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First of all, we wish to thank the two reviewers for their valuable comments to the manuscript and
constructive suggestions that significantly improved the manuscript. In this revised version of the paper, we
have tried our best to address the comments and incorporate as much of reviewers’ recommendations. Our
detailed reply to two reviewers’ comments are reported below. Except this response, we prepared two

manuscript files, one with “track changes”, another is clean version.

Reviewer 1

General comments

C1: The paper proposes an analysis of landslide susceptibility in a mountain area, crossed by a road and
affected by landslides triggered by typhoons. The topic could be interesting to NHESS readers, if some
issues are more clearly presented, in particular, the aims, the used methods (in a right temporal

sequence), and expected results.

R1: We have confirmed the reviewer's comments and the aims, the used methods and results have been
reorganized in the revised manuscript. Detailed responses are listed in specific comments and technical

corrections, respectively.

Specific comments

C2: Please define clearly what is the aim of scale assessment.

R2: The scale of landslide in our study is defined as landslide area. The scale assessment aims to
understand the relationship between the natural environment and the spatial distribution of the landslide
areas. Related descriptions are also supplemented in the fourth paragraphs of introduction, as shown in

P.3, Ln.15-18 of the revised manuscript.

C3: The terminology should be checked and made uniform, with reference to the following terms: causal

factors, predisposing factors, impact factors, landslide-inducing factors.

R3: Done, the term “predisposing factors” was used throughout in the revised manuscript for consistency
(P.6, Ln.3, Ln.5; P.7, Ln.13, Ln.16, Ln.23; P.8, Ln.3, Ln.4, Ln.5, Ln.9; P.11, Ln.1, Ln.2, Ln3; P.13, Ln.3,

Ln.10; P.15, Ln.8, Ln.9, Ln.10, Ln.11; P.18, Ln.5, Ln.13).

C4: Reference description is not well presented, sometimes redundant, sometimes limited. Too repetition of
“studies, many studies, previous studies, several studies, early research”. | suggest to discuss methods
and procedures available in literature, avoiding to refer to single reference with expression as, for
example, X et al. used [...], Y et al. described [...], Z et al. utilized [...]. The introduction and especially
the literature discussion (pages 2 and 3) about the landslide susceptibility assessment methods must be

reorganized and rewritten using a clearly and well-ordered structure.



R4:

C5:

R5:

Cé6:

R6:

C7:

R7:

C8:

R8:

Co:

R9:

Done, the literature review in the Introduction has been entirely reorganized and rewritten, we follow
reviewer’s suggestions to use a clearly and well-ordered structure to demonstrate related references, as
shown in P.1, Ln.25 - P.2, Ln.30 of the revised manuscript.

Aims, procedures and expected results are not clearly defined either in introduction either in
methodological section. It is not clear if the study is only the highway or the whole catchment crossed by
road; the study area seems to be the road according to title, but the final susceptibility map, in figure 4,
is referred to the whole area. So the presence of the road is negligible at the aim of the analysis. The
title does not reflect clearly the contents of the paper.

We have changed the title of this paper to “Scale and spatial distribution assessment of rainfall-induced
landslides in a catchment with mountain roads” to reflect the contents of the paper.

Please, rephrase the paragraph 3, adding more information and details about the study area.

Done, we added more information like climate, rainfall conditions and road information of study area in
the revised manuscript (P.9, Ln.12-21).

About methodology, does maximum likelihood method have any disadvantages? Was the error
associated with this automatic image interpretation technique calculated?

The maximum likelihood method may be unsatisfactory for data with a non-normal distribution (Otukei
and Blaschke, 2010), and could possible cause part error of automatic image interpretation.

Otukei, J. R. and Blaschke, T.: Land cover change assessment using decision trees, support vector
machines and maximum likelihood classification algorithms, International Journal of Applied Earth
Observation and Geoinformation, 12(1), S27-S31, doi: 10.1016/.jag.2009.11.002, 2010.

Please rewrite the paragraph 2.2 in order to describe more clearly the MHEM method.

Done, we supplemented more descriptions of the MHEM method (paragraph 2.4 in the revised
manuscript), as shown in P.7, Ln.13-14, Ln.23-24 of the revised manuscript.

| suggest to reconsider the title, because the analysis was not performed only along the road but in the
surrounding territory and the image interpretation does not emerge from the title. It is not completely
coherent with the contents of the paper.

Done, we have changed the title of this paper.

C10: Please, reorganize the paper, by separating the description of methodology from the discussion of

results. There are too much paragraphs that make confusing and difficult the readability and
understanding of performed analyses, in particular from paragraph 5.2 onwards.

R10: Done, we moved the calculation formula of instability index and probability from section 5.2 to the

methodology section 2.4, as shown in P.8, Ln.22 - P.9, Ln.6 of the revised manuscript. And the methods
were rearranged in a right temporal sequence (2.1 Maximum likelihood; 2.2 Accuracy assessment; 2.3
Rainfall analysis method; 2.4 MHEM). For the results, we moved original section 6.2 “Investigation of
rainfall factors and instability index” to section 5.3 for better readability.

Technical corrections

C11: Page 1 line 8: please, move “Typhoons” at the end of the sentence.

R11: Done, we have moved “Typhoons” to the end of the sentence (P.1, Ln.9).

C12: Page 1 line 10: “topographic changes” or “surface changes” instead of “changes in slope surface”.

R12: Done, “changes in slope surface” was replaced by “surface changes”, as shown in P.1, Ln.10 of the

revised manuscript.



C13: Page 1 line 10: “A multivariate statistical method” instead of “The multivariate hazard evaluation
method”.

R13: Done, the sentence has been maodified in the revised manuscript (P.1, Ln.10).

Cl4: Page 1 lines 11-12: Please, rephrase the sentence. The evaluation of landslide locations and
relationship between landslide and predisposing factors is preparatory for assessing and mapping
landslide susceptibility.

R14: Done, the sentence was rephrased in the revised manuscript (P.1, Ln.11-12).

C15: Page 1 line 26: please, replace “occurrence distribution” with “distribution of existing landslides” and “a
set of predisposing factors such as geo-environmental thematic variables” with “a set of geo-
environmental predisposing factors”.

R15: The literature review in the introduction has been entirely reorganized and rewritten, as shown in P.1,
Ln.25 - P.2, Ln.30 of the revised manuscript.

C16: Page 1 line 27: “sediment disaster” is not an appropriate expression; please, replace it with landslides.

R16: The literature review in the introduction has been entirely reorganized and rewritten, as shown in P.1,
Ln.25 - P.2, Ln.30 of the revised manuscript.

C17: Page 2 lines 1-3: Please modify the terminology used in this sentence. “predisposing factors” instead of
“potential causes” and “triggering factors” instead of “impetuses”.

R17: Done, we changed the term usage in the revised manuscript (P.6, Ln.3, Ln.5; P.7, Ln.13, Ln.16, Ln.23;
P.8,Ln.3, Ln.4,Ln.5, Ln.9; P.11, Ln.1, Ln.2, Ln3; P.13, Ln.3, Ln.10; P.15, Ln.8, Ln.9, Ln.10, Ln.11; P.18,
Ln.5, Ln.13).

C18: Page 2 lines 7-8: This sentence is a repetition.

R18: The literature review in the introduction has been entirely reorganized and rewritten, as shown in P.1,
Ln.25 - P.2, Ln.30 of the revised manuscript.

C19: Page 2 lines 9-10:please add references about model uncertainty evaluation, for example: Wang X,
Frattini P, Crosta GB, Zhang L, Agliardi F, Lari S, Yang Z. 2014. Uncertainty assessment in quantitative
rockfall risk assessment. Landslides. 11:711-722.

R19: The literature review in the introduction has been entirely reorganized and rewritten, as shown in P.1,
Ln.25 - P.2, Ln.30 of the revised manuscript.

C20: Page 2 line 10: explain what is the meaning of scale in this study: size, intensity of landslide?
R20: The scale of landslide in our study is defined as landslide area.
C21: Page 2 line 11: This sentence is a repetition.

R21: The literature review in the introduction has been entirely reorganized and rewritten, as shown in P.1,
Ln.25 - P.2, Ln.30 of the revised manuscript.

C22: Page 2 lines 12-13: The meaning of this sentence is unclear.

R22: The literature review in the introduction has been entirely reorganized and rewritten, as shown in P.1,
Ln.25 - P.2, Ln.30 of the revised manuscript.

C23: Page 2 lines 14-16: This sentence is a repetition.

R23: The literature review in the introduction has been entirely reorganized and rewritten, as shown in P.1,
Ln.25 - P.2, Ln.30 of the revised manuscript.



C24: Page 2: | suggest to add some reference about AHP method (1), multivariate statistical methods (2)
and landslide susceptibility assessment along roads (3): (1) Kayastha P., Dhital M.R., De Smedt F. 2013.
Application of the analytical hierarchy process (AHP) for landslide susceptibility mapping: A case study
from the Tinau watershed, west Nepal. Computers Geosciences, 52: 398-408 (1) Zzhang G., Cai Y.,
Zheng Z., Zhen J., Liu Y., Huang K. 2016. Integration of the Statistical Index Method and the Analytic
Hierarchy Process technique for the assessment of landslide susceptibility in Huizhou, China. CATENA,
142: 233-244. (2) Carrara A, Crosta G, Frattini P. 2008. Comparing models of debris-flow susceptibility
in the alpine environmental. Geomorphology. 94:353-378. (2) Pellicani R, Frattini P, Spilotro G. 2014.
Landslide susceptibility assessment in Apulian Southern Apennine: heuristic vs. statistical methods.
Environ Earth Sci. 72:1097-1108. doi: 10.1007/s12665-013-3026-3 (3) Pellicani R, Spilotro G, Van
Westen CJ. 2016. Rockfall trajectory modelling combined with heuristic analysis for assessing the
rockfall hazard along the Maratea SS18 coastal road (Basilicata, southern Italy). Landslides. 13:985—
1003. (3) Pantelidis L. 2011. A critical review of highway slope instability risk assessment systems. Bull
Eng Geol Environ. 70:395-400. (3) Devkota KC, Regmi AD, Pourghasemi HR, Yoshida K, Pradhan B.
2013. Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression
models in GIS and their comparison at Mugling—Narayanghat road section in Nepal Himalaya. Nat
Hazards. 65:135-165. doi: 10.1007/s11069-012-0347-6 (3) Pellicani R., Argentiero 1., Spilotro G. (2017)
GlIS-based predictive models for regional-scale landslide susceptibility assessment and risk mapping
along road corridors. Geomatics, Natural Hazards and Risk, 1-22. DOI:
10.1080/19475705.2017.1292411.

