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Response to reviewer comments 

on the manuscript no.: nhess-2017-264 

Scale and spatial distribution assessment of rainfall-induced landslides along mountain 
roads 

revised for publication in 

Natural Hazards and Earth System Sciences 

by 

Chih-Ming Tseng, Yie-Ruey Chen, Szu-Mi Wu 

 

First of all, we wish to thank the two reviewers for their valuable comments to the manuscript and 
constructive suggestions that significantly improved the manuscript. In this revised version of the paper, we 
have tried our best to address the comments and incorporate as much of reviewers’ recommendations. Our 
detailed reply to two reviewers’ comments are reported below. Except this response, we prepared two 
manuscript files, one with “track changes”, another is clean version. 
 
 

Reviewer 1 

 
General comments 

 
C1: The paper proposes an analysis of landslide susceptibility in a mountain area, crossed by a road and 

affected by landslides triggered by typhoons. The topic could be interesting to NHESS readers, if some 
issues are more clearly presented, in particular, the aims, the used methods (in a right temporal 
sequence), and expected results. 

 
R1: We have confirmed the reviewer’s comments and the aims, the used methods and results have been 

reorganized in the revised manuscript. Detailed responses are listed in specific comments and technical 
corrections, respectively. 

 
 
Specific comments 

 
C2: Please define clearly what is the aim of scale assessment. 
 
R2: The scale of landslide in our study is defined as landslide area. The scale assessment aims to 

understand the relationship between the natural environment and the spatial distribution of the landslide 
areas. Related descriptions are also supplemented in the fourth paragraphs of introduction, as shown in 
P.3, Ln.15-18 of the revised manuscript. 

 
C3: The terminology should be checked and made uniform, with reference to the following terms: causal 

factors, predisposing factors, impact factors, landslide-inducing factors. 
 
R3: Done, the term “predisposing factors” was used throughout in the revised manuscript for consistency 

(P.6, Ln.3, Ln.5; P.7, Ln.13, Ln.16, Ln.23; P.8, Ln.3, Ln.4, Ln.5, Ln.9; P.11, Ln.1, Ln.2, Ln3; P.13, Ln.3, 
Ln.10; P.15, Ln.8, Ln.9, Ln.10, Ln.11; P.18, Ln.5, Ln.13). 

 
C4: Reference description is not well presented, sometimes redundant, sometimes limited. Too repetition of 

“studies, many studies, previous studies, several studies, early research”. I suggest to discuss methods 
and procedures available in literature, avoiding to refer to single reference with expression as, for 
example, X et al. used […], Y et al. described […], Z et al. utilized […]. The introduction and especially 
the literature discussion (pages 2 and 3) about the landslide susceptibility assessment methods must be 
reorganized and rewritten using a clearly and well-ordered structure. 
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R4: Done, the literature review in the Introduction has been entirely reorganized and rewritten, we follow 
reviewer’s suggestions to use a clearly and well-ordered structure to demonstrate related references, as 
shown in P.1, Ln.25 - P.2, Ln.30 of the revised manuscript. 

 
C5: Aims, procedures and expected results are not clearly defined either in introduction either in 

methodological section. It is not clear if the study is only the highway or the whole catchment crossed by 
road; the study area seems to be the road according to title, but the final susceptibility map, in figure 4, 
is referred to the whole area. So the presence of the road is negligible at the aim of the analysis. The 
title does not reflect clearly the contents of the paper. 

 
R5: We have changed the title of this paper to “Scale and spatial distribution assessment of rainfall-induced 

landslides in a catchment with mountain roads” to reflect the contents of the paper. 
 
C6: Please, rephrase the paragraph 3, adding more information and details about the study area. 
 
R6: Done, we added more information like climate, rainfall conditions and road information of study area in 

the revised manuscript (P.9, Ln.12-21). 
 
C7: About methodology, does maximum likelihood method have any disadvantages? Was the error 

associated with this automatic image interpretation technique calculated? 
 
R7: The maximum likelihood method may be unsatisfactory for data with a non-normal distribution (Otukei 

and Blaschke, 2010), and could possible cause part error of automatic image interpretation. 

 

Otukei, J. R. and Blaschke, T.: Land cover change assessment using decision trees, support vector 
machines and maximum likelihood classification algorithms, International Journal of Applied Earth 
Observation and Geoinformation, 12(1), S27-S31, doi: 10.1016/j.jag.2009.11.002, 2010. 

 
C8: Please rewrite the paragraph 2.2 in order to describe more clearly the MHEM method. 
 
R8: Done, we supplemented more descriptions of the MHEM method (paragraph 2.4 in the revised 

manuscript), as shown in P.7, Ln.13-14, Ln.23-24 of the revised manuscript. 
 
C9: I suggest to reconsider the title, because the analysis was not performed only along the road but in the 

surrounding territory and the image interpretation does not emerge from the title. It is not completely 
coherent with the contents of the paper. 

 
R9: Done, we have changed the title of this paper. 
 
C10: Please, reorganize the paper, by separating the description of methodology from the discussion of 

results. There are too much paragraphs that make confusing and difficult the readability and 
understanding of performed analyses, in particular from paragraph 5.2 onwards. 

 
R10: Done, we moved the calculation formula of instability index and probability from section 5.2 to the 

methodology section 2.4, as shown in P.8, Ln.22 - P.9, Ln.6 of the revised manuscript. And the methods 
were rearranged in a right temporal sequence (2.1 Maximum likelihood; 2.2 Accuracy assessment; 2.3 
Rainfall analysis method; 2.4 MHEM). For the results, we moved original section 6.2 “Investigation of 
rainfall factors and instability index” to section 5.3 for better readability. 

 
 
Technical corrections 
 
C11: Page 1 line 8: please, move “Typhoons” at the end of the sentence. 
 
