. Using the GIS platform, we extracted the elevation data from
the DEM of the study area to estimate the mean elevation of each grid. We divided the elevation data into seven classes at

intervals of 300 m.

(B) Slope gradient

10
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A slope’s gradient generally exerts significant impact on slope stability. By using the DEM and gradient analysis of the GIS
platform, we calculated the mean gradient of each pixel in the study area; subsequently, we divided the gradient values in the

pixels within the study area into seven classes.

(C) Aspect

Rainfall-induced landslides are subject to the influence of seasonal changes such as those related to rainfall and wind
direction. Thus, the direction of the slope must be considered. As described, we used the DEM and aspect analysis function

of the GIS platform to calculate the average aspect of the pixels in the study area. According to their direction, we divided

them into six classes from windward to flat ground.
(D) Geology

Referring to the digital file of the Geologic Map of Taiwan, Scale 1:50,000, Chiahsien, which was compiled by the Central
Geological Survey of the Ministry of Economic Affairs in 2000, we determined that the geology of the study area includes
five types of rock: the upper part of Changshan Formation, the Tangenshan Formation, the Changchihkeng Formation from
the Miocene period, and modern alluvium and terrace deposits from the Holocene period. We divided geological strength

into six classes (Chen et al., 2009).
(E) Terrain roughness

Terrain roughness refers to the degree of change in pixel height. Wilson and Gallant (2000) proposed the use of the standard
deviation of height within a radius to measure the degree of change in height because of its indicative meaning in relation to
changes in regional height. Using the Neighborhood (Focal Statistics) of Spatial Analyst Tools in ArcGIS, we calculated the

terrain roughness of the DEM. Statistical cluster analysis was used to automatically divide terrain roughness into six classes.
(F) Slope roughness

Slope roughness refers to the fluctuations in slope gradient in the pixels. High slope roughness means that the slope gradient
varies considerably (Wilson and Gallant, 2000). Slope roughness is calculated through the same method as terrain roughness,
except with the original elevation values being replaced with the slope gradient values obtained using ArcGIS. Just as terrain
roughness was graded, we first used Spatial Analyst Tools in ArcGIS to estimate the slope roughness of each pixel, after
which we used cluster analysis to automatically divide slope roughness into six classes.

(G) Distance to water

Streams will cause soil erosion and riparian erosion, which directly or indirectly affect the stability of the slope. We

calculated the distances to water using Tool of Buffer in ArcGIS and divided the distances into seven classes.
(H) Distance to road

The construction of the roads will also have the influence on the stability of the slope. Therefore, we also calculated the

distances to road using Tool of Buffer in ArcGIS and divided the distances into seven classes.

11
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B. Land disturbance factors

Land disturbance varies with space and time. Based on the tendency to promote landslides, the index of land disturbance was
developed, and we made some revisions to the qualitative approach proposed by Chen et al. (2009, 2013b) to calculate land
disturbance and selected roads, buildings, crops, bare land, and vegetation as the land disturbance factors of landslides in the
study area. We extracted the disaster and ground surface data from previous satellite image interpretation and classification
results and input the land disturbance factors into the pixels by using the GIS platform. Refer to Chen et al. (2009, 2013b),
the scores of the index for disturbance condition (Ipc) in the pixels are assigned from five decreasing to one which

corresponding to bare land, roads, buildings, crops and vegetation, respectively.
C. Rainfall factors

We collected precipitation data from weather stations of the Central Weather Bureau, including Guanshan, Biaohu, Hsiao
Guanshan, Gaojhong, Sinfa, Jiashian, and Xinan. We then calculated the EAR and 3-hour Ig (I3;) levels observed at each
station. The results from Typhoon Nanmadol in 2011 and Typhoon Kong-rey in 2013 are compiled in Table 4. By using the
Inverse Distance Weighting (IDW) function of ArcGIS and the EAR and maximum Iz values of the weather stations, we
estimated the rainfall of each pixel throughout the study area and then used cluster analysis to divide the results into six

classes.