R24: Done, the literature review in the introduction has been entirely rewritten and incorporated all the
references suggested by reviewer, as shown in P.1, Ln.25 - P.2, Ln.30 of the revised manuscript.

C25: Page 3 line 34: It is not clear how and from where the location of landslides was extracted? Are existing
or potential landslides?

R25: The location of landslides was extracted from existing landslides of satellite images and verified by
some field surveys.

C26: Page 5 line 13: please replace “risk” with “susceptibility”.

R26: Done, we replaced “risk” with “susceptibility”, as shown in P.7, Ln.12 of the revised manuscript.
C27: Page 5 lines 14-15: Please avoid repetitions: variability, variance.

R27: Done, we simplified the description in the revised manuscript (P.7, Ln.12-13).

C28: Page 5 lines 18-19: Please rewrite this sentence using a correct terminology, “cell” or “pixel” instead of
“grid” and “class” instead of “grade”.

R28: Done, the terminology has been replaced by reviewer’s suggestions in the revised manuscript (P.7,
Ln.19, Ln.20, Ln.22; P.8, Ln.4; Ln.5, Ln.6, Ln.8, Ln.12; P.11, Ln.10-11, Ln.14, Ln.15, Ln.19, Ln.26, Ln.28;
P.12,Ln.2, Ln.4, Ln.8, Ln.11, Ln.14, Ln.20, Ln.21, Ln.28, Ln.29; P.13, Ln.17, Ln.18-19, Ln.20, Ln.23-24;
P.14, Ln.22, Ln.23, Ln.25; P.15, Ln.10-11, Ln.13, Ln.14, In.15, Ln,16, Ln.17-18, Ln.19, Ln.20-21, Ln.22,
Ln.26; P.16, Ln.3, Ln.6, Ln.7-8, Ln,10, Ln.11, Ln.15, Ln.16, Ln.22, Ln.23).

C29: Page 5 lines 22-23: Please rewrite this sentence, a confusing terminology has been used (causal factor,
impact factor, grades).

R29: Done, the term “predisposing factors” was used throughout in the revised manuscript for the
consistency and the term “grades” was replaced by “classes”.

C30: Page 6: Which is the difference between factor weight and graded score? It is not clear.
R30: For clarity, we replaced the “graded score” to “the normalized score value of classes for each factor”, as

shown in P.7, Ln.23-24 of the revised manuscript. The “factor weight” represents the weight of each
factor which is determined by the rank of its variance.



C31: Page 8 line 13: why 0.9?
R31: We added a citation (Chen et al., 2005) for the adoption of k=0.9, P.6, Ln.22 in the revised manuscript.

Chen, C.Y.,ChenT.C., YuF.C. YuW. H., Tseng C. C.: Rainfall duration and debris-flow initiated studies
for real-time monitoring, Environ. Geol., 47, 715-724, DOI 10.1007/s00254-004-1203-0, 2005.

C32: Page 8 line 17: Is EAR expressed in mm?

R32: Yes, the unit of EAR is mm.

C33: Page 8 line 21: Is Ir expressed in mm/h?

R33: Yes, the unit of Iz is mm/h.

C34: Page 8 line 26: What is the meaning of rolling hours?

R34: In our study, the average rainfall intensity I is calculated in a continuous three hours interval then the
calculated time interval moving one hour ahead. For example, the first Iz is the average rainfall intensity
for 1-3 hours, then the second I is calculated in 2-4 hours, etc.

C35: Page 10 line 6: "thematic map of predisposing factors” instead of “map of the natural environment”.

R35: Done, this sentence has been modified in the revised manuscript (P.10, Ln.26).

C36: Page 10 line 9: please make uniform the terminology, as for example causal factors, predisposing
factors, impact factors, landslide-inducing factors, etc.

R36: Done, in the revised manuscript, the term “predisposing factors” was used throughout for consistency.
C37: Page 10 lines 21-22-26: please, modify “grid” and “grades”.

R37: Done, the terminology has been revised throughout in the revised manuscript.

C38: Page 10 line 27: explicit the values of the six categories.

R38: Based on windward and leeward, the aspects were classified into six categories as following table:

South 157.5° ~ 202.5°
Southeast 112.5° ~157.5°
Southwest 202.5° ~ 247.5°

East 67.5°~112.5°

West 247.5° ~ 292.5°
Northeast 22.5° ~67.5°
Northwest 202.5° ~ 247.5°

North 337.5° ~22.5°

Flat —

C39: Page 11 line 4: what is the meaning of “geological strength”? The geological map should be classified
into classes corresponding to different formations or lithological units.

R39: According to the corresponding compression strengths of the geological lithological properties, this
study classified the geological features with such lithological properties by referring to the relationship
between compression strength and strength level proposed by ISRM (1981) and conducted level
encoding as shown in the following Table.



Geological term Characteristics Strength Level | Class no.

Terrace Accumulation | gravel, clay, soil, sand extremely weak 1
Ilzglylgryer_Kentlng Foreign rocks in mudstone (badlands terrain) extremely weak 1
Alluvial Layer Soil, sand, gravel very weak 2
Takangkou Formation | shale, sandstone, conglomerate rock weak 3
II::;S/Z?” Layer, Sule Hard shale, slate, phylite, hard sandstone Medium strong 4
Bilushan Layer Shale, quartize sandstone in phylite Medium strong 4
Tananao Schists Black schist, green schist , siliceous schist strong 5
Duran Mountain Agglomerate, tuffaceous sandstone, Very strong 6

limestone, convex mirror body
(modified from ISRM, 1981 and Chen et al., 2009)

ISRM, Rock Characterization Testing and Monitoring-ISRM Suggested Method, Pergamon, London, 1981.
C40: Page 11 line 9: define the analysis function.

R40: Done, more clear information of the analysis function has been added in the revised manuscript (P.11,
Ln.30; P.12, Ln.7).

C41: Page 11 lines 10 and 16: explicit the six classes.

R41: The terrain roughness and slope roughness were classified into six categories as shown in the
following table:

Class no. | Terrain roughness Class no. | Slope roughness
6 367-523 6 0-11
5 523-674 5 11-20
4 674-950 4 20-28
3 950-1035 3 28-34
2 1035-1231 2 34-41
1 1231-1472 1 41-56

C42: Page 11 lines 18 and 20: give more information about two factors.
R42: Done, more information was supplemented in the revised manuscript (P.12, Ln.10, Ln.13).

C43: Page 11 line 21: Land disturbance looks like a reclassified land use map. The highest score of
disturbance is assigned to bare land, why not to roads and buildings? This is a qualitative attribution, it
should be written somewhere.

R43: Based on the tendency to promote landslides, the index of land disturbance was developed (Chen, et
al., 2009). The land disturbance in this paper can represent the changes of surface conditions including
roads, buildings, crops, bare land, and vegetation. In these factors, we consider bare land has the
highest tendency to promote landslide. We supplemented descriptions in the revised manuscript (P.12,
Ln.16-17).



Reviewer 2

General comments

C1l.

R1:

The authors propose in this paper an assessment of landslide susceptibility in a mountain area in
Taiwan. The manuscript, which can be interesting for people studying relations between landslide
susceptibility and hydrology, has several problems that can be improved after a minor revision. Readers
more interested with interactions between natural hazards and roads stay more on the sidelines.

We have confirmed and addressed the reviewer's comments in the revised manuscript. Detailed
responses are listed in specific comments and technical corrections, respectively.

Specific comments

C2:

R2:

C3:

R3:

C4.

R4:

C5:

R5:

Cé6:

R6:

The state of the art of the methods to evaluate factors influencing landslides in the Introduction is well
detailed but can be better structured.

The literature reviews in the Introduction especially landslide susceptibility assessment have been
entirely reorganized and rewritten for better readability (P.1, Ln.25 - P.2, Ln.30 in the revised
manuscript).

| suggest to add more information / specifications about the study area (surface, length, meters above
and under the road path, etc.) and the road (type, traffic, closure consequences, length, history, etc.).

Done, more descriptions of study area and road were supplemented in the revised manuscript (P.9,
Ln.12-21).

The presence of the “road” term in the title does not well represent the manuscript content. It should be
more focused about the road.

We have modified the title of this paper to “Scale and spatial distribution assessment of rainfall-induced
landslides in a catchment with mountain roads” to proper reflect the contents of the paper.

Please define and describe the “landslide” term used in this paper (area, volume, depth, geology, etc.).
What kind of landslides do you consider?

In this paper, the term “landslide” is more focus on landslide area. Among the different types of slope
failure, debris slides are the easiest and most reliably detected on satellite images in heavily vegetated
terrain such as in the mountainous areas of Taiwan. This is because they effectively strip off the
vegetation from the slopes, making them readily discernible. Debris slides are, therefore, the major
landslides mapped in this study. In cases where vegetation of deep-seated landslides was also stripped
off they were also included in the landslide inventory of this study. However, soil slips, soil slides, and
debris slides that evolved into debris flows were excluded from our inventory because a clear distinction
between the geometry of the source, transport, and depositional areas was not always possible.

There are too much subchapters (2.3.1, 2.3.2, etc.), too much figures and tables in my opinion. | suggest
to move some of them in appendices (as Table 9 for instance). Please try to reduce the number of
subchapters and keep only the really relevant Figures and Tables for the comprehension of the
manuscript.

We removed Table 4 and Table 5, and moved Table 9 to appendices. Besides, the subchapters have
been reorganized by using the Arabic numerals 1, 2...etc. instead of sections 2.3.1 and 2.3.2...etc (as
shown in P.5, Ln.12, Ln.18; P.6, Ln.6; P.7, Ln.1; P.11, Ln.2; P.13, Ln.1 in the revised manuscript).

Technical corrections

C7:

R7:

Page 1, line 18: mm value for the annually rainfall is wrong, it should be: 2’506 mm and not 2.506 mm.

Done, we corrected this mistake (P.1, Ln.20 in the revised manuscript).
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C8: Page 3, line 23: Are really images consistent in quality? Clouds, shadows, etc.

R8: We modified the description (P.3, Ln.4-5 in the revised manuscript).

C9: Page 3, line 23: Studies have indicated... Which studies?

R9: We added the references (P.3, Ln.7 in the revised manuscript).

C10: Page 3, line 1: The results of this study could serve as a reference... Maybe too presumptuous.
R10: We removed this sentence in the revised manuscript (P.3, Ln.18-19).

C11: Page 4, line 18: Please define x.

R11: Actually, a few of variable “X” was mistyped as “x”. We corrected this mistake in the revised manuscript
(P.4,Ln.4, Ln.13).

C12: Page 5, line 5: Please define k.

R12: We have added the definition of k in the revised manuscript. (P.4, Ln.21).