R11: Done, we have moved “Typhoons” to the end of the sentence (P.1, Ln.9). 
 
C12: Page 1 line 10: “topographic changes” or “surface changes” instead of “changes in slope surface”. 
 
R12: Done, “changes in slope surface” was replaced by “surface changes”, as shown in P.1, Ln.10 of the 

revised manuscript. 
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C13: Page 1 line 10: “A multivariate statistical method” instead of “The multivariate hazard evaluation 
method”. 

 
R13: Done, the sentence has been modified in the revised manuscript (P.1, Ln.10). 
 
C14: Page 1 lines 11-12: Please, rephrase the sentence. The evaluation of landslide locations and 

relationship between landslide and predisposing factors is preparatory for assessing and mapping 
landslide susceptibility. 

 
R14: Done, the sentence was rephrased in the revised manuscript (P.1, Ln.11-12). 
 
C15: Page 1 line 26: please, replace “occurrence distribution” with “distribution of existing landslides” and “a 

set of predisposing factors such as geo-environmental thematic variables” with “ a set of geo-

environmental predisposing factors”. 
 
R15: The literature review in the introduction has been entirely reorganized and rewritten, as shown in P.1, 

Ln.25 - P.2, Ln.30 of the revised manuscript. 
 
C16: Page 1 line 27: “sediment disaster” is not an appropriate expression; please, replace it with landslides. 
 
R16: The literature review in the introduction has been entirely reorganized and rewritten, as shown in P.1, 

Ln.25 - P.2, Ln.30 of the revised manuscript. 
 
C17: Page 2 lines 1-3: Please modify the terminology used in this sentence. “predisposing factors” instead of 

“potential causes” and “triggering factors” instead of “impetuses”. 
 
R17: Done, we changed the term usage in the revised manuscript (P.6, Ln.3, Ln.5; P.7, Ln.13, Ln.16, Ln.23; 

P.8, Ln.3, Ln.4, Ln.5, Ln.9; P.11, Ln.1, Ln.2, Ln3; P.13, Ln.3, Ln.10; P.15, Ln.8, Ln.9, Ln.10, Ln.11; P.18, 
Ln.5, Ln.13). 

 
C18: Page 2 lines 7-8: This sentence is a repetition. 
 
R18: The literature review in the introduction has been entirely reorganized and rewritten, as shown in P.1, 

Ln.25 - P.2, Ln.30 of the revised manuscript. 
 
C19: Page 2 lines 9-10:please add references about model uncertainty evaluation, for example: Wang X, 

Frattini P, Crosta GB, Zhang L, Agliardi F, Lari S, Yang Z. 2014. Uncertainty assessment in quantitative 
rockfall risk assessment. Landslides. 11:711–722. 

 
R19: The literature review in the introduction has been entirely reorganized and rewritten, as shown in P.1, 

Ln.25 - P.2, Ln.30 of the revised manuscript. 
 
C20: Page 2 line 10: explain what is the meaning of scale in this study: size, intensity of landslide? 
 
R20: The scale of landslide in our study is defined as landslide area. 
 
C21: Page 2 line 11: This sentence is a repetition. 
 
R21: The literature review in the introduction has been entirely reorganized and rewritten, as shown in P.1, 

Ln.25 - P.2, Ln.30 of the revised manuscript. 
 
C22: Page 2 lines 12-13: The meaning of this sentence is unclear. 
 
R22: The literature review in the introduction has been entirely reorganized and rewritten, as shown in P.1, 

Ln.25 - P.2, Ln.30 of the revised manuscript. 
 
C23: Page 2 lines 14-16: This sentence is a repetition. 
 
R23: The literature review in the introduction has been entirely reorganized and rewritten, as shown in P.1, 

Ln.25 - P.2, Ln.30 of the revised manuscript. 
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C24: Page 2: I suggest to add some reference about AHP method (1), multivariate statistical methods (2) 
and landslide susceptibility assessment along roads (3): (1) Kayastha P., Dhital M.R., De Smedt F. 2013. 
Application of the analytical hierarchy process (AHP) for landslide susceptibility mapping: A case study 
from the Tinau watershed, west Nepal. Computers Geosciences, 52: 398-408 (1) Zhang G., Cai Y., 
Zheng Z., Zhen J., Liu Y., Huang K. 2016. Integration of the Statistical Index Method and the Analytic 
Hierarchy Process technique for the assessment of landslide susceptibility in Huizhou, China. CATENA, 
142: 233-244. (2) Carrara A, Crosta G, Frattini P. 2008. Comparing models of debris-flow susceptibility 
in the alpine environmental. Geomorphology. 94:353–378. (2) Pellicani R, Frattini P, Spilotro G. 2014. 
Landslide susceptibility assessment in Apulian Southern Apennine: heuristic vs. statistical methods. 
Environ Earth Sci. 72:1097–1108. doi: 10.1007/s12665-013-3026-3 (3) Pellicani R, Spilotro G, Van 
Westen CJ. 2016. Rockfall trajectory modelling combined with heuristic analysis for assessing the 
rockfall hazard along the Maratea SS18 coastal road (Basilicata, southern Italy). Landslides. 13:985–
1003. (3) Pantelidis L. 2011. A critical review of highway slope instability risk assessment systems. Bull 
Eng Geol Environ. 70:395–400. (3) Devkota KC, Regmi AD, Pourghasemi HR, Yoshida K, Pradhan B. 
2013. Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression 
models in GIS and their comparison at Mugling–Narayanghat road section in Nepal Himalaya. Nat 
Hazards. 65:135–165. doi: 10.1007/s11069-012-0347-6 (3) Pellicani R., Argentiero I., Spilotro G. (2017) 
GIS-based predictive models for regional-scale landslide susceptibility assessment and risk mapping 
along road corridors. Geomatics, Natural Hazards and Risk, 1-22. DOI: 
10.1080/19475705.2017.1292411. 