2 Factor correlation test

To establish a landslide susceptibility assessment model, we selected elevation, slope gradient, aspect, geology, terrain
roughness, slope roughness, distance to water, distance to road, Ipc, and rainfall as landslide-predisposing factors. Rainfall
included EAR and maximum lag.

We employed the Pearson correlation test tool in SPSS software (2005) to examine the correlation among these factors. The
correlation coefficients ranged from -1 to +1, with +1, -1, and O indicating complete positive correlation, complete negative
correlation, and no correlation between two variables, respectively. Factors with high correlation were then subjected to a
paired sample t test conducted using SPSS to examine the significance of the correlation between them. Those with high
correlation were eliminated.

Table 5 presents the test results regarding the correlation between the predisposing factors. As shown, the degree of
correlation between most factors was moderate to low. A high degree of correlation was found only between elevation and
terrain roughness and between slope gradient and slope roughness. Thus, we administered paired sample t tests to these two
factor pairs to test the significance of the correlation. The results in Table 6 show that the significance was 0 (<0.05) for the

correlation between both pairs, indicating no correlation; thus, these factors were not eliminated.

12
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5.2 Landslide susceptibility assessment and hazard map

To apply the MHEM to establish a landslide susceptibility assessment model, we input the natural environment, land
disturbance, and rainfall factors into the pixels by using the GIS platform. By using the changes in bare land between the
images before and after the typhoons and applying image subtraction aided by manual checking, we obtained the pixel data
of the rainfall-induced landslide locations in the study area. With the study area after Typhoon Nanmadol in 2011 as an
example, we considered EAR during the rainfall period and rated the classes by using the factor weights derived using the
MHEM, as shown in Table Al of Appendix A.

The calculation process is explained in this paper by using elevation as an example. In accordance with factor selection, the
elevation factor was divided into seven classes. Aided by the GIS platform, we calculated the total number of pixels, total
number of landslides, and landslide percentage within each elevation level in the study area by using Egs. (8) and (9). Based
on the landslide percentages of the elevation factor and the minimum and maximum landslide percentages, we subsequently
obtained the scores of the factors by using Eq. (10). We then calculated the standard deviation, coefficient of variation, and
weight values by using Egs. (11) and (12); the results are listed in Table Al of Appendix A. The presented results show that
the standard deviation (o), coefficient of variation (V), and factor weight (W) of landslide percentage were 0.021, 0.764, and
0.087, respectively. Finally, we calculated the instability indices by using the weight values and scores of the factors through
Eqg. (13). Furthermore, the results in Table Al of Appendix A indicate that the degrees of land disturbance (Ipc), geology
(Gs), slope gradient (S), and slope roughness had the greatest influence on landslides in the study area, followed by distance
to water (D;), EAR, and elevation (E)).

We considered EAR and Iz and used an instability index to determine the level of landslide susceptibility of slopes
throughout the study area. The derived instability index intervals (Table 7) for EAR and Iz were ranged from 2.05 to 9.59
and 2.02 to 9.96, respectively. By using Egs. (14) and (15), the landslide probability intervals calculated based on EAR and
I3 are presented in Table 7.

We employed the mean probability of landslide occurrence to differentiate between high and low landslide susceptibility.
Landslides were considered more likely to occur in areas where the probability of landslide occurrence was greater than the
mean. By contrast, landslides were considered less likely to occur in areas where the probability of landslide occurrence was
lower than the mean. With rainfall factor EAR as an example, we determined the mean probability of landslide occurrence to
be 0.46. We further divided landslide susceptibility into four levels: high (0.731-1), medium high (0.461-0.73), medium low
(0.23-0.46), and low (0-0.23). The results showed that the mean probability of landslide occurrence varied little, regardless
of whether it was calculated using EAR or Iz.