C13: Page 6, line 9: Please define d.

R13: We have added the definition of d in the revised manuscript. (P.7, Ln.23-24 in the revised manuscript).
C14: Page 6, line 25: In the table: Please add the Table number.

R14: Done, we added the table number (P.5, Ln.5 in the revised manuscript).

C15: Page 7, line 5: Please give the complete name of OA.

R15: Done, we added the complete name of OA (P.5, Ln.12 in the revised manuscript).

C16: Page 7, line 15: Please give explanation of X;., X,i, X;.

R16: Done, we added the explanation of Xi., X.; and X;, respectively (P.5, Ln.16-17, Ln.24-25 in the revised
manuscript).

C17: Page 7, line 23: Please give the complete name of EAR.

R17: Done, we added the complete name of EAR (P.6, Ln.6 in the revised manuscript).

C18: Page 8, line 20: Please give the complete name of Ii.

R18: Done, we added the complete nhame of Iz (P.7, Ln.1 in the revised manuscript).

C19: Page 8, line 25 and 26: contradiction between | (rainfall intensity) and Ir (not explained).

R19: In our study, “I” denotes hourly rainfall (60 minutes intensity), intensity of rolling rainfall “Iz” represent
summation of selected 60 minutes intensity (I) during m rolling hours.

C20: Page 9, line 14-15: Please reword the sentence.
R20: Done, we simplified this sentence in the revised manuscript (P.10, Ln.5-6).
C21: Page 9, 4.1, please give image info’s (resolution, surface, etc.).

R21: Done, we supplemented FORMOSAT-2 image description in the revised manuscript (P.9, Ln.26 — P.10,
Ln.2).



C22: Page 9, line 25: different interpretation factors: which ones?

R22: we selected areas with water, roads, buildings, crops, vegetation, river channels, and bare land within
the study area as the sample area factors for interpretation training.

C23: Page 10, line 4: why 8 x 8 m (and not 10 x 10 m or 5 x 5 m)?

R23: Since the raw spatial resolution of FORMOSAT-2 (FM2) images is 8 x 8 m, we prepared 8 x 8 m
thematic map of predisposing factors, as well as 8 x 8 m DEM to construct landslide susceptibility map.

C24: -Page 10, line 5: we also constructed an ... DEM: how?

R24: We downgraded from the 5 x 5 m MOI (Ministry of the Interior, Taiwan) DEM to obtain the 8 x 8 m DEM
used in this study.

C25: Page 10, line 16: 1480.6 and 365.2 m: are the values after the dot really needed?

R25: We modified these two number to 1481 and 365, respectively. It would not affect the classification
results (P.11, Ln.9 in the revised manuscript).

C26: Page 10, line 22: seven grades: why seven, for what reason?

R26: According to the classifications of gradient for hillslope land use limit proposed by SWCB (2017), the
gradient can be classified into six grades as following left table. We modified gradient interval of grade 6
as “55-100”, and added additional grade with gradient interval of “>100” as shown in the following right

table used in our study.

g::csjﬁ;fr:f?ngg; Gradient (%) Class no. Gradient (%)
1% <5 7 <5
2m 5-15 6 5-15
3" 15-30 5 15-30
4" 30-40 4 30-40
5" 40-55 3 40-55
6" >55 2 55-100
1 >100

Soil and Water Conservation Bureau (SWCB), Council of Agriculture (COA), Executive Yuan, R.O.C.
(Taiwan), https://lwww.swch.gov.tw/class2/index.asp?ct=laws&m1=10&m2=55&AutolD=22, 2017 (in
Chinese).

C27: Page 10, line 23: seven grades: why six, for what reason?

R27: Based on windward and leeward, the aspects were classified into six categories as following table:

South 157.5° ~ 202.5°

Southeast 112.5° ~ 157.5°
Southwest 202.5° ~ 247.5°

East 67.5° ~ 112.5°
West 247.5° ~292.5°

Northeast 22.5° ~67.5°
Northwest 202.5° ~ 247.5°

North 337.5° ~22.5°
Flat —

C28: Page 10, line 27: six categories: why six, for what reason?

R28: Same as C27 and R27.


https://www.swcb.gov.tw/class2/index.asp?ct=laws&m1=10&m2=55&AutoID=22

C29: Page 11, line 5: six grades: why six, for what reason?

R29: According to the corresponding compression strengths of the geological lithological properties, this
study classified the geological features with such lithological properties by referring to the relationship
between compression strength and strength level proposed by ISRM (1981) and conducted level
encoding as shown in the following Table.

Geological term Characteristics Strength Level | Class no.
Terrace Accumulation | gravel, clay, soil, sand extremely weak 1
tgylsgler_Kentmg Foreign rocks in mudstone (badlands terrain) extremely weak 1
Alluvial Layer Soil, sand, gravel very weak 2
Takangkou Formation | shale, sandstone, conglomerate rock weak 3
t;;g?n Layer, Sule Hard shale, slate, phylite, hard sandstone Medium strong 4
Bilushan Layer Shale, quartize sandstone in phylite Medium strong 4
Tananao Schists Black schist , green schist , siliceous schist strong 5
Duran Mountain Agglomerate, tuffaceous sandstone, Very strong 6

limestone, convex mirror body
(modified from ISRM, 1981 and Chen et al., 2009)

ISRM, Rock Characterization Testing and Monitoring-ISRM Suggested Method, Pergamon, London, 1981.

C30: Page 11, line 10: six grades: why six, for what reason?

R30: The terrain roughness was classified into six categories by using cluster analysis of SPSS software as
shown in the following table:

Class no. | Terrain roughness
6 367-523
523-674
674-950
950-1035
1035-1231
1231-1472

= IN|w|h~|,

C31: Page 11, line 16: six grades: why six, for what reason?

R31: The slope roughness was also classified into six categories by using cluster analysis of SPSS software
as shown in the following table:

Class no. | Slope roughness
6 0-11

11-20

20-28

28-34

34-41

41-56

= IN|(wA~|O
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C32: Page 11, line 18: seven grades: why seven, for what reason?

R32: The distance to water was classified into seven categories as shown in the following table:

Class no. | Distance to water (m)
1 <100
100-300
300-500
500-700
700-1000
1000-1500
>1500

N[O |WIN

C33: Page 11, line 20: seven grades: why seven, for what reason?

R33: The distance to road was classified into seven categories as shown in the following table:

Class no. | Distance to road (m)
1 <100
100-300
300-500
500-700
700-1000
1000-1500
>1500

N[O |WIN

C34: Page 12, line 2: six grades: why six, for what reason?

R34: The rainfalls were also classified into six categories by using cluster analysis of SPSS software as
shown in the following table:

Class no. EAR (mm) Max lsg (mm/h)
6 285-302 59-61
5 302-313 61-62
4 313-321 62-64
3 321-329 64-65
2 329-340 65-67
1 340-363 67-68

C35: Page 12, line 7: SPSS : maybe add “software® to more better describe what it is.
R35: Done, we added “software” following SPSS (P.13, Ln.5 in the revised manuscript).
C36: Page 12, line 25: seven grades: why seven, for what reason?

R36: The elevation data was divided into seven grades at intervals of 300 m, as shown in the following table:

Class no. | Elevation (m)
7 <450
450-750
750-1050
1050-1350
1350-1650
1650-1950
>1950

=2 IN[W|B|lO|O
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C37: Page 13, lines 3 and 4: please clarify the sentence with the values in " () " : 2.02 and 9.96 = IsR.
R37: For the clarity, we modified the descriptions in the revised manuscript (P.14, Ln.2-3).
C38: Page 13, line 20: four level: why this repartition and not 0-25, 25-50, 50-75 and 75-100?

R38: We divided landslide susceptibility into four levels: high (0.731-1), medium high (0.461—-0.73), medium
low (0.23-0.46), and low (0—-0.23) are based on the mean probability of landslide occurrence to be 0.46.

C39: All figure and table captions: please verify that every caption is ended by a ".".
R39: Done, all captions were checked and corrected throughout in the revised manuscript.

C40: Page 24, caption Figure 2: which "blue line" do you mean? Please try to redo the image (for example
the "t" Toayan district, is not well readable), colours are no well appropriated.

R40: Done, Figure 2 has been redrawn to strengthen visibility (P.27 in the revised manuscript). In additions,
the distribution of mountain roads is represented by purple lines, the mistake was corrected.

C41: Page 35, Table 2: where are the "before" and "after" data in the error matrix (lines or columns)? Please
clarify.

R41: Table 2 represents error matrix of interpretation results of satellite images “after” Typhoon Kong-rey, we
corrected this mistake (P.38 in the revised manuscript)

C42: Page 38: Table 5: table not necessary / relevant for the paper

R42: Done, we removed Table 4 and Table 5 in the revised manuscript.

C43: Page 39: Table 6: please give units.

R43: Done, we added units of EAR and Iz in Table 6 (P.42 in the revised manuscript).
C44: Page 44: Table 10: please define D¢min and Dy max.

R44: The Dymin and Dy max represent minimum and maximum value of instability index (Eqg. (8) in the original
version; Eq. (13) in the revised version), respectively.

12
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Scale and spatial distribution assessment of rainfall-induced
landslides in a catchment with mountain roads

Chih-Ming Tseng", Yie-Ruey Chen, Szu-Mi Wu?
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“Chen-Du Construction Limited, Taoyuan, 33059, Taiwan.

Correspondence to: Chih-Ming Tseng (cmtseng@mail.cjcu.edu.tw)

Abstract. This study focused on landslides in a catchment with mountain roads that were caused by Nanmadol (2011) and
Kong-rey (2013) typhoons. Image interpretation techniques were employed to interpret satellite images captured before and

after the typhoons to derive the surface changes ekang . A Fhe multivariate hazard evaluation method was

adopted to establish a landslide susceptibility assessment model. The evaluation of landslide locations and relationship

between landslide and predisposing factors is preparatory for assessing and mapping landslide susceptibility. Ae—then

disasters on mountain roads.

1 Introduction

Taiwan is an island of which three quarters of its land area consists of slope land that is 100 m above sea level, or is less than
that but has an average gradient of 5% above (Soil and Water Conservation Bureau, 2012). Much of this sloped land has a
steep gradient and fragile geological formations. Taiwan is hit by an average of 3.4 typhoons every year during years 1911 to
2016 (Central Weather Bureau, 2017). In additions, an average annual rainfall reach 2,506 mm in years 1949 to 2012 (Water
Resources Agency, 2017). Typhoons usually occur between July and October, and 70%-90% of the annual rainfall is
composed of heavy rain directly related to typhoons (SWCB, 2012). Concentrated rainfall causes heavy landslides and debris
flows every year (Dadson et al., 2004). The threat of disaster currently influences industrial and economic development and
the road networks in endangers areas; thus, establishing disaster evaluation mechanisms is imperative.