 
R24: Done, the literature review in the introduction has been entirely rewritten and incorporated all the 

references suggested by reviewer, as shown in P.1, Ln.25 - P.2, Ln.30 of the revised manuscript. 
 
C25: Page 3 line 34: It is not clear how and from where the location of landslides was extracted? Are existing 

or potential landslides?  
 
R25: The location of landslides was extracted from existing landslides of satellite images and verified by 

some field surveys. 
 
C26: Page 5 line 13: please replace “risk” with “susceptibility”. 
 
R26: Done, we replaced “risk” with “susceptibility”, as shown in P.7, Ln.12 of the revised manuscript. 
 
C27: Page 5 lines 14-15: Please avoid repetitions: variability, variance. 
 
R27: Done, we simplified the description in the revised manuscript (P.7, Ln.12-13). 
 
C28: Page 5 lines 18-19: Please rewrite this sentence using a correct terminology, “cell” or “pixel” instead of 

“grid” and “class” instead of “grade”. 
 
R28: Done, the terminology has been replaced by reviewer’s suggestions in the revised manuscript (P.7, 

Ln.19, Ln.20, Ln.22; P.8, Ln.4; Ln.5, Ln.6, Ln.8, Ln.12; P.11, Ln.10-11, Ln.14, Ln.15, Ln.19, Ln.26, Ln.28; 
P.12, Ln.2, Ln.4, Ln.8, Ln.11, Ln.14, Ln.20, Ln.21, Ln.28, Ln.29; P.13, Ln.17, Ln.18-19, Ln.20, Ln.23-24; 
P.14, Ln.22, Ln.23, Ln.25; P.15, Ln.10-11, Ln.13, Ln.14, ln.15, Ln,16, Ln.17-18, Ln.19, Ln.20-21, Ln.22, 
Ln.26; P.16, Ln.3, Ln.6, Ln.7-8, Ln,10, Ln.11, Ln.15, Ln.16, Ln.22, Ln.23). 

 
C29: Page 5 lines 22-23: Please rewrite this sentence, a confusing terminology has been used (causal factor, 

impact factor, grades). 
 
R29: Done, the term “predisposing factors” was used throughout in the revised manuscript for the 

consistency and the term “grades” was replaced by “classes”. 
 
C30: Page 6: Which is the difference between factor weight and graded score? It is not clear. 
 
R30: For clarity, we replaced the “graded score” to “the normalized score value of classes for each factor”, as 

shown in P.7, Ln.23-24 of the revised manuscript. The “factor weight” represents the weight of each 
factor which is determined by the rank of its variance. 

 
 
 



5 
 

C31: Page 8 line 13: why 0.9? 
 
R31: We added a citation (Chen et al., 2005) for the adoption of k=0.9, P.6, Ln.22 in the revised manuscript. 
 
Chen, C. Y., Chen T. C., Yu F. C., Yu W. H., Tseng C. C.: Rainfall duration and debris-flow initiated studies 
for real-time monitoring, Environ. Geol., 47, 715–724, DOI 10.1007/s00254-004-1203-0, 2005. 
 
C32: Page 8 line 17: Is EAR expressed in mm? 
 
R32: Yes, the unit of EAR is mm. 
 
C33: Page 8 line 21: Is Ir expressed in mm/h? 
 
R33: Yes, the unit of IR is mm/h. 
 
C34: Page 8 line 26: What is the meaning of rolling hours? 
 
R34: In our study, the average rainfall intensity IR is calculated in a continuous three hours interval then the 

calculated time interval moving one hour ahead. For example, the first I3R is the average rainfall intensity 
for 1-3 hours, then the second I3R is calculated in 2-4 hours, etc. 

 
C35: Page 10 line 6: ”thematic map of predisposing factors” instead of “map of the natural environment”. 
 
R35: Done, this sentence has been modified in the revised manuscript (P.10, Ln.26). 
 
C36: Page 10 line 9: please make uniform the terminology, as for example causal factors, predisposing 

factors, impact factors, landslide-inducing factors, etc. 
 
R36: Done, in the revised manuscript, the term “predisposing factors” was used throughout for consistency. 
 
C37: Page 10 lines 21-22-26: please, modify “grid” and “grades”. 
 
R37: Done, the terminology has been revised throughout in the revised manuscript. 
 
C38: Page 10 line 27: explicit the values of the six categories. 
 
R38: Based on windward and leeward, the aspects were classified into six categories as following table: 
 

South 157.5° ~ 202.5° 

Southeast 
Southwest 

112.5° ~ 157.5° 
202.5° ~ 247.5° 

East 
West 

67.5° ~ 112.5° 
247.5° ~ 292.5° 

Northeast 
Northwest 

22.5° ~ 67.5° 
202.5° ~ 247.5° 

North 337.5° ~ 22.5° 

Flat － 

 
 
 
C39: Page 11 line 4: what is the meaning of “geological strength”? The geological map should be classified 

into classes corresponding to different formations or lithological units. 
 
R39: According to the corresponding compression strengths of the geological lithological properties, this 

study classified the geological features with such lithological properties by referring to the relationship 
between compression strength and strength level proposed by ISRM (1981) and conducted level 
encoding as shown in the following Table. 
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Geological term Characteristics Strength Level Class no. 

Terrace Accumulation gravel, clay, soil, sand extremely weak 1 

Liji layer_Kenting 
Layer 

Foreign rocks in mudstone (badlands terrain) extremely weak 1 

Alluvial Layer Soil, sand, gravel very weak 2 

Takangkou Formation  shale, sandstone, conglomerate rock weak 3 

Lushan Layer, Sule 
Layer 

Hard shale, slate, phylite, hard sandstone Medium strong 4 

Bilushan Layer Shale, quartize sandstone in phylite Medium strong 4 

Tananao Schists  Black schist , green schist , siliceous schist  strong 5 

Duran Mountain  
Agglomerate, tuffaceous sandstone, 
limestone, convex mirror body 

Very strong 6 

   (modified from ISRM, 1981 and Chen et al., 2009) 

 
ISRM, Rock Characterization Testing and Monitoring-ISRM Suggested Method, Pergamon, London, 1981. 
 