By using the GIS platform, we considered the landslide susceptibility calculated using EAR for Typhoon Nanmadol in 2011
as an example. As illustrated in Fig. 4, we included an overlay created by the NCDR and showing the locations of historical
disasters within the study area. The results revealed a total of 24 historical disasters, 17 of which were situated in areas of

medium high or high landslide susceptibility. Therefore, the estimation accuracy in this study was approximately 71%.
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Regarding Typhoon Kong-rey in 2013, 18 historical disasters occurred within areas of medium high or high landslide
susceptibility, thereby yielding 75% accuracy. Table 8 presents the accuracy levels associated with using different rainfall

factors to calculate landslide susceptibility for different typhoons.

5.3 Investigation of rainfall factors and instability index

To understand the relationship between the rainfall factors and the degree of instability on the slopes in the study area after
typhoons, we first removed the cloud cover grids from post typhoon images and subsequently employed cluster analysis to
divide the instability indices of the pixels into three levels: high, medium, and low. We then collected random samples based
on the proportions of landslide and nonslide pixels in each level (50 landslide and 50 non landslide pixel points) and plotted
their relationship. Table 9 and Fig. 5a—d present the relationships between the rainfall factors (EAR and IsR), instability index,
and landslide occurrence in the pixels following Typhoon Nanmadol in 2011 and Typhoon Kong-rey in 2013. Figure 5a and
b consider EAR, whereas Fig. 5¢ and d consider lsz. The presented results indicate that the typhoon events increased the
degree of slope instability (D;) and landslide occurrence, regardless of whether EAR or I3z was considered. Furthermore,
significantly more landslide points were situated in areas of high instability than in areas of other levels of instability, and
landslides rarely occurred in areas of low instability. Moreover, areas of high slope instability were prone to landslides even
if their EAR or I3z was low. By contrast, areas of low instability required more rainfall for landslides to be possible. The
results (Table 9) further showed that the EAR and lsz levels of Typhoon Kong-rey in 2013 were greater than those of
Typhoon Nanmadol in 2011. Thus, in any Dy level, the proportion of landslides that occurred in the study area after Typhoon
Kong-rey was higher than that after Typhoon Nanmadol. Figure 5e and f present the relationships between EAR x Iz, the
instability index, and landslide occurrence; EAR x lsg is the index of rainfall-induced landslide (ILR), with a higher value
indicating higher susceptibility to a landslide. The figures show that for a high instability index, even a small rainfall event
could trigger a landslide (lower right corners of the figures). By contrast, for a low instability index, a larger rainfall event

could not easily trigger a landslide (upper left corners of the figures).

6 Landslide location analysis

We analyzed the spatial characteristics of landslides by using landslide locations collected from before and after both of the
two typhoons and the land surface interpretation results of the study area.

6.1 Investigation of landslide predisposing factors and landslide area

The influence of predisposing factors on landslides varies. In this study, we examined the relationships between landslide
area and various predisposing factors. By using the area of landslides (i.e., the number of landslide pixels) induced by

Typhoon Nanmadol in 2011 as an example, we investigated the influences of the predisposing factors (elevation, slope
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gradient, aspect, geology, slope roughness, terrain roughness, distance to water, distance to road, and degree of land
disturbance) on landslides. The various factor classes and corresponding numbers of landslide pixels are shown in Fig. 6a—i.
Figure 6a presents the relationship between different classes of elevation and the number of landslide pixels (landslide area).
As shown in the figure, the number of landslide pixels in the study area peaked at elevations between 450 and 750 m and
then declined as the elevation increased. Figure 6b displays the relationship between different classes of slope gradient and
the number of landslide pixels (landslide area). As shown in the figure, the number landslide pixels in the study area
increased with the slope gradient and peaked between 30° and 55°. Landslides rarely occurred on slopes steeper than 55°.
Figure 6¢ illustrates the relationship between aspect and the number of landslide pixels, with aspect divided into eight
categories: north, northeast, east, southeast, south, southwest, west, and northwest. As shown in the figure, the number of
landslide pixels was highest on slopes facing south, followed by those on slopes facing east and southeast. We speculate that
this is because rainfall during the typhoon season in Taiwan promotes poor cementation and high weathering on slopes along
rivers, which consequently prompts these slopes to develop toward low-lying rivers (which run from the northeast to the
southwest) after rainfall events.