Landslide susceptibility can be evaluated by analysing the relationships between landslides and various factors that are
responsible for the occurrence of landslides (Brabb 1984; Guzzetti et al., 1999a, Guzzetti et al., 2005). In general, the factors
affect landslides including predisposing factors (e.g., geology, topography, and hydrology) and triggering factors (e.g.,
rainfall, earthquakes, and anthropogenic factors) (Chen et al., 2013a; Chen et al., 2013b; Chue et al., 2015). Geological

factors include lithological factors, structural conditions, and soil thickness; topographical factors include slope, aspect, and
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elevation; and anthropogenic factors include deforestation, road construction, land development, mining, and alterations of
surface vegetation (Chen et al., 2013a; Chen et al., 2013b; Chue et al., 2015). The method used to assess landslide
susceptibility can be divided into qualitative and quantitative. Qualitative methods are based completely on field
observations and an expert’s priori knowledge of study area (Stevenson, 1977; Anbalagan, 1992; Gupta and Anbalagan,
1997). Some qualitative approaches incorporate ranking and weighting, and become semi-quantitative (Ayalew and
Yamagishi, 2005). For examples the Analytic Hierarchy Process (AHP) (Saaty, 1980; Barredo et al., 2000; Yoshimatsu and
Abe, 2006; Kamp et al., 2008; Yalcin, 2008; Kayastha et al., 2013; Zhang et al., 2016) and the weighted linear combination
(WLC) (Jiang and Eastman, 2000; Ayalew et al., 2005; Akgln et al., 2008). Quantitative methods apply mathematical
models to assess the probability of landslide occurrence, and thus define hazard zones on a continuous scale (Guzzetti et al.,
1999b). Quantitative methods developed to detect the areas prone to landslide can be divided mainly into two categories:
deterministic approach and statistical approach. The deterministic approach is based on the physical laws driving landslides
(Okimura and Kawatani, 1987; Hammond et al., 1992; Montgomery and Dietrich, 1994; Wu and Sidle, 1995; Gékceoglu and
Aksoy, 1996; Pack et al., 1999; Iverson, 2000; Guimardes et al., 2003; Xie et al., 2004) and are generally more applicable
when the underground conditions are relatively homogeneous and the landslides are mainly slope dominated. The statistical
approach is based on the relationships between the affecting factors and past and present landslide distribution (Van Westen
et al., 2008). Statistical methods analyze the relation between predisposing factors affecting the landslide which include
bivariate statistical models (Van Westen et al., 2003; Siizen and Doyuran, 2004; Thiery et al., 2007; Bai et al., 2009;
Constantin et al., 2011; Yilmaz et al., 2012), multivariate statistical approaches as discriminant analysis (Baeza and
Corominas, 2001; Carrara et al., 2003; Carrara et al., 2008; Pellicani et al., 2014), and linear and logistic regression (Dai and
Lee, 2002; Ohlmacher and Davis, 2003; Ayalew and Yamagishi, 2005; Yesilnacar and Topal, 2005; Greco et al., 2007;
Carrara et al., 2008; Lee et al., 2008; Pellicani et al., 2014), as well as nonlinear methods such as artificial neural networks
(ANN) (Lee et al., 2004; Yesilnacar and Topal, 2005; Kanungo et al., 2006; Wang and Sassa, 2006; Li et al., 2012),
multivariate hazard evaluation method (MHEM) (Su et al., 1998; Lin et al., 2009). The MHEM is a nonlinear mathematical
model that presents an instability index to indicate landslide susceptibility (Lin et al., 2009). In additions, some studies,
landslide susceptibility analyses have focused on man-made facilities such as roads and railroads and have examined the
landslide susceptibility of surrounding environments (Das et al., 2010; Pantelidis, 2011; Das et al., 2012; Devkota et al.,
2013; Martinovi¢ et al., 2016; Pellicani et al., 2016; Pellicani et al., 2017). The aforementioned studies on the landslide
susceptibility of areas surrounding man-made facilities have not investigated characteristics such as the location and scale
(area) of landslides occurring in upper or lower slopes, and such characteristics thus constituted one of the objectives of the
present study.

Technological progress has provided various advanced tools and techniques for land use monitoring. In recent years, aerial
photos or satellite images have been commonly used in post disaster interpretations and assessments of landslide damage on
large-area slopes (Erbek et al., 2004; Lillesand et al., 2004; Nikolakopoulos et al., 2005; Lin et al., 2005; Chen et al., 2009;
Otukei and Blaschke, 2010; Chen et al., 2013a). Satellite images offer the advantages of short data acquisition cycles, swift

2
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understanding of surface changes, large data ranges, and being low cost, particularly for mountainous and inaccessible areas.
With the assistance of computer analysis and geographic information system (GIS) platforms, researchers can quickly
determine land cover conditions. Thus, satellite images are suitable for investigating large areas and monitoring temporal
changes in land use (Liu et al., 2001). Satellites can capture images of the same area multiple times within a short periodsthe

. Studies have

indicated that land surface change detection is the process of exploring the differences between images captured at different
times (Liu et al., 2001; Chadwick et al., 2005; Chen et al., 2009; Chue et al., 2015). With multispectral satellite images, land

surface interpretations involve comparisons of multitemporal images that are completely geometrically aligned d-it-etaks

We selected part of &

R the catchment area of Laonung River which include Provincial Highway
No. 20 in southern Taiwan as our study area. Regarding time, we focused on periods before and after landslides that
occurred in the study area as a result of Typhoon Nanmadol (2011) and Typhoon Kong-rey (2013). We applied the
maximum likelihood method to interpret and categorize high-resolution satellite images, thereby determining the land
surface changes and landslides in the study area before and after the rainfall events. By using a GIS platform, we constructed
a database of the rainfall and natural environment factors. Subsequently, we developed a landslide susceptibility assessment
model by using the MHEM, the model performance then was verified by historical landslides. In additions, we extracted the
locations of landslide areas to explore the relationship between the natural environment and the spatial distribution of the

scale of these areas.

2 Methodology

2.1 Maximum likelihood

The maximum likelihood classifier is a supervised classification method (SCM). SCMs include three processing stages:
training data sampling, classification, and output. The underlying principle of supervised classification is the use of spectral
pattern recognition and actual ground surface data to determine the types of data required and subsequently select a training
site, which has a unique set of spectral patterns. To accurately estimate the various spectral conditions, the spectral patterns
of the same type of feature are combined into a coincident spectral plot before the class of the training site is selected. Once
training has been completed, the entire image is classified based on the spectral distribution characteristics of the training site
by using statistical theory for automatic interpretation (Lillesand et al., 2004).

To facilitate the calculation of probability in the classification of unknown pixels, the maximum likelihood method assumes
a normal distribution in the various classes of data. Under this assumption, the data distribution can be expressed using

covariance matrices and mean vectors, both of which are used to calculate the probability of a pixel being assigned to a land



cover class. In other words, the probability of X appearing in class i is calculated using Eq. (1), and the highest probability is

used to determine the feature of each pixel (Lillesand et al., 2004).

i )= (er) 5 o] - 20— 5 x ) o
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In this equation,
d denotes the number of features;
X denotes a sample expressed using features and has d dimensions;
p(X|C;) denotes the probability that X originates from class i;
¥; denotes the covariance matrix of class i;
%! denotes the inverse matrix of 3;;
|Zi| denotes the determinant of %;;
; denotes the mean vector of classification i;
(X - ;)" denotes the transpose matrix of (X - ;); and
Sij denotes the covariance of classes i and j.
During classification, the maximum value of the probability density functions of sample X in each class is used to determine

which class the sample belongs to. The maximum likelihood classification decision is shown in Eq. (2).

XeC, mc{2-k}

if

p(X|c,)=mexip(X|c;)  j=12.-k] @)

in which, k denotes the number of classes. The question in classification is how to effectively separate the classes in the
feature space, or in other words, how to divide the feature space. Maximum likelihood is a common approach that offers
fairly good classification accuracy (Bruzzone and Prieto, 2001; Chen et al., 2004). Thus, we adopted maximum likelihood to

interpret and classify the satellite images.

2.2 Accuracy assessment

This study employed the aforementioned maximum likelihood method to classify satellite images. To determine whether the
accuracy of image classification was acceptable, we adopted an error matrix to test for accuracy. An error matrix is a square

matrix that presents error conditions in the relationship between ground surface classification results and reference data

4
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(Verbyla, 1995). Such a matrix contains an equal number of columns and rows, and the number is determined by the number
of classes. For example, Table 1 contains four classes. The columns show the reference data, and the rows show the
classification results. The various elements in the table indicate the quantity of data corresponding to each combination of
classes.

In the Table 1, X;, represents the amount of data that was interpreted as Class A but actually belongs to Class B, whereas Xj;
indicates the amount of data that was interpreted as Class B but actually belongs to Class A. X3; and X, represent the amount
of data accurately classified as Class A and Class B, respectively. An error matrix is generally used to check the quality of
classification results in statistics (Congalton, 1991; Verbyla, 1995). In the present study, we evaluated the accuracy of the
classification results based on the overall accuracy £€8A} and Kappa value (Cohen, 1960), which is the coefficient of
agreement derived from the relationship between the classification results and training data. These two parameters are

explained as follows.

221 Overall Accuracy (OA)
OA is the simplest method of overall description. For all classes, OA represents the probability that any given point in the
area will be classified correctly.

OA = ‘:% le X ii :| %x100% (3)

In Eq. (3), N denotes the total number of classifications, eheekspeiats n denotes the total number of rows in the matrix and X;;

is the number of correctly classified checkpoints.

22.2 Kappa coefficient

The Kappa (K ) coefficient indicates the degree of agreement between the classification results and reference values and
shows the percentage reduction in the errors of a classification process compared with the errors of a completely random
classification process. Generally, the Kappa coefficient ranges from 0 to 1, and a greater value indicates a higher degree of

agreement between the two sets of results, as shown in Eq. (4):

NY X =20, (Xip x X4)
N2 -3, (X x X4)

K = x 100% (4)
in which, X;. is the total number of pixels for a given class on actual ground surface and X.; is the number of pixels classified
to that class. As reported by Landis and Koch (1977), a Kappa coefficient greater than 0.8 signifies a high degree of

accuracy, whereas a coefficient between 0.4 and 0.8 or less than 0.4 indicates moderate or poor accuracy, respectively.
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2.3 Rainfall analysis method

In previous studies regarding the influence of rainfall on landslides, rainfall intensity and accumulated rainfall have been
most commonly used as predisposing eassat factors of landslides (Giannecchini, 2006; Chang et al., 2007; Giannecchini et
al., 2012; Ali et al., 2014). Therefore, we adopted effective accumulated rainfall &£AR} and intensity of rolling rainfall &g} as

rainfall indices and predisposing &#npaet factors of landslides in the present study. These two indices are explained as follows.