C40: Page 11 line 9: define the analysis function. 
 
R40: Done, more clear information of the analysis function has been added in the revised manuscript (P.11, 

Ln.30; P.12, Ln.7). 
 
C41: Page 11 lines 10 and 16: explicit the six classes. 
 
R41: The terrain roughness and slope roughness were classified into six categories as shown in the 

following table: 
 

Class no. Terrain roughness  Class no. Slope roughness 

6 367-523  6 0-11 

5 523-674  5 11-20 

4 674-950  4 20-28 

3 950-1035  3 28-34 

2 1035-1231  2 34-41 

1 1231-1472  1 41-56 

 
C42: Page 11 lines 18 and 20: give more information about two factors. 
 
R42: Done, more information was supplemented in the revised manuscript (P.12, Ln.10, Ln.13). 
 
C43: Page 11 line 21: Land disturbance looks like a reclassified land use map. The highest score of 

disturbance is assigned to bare land, why not to roads and buildings? This is a qualitative attribution, it 
should be written somewhere. 

 
R43: Based on the tendency to promote landslides, the index of land disturbance was developed (Chen, et 

al., 2009). The land disturbance in this paper can represent the changes of surface conditions including 
roads, buildings, crops, bare land, and vegetation. In these factors, we consider bare land has the 
highest tendency to promote landslide. We supplemented descriptions in the revised manuscript (P.12, 
Ln.16-17). 
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Reviewer 2 

 
General comments 

 
C1: The authors propose in this paper an assessment of landslide susceptibility in a mountain area in 

Taiwan. The manuscript, which can be interesting for people studying relations between landslide 
susceptibility and hydrology, has several problems that can be improved after a minor revision. Readers 
more interested with interactions between natural hazards and roads stay more on the sidelines. 

 
R1: We have confirmed and addressed the reviewer’s comments in the revised manuscript. Detailed 

responses are listed in specific comments and technical corrections, respectively. 
 
Specific comments 

 
C2: The state of the art of the methods to evaluate factors influencing landslides in the Introduction is well 

detailed but can be better structured. 
 
R2: The literature reviews in the Introduction especially landslide susceptibility assessment have been 

entirely reorganized and rewritten for better readability (P.1, Ln.25 - P.2, Ln.30 in the revised 
manuscript). 

 
C3: I suggest to add more information / specifications about the study area (surface, length, meters above 

and under the road path, etc.) and the road (type, traffic, closure consequences, length, history, etc.). 
 
R3: Done, more descriptions of study area and road were supplemented in the revised manuscript (P.9, 

Ln.12-21). 
 
C4: The presence of the “road” term in the title does not well represent the manuscript content. It should be 

more focused about the road. 
 
R4: We have modified the title of this paper to “Scale and spatial distribution assessment of rainfall-induced 

landslides in a catchment with mountain roads” to proper reflect the contents of the paper. 
 
C5: Please define and describe the “landslide” term used in this paper (area, volume, depth, geology, etc.). 

What kind of landslides do you consider? 
 
R5: In this paper, the term “landslide” is more focus on landslide area. Among the different types of slope 

failure, debris slides are the easiest and most reliably detected on satellite images in heavily vegetated 
terrain such as in the mountainous areas of Taiwan. This is because they effectively strip off the 
vegetation from the slopes, making them readily discernible. Debris slides are, therefore, the major 
landslides mapped in this study. In cases where vegetation of deep-seated landslides was also stripped 
off they were also included in the landslide inventory of this study. However, soil slips, soil slides, and 
debris slides that evolved into debris flows were excluded from our inventory because a clear distinction 
between the geometry of the source, transport, and depositional areas was not always possible. 

 
C6: There are too much subchapters (2.3.1, 2.3.2, etc.), too much figures and tables in my opinion. I suggest 

to move some of them in appendices (as Table 9 for instance). Please try to reduce the number of 
subchapters and keep only the really relevant Figures and Tables for the comprehension of the 
manuscript. 

 
R6: We removed Table 4 and Table 5, and moved Table 9 to appendices. Besides, the subchapters have 

been reorganized by using the Arabic numerals 1, 2…etc. instead of sections 2.3.1 and 2.3.2…etc (as 
shown in P.5, Ln.12, Ln.18; P.6, Ln.6; P.7, Ln.1; P.11, Ln.2; P.13, Ln.1 in the revised manuscript). 

 
 
Technical corrections 
 
C7: Page 1, line 18: mm value for the annually rainfall is wrong, it should be: 2’506 mm and not 2.506 mm. 
 
R7: Done, we corrected this mistake (P.1, Ln.20 in the revised manuscript). 
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C8: Page 3, line 23: Are really images consistent in quality? Clouds, shadows, etc. 
 
R8: We modified the description (P.3, Ln.4-5 in the revised manuscript). 
 
C9: Page 3, line 23: Studies have indicated… Which studies? 
 
R9: We added the references (P.3, Ln.7 in the revised manuscript). 
 
C10: Page 3, line 1: The results of this study could serve as a reference… Maybe too presumptuous. 
 
R10: We removed this sentence in the revised manuscript (P.3, Ln.18-19). 
 
C11: Page 4, line 18: Please define x. 
 
R11: Actually, a few of variable “X” was mistyped as “x”. We corrected this mistake in the revised manuscript 

(P.4, Ln.4, Ln.13). 
 
C12: Page 5, line 5: Please define k. 
 
R12: We have added the definition of k in the revised manuscript. (P.4, Ln.21). 
 