Figure 6d shows the relationship between geology and the number of landslide pixels. As shown in the figure, the Sanhsia
Group and its stratigraphic equivalence lead to landslides more easily than does the Lushan Formation in the study area. The
Sanhsia Group and its stratigraphic equivalence mainly comprise sandstone, shale, and interbedded sandstone and shale.
Shale has weaker cementation, lower strength, and a greater tendency to weather and fracture. By contrast, the Lushan
Formation consists of argillite, slate, and interbedded argillite and sandstone, and its strength is controlled by cleaving; some
areas are prone to weathering and fracturing. Thus, both rock types are more likely to collapse, but on the whole, the Sanhsia
Group and its stratigraphic equivalence collapse more easily than does the Lushan Formation. Furthermore, this result
indicates that the locations of landslide areas within the study area are associated with geology. Figure 6e presents the
relationship between slope roughness and the number of landslide pixels. The number of landslide pixels within a level of
slope roughness first increased with the slope roughness and then began to decline once a certain level of slope roughness
(35-40) was reached. This result is similar to that of the influence of slope gradient on the number of landslide pixels. Figure
6f displays the relationship between terrain roughness and the number of landslide pixels. As shown in this figure, the results
are similar to those regarding the influence of elevation on the number of landslide pixels; the number of pixels declined
when the terrain roughness was greater than 500 and was very small low the terrain roughness was greater than 1200.

Figure 69 illustrates the relationship between distance to water and the number of landslide pixels. The presented results
show a significantly greater number of landslide pixels within 300 m of water. The width of the river channel within the
study area was determined to range from 100 to 200 m, revealing that the development of landslide areas near water in the
study area is caused by rainfall significantly raising the water level in the river, which scours the slope toe, affects slope
stability, and triggers landslides. Figure 6h presents the relationship between distance to road and the number of landslide
pixels. The presented results reveal that areas between 100 and 300 m from roads had the greatest number of landslide pixels.

Further examination of the relationship between distance to road and the area and number of landslides revealed that most
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landslides between 0 and 100 m from roads were small collapses, whereas those between 100 and 300 m from roads were
larger in area. The number of landslides 0-100 m from roads was greater than that 100-300 m from roads.

The degree of land disturbance can represent the changes of surface conditions including roads, buildings, crops, bare land,
and vegetation. A greater degree of land disturbance likely indicates a greater degree of surface changes, which can yield a
greater number of landslide pixels. Figure 6i shows the relationship between the degree of land disturbance and the number
of landslide pixels. The presented results indicate that the number of landslide pixels increased with the degree of land

disturbance.

6.2 Landslide scale and spatial distribution

We employed the terrain tool in ERDAS IMAGINE and the DEM to identify the ridges and valleys in the study area.
Following the methods in previous studies (Meunier et al., 2008; Chue et al., 2015), we extracted the distances between the
highest point of a landslide area and the nearest ridge (dr), between the lowest point of the landslide area and the nearest
stream (ds), and between the ridge and the stream (dt) (Fig. 7). Furthermore, in Taiwan, many slopes are visible on
developed, mountain roads built between ridges and streams. Therefore, we explored the spatial distribution of landslides
above and below mountain roads. Similar to Fig. 7a, to explore the spatial distribution of landslides, we extracted the
distances between the highest point of a landslide area on a slope above a road and the nearest ridge (dr), between the lowest
point of the landslide area and the nearest mountain road (dmu), and between the ridge and the mountain road (dtu) (Fig. 7b);
we also investigated this distribution by extracting the distances between the highest point of a landslide area on a slope
below a road and the nearest mountain road (dmd), between the lowest point of the landslide area and the nearest stream (ds),
and between the mountain road and the stream (dtd) (Fig. 7c).