23-1 Effective Accumulated Rainfall (EAR)

Generally, rainfall is considered the trigger of slope collapse, whereas previous rainfall can be regarded as a potential factor
of a landslide. Previous rainfall influences the water content of the soil, which in turn affects the amount of rainfall required
to trigger a landslide (Seo and Funasaki, 1973).

Figure 1 shows an illustration of rainfall events defined based on EAR (Seo and Funasaki, 1973). The diagram shows a
concentrated rainfall event with no rainfall in the preceding or subsequent 24 hours and can thus be considered a continuous
rainfall event. A continuous rainfall event that occurs simultaneously with a landslide is the main rainfall event. The
beginning of the main rainfall event is defined as the time point when the rainfall first reaches 4 mm. The calculation of
accumulated rainfall ends at the time when the landslide occurs. However, because the exact time of a landslide cannot be
precisely determined, we regarded the hour with the maximum rainfall during the main rainfall event as the time when the
landslide occurred in this study.

In accordance with previous studies, we defined EAR as the sum of direct and previous indirect rainfall. Previous indirect
rainfall is the rainfall accumulated during the 7 days prior to the main rainfall event and can be expressed as follows (Seo
and Funasaki, 1973; Crozier and Eyles, 1980):

I K"Py =Ry (5)

where Py, denotes the previous indirect rainfall, P,, denotes the rainfall during the n days prior to the main rainfall event (mm),
and k denotes a diminishing coefficient set as 0.9 in this study (Chen et al., 2005). Direct rainfall encompasses the
continuous rainfall accumulated during the rainfall events, starting from the first rainfall to the time of landslide occurrence.
Direct rainfall has a direct and effective impact on landslide occurrence and is thus not diminished. Therefore, EAR could be

expressed as follows in this study:
EAR =P +R, ®)

where P, (mm) represents the rainfall accumulated during the main rainfall event from the first rainfall to the time of

landslide occurrence, and P, (mm) represents the previous indirect rainfall.
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232 Intensity of Rolling Rainfall (Ig)

Rainfall intensity refers to the amount of rainfall within a unit of time. It is considered a crucial index for evaluating disasters
because greater intensity or longer durations have considerable impacts on slope stability. Furthermore, rainfall-induced
landslides may be triggered by several hours of continuous rainfall. The raw rainfall data in this study was hourly

precipitation; thus, Iz (mm/h) can be expressed as follows:

_5m _
ImR =2 mia! = ltmmer + lmma -+ 1 (7

where | denotes rainfall intensity, m denotes the number of rolling hours of rainfall (set as 3 hours in this study), I,z denotes

the Iz during m hours, and I, denotes the rainfall intensity during hour t.

2.4 MHEM

The MHEM is a diverse non-linear mathematical model. Based on relative relationships, the MHEM presents an instability

index (Dy) to indicate susceptibility #isk in different areas. The objective is to ara

facters-and estimate the variance of eausal predisposing factors and then to determine the weight of each factor according to
the value of variance, finally to derive a suitable landslide susceptibility assessment model (Su, et al., 1998; Lin et al., 2009;
Chue, et al., 2015).

The eausal predisposing factors in the MHEM are rated based on the frequency of landslide occurrence, which is calculated

as follows:

-t ®)

where R; represents the landslide pixel geid ratio of the various factors in class grade i, r; represents the number of landslide

pixels geids in class grade i, and ry represents the total number of pixels geids. Thus, landslide percentage X; is expressed as

_Ri
2 R;

where X; denotes the landslide percentage of class grade i and XR; denotes the sum of the landslide pixel gk ratios.

Xi 9)

Based on the landslide percentages of the various classes for each predisposing eausal factor, the normalized score value of

classes for each factor (d,) can be calculated using Eq. (10), and presented in relative values ranging from 1 to 10.

d, :MJrl (10)
(Xmax_ Xmin)
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In Eq. (10), X; represents the causal rate of the sample region and X, and X, represent the maximum and minimum
landslide percentages of the factor in the various sample regions, respectively.

To estimate the weight of influence of each predisposing eausat factor, the coefficient of variation (V) of the landslide ratios
derived from the class grade of the predisposing #mpaet factors is used to represent the sensitivity of landslide ratios in
different predisposing #mpast factor classes grades. A smaller coefficient of variation denotes higher similarity among the
landslide probabilities in the various classes grages, which indicates that this factor grading method cannot determine which
areas have higher or lower landslide probabilities. By contrast, a greater coefficient of variation denotes that this factor
grading method can be used to describe the influence of factor classes gkades on landslides. Thus, the coefficient of variation
among the predisposing #mapast factors can indicate the factor weights. The coefficient of variation is calculated as shown in
Eq. (11):

V= % x100% (11)

where ¢ is the standard deviation and X is the mean landslide percentage of the various factor classes grades.

We divided the coefficient of variation of each individual factor by the total coefficient of variation of all factors to derive
the factor weight, which represented the degree of influence of the factor on landslide occurrence. The factor weight can be
calculated as shown in Eq. (12), where W is the factor weight and V is a coefficient of variation.

Vi

_ (12)
Vi +Vy +--+V,

i
Finally, the weight (W;) of each factor is determined by the rank of its variance (V), and each factor is assigned a different
weight. Subsequently, a nonlinear mathematical model can be derived as follows:

Dy :d¥V1 ><d\2N2 xdgv3 ><dxv4 ><d\5N5 ...... de\/n (13)

where Dy is the instability index of the samples, expressed using relative values ranging from 1 to 10. A cumulative value
closer to 10 indicates greater landslide potential, whereas a cumulative value closer to 1 indicates lower landslide potential.
By using the concept of log-normal distribution in statistics, we converted the levels of instability index derived using the
MHEM into probabilities of landslide occurrence. The calculation formula of the log-normal distribution is shown in Eq.
(14):

1 lincwyof

Xo+/ 21

P(F) =

(14)
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where x denotes the level of the instability index and x and ¢ denote the mean and standard deviation of the level of the
instability index, respectively. After calculating the probabilities of landslide occurrence by using the log-normal distribution,

we normalized the probabilities to range from 0 to 1 for convenience. The normalization formula is shown in Eg. (15).

P(F) = M (15)

In Eq. (15), X; represents the factor being normalized and X,.x and Xpin represent the maximum and minimum values of the

factor, respectively.

3 Study area

We referred to the historical data on road disasters from the NCDR (2017) and considered road sections where rainfall-

induced landslides occurred frequently in southern Taiwan. We focused on the periods before and after Typhoon Nanmadol

(2011) and Typhoon Kong-rey (2013) hit southern Taiwan, and we selected part of Previncialtighway-Ne—20-in the
catchment area of Laonung River in southern Taiwan as our study area (Fig. 2), which includes part of areas from three
districts in Kaohsiung City (Jiashian, Liouguei, and Taoyan). The Laonung River flows SW cross over the southern of study
area which originating from the Jade Mountain. The study area is located in a tropical monsoon climate zone. According to
the climate statistics (1983 - 2012) recorded from the Central Weather Bureau, the average annual rainfall is approximate
2,758 mm. Provincial Highway No. 20 is east-west direction, the starting point of the highway is Tainan City in southern
Taiwan, and the ending point is Degao Community in Guanshan Town, Taitung County, with a total length of 203.982 km.
Within the study area, Highway No. 20 starts from Liouguei District (76K + 000) in the west and goes to Taoyan Village
(87K + 500) in the Taoyan District. According to the survey data from the Directorate General of Highways (2016), the road
width of the Highway No. 20 passing through the study area is about 8.8 meters. The average traffic flow and the total
number of vehicles carried per day for both directions are 2,260 PCU (Passenger Car Unit) and 1,434, respectively. In the

study area, most of the traffic vehicles are sedans, followed by trucks and buses.

4 Image interpretation and classification
4.1 Preprocessing of satellite images

This study employed and interpreted satellite images taken by FORMOSAT-2 (FM2). FM2 images have been extensively
used to identify natural disasters and land use (e.g., Lin et al., 2004; Lin et al., 2006; Liu et al., 2007; Chen et al., 2009, Lin
et al., 2011; Chen et al., 2013a). The FORMOSAT-2 satellite has a circular and sun synchronous orbit. With its high torque
reaction wheels for all axes, the FORMOSAT-2 is able to point to a +45° along track and +45° across track, and is thus able

to capture any scene each day in all of Taiwan if necessary (Liu et al., 2007). FORMOSAT-2 images are available in 2 m
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resolution in panchromatic (pan) and 8 m in multispectral (ms) from visible to near-infrared with a coverage of 24 kmx24
km. In the present study, prior to interpretation, the satellite images underwent spectral fusion, coordinate positioning,
cropping, and cloud removal. The images taken by FM2 are multispectral with blue, green, red, and near-infrared (NIR)
wavelengths (Chen et al., 2013a; Chue et al., 2015). Image fusion and coordinate positioning were conducted using the
import data and coordinate positioning tool of ERDAS IMAGINE (2013). Then,

- we used the image analysis tool of ArcGIS to remove clouds from the images.

4.2 Training site selection and mapping

To map the sample areas required for image interpretation, we overlapped the high-resolution, preprocessed satellite images
of the study area before and after the typhoons and mapped the training sites by using a GIS platform. Based on field
investigations and relevant studies (Chen et al., 2009; Chen et al., 2013a; Chue et al., 2015), we selected areas with water,
roads, buildings, crops, vegetation, river channels, and bare land within the study area as the sample area factors for

interpretation training.

4.3 Image interpretation and accuracy assessment

Image interpretation and classification were conducted using the Maximum Likelihood module in ERDAS IMAGINE. The
interpretation and classification results of the satellite images before and after Typhoon Nanmadol in 2011 and Typhoon
Kong-rey in 2013 are shown in Fig. 3. The different colors in the images represent different interpretation factors.

To verify the accuracy of the results, we randomly extracted 25 points from the satellite images for each training factor as
checkpoints and tested the accuracy by using the aforementioned error matrix approach. With the satellite images before and
after Typhoon Kong-rey in 2013 as an example, Table 2 shows the error matrix and accuracy assessment results of the
satellite image interpretation and classification processes. Table 3 presents the Kappa values and OA results of the satellite
images captured before and after the two typhoons. As mentioned, Kappa values ranging from 0.4 to 0.8 indicate moderate

accuracy, and thus the interpretation results had moderate to high accuracy.