C13: Page 6, line 9: Please define d. 
 
R13: We have added the definition of d in the revised manuscript. (P.7, Ln.23-24 in the revised manuscript). 
 
C14: Page 6, line 25: In the table: Please add the Table number. 
 
R14: Done, we added the table number (P.5, Ln.5 in the revised manuscript). 
 
C15: Page 7, line 5: Please give the complete name of OA. 
 
R15: Done, we added the complete name of OA (P.5, Ln.12 in the revised manuscript). 
 
C16: Page 7, line 15: Please give explanation of Xi+, X+i, Xii. 
 
R16: Done, we added the explanation of Xi+, X+i and Xii, respectively (P.5, Ln.16-17, Ln.24-25 in the revised 

manuscript). 
 
C17: Page 7, line 23: Please give the complete name of EAR. 
 
R17: Done, we added the complete name of EAR (P.6, Ln.6 in the revised manuscript). 
 
C18: Page 8, line 20: Please give the complete name of IR. 
 
R18: Done, we added the complete name of IR (P.7, Ln.1 in the revised manuscript). 
 
C19: Page 8, line 25 and 26: contradiction between I (rainfall intensity) and IR (not explained). 
 
R19: In our study, “I” denotes hourly rainfall (60 minutes intensity), intensity of rolling rainfall “IR” represent 

summation of selected 60 minutes intensity (I) during m rolling hours. 
 
C20: Page 9, line 14-15: Please reword the sentence. 
 
R20: Done, we simplified this sentence in the revised manuscript (P.10, Ln.5-6). 
 
C21: Page 9, 4.1, please give image info’s (resolution, surface, etc.). 
 
R21: Done, we supplemented FORMOSAT-2 image description in the revised manuscript (P.9, Ln.26 – P.10, 

Ln.2). 
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C22: Page 9, line 25: different interpretation factors: which ones? 
 
R22: we selected areas with water, roads, buildings, crops, vegetation, river channels, and bare land within 

the study area as the sample area factors for interpretation training. 
 
C23: Page 10, line 4: why 8 x 8 m (and not 10 x 10 m or 5 x 5 m)? 
 
R23: Since the raw spatial resolution of FORMOSAT-2 (FM2) images is 8 x 8 m, we prepared 8 x 8 m 

thematic map of predisposing factors, as well as 8 x 8 m DEM to construct landslide susceptibility map. 
 
C24: -Page 10, line 5: we also constructed an … DEM: how? 
 
R24: We downgraded from the 5 x 5 m MOI (Ministry of the Interior, Taiwan) DEM to obtain the 8 x 8 m DEM 

used in this study. 
 
C25: Page 10, line 16: 1480.6 and 365.2 m: are the values after the dot really needed? 
 
R25: We modified these two number to 1481 and 365, respectively. It would not affect the classification 

results (P.11, Ln.9 in the revised manuscript). 
 
C26: Page 10, line 22: seven grades: why seven, for what reason? 
 
R26: According to the classifications of gradient for hillslope land use limit proposed by SWCB (2017), the 

gradient can be classified into six grades as following left table. We modified gradient interval of grade 6 

as “55-100”, and added additional grade with gradient interval of “>100” as shown in the following right 

table used in our study. 
 

Classifications of 
gradient (SWCB) 

Gradient (%) 

 

Class no. Gradient (%) 

1
st
 <5 7 <5 

2
nd

 5-15 6 5-15 

3
rd

 15-30 5 15-30 

4
th
 30-40 4 30-40 

5
th
 40-55 3 40-55 

6
th
 >55 2 55-100 

  1 >100 

 
Soil and Water Conservation Bureau (SWCB), Council of Agriculture (COA), Executive Yuan, R.O.C. 

(Taiwan), https://www.swcb.gov.tw/class2/index.asp?ct=laws&m1=10&m2=55&AutoID=22, 2017 (in 
Chinese). 

 
C27: Page 10, line 23: seven grades: why six, for what reason? 
 
R27: Based on windward and leeward, the aspects were classified into six categories as following table: 
 

South 157.5° ~ 202.5° 

Southeast 
Southwest 

112.5° ~ 157.5° 
202.5° ~ 247.5° 

East 
West 

67.5° ~ 112.5° 
247.5° ~ 292.5° 

Northeast 
Northwest 

22.5° ~ 67.5° 
202.5° ~ 247.5° 

North 337.5° ~ 22.5° 

Flat － 

 
 
C28: Page 10, line 27: six categories: why six, for what reason? 
 
R28: Same as C27 and R27. 

https://www.swcb.gov.tw/class2/index.asp?ct=laws&m1=10&m2=55&AutoID=22
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C29: Page 11, line 5: six grades: why six, for what reason? 
 
R29: According to the corresponding compression strengths of the geological lithological properties, this 

study classified the geological features with such lithological properties by referring to the relationship 
between compression strength and strength level proposed by ISRM (1981) and conducted level 
encoding as shown in the following Table. 

 

Geological term Characteristics Strength Level Class no. 

Terrace Accumulation gravel, clay, soil, sand extremely weak 1 

Liji layer_Kenting 
Layer 

Foreign rocks in mudstone (badlands terrain) extremely weak 1 

Alluvial Layer Soil, sand, gravel very weak 2 

Takangkou Formation  shale, sandstone, conglomerate rock weak 3 

Lushan Layer, Sule 
Layer 

Hard shale, slate, phylite, hard sandstone Medium strong 4 

Bilushan Layer Shale, quartize sandstone in phylite Medium strong 4 

Tananao Schists  Black schist , green schist , siliceous schist  strong 5 

Duran Mountain  
Agglomerate, tuffaceous sandstone, 
limestone, convex mirror body 

Very strong 6 

   (modified from ISRM, 1981 and Chen et al., 2009) 

 
ISRM, Rock Characterization Testing and Monitoring-ISRM Suggested Method, Pergamon, London, 1981. 
 