This study examined the spatial distribution of landslides in the region along Provincial Highway No. 20 before and after
Typhoon Nanmadol in 2011 and Typhoon Kong-rey in 2013. Using the approach shown in Fig. 7a, we mapped the bare land
in the study area, as shown in Fig. 8a—d. Of these figures, Fig. 8a and ¢ show the conditions before the typhoons, whereas
Fig. 8b and d present the conditions after the typhoons. The presence of bare locations near the Y axis (dr/dt ~ 0) denotes that
the bare land originated near the ridge. By contrast, the presence of bare locations near the X axis (ds/dt ~ 0) denotes that the
bare land progressed toward the stream. Thus, the presence of bare locations near the origin denotes that the bare land
originated near the ridge and progressed toward the stream.

The results in Fig. 8a—d show more bare locations in the lower right halves of the graphs, some of which are larger in area.
The figures indicate fewer bare locations in the upper left halves of the graphs, and the ones that are present are smaller in
area. These spatial distribution characteristics are similar to those derived by Meunier et al. (2008). We speculate that this is
because the frequency of rainfall-induced landslides increases significantly because of bank erosion, which is shown in the
lower right half of Fig. 8 (dr/dt > 0.5 and ds/dt < 0.5). Furthermore, the bare locations before and after Typhoons Nanmadol

and Kong-rey show that the bare land does not increase in number but increases significantly in area, implying that old
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landslides may result in more collapses or expansions of the affected area. In addition, the number of old landslides is greater
than that of new landslides.

We explored the spatial distribution of landslides on slopes above (Fig. 9) and below (Fig. 10) mountain roads in the study
area before and after Typhoon Kong-rey in 2013. Figure 9a and Fig. 10a present the spatial distribution of bare land before
the typhoon, whereas Fig. 9b and Fig. 10b present the spatial distribution of bare land after the typhoon.

As shown in Fig. 9, most landslides on the slopes above the mountain roads occurred close to the roads, most likely because
road construction involves cutting the slope toe and increasing the gradient. After the typhoon, the bare locations on the
slopes above the roads in the study area did not increase in number significantly; thus, rainfall did not exert a substantial
impact on the slopes above the roads. The results in Fig. 10 show bare locations on the slopes below the mountain roads
developing from near the roads to the streams. The bare locations near the streams may also have been affected by rainfall-
induced bank erosion. However, the bare land near the roads may have been a result of roads being constructed in the study
area, which affects slope stability and increases the probability of landslides. Furthermore, the bare locations near the roads
slightly increased in number after the typhoon, likely because the roads changed the routes of surface runoff. The area of
bare land near the streams also increased, possibly because the water flow scours the slope toe and causes continual bank

collapses. Thus, typhoons have a significant impact on the stability of slopes below mountain roads.

7 Conclusions

This study applied the maximum likelihood method to interpret and classify satellite images before and after two typhoons in
2011 and 2013. We extracted landslide and land use information from the areas surrounding roads and then compiled the
rainfall and DEM data from the typhoon events. By using the MHEM, we established a landslide susceptibility assessment
model and examined the relationships between predisposing factors and the area and number of landslides within the study
area, as well as the relationships between roads and the spatial distribution of landslides. The results show that the Kappa
coefficients associated with the use of the maximum likelihood method to interpret and classify satellite images before and
after Typhoon Nanmadol in 2011 and Typhoon Kong-rey in 2013 ranged from 0.53 to 0.66, whereas the OA ranged from
61% to 71%, indicating moderately high accuracy. According to the results of the instability index-based landslide
susceptibility assessment model, the degree of land disturbance, geology, slope gradient, and slope roughness had the
greatest impacts on landslides. A comparison of historical landslides triggered by the typhoons and the results of the hazard
map revealed 71% accuracy for Typhoon Nanmadol in 2011 and 75% accuracy for Typhoon Kong-rey in 2013. Regarding
the influence of the predisposing factors, an elevation of 450-750 m, a slope gradient of 30°-55°, and distances within 300
m of water or roads were associated with a larger scale of landslides. The scale of landslides also increased with the degree
of land disturbance. The relationships between the ILR, instability index, and landslide occurrence indicate that for a high
instability index, even a smaller rainfall event could trigger a landslide. By contrast, for a low instability index, a larger