5 Landslide susceptibility assessment

To evaluate the landslide susceptibility of slopes within the study area, we constructed 8 m x 8 m grids by using the GIS
platform along with the interpretation results of the two typhoons. We also constructed an 8 m x 8 m digital elevation model

(DEM) and input the classification results, thematic map of predisposing factors #aag , and rainfall

data into the pixel to aid subsequent landslide susceptibility assessments.

10
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5.1 Predisposing Hmpast factor selection and factor correlation test
511 Predisposing +mpast factor selection

Referring to Chen et al. (2009), we divided the predisposing #mpast factors of landslides into three categories: natural
environment, land disturbance, and rainfall.

A. Natural environment factors
(A) Elevation

The influence of elevation varies with the climate and thus affects the distribution of vegetation on the slope and type of
weathering. In addition, elevation reflects the influence of geological structure, stress, and time. The highest and lowest
elevations in the study area were 1481 and 365 m, respectively. Using the GIS platform, we extracted the elevation data from
the DEM of the study area to estimate the mean elevation of each grid. We divided the elevation data into seven classes
grades at intervals of 300 m.

(B) Slope gradient
A slope’s gradient generally exerts significant impact on slope stability. By using the DEM and gradient analysis of the GIS

platform, we calculated the mean gradient of each pixel gHéd in the study area; subsequently, we divided the gradient values
in the pixels geids within the study area into seven classes grades.

(C) Aspect
Rainfall-induced landslides are subject to the influence of seasonal changes such as those related to rainfall and wind
direction. Thus, the direction of the slope must be considered. As described, we used the DEM and aspect analysis function

of the GIS platform to calculate the average aspect of the pixels geids in the study area. According to their direction, we
divided them into six classes from windward to flat ground.

(D) Geology

Referring to the digital file of the Geologic Map of Taiwan, Scale 1:50,000, Chiahsien, which was compiled by the Central
Geological Survey of the Ministry of Economic Affairs in 2000, we determined that the geology of the study area includes
five types of rock: the upper part of Changshan Formation, the Tangenshan Formation, the Changchihkeng Formation from
the Miocene period, and modern alluvium and terrace deposits from the Holocene period. We divided geological strength
into six classes grades (Chen et al., 2009).

(E) Terrain roughness

Terrain roughness refers to the degree of change in pixel ged height. Wilson and Gallant (2000) proposed the use of the

standard deviation of height within a radius to measure the degree of change in height because of its indicative meaning in

relation to changes in regional height. Using the Neighborhood (Focal Statistics) of Spatial Analyst Tools in ArcGIS, we
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calculated the terrain roughness of the DEM. Statistical cluster analysis was used to automatically divide terrain roughness
into six classes grages.

(F) Slope roughness

Slope roughness refers to the fluctuations in slope gradient in the pixels geids. High slope roughness means that the slope
gradient varies considerably (Wilson and Gallant, 2000). Slope roughness is calculated through the same method as terrain
roughness, except with the original elevation values being replaced with the slope gradient values obtained using ArcGIS.
Just as terrain roughness was graded, we first used Spatial Analyst Tools in ArcGIS to estimate the slope roughness of each

pixel geid, after which we used cluster analysis to automatically divide slope roughness into six classes grades.

(G) Distance to water

Streams will cause soil erosion and riparian erosion, which directly or indirectly affect the stability of the slope. We
calculated the distances to water using Tool of Buffer in ArcGIS and divided the distances into seven classes levels.

(H) Distance to road

The construction of the roads will also have the influence on the stability of the slope. Therefore, we also calculated the
distances to road using Tool of Buffer in ArcGIS and divided the distances into seven classes fexels.

B. Land disturbance factors

Land disturbance varies with space and time. Based on the tendency to promote landslides, the index of land disturbance was
developed, and we made some revisions to the qualitative approach proposed by Chen et al. (2009, 2013b) to calculate land
disturbance and selected roads, buildings, crops, bare land, and vegetation as the land disturbance factors of landslides in the
study area. We extracted the disaster and ground surface data from previous satellite image interpretation and classification
results and input the land disturbance factors into the pixels geds by using the GIS platform. Refer to Chen et al. (2009,
2013b), the scores of the index for disturbance condition (Ipc) in the pixels geids are assigned from five decreasing to one
which corresponding to bare land, roads, buildings, crops and vegetation, respectively.-shews-inTable4.

C. Rainfall factors

We collected precipitation data from weather stations of the Central Weather Bureau, including Guanshan, Biaohu, Hsiao

Guanshan, Gaojhong, Sinfa, Jiashian, and Xinan. - We then calculated the EAR and

3-hour Ig (Izr) levels observed at each station. The results from Typhoon Nanmadol in 2011 and Typhoon Kong-rey in 2013
are compiled in Table 84. By using the Inverse Distance Weighting (IDW) function of ArcGIS and the EAR and maximum
I3z values of the weather stations, we estimated the rainfall of each pixel ged throughout the study area and then used cluster

analysis to divide the results into six classes levels.
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542 Factor correlation test

To establish a landslide susceptibility assessment model, we selected elevation, slope gradient, aspect, geology, terrain
roughness, slope roughness, distance to water, distance to road, Ipc, and rainfall as landslide-predisposing teiggesriag factors.
Rainfall included EAR and maximum Isg.

We employed the Pearson correlation test tool in SPSS software (2005) to examine the correlation among these factors. The
correlation coefficients ranged from -1 to +1, with +1, -1, and 0 indicating complete positive correlation, complete negative
correlation, and no correlation between two variables, respectively. Factors with high correlation were then subjected to a
paired sample t test conducted using SPSS to examine the significance of the correlation between them. Those with high
correlation were eliminated.

Table #5 presents the test results regarding the correlation between the predisposing #apast factors. As shown, the degree of
correlation between most factors was moderate to low. A high degree of correlation was found only between elevation and
terrain roughness and between slope gradient and slope roughness. Thus, we administered paired sample t tests to these two
factor pairs to test the significance of the correlation. The results in Table 86 show that the significance was 0 (<0.05) for the

correlation between both pairs, indicating no correlation; thus, these factors were not eliminated.

5.2 Landslide susceptibility assessment and hazard map

To apply the MHEM to establish a landslide susceptibility assessment model, we input the natural environment, land
disturbance, and rainfall factors into the pixels gtids by using the GIS platform. By using the changes in bare land between
the images before and after the typhoons and applying image subtraction aided by manual checking, we obtained the pixel
grid data of the rainfall-induced landslide locations in the study area. With the study area after Typhoon Nanmadol in 2011
as an example, we considered EAR during the rainfall period and rated the classes grages by using the factor weights derived
using the MHEM, as shown in Table Al of Appendix A.

The calculation process is explained in this paper by using elevation as an example. In accordance with factor selection, the
elevation factor was divided into seven classes grades. Aided by the GIS platform, we calculated the total number of pixels
grids, total number of landslides, and landslide percentage within each elevation level in the study area by using Egs. (8) and
(9). Based on the landslide percentages of the elevation factor and the minimum and maximum landslide percentages, we
subsequently obtained the scores of the factors by using Eq. (10). We then calculated the standard deviation, coefficient of
variation, and weight values by using Egs. (11) and (12); the results are listed in Table Al of Appendix A. The presented
results show that the standard deviation (o), coefficient of variation (V), and factor weight (W) of landslide percentage were
0.021, 0.764, and 0.087, respectively. Finally, we calculated the instability indices by using the weight values and scores of
the factors through Eq. (13). Furthermore, the results in Table Al of Appendix A indicate that the degrees of land
disturbance (Ipc), geology (Gs), slope gradient (S), and slope roughness had the greatest influence on landslides in the study

area, followed by distance to water (Ds), EAR, and elevation (E)).
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We considered EAR and lsz and used an instability index to determine the level of landslide susceptibility of slopes
throughout the study area. The derived instability index intervals (Table 487) for EAR and Iz were ranged from 2.05 to 9.59
and 2.02 to 9.96, respectively. By using Egs. (14) and (15), the landslide probability intervals calculated based on EAR and
I3 are presented in Table £87.

We employed the mean probability of landslide occurrence to differentiate between high and low landslide susceptibility.
Landslides were considered more likely to occur in areas where the probability of landslide occurrence was greater than the
mean. By contrast, landslides were considered less likely to occur in areas where the probability of landslide occurrence was
lower than the mean. With rainfall factor EAR as an example, we determined the mean probability of landslide occurrence to
be 0.46. We further divided landslide susceptibility into four levels: high (0.731-1), medium high (0.461-0.73), medium low
(0.23-0.46), and low (0-0.23). The results showed that the mean probability of landslide occurrence varied little, regardless
of whether it was calculated using EAR or I3.

By using the GIS platform, we considered the landslide susceptibility calculated using EAR for Typhoon Nanmadol in 2011
as an example. As illustrated in Fig. 4, we included an overlay created by the NCDR and showing the locations of historical
disasters within the study area. The results revealed a total of 24 historical disasters, 17 of which were situated in areas of
medium high or high landslide susceptibility. Therefore, the estimation accuracy in this study was approximately 71%.
Regarding Typhoon Kong-rey in 2013, 18 historical disasters occurred within areas of medium high or high landslide
susceptibility, thereby yielding 75% accuracy. Table 448 presents the accuracy levels associated with using different rainfall

factors to calculate landslide susceptibility for different typhoons.

5.3 Investigation of rainfall factors and instability index

To understand the relationship between the rainfall factors and the degree of instability on the slopes in the study area after
typhoons, we first removed the cloud cover grids from post typhoon images and subsequently employed cluster analysis to
divide the instability indices of the pixels geds into three levels: high, medium, and low. We then collected random samples
based on the proportions of landslide and nonslide pixels g#ids in each level (50 landslide and 50 non landslide pixel geid
points) and plotted their relationship. Table 429 and Fig. 5a—d present the relationships between the rainfall factors (EAR and
I3R), instability index, and landslide occurrence in the pixels geids following Typhoon Nanmadol in 2011 and Typhoon
Kong-rey in 2013. Figure 5a and b consider EAR, whereas Fig. 5¢ and d consider lzz. The presented results indicate that the
typhoon events increased the degree of slope instability (D;) and landslide occurrence, regardless of whether EAR or I3z was
considered. Furthermore, significantly more landslide points were situated in areas of high instability than in areas of other
levels of instability, and landslides rarely occurred in areas of low instability. Moreover, areas of high slope instability were
prone to landslides even if their EAR or I3z was low. By contrast, areas of low instability required more rainfall for landslides
to be possible. The results (Table £29) further showed that the EAR and I3 levels of Typhoon Kong-rey in 2013 were greater
than those of Typhoon Nanmadol in 2011. Thus, in any D, level, the proportion of landslides that occurred in the study area

after Typhoon Kong-rey was higher than that after Typhoon Nanmadol. Figure 5e and f present the relationships between
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EAR x Iz, the instability index, and landslide occurrence; EAR x Iz is the index of rainfall-induced landslide (ILR), with a
higher value indicating higher susceptibility to a landslide. The figures show that for a high instability index, even a small
rainfall event could trigger a landslide (lower right corners of the figures). By contrast, for a low instability index, a larger

rainfall event could not easily trigger a landslide (upper left corners of the figures).