 
 
C30: Page 11, line 10: six grades: why six, for what reason? 
 
R30: The terrain roughness was classified into six categories by using cluster analysis of SPSS software as 

shown in the following table: 
 

Class no. Terrain roughness 

6 367-523 

5 523-674 

4 674-950 

3 950-1035 

2 1035-1231 

1 1231-1472 

 
 
 
C31: Page 11, line 16: six grades: why six, for what reason? 
 
R31: The slope roughness was also classified into six categories by using cluster analysis of SPSS software 

as shown in the following table: 
 

Class no. Slope roughness 

6 0-11 

5 11-20 

4 20-28 

3 28-34 

2 34-41 

1 41-56 
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C32: Page 11, line 18: seven grades: why seven, for what reason? 
 
R32: The distance to water was classified into seven categories as shown in the following table: 
 

Class no. Distance to water (m) 

1 <100 

2 100-300 

3 300-500 

4 500-700 

5 700-1000 

6 1000-1500 

7 >1500 

 
 
C33: Page 11, line 20: seven grades: why seven, for what reason? 
 
R33: The distance to road was classified into seven categories as shown in the following table: 
 

Class no. Distance to road (m) 

1 <100 

2 100-300 

3 300-500 

4 500-700 

5 700-1000 

6 1000-1500 

7 >1500 

 
C34: Page 12, line 2: six grades: why six, for what reason? 
 
R34: The rainfalls were also classified into six categories by using cluster analysis of SPSS software as 

shown in the following table: 
 

Class no. EAR (mm) Max I3R (mm/h) 

6 285-302 59-61 

5 302-313 61-62 

4 313-321 62-64 

3 321-329 64-65 

2 329-340 65-67 

1 340-363 67-68 

 
 
C35: Page 12, line 7: SPSS : maybe add “software“ to more better describe what it is. 
 
R35: Done, we added “software“ following SPSS (P.13, Ln.5 in the revised manuscript). 
 
C36: Page 12, line 25: seven grades: why seven, for what reason? 
 
R36: The elevation data was divided into seven grades at intervals of 300 m, as shown in the following table: 
 

Class no. Elevation (m) 

7 <450 

6 450-750 

5 750-1050 

4 1050-1350 

3 1350-1650 

2 1650-1950 

1 >1950 
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C37: Page 13, lines 3 and 4: please clarify the sentence with the values in " () " : 2.02 and 9.96 = I3R. 
 
R37: For the clarity, we modified the descriptions in the revised manuscript (P.14, Ln.2-3). 
 
C38: Page 13, line 20: four level: why this repartition and not 0-25, 25-50, 50-75 and 75-100? 
 
R38: We divided landslide susceptibility into four levels: high (0.731–1), medium high (0.461–0.73), medium 

low (0.23–0.46), and low (0–0.23) are based on the mean probability of landslide occurrence to be 0.46. 
 
C39: All figure and table captions: please verify that every caption is ended by a ".". 
 
R39: Done, all captions were checked and corrected throughout in the revised manuscript. 
 
C40: Page 24, caption Figure 2: which "blue line" do you mean? Please try to redo the image (for example 

the "t" Toayan district, is not well readable), colours are no well appropriated. 
 
R40: Done, Figure 2 has been redrawn to strengthen visibility (P.27 in the revised manuscript). In additions, 

the distribution of mountain roads is represented by purple lines, the mistake was corrected. 
 
C41: Page 35, Table 2: where are the "before" and "after" data in the error matrix (lines or columns)? Please 

clarify. 
 
R41: Table 2 represents error matrix of interpretation results of satellite images “after” Typhoon Kong-rey, we 

corrected this mistake (P.38 in the revised manuscript) 
 
C42: Page 38: Table 5: table not necessary / relevant for the paper 
 
R42: Done, we removed Table 4 and Table 5 in the revised manuscript. 
 
C43: Page 39: Table 6: please give units. 
 
R43: Done, we added units of EAR and I3R in Table 6 (P.42 in the revised manuscript). 
 
C44: Page 44: Table 10: please define Dt,min and Dt,max. 
 
R44: The Dt,min and Dt,max represent minimum and maximum value of instability index (Eq. (8) in the original 

version; Eq. (13) in the revised version), respectively. 
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Abstract. This study focused on landslides in a catchment with mountain roads that were caused by Nanmadol (2011) and 

Kong-rey (2013) typhoons. Image interpretation techniques were employed to interpret satellite images captured before and 

after the typhoons to derive the surface changes changes in slope surfaces. A The multivariate hazard evaluation method was 10 

adopted to establish a landslide susceptibility assessment model. The evaluation of landslide locations and relationship 

between landslide and predisposing factors is preparatory for assessing and mapping landslide susceptibility. We then 

mapped landslide susceptibility and locations to determine the relationship between the spatial distribution of landslide areas 

and the natural environment along mountain roads. The results can serve as a reference for preventing and mitigating slope 

disasters on mountain roads. 15 

1 Introduction 

Taiwan is an island of which three quarters of its land area consists of slope land that is 100 m above sea level, or is less than 

that but has an average gradient of 5% above (Soil and Water Conservation Bureau, 2012). Much of this sloped land has a 

steep gradient and fragile geological formations. Taiwan is hit by an average of 3.4 typhoons every year during years 1911 to 

2016 (Central Weather Bureau, 2017).  In additions, an average annual rainfall reach 2,506 mm in years 1949 to 2012 (Water 20 

Resources Agency, 2017). Typhoons usually occur between July and October, and 70%–90% of the annual rainfall is 

composed of heavy rain directly related to typhoons (SWCB, 2012). Concentrated rainfall causes heavy landslides and debris 

flows every year (Dadson et al., 2004). The threat of disaster currently influences industrial and economic development and 

the road networks in endangers areas; thus, establishing disaster evaluation mechanisms is imperative. 