rainfall event could not easily trigger a landslide. Thus, the instability index can effectively reflect landslide susceptibility.
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Comparisons of the distribution of bare land before and after typhoon events showed that most landslides in the study area
were caused by stream water scouring away the toes of bank slopes. Although bare locations did not significantly increase in
number after the typhoon events, they increased significantly in area, implying that the number of old landslide areas holding
more collapses or expansions was greater than that of new landslide areas developing. In addition, the results obtained from
observing changes in slopes above and below mountain roads after the typhoon events indicate that the number of bare
locations on the slopes above the roads in the study area did not increase significantly, whereas the bare locations near the
roads on the slopes below the roads slightly increased in number after the typhoon events, likely because of the roads
changing the routes of surface runoff. The amount of bare land near streams also increased, possibly because the water flow

scours the slope toe.
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Figure 1: Definition of Rainfall Events based on Effective Accumulated Rainfall (modified from Seo and Funasaki, 1973).
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Figure 7: Diagrams of Landslide Area on Slope, in which dr represents the distance between the highest point of a landslide area
and the nearest ridge, ds the distance between the lowest point of the landslide area and the nearest stream, and dt the distance
between ridge and stream.
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Figure 8: Spatial Distribution of Bare Land in the Study Area before and after the Typhoons Nanmadol (Top) and Typhoon Kong-
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Table 1: Relationship Table of Error Matrix (Verbyla, 1995).

Actual ground surface
Class A Class B LIstET
Classification Class A X X5 Xy
results Class B X, X5 Xy
Total X; X; Xy
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Table 2: Error Matrix of Interpretation Results of Satellite Images after Typhoon Kong-rey in 2013.

Water | Roads | Buildings | Crops | Vegetation clﬁ Eféls ]13;;; Subtotal accgriigrs(% )

Water 15 0 0 0 0 0 0 15 100

Roads 1 7 2 0 0 3 0 10 70

Buildings 2 0 22 0 0 0 0 24 92

Crops 0 4 0 11 0 0 1 16 69

Vegetation 1 5 12 25 0 2 45 56

River channels 6 3 1 0 0 24 4 38 63

Bare land 0 6 2 0 1 18 27 67
Subtotal 25 25 25 25 25 25 25 175

Pr"ducez(;) )ac"“racy 60 28 88 44 100 95 72

Kappa = 0.64; 04 =70%
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Table 3: Interpretation Results of Satellite Images before and after Typhoons Nanmadol and Kong-rey.

Time of satellite image Kappa 04 (%)
Before Typhoon Nanmadol (2011.08.17) 0.64 69
After Typhoon Nanmadol (2012.10.14) 0.53 61
Before Typhoon Kong-rey (2013.08.17) 0.66 71
After Typhoon Kong-rey (2013.11.23) 0.64 70
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Table 4: Effective Accumulated Rainfall and Intensity of Rolling Rainfall Observed at Weather Stations during Typhoon

Nanmadol and Typhoon Kong-rey.

Weather station

2011 Typhoon Nanmadol

2013 Typhoon Kong-rey

name EAR (mm) Max I5g (mm/h) EAR (mm) Max L5g (mm/h)
Guan-shan 74 57 376 147
Biao-hu 68 39 413 145
Hsiao Guan-shan 101 48 415 123
Gaojhong 337 69 544 136
Sinfa 504 61 288 123
Jiasian 379 46 233 101
Xi-nan 192 48 518 102
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Table 5: Correlation Test Results Between the Predisposing Factors.