6 Landslide location analysis

We analyzed the spatial characteristics of landslides by using landslide locations collected from before and after both of the

two typhoons and the land surface interpretation results of the study area.

6.1 Investigation of landslide predisposing #apast factors and landslide area

The influence of predisposing eausal factors on landslides varies. In this study, we examined the relationships between
landslide area and various predisposing andslide factors. By using the area of landslides (i.e., the number of landslide pixels
grids) induced by Typhoon Nanmadol in 2011 as an example, we investigated the influences of the predisposing eausal
factors (elevation, slope gradient, aspect, geology, slope roughness, terrain roughness, distance to water, distance to road,
and degree of land disturbance) on landslides. The various factor classes lexels and corresponding numbers of landslide
pixels geids are shown in Fig. 6a—i.

Figure 6a presents the relationship between different classes lewels of elevation and the number of landslide pixels grds
(landslide area). As shown in the figure, the number of landslide pixels g#ids in the study area peaked at elevations between
450 and 750 m and then declined as the elevation increased. Figure 6b displays the relationship between different classes
fevels of slope gradient and the number of landslide pixels geids (landslide area). As shown in the figure, the number
landslide pixels g&ds in the study area increased with the slope gradient and peaked between 30° and 55°. Landslides rarely
occurred on slopes steeper than 55°. Figure 6c¢ illustrates the relationship between aspect and the number of landslide pixels
grids, with aspect divided into eight categories: north, northeast, east, southeast, south, southwest, west, and northwest. As
shown in the figure, the number of landslide pixels geigs was highest on slopes facing south, followed by those on slopes
facing east and southeast. We speculate that this is because rainfall during the typhoon season in Taiwan promotes poor
cementation and high weathering on slopes along rivers, which consequently prompts these slopes to develop toward low-
lying rivers (which run from the northeast to the southwest) after rainfall events.

Figure 6d shows the relationship between geology and the number of landslide pixels geds. As shown in the figure, the
Sanhsia Group and its stratigraphic equivalence lead to landslides more easily than does the Lushan Formation in the study
area. The Sanhsia Group and its stratigraphic equivalence mainly comprise sandstone, shale, and interbedded sandstone and
shale. Shale has weaker cementation, lower strength, and a greater tendency to weather and fracture. By contrast, the Lushan
Formation consists of argillite, slate, and interbedded argillite and sandstone, and its strength is controlled by cleaving; some

areas are prone to weathering and fracturing. Thus, both rock types are more likely to collapse, but on the whole, the Sanhsia
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Group and its stratigraphic equivalence collapse more easily than does the Lushan Formation. Furthermore, this result
indicates that the locations of landslide areas within the study area are associated with geology. Figure 6e presents the
relationship between slope roughness and the number of landslide pixels geds. The number of landslide pixels geids within a
level of slope roughness first increased with the slope roughness and then began to decline once a certain level of slope
roughness (35-40) was reached. This result is similar to that of the influence of slope gradient on the number of landslide
pixels geids. Figure 6f displays the relationship between terrain roughness and the number of landslide pixels geds. As
shown in this figure, the results are similar to those regarding the influence of elevation on the number of landslide pixels
grids; the number of pixels geids declined when the terrain roughness was greater than 500 and was very small low the
terrain roughness was greater than 1200.

Figure 69 illustrates the relationship between distance to water and the number of landslide pixels grds. The presented
results show a significantly greater number of landslide pixels geids within 300 m of water. The width of the river channel
within the study area was determined to range from 100 to 200 m, revealing that the development of landslide areas near
water in the study area is caused by rainfall significantly raising the water level in the river, which scours the slope toe,
affects slope stability, and triggers landslides. Figure 6h presents the relationship between distance to road and the number of
landslide pixels grids. The presented results reveal that areas between 100 and 300 m from roads had the greatest number of
landslide pixels geids. Further examination of the relationship between distance to road and the area and number of
landslides revealed that most landslides between 0 and 100 m from roads were small collapses, whereas those between 100
and 300 m from roads were larger in area. The number of landslides 0—100 m from roads was greater than that 100—-300 m
from roads.

The degree of land disturbance can represent the changes of surface conditions including roads, buildings, crops, bare land,
and vegetation. A greater degree of land disturbance likely indicates a greater degree of surface changes, which can yield a
greater number of landslide pixels geids. Figure 6i shows the relationship between the degree of land disturbance and the
number of landslide pixels geigs. The presented results indicate that the number of landslide pixels geids increased with the

degree of land disturbance.

6.2 Landslide scale and spatial distribution

We employed the terrain tool in ERDAS IMAGINE and the DEM to identify the ridges and valleys in the study area.
Following the methods in previous studies (Meunier et al., 2008; Chue et al., 2015), we extracted the distances between the
highest point of a landslide area and the nearest ridge (dr), between the lowest point of the landslide area and the nearest
stream (ds), and between the ridge and the stream (dt) (Fig. 7). Furthermore, in Taiwan, many slopes are visible on
developed, mountain roads built between ridges and streams. Therefore, we explored the spatial distribution of landslides
above and below mountain roads. Similar to Fig. 7a, to explore the spatial distribution of landslides, we extracted the
distances between the highest point of a landslide area on a slope above a road and the nearest ridge (dr), between the lowest

point of the landslide area and the nearest mountain road (dmu), and between the ridge and the mountain road (dtu) (Fig. 7b);
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we also investigated this distribution by extracting the distances between the highest point of a landslide area on a slope
below a road and the nearest mountain road (dmd), between the lowest point of the landslide area and the nearest stream (ds),
and between the mountain road and the stream (dtd) (Fig. 7c).

This study examined the spatial distribution of landslides in the region along Provincial Highway No. 20 before and after
Typhoon Nanmadol in 2011 and Typhoon Kong-rey in 2013. Using the approach shown in Fig. 7a, we mapped the bare land
in the study area, as shown in Fig. 8a—d. Of these figures, Fig. 8a and c show the conditions before the typhoons, whereas
Fig. 8b and d present the conditions after the typhoons. The presence of bare locations near the Y axis (dr/dt ~ 0) denotes that
the bare land originated near the ridge. By contrast, the presence of bare locations near the X axis (ds/dt ~ 0) denotes that the
bare land progressed toward the stream. Thus, the presence of bare locations near the origin denotes that the bare land
originated near the ridge and progressed toward the stream.

The results in Fig. 8a—d show more bare locations in the lower right halves of the graphs, some of which are larger in area.
The figures indicate fewer bare locations in the upper left halves of the graphs, and the ones that are present are smaller in
area. These spatial distribution characteristics are similar to those derived by Meunier et al. (2008). We speculate that this is
because the frequency of rainfall-induced landslides increases significantly because of bank erosion, which is shown in the
lower right half of Fig. 8 (dr/dt > 0.5 and ds/dt < 0.5). Furthermore, the bare locations before and after Typhoons Nanmadol
and Kong-rey show that the bare land does not increase in number but increases significantly in area, implying that old
landslides may result in more collapses or expansions of the affected area. In addition, the number of old landslides is greater
than that of new landslides.

We explored the spatial distribution of landslides on slopes above (Fig. 9) and below (Fig. 10) mountain roads in the study
area before and after Typhoon Kong-rey in 2013. Figure 9a and Fig. 10a present the spatial distribution of bare land before
the typhoon, whereas Fig. 9b and Fig. 10b present the spatial distribution of bare land after the typhoon.

As shown in Fig. 9, most landslides on the slopes above the mountain roads occurred close to the roads, most likely because
road construction involves cutting the slope toe and increasing the gradient. After the typhoon, the bare locations on the
slopes above the roads in the study area did not increase in number significantly; thus, rainfall did not exert a substantial
impact on the slopes above the roads. The results in Fig. 10 show bare locations on the slopes below the mountain roads
developing from near the roads to the streams. The bare locations near the streams may also have been affected by rainfall-
induced bank erosion. However, the bare land near the roads may have been a result of roads being constructed in the study
area, which affects slope stability and increases the probability of landslides. Furthermore, the bare locations near the roads
slightly increased in number after the typhoon, likely because the roads changed the routes of surface runoff. The area of
bare land near the streams also increased, possibly because the water flow scours the slope toe and causes continual bank
collapses. Thus, typhoons have a significant impact on the stability of slopes below mountain roads.
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7 Conclusions

This study applied the maximum likelihood method to interpret and classify satellite images before and after two typhoons in
2011 and 2013. We extracted landslide and land use information from the areas surrounding roads and then compiled the
rainfall and DEM data from the typhoon events. By using the MHEM, we established a landslide susceptibility assessment
model and examined the relationships between predisposing eausal factors and the area and number of landslides within the
study area, as well as the relationships between roads and the spatial distribution of landslides. The results show that the
Kappa coefficients associated with the use of the maximum likelihood method to interpret and classify satellite images
before and after Typhoon Nanmadol in 2011 and Typhoon Kong-rey in 2013 ranged from 0.53 to 0.66, whereas the OA
ranged from 61% to 71%, indicating moderately high accuracy. According to the results of the instability index-based
landslide susceptibility assessment model, the degree of land disturbance, geology, slope gradient, and slope roughness had
the greatest impacts on landslides. A comparison of historical landslides triggered by the typhoons and the results of the
hazard map revealed 71% accuracy for Typhoon Nanmadol in 2011 and 75% accuracy for Typhoon Kong-rey in 2013.
Regarding the influence of the predisposing eausal factors, an elevation of 450-750 m, a slope gradient of 30°-55°, and
distances within 300 m of water or roads were associated with a larger scale of landslides. The scale of landslides also
increased with the degree of land disturbance. The relationships between the ILR, instability index, and landslide occurrence
indicate that for a high instability index, even a smaller rainfall event could trigger a landslide. By contrast, for a low
instability index, a larger rainfall event could not easily trigger a landslide. Thus, the instability index can effectively reflect
landslide susceptibility. Comparisons of the distribution of bare land before and after typhoon events showed that most
landslides in the study area were caused by stream water scouring away the toes of bank slopes. Although bare locations did
not significantly increase in number after the typhoon events, they increased significantly in area, implying that the number
of old landslide areas holding more collapses or expansions was greater than that of new landslide areas developing. In
addition, the results obtained from observing changes in slopes above and below mountain roads after the typhoon events
indicate that the number of bare locations on the slopes above the roads in the study area did not increase significantly,
whereas the bare locations near the roads on the slopes below the roads slightly increased in number after the typhoon events,
likely because of the roads changing the routes of surface runoff. The amount of bare land near streams also increased,
possibly because the water flow scours the slope toe.
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Figure 1: Definition of Rainfall Events based on Effective Accumulated Rainfall (modified from Seo and Funasaki, 1973).
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Typhoons Nanmadol (2011) and Kong-rey (2013), respectively.
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Figure 7: Diagrams of Landslide Area on Slope, in which dr represents the distance between the highest point of a landslide area
and the nearest ridge, ds the distance between the lowest point of the landslide area and the nearest stream, and dt the distance
between ridge and stream.
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Figure 8: Spatial Distribution of Bare Land in the Study Area before and after the Typhoons Nanmadol (Top) and Typhoon Kong-
rey (Bottom), the scales of bubble reflect the area of each bare land.
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Table 1: Relationship Table of Error Matrix (Verbyla, 1995).