Landslide susceptibility can be evaluated by analysing the relationships between landslides and various factors that are 25 

responsible for the occurrence of landslides (Brabb 1984; Guzzetti et al., 1999a, Guzzetti et al., 2005). In general, the factors 

affect landslides including predisposing factors (e.g., geology, topography, and hydrology) and triggering factors (e.g., 

rainfall, earthquakes, and anthropogenic factors) (Chen et al., 2013a; Chen et al., 2013b; Chue et al., 2015). Geological 

factors include lithological factors, structural conditions, and soil thickness; topographical factors include slope, aspect, and 



2 

 

elevation; and anthropogenic factors include deforestation, road construction, land development, mining, and alterations of 

surface vegetation (Chen et al., 2013a; Chen et al., 2013b; Chue et al., 2015). The method used to assess landslide 

susceptibility can be divided into qualitative and quantitative. Qualitative methods are based completely on field 

observations and an expert’s priori knowledge of study area (Stevenson, 1977; Anbalagan, 1992; Gupta and Anbalagan, 

1997). Some qualitative approaches incorporate ranking and weighting, and become semi-quantitative (Ayalew and 5 

Yamagishi, 2005). For examples the Analytic Hierarchy Process (AHP) (Saaty, 1980; Barredo et al., 2000; Yoshimatsu and 

Abe, 2006; Kamp et al., 2008; Yalcin, 2008; Kayastha et al., 2013; Zhang et al., 2016) and the weighted linear combination 

(WLC) (Jiang and Eastman, 2000; Ayalew et al., 2005; Akgün et al., 2008). Quantitative methods apply mathematical 

models to assess the probability of landslide occurrence, and thus define hazard zones on a continuous scale (Guzzetti et al., 

1999b). Quantitative methods developed to detect the areas prone to landslide can be divided mainly into two categories: 10 

deterministic approach and statistical approach. The deterministic approach is based on the physical laws driving landslides 

(Okimura and Kawatani, 1987; Hammond et al., 1992; Montgomery and Dietrich, 1994; Wu and Sidle, 1995; Gökceoglu and 

Aksoy, 1996; Pack et al., 1999; Iverson, 2000; Guimarães et al., 2003; Xie et al., 2004) and are generally more applicable 

when the underground conditions are relatively homogeneous and the landslides are mainly slope dominated. The statistical 

approach is based on the relationships between the affecting factors and past and present landslide distribution (Van Westen 15 

et al., 2008). Statistical methods analyze the relation between predisposing factors affecting the landslide which include 

bivariate statistical models (Van Westen et al., 2003; Süzen and Doyuran, 2004; Thiery et al., 2007; Bai et al., 2009; 

Constantin et al., 2011; Yilmaz et al., 2012), multivariate statistical approaches as discriminant analysis (Baeza and 

Corominas, 2001; Carrara et al., 2003; Carrara et al., 2008; Pellicani et al., 2014), and linear and logistic regression (Dai and 

Lee, 2002; Ohlmacher and Davis, 2003; Ayalew and Yamagishi, 2005; Yesilnacar and Topal, 2005; Greco et al., 2007; 20 

Carrara et al., 2008; Lee et al., 2008; Pellicani et al., 2014), as well as nonlinear methods such as artificial neural networks 

(ANN) (Lee et al., 2004; Yesilnacar and Topal, 2005; Kanungo et al., 2006; Wang and Sassa, 2006; Li et al., 2012), 

multivariate hazard evaluation method (MHEM) (Su et al., 1998; Lin et al., 2009). The MHEM is a nonlinear mathematical 

model that presents an instability index to indicate landslide susceptibility (Lin et al., 2009). In additions, some studies, 

landslide susceptibility analyses have focused on man-made facilities such as roads and railroads and have examined the 25 

landslide susceptibility of surrounding environments (Das et al., 2010; Pantelidis, 2011; Das et al., 2012; Devkota et al., 

2013; Martinović et al., 2016; Pellicani et al., 2016; Pellicani et al., 2017). The aforementioned studies on the landslide 

susceptibility of areas surrounding man-made facilities have not investigated characteristics such as the location and scale 

(area) of landslides occurring in upper or lower slopes, and such characteristics thus constituted one of the objectives of the 

present study. 30 

Technological progress has provided various advanced tools and techniques for land use monitoring. In recent years, aerial 

photos or satellite images have been commonly used in post disaster interpretations and assessments of landslide damage on 

large-area slopes (Erbek et al., 2004; Lillesand et al., 2004; Nikolakopoulos et al., 2005; Lin et al., 2005; Chen et al., 2009; 

Otukei and Blaschke, 2010; Chen et al., 2013a). Satellite images offer the advantages of short data acquisition cycles, swift 
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understanding of surface changes, large data ranges, and being low cost, particularly for mountainous and inaccessible areas. 

With the assistance of computer analysis and geographic information system (GIS) platforms, researchers can quickly 

determine land cover conditions. Thus, satellite images are suitable for investigating large areas and monitoring temporal 

changes in land use (Liu et al., 2001). Satellites can capture images of the same area multiple times within a short period; the 

images are consistent in quality and are digitized, rendering them convenient for computer applications. Studies have 5 

indicated that land surface change detection is the process of exploring the differences between images captured at different 

times (Liu et al., 2001; Chadwick et al., 2005; Chen et al., 2009; Chue et al., 2015). With multispectral satellite images, land 

surface interpretations involve comparisons of multitemporal images that are completely geometrically aligned (Liu et al., 

2001; Chadwick et al., 2005; Chen et al., 2009; Chue et al., 2015). 