Slope

Slope

Terrain

Distance

Distance

Elevation gradient Aspect roughness | roughness | to water | toroad I e EAR
Elevation 1 0.39 20,01 0.47 0.99 0.52 0.62 2023 20.66
sleme - 1 0.07 0.85 0.37 0.11 0.18 -0.09 -0.19
gradient
Aspect - - 1 20.09 0.03 0.13 0 0 0.12
sleme - - . | 0.48 0.14 0.23 0.11 0.25
roughness
Wi ; ; ; ] 1 0.53 0.63 024 | -067
roughness
IDTEiHIEE ; ; ; ; ; 1 0.49 2021 -0.47
to water
Distance - - ; ; ; - 1 0.14 | -061
to road
| o - - ; ; ; - . | 0.14
EAR ; ; : : : ; ; ; 1
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Table 6: Paired Sample t Test Results Between Elevation and Terrain Roughness and Slope Gradient and Slope Roughness.

Paired difference

Standard 95% confidence interval of ‘ Degee Significance
Mean S.D. error of difference (Two-tailed)
— — freedom
mean Upper limit | Lower limit
Elevation-terrain | ) o | 4 0.07 -2.83 -2.54 -36.8 | 407493 0
roughness
Slope gradient- | o | 59 0.01 -0.14 -0.08 9.1 | 407493 0

slope roughness
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Table 7: Intervals of Instability Index and Landslide Probability of Rainfall Factors.

Rainfall factor D, i D s P(E) in P(E) s
EAR 2.05 9.59 0.312 0.982
I3r 2.02 9.96 0.305 0.998
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Table 8: Accuracy of Landslide Susceptibility Map in Considering Different Rainfall Factors and Typhoons.

Landslide susceptibility at locations of 24 historical disasters

Typhoon Rainfall Accuracy acl\(/slllercl:y
t fact i 7
even actor Low Medium low Mﬁ?glﬁm High ) (%)
susceptibility | susceptibility . susceptibility
Typhoon EAR 2 5 11 6 71%
Nanmadol 1%
(2011) I3r 3 4 13 4 71%
Typhoon EAR 2 4 13 5 75%
Kong-rey 75%
(2013) I3 2 4 11 7 75%
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Table 9: Numbers of Landslide Pixels in Study are corresponding to Different D; Levels under Different Rainfall Factors after

Typhoons.
. Numbers of landslide and Number of pixels in each level Number of pixels in each level
Rainfall . . based on EAR based on I3z
non-landslide pixel
event (Proportion of landslide pixel) DGyl [ ford
P P Low Medium High Low Medium High
Landslide| 16793 211 3031 13551 216 3603 12974
Non.— 390710 | 168259 166289 56153 177396 166358 46947
Whole area| landslide
Typhoon (Landslide/ Non-
Nanmadol ) 0.00125 0.01822 0.24132 0.00122 0.02166 0.27635
(2011) landslide)
Landslide| 50 0 11 39 0 12 38
Random Non-
sampling landslide 50 24 21 5 25 21 4
Landslide| 20771 392 4303 16076 434 4482 15855
Non.— 396175 | 182810 181824 31541 181079 185305 29791
Whole area| landslide
Typhoon (Landslide/ Non-
Kong-rey ) 0.00214 0.02367 0.50969 | 0.00240 0.02419 0.53221
(2013) landslide)
Landslide| 50 1 6 43 0 11 39
Random Non-
sampling landslide 50 27 20 3 20 27 3
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Appendix A

Table Al: Weights and Scores of Predisposing Factors after Rainfall Brought by Typhoon Nanmadol in 2011.