Actual ground surface
Class A Class B LIstET
Classification Class A X X5 Xy
results Class B X, X5 Xy
Total X; X; Xy

37




Table 2: Error Matrix of Interpretation Results of Satellite Images befereand after Typhoon Kong-rey in 2013.

Water | Roads | Buildings | Crops | Vegetation clﬁ lljnecfls ]13;;; Subtotal accfljrfgys(% )

Water 15 0 0 0 0 0 0 15 100

Roads 1 7 2 0 0 3 0 10 70

Buildings 2 0 22 0 0 0 0 24 92

Crops 0 4 0 11 0 0 1 16 69

Vegetation 1 5 12 25 0 2 45 56

River channels 6 3 1 0 0 24 4 38 63

Bare land 0 6 2 0 1 18 27 67
Subtotal 25 25 25 25 25 25 25 175

Pr"ducez(;) ;‘C"“racy 60 28 88 44 100 95 72

Kappa = 0.64; 04 =70%
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Table 3: Interpretation Results of Satellite Images before and after Typhoons Nanmadol and Kong-rey.

Time of satellite image Kappa 04 (%)
Before Typhoon Nanmadol (2011.08.17) 0.64 69
After Typhoon Nanmadol (2012.10.14) 0.53 61
Before Typhoon Kong-rey (2013.08.17) 0.66 71
After Typhoon Kong-rey (2013.11.23) 0.64 70
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Table 64: Effective Accumulated Rainfall and Intensity of Rolling Rainfall Observed at Weather Stations during Typhoon

Nanmadol and Typhoon Kong-rey.

Weather station

2011 Typhoon Nanmadol

2013 Typhoon Kong-rey

name EAR (mm) Max I5g (mm/h) EAR (mm) Max /5g (mm/h)
Guan-shan 74 57 376 147
Biao-hu 68 39 413 145
Hsiao Guan-shan 101 48 415 123
Gaojhong 337 69 544 136
Sinfa 504 61 288 123
Jiasian 379 46 233 101
Xi-nan 192 48 518 102
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Table #5: Correlation Test Results Between the Predisposing Factors.

Slope

Slope

Terrain

Distance

Distance

Elevation gradient Aspect roughness | roughness | to water | toroad I e EAR
Elevation 1 0.39 20,01 0.47 0.99 0.52 0.62 2023 20.66
sleme - 1 0.07 0.85 0.37 0.11 0.18 -0.09 -0.19
gradient
Aspect - - 1 20.09 0.03 0.13 0 0 0.12
sleme - - . | 0.48 0.14 0.23 0.11 0.25
roughness
Wi ; ; ; ] 1 0.53 0.63 024 | -067
roughness
IDTEiHIEE ; ; ; ; ; 1 0.49 2021 -0.47
to water
Distance - - ; ; ; - 1 0.14 | -061
to road
| o - - ; ; ; - . | 0.14
EAR ; ; : : : ; ; ; 1
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Table 86: Paired Sample t Test Results Between Elevation and Terrain Roughness and Slope Gradient and Slope Roughness.

Paired difference

Standard 95% confidence interval of ‘ Degee Significance
Mean S.D. error of difference (Two-tailed)
— — freedom
mean Upper limit | Lower limit
Elevation-terrain | ) o | 4 0.07 -2.83 -2.54 -36.8 | 407493 0
roughness
Slope gradient- | o | 59 0.01 -0.14 -0.08 9.1 | 407493 0

slope roughness
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Table 487: Intervals of Instability Index and Landslide Probability of Rainfall Factors.

Rainfall factor D, i D s P(E) in P(E) s
EAR 2.05 9.59 0.312 0.982
I3r 2.02 9.96 0.305 0.998
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Table 418: Accuracy of Landslide Susceptibility Map in Considering Different Rainfall Factors and Typhoons.

Landslide susceptibility at locations of 24 historical disasters

Typhoon Rainfall Accuracy acl\(/slllercl:y
t fact i 7
even actor Low Medium low Mﬁ?glﬁm High ) (%)
susceptibility | susceptibility . susceptibility
Typhoon EAR 2 5 11 6 71%
Nanmadol 1%
(2011) I3r 3 4 13 4 71%
Typhoon EAR 2 4 13 5 75%
Kong-rey 75%
(2013) I3 2 4 11 7 75%
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Table £29: Numbers of Landslide Pixels in Study are corresponding to Different D, Levels under Different Rainfall Factors after

Typhoons.
. Numbers of landslide and Number of pixels in each level Number of pixels in each level
Rainfall . . based on EAR based on I3z
non-landslide pixel
event (Proportion of landslide pixel) DGyl [ ford
P P Low Medium High Low Medium High
Landslide| 16793 211 3031 13551 216 3603 12974
Non.— 390710 | 168259 166289 56153 177396 166358 46947
Whole area| landslide
Typhoon (Landslide/ Non-
Nanmadol ) 0.00125 0.01822 0.24132 0.00122 0.02166 0.27635
(2011) landslide)
Landslide| 50 0 11 39 0 12 38
Random Non-
sampling landslide 50 24 21 5 25 21 4
Landslide| 20771 392 4303 16076 434 4482 15855
Non.— 396175 | 182810 181824 31541 181079 185305 29791
Whole area| landslide
Typhoon (Landslide/ Non-
Kong-rey ) 0.00214 0.02367 0.50969 | 0.00240 0.02419 0.53221
(2013) landslide)
Landslide| 50 1 6 43 0 11 39
Random Non-
sampling landslide 50 27 20 3 20 27 3
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Appendix A

Table Al: Weights and Scores of Predisposing Factors after Rainfall Brought by Typhoon Nanmadol in 2011.

Pre?;iggrsing C,\Ilaoss l;lfumbelr Nug}ber Landslide Score Predisposing| Class Nurr_1ber Nug}ber Landslide Score
. pixel | - ndslides percentage factor No. |of pixel landslides percentage
1 0 0 0 1 1 0 0 0 1
2 0 0 0 1 2 | 4096 | 378 0.092 9.21
_ 3 | 8377 175 0.021 4.62 3 | 74623 | 7545 | 0.101 10
E'e("é;'on 4 | 45633 | 2043 | 0045 | 875 gragi':rf’te(ss) 4 |119696| 6704 | 0056 | 5.99
5 | 84049 | 4370 0.052 10 5 100477 1666 0.017 2.48
6 | 209648 | 8023 0.038 7.62 6 | 61442 | 369 0.006 1.53
7 | 59787 | 2182 0.036 7.32 7 | 47160 | 131 0.003 1.25
0=0.021, V=0.764, W=0.087 0=0.044, V=1.111, W=0.127
1 | 72961 | 3381 0.046 10 1 | 18462 | 7278 0.394 10
2 129113 | 4569 0.035 7.87 2 | 37591 | 3735 0.099 3.26
3 | 95534 | 3839 0.040 8.80 3 | 33686 | 2924 | 0.087 2.97
Aspect (As) | DC
4 | 75666 | 3505 0.046 10 4 | 78519 | 2611 0.033 1.75
5 | 34220 | 1499 0.044 9.51 5 |216535| 83 0 1
6 0 0 0 1 6 | 22701 | 162 0.007 1.15
0=0.018, V=0.504, W=0.058 0=0.148, V=1.431, W=0.163
1 | 32672 | 4136 0.127 10 1 | 20809 | 496 0.024 1
o | 83465 | 7085 0.084 7.01 o | 36844 | 1969 0.053 10
Slope 3 | 104560 | 3903 0.037 3.6 Terrain 3 | 47547 | 2257 0.047 8.18
m“(gshrr)'ess 4 | 75349 | 1260 | 0017 | 212 rOU?Thrr)'ess 4 | 67105 | 3330 | 0050 | 8.84
5 | 51143 | 342 0.007 1.4 5 | 98836 | 4121 0.042 6.43
6 | 60305 67 0.001 1 6 |136353| 4620 | 0.034 4.05
0=0.05, V=1.098, W=0.125 0=0.011, V=0.266, W=0.03
1 |134641 | 5610 0.042 8.08 1 |165766| 3581 0.022 1
Distance to | 2 | 169659 | 8983 0.053 10 | pistanceto | 2 |120008| 4871 0.041 3.08
water (Ds) | 3 | 69076 | 1446 0.021 456 | road(Dy) | 3 | 44993 | 3505 0.078 7.16
4 | 19906 | 754 0.038 7.44 4 | 25015 | 2597 0.104 10




Predisposing | Class | Number s Landslide Predisposing| Class |[Number Nz Landslide
factor No. | of pixel | Of. percentage S factor No. |of pixel Of. percentage SIedls
andslides landslides

5 8336 0 0 1 5 | 25101 | 1065 0.042 3.28
6 5627 0 0 1 6 | 21848 986 0.045 3.58
7 249 0 0 1 7 4763 188 0.039 2.96
¢=0.023, V=1.029, W=0.117 0=0.028, V=0.528, W=0.058
1 15768 139 0.00882 | 2.05196 1 | 70071 738 0.011 2.56
2 113386 | 3590 0.03166 |4.77831 2 | 43675 598 0.014 3.02

EAR 3 1163395 | 7879 0.04822 | 6.75433| Geology 3 |222814| 13575 0.061 10
4 | 73522 | 3191 | 00434 |6.17931| (G5 4 | 70934 | 1882 | 0.027 | 492
5 26439 1994 0.07542 10 5 0 0 0 1
6 14984 0 0 1 6 0 0 0 1
6=0.028, V=0.797, W=0.091 0=0.023, V=1.233, W=0.141
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