Pre?;iggrsing C,\Ilaoss l;lfumbelr Nug}ber Landslide Score Predisposing| Class Nurr_1ber Nug}ber Landslide Score
. pixel | - ndslides percentage factor No. |of pixel landslides percentage
1 0 0 0 1 1 0 0 0 1
2 0 0 0 1 2 | 4096 | 378 0.092 9.21
_ 3 | 8377 175 0.021 4.62 3 | 74623 | 7545 | 0.101 10
E'e("é;'on 4 | 45633 | 2043 | 0045 | 875 gragi':rf’te(ss) 4 |119696| 6704 | 0056 | 5.99
5 | 84049 | 4370 0.052 10 5 100477 1666 0.017 2.48
6 | 209648 | 8023 0.038 7.62 6 | 61442 | 369 0.006 1.53
7 | 59787 | 2182 0.036 7.32 7 | 47160 | 131 0.003 1.25
0=0.021, V=0.764, W=0.087 0=0.044, V=1.111, W=0.127
1 | 72961 | 3381 0.046 10 1 | 18462 | 7278 0.394 10
2 129113 | 4569 0.035 7.87 2 | 37591 | 3735 0.099 3.26
3 | 95534 | 3839 0.040 8.80 3 | 33686 | 2924 | 0.087 2.97
Aspect (As) | DC
4 | 75666 | 3505 0.046 10 4 | 78519 | 2611 0.033 1.75
5 | 34220 | 1499 0.044 9.51 5 |216535| 83 0 1
6 0 0 0 1 6 | 22701 | 162 0.007 1.15
0=0.018, V=0.504, W=0.058 0=0.148, V=1.431, W=0.163
1 | 32672 | 4136 0.127 10 1 | 20809 | 496 0.024 1
o | 83465 | 7085 0.084 7.01 o | 36844 | 1969 0.053 10
Slope 3 | 104560 | 3903 0.037 3.6 Terrain 3 | 47547 | 2257 0.047 8.18
m“(gshrr)'ess 4 | 75349 | 1260 | 0017 | 212 rOU?Thrr)'ess 4 | 67105 | 3330 | 0050 | 8.84
5 | 51143 | 342 0.007 1.4 5 | 98836 | 4121 0.042 6.43
6 | 60305 67 0.001 1 6 |136353| 4620 | 0.034 4.05
0=0.05, V=1.098, W=0.125 0=0.011, V=0.266, W=0.03
1 |134641 | 5610 0.042 8.08 1 |165766| 3581 0.022 1
Distance to | 2 | 169659 | 8983 0.053 10 | pistanceto | 2 |120008| 4871 0.041 3.08
water (Ds) | 3 | 69076 | 1446 0.021 456 | road(Dy) | 3 | 44993 | 3505 0.078 7.16
4 | 19906 | 754 0.038 7.44 4 | 25015 | 2597 0.104 10




Predisposing | Class | Number s Landslide Predisposing| Class |[Number Nz Landslide
factor No. | of pixel | Of. percentage S factor No. |of pixel Of. percentage SIedls
andslides landslides

5 8336 0 0 1 5 | 25101 | 1065 0.042 3.28
6 5627 0 0 1 6 | 21848 986 0.045 3.58
7 249 0 0 1 7 4763 188 0.039 2.96
¢=0.023, V=1.029, W=0.117 0=0.028, V=0.528, W=0.058
1 15768 139 0.00882 | 2.05196 1 | 70071 738 0.011 2.56
2 113386 | 3590 0.03166 |4.77831 2 | 43675 598 0.014 3.02

EAR 3 1163395 | 7879 0.04822 | 6.75433| Geology 3 |222814| 13575 0.061 10
4 | 73522 | 3191 | 00434 |6.17931| (G5 4 | 70934 | 1882 | 0.027 | 492
5 26439 1994 0.07542 10 5 0 0 0 1
6 14984 0 0 1 6 0 0 0 1
6=0.028, V=0.797, W=0.091 0=0.023, V=1.233, W=0.141
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