We selected part of Provincial Highway No. 20 in the catchment area of Laonung River which include Provincial Highway 10 

No. 20 in southern Taiwan as our study area. Regarding time, we focused on periods before and after landslides that 

occurred in the study area as a result of Typhoon Nanmadol (2011) and Typhoon Kong-rey (2013). We applied the 

maximum likelihood method to interpret and categorize high-resolution satellite images, thereby determining the land 

surface changes and landslides in the study area before and after the rainfall events. By using a GIS platform, we constructed 

a database of the rainfall and natural environment factors. Subsequently, we developed a landslide susceptibility assessment 15 

model by using the MHEM, the model performance then was verified by historical landslides. In additions, we extracted the 

locations of landslide areas to explore the relationship between the natural environment and the spatial distribution of the 

scale of these areas. The results of this study could serve as a reference for the prevention and mitigation of slope disasters 

on hillsides in a catchment with mountain roads. 

2 Methodology 20 

2.1 Maximum likelihood 

The maximum likelihood classifier is a supervised classification method (SCM). SCMs include three processing stages: 

training data sampling, classification, and output. The underlying principle of supervised classification is the use of spectral 

pattern recognition and actual ground surface data to determine the types of data required and subsequently select a training 

site, which has a unique set of spectral patterns. To accurately estimate the various spectral conditions, the spectral patterns 25 

of the same type of feature are combined into a coincident spectral plot before the class of the training site is selected. Once 

training has been completed, the entire image is classified based on the spectral distribution characteristics of the training site 

by using statistical theory for automatic interpretation (Lillesand et al., 2004). 

To facilitate the calculation of probability in the classification of unknown pixels, the maximum likelihood method assumes 

a normal distribution in the various classes of data. Under this assumption, the data distribution can be expressed using 30 

covariance matrices and mean vectors, both of which are used to calculate the probability of a pixel being assigned to a land 
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cover class. In other words, the probability of X appearing in class i is calculated using Eq. (1), and the highest probability is 

used to determine the feature of each pixel (Lillesand et al., 2004). 
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In this equation, 5 

d denotes the number of features; 

X denotes a sample expressed using features and has d dimensions; 

p(XCi) denotes the probability that X originates from class i; 

i denotes the covariance matrix of class i; 

i
-1

 denotes the inverse matrix of i; 10 

i denotes the determinant of i; 

i denotes the mean vector of classification i; 

(X - i)
T
 denotes the transpose matrix of (X - i); and 

Sij denotes the covariance of classes i and j. 

During classification, the maximum value of the probability density functions of sample X in each class is used to determine 15 

which class the sample belongs to. The maximum likelihood classification decision is shown in Eq. (2). 

 

 kmCX m ,,2,1,   

if 

    kjCXpCXp jm ,2,1,max           (2) 20 

in which, k denotes the number of classes.  The question in classification is how to effectively separate the classes in the 

feature space, or in other words, how to divide the feature space. Maximum likelihood is a common approach that offers 

fairly good classification accuracy (Bruzzone and Prieto, 2001; Chen et al., 2004). Thus, we adopted maximum likelihood to 

interpret and classify the satellite images. 

2.2 Accuracy assessment 25 

This study employed the aforementioned maximum likelihood method to classify satellite images. To determine whether the 

accuracy of image classification was acceptable, we adopted an error matrix to test for accuracy. An error matrix is a square 

matrix that presents error conditions in the relationship between ground surface classification results and reference data 
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(Verbyla, 1995). Such a matrix contains an equal number of columns and rows, and the number is determined by the number 

of classes. For example, Table 1 contains four classes. The columns show the reference data, and the rows show the 

classification results. The various elements in the table indicate the quantity of data corresponding to each combination of 

classes. 

In the Table 1, X12 represents the amount of data that was interpreted as Class A but actually belongs to Class B, whereas X21 5 

indicates the amount of data that was interpreted as Class B but actually belongs to Class A. X11 and X22 represent the amount 

of data accurately classified as Class A and Class B, respectively. An error matrix is generally used to check the quality of 

classification results in statistics (Congalton, 1991; Verbyla, 1995). In the present study, we evaluated the accuracy of the 

classification results based on the overall accuracy (OA) and Kappa value (Cohen, 1960), which is the coefficient of 

agreement derived from the relationship between the classification results and training data. These two parameters are 10 

explained as follows. 

2.2.1 Overall Accuracy (OA) 

OA is the simplest method of overall description. For all classes, OA represents the probability that any given point in the 

area will be classified correctly. 
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In Eq. (3), N denotes the total number of classifications, check points n denotes the total number of rows in the matrix and Xii 

is the number of correctly classified checkpoints. 

2.2.2 Kappa coefficient 

The Kappa ( K̂ ) coefficient indicates the degree of agreement between the classification results and reference values and 

shows the percentage reduction in the errors of a classification process compared with the errors of a completely random 20 

classification process. Generally, the Kappa coefficient ranges from 0 to 1, and a greater value indicates a higher degree of 

agreement between the two sets of results, as shown in Eq. (4): 
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in which, Xi+ is the total number of pixels for a given class on actual ground surface and X+i is the number of pixels classified 

to that class. As reported by Landis and Koch (1977), a Kappa coefficient greater than 0.8 signifies a high degree of 25 

accuracy, whereas a coefficient between 0.4 and 0.8 or less than 0.4 indicates moderate or poor accuracy, respectively. 
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2.3 Rainfall analysis method 

In previous studies regarding the influence of rainfall on landslides, rainfall intensity and accumulated rainfall have been 

most commonly used as predisposing causal factors of landslides (Giannecchini, 2006; Chang et al., 2007; Giannecchini et 

al., 2012; Ali et al., 2014). Therefore, we adopted effective accumulated rainfall (EAR) and intensity of rolling rainfall (IR) as 

rainfall indices and predisposing impact factors of landslides in the present study. These two indices are explained as follows. 5 

2.3.1 Effective Accumulated Rainfall (EAR) 

Generally, rainfall is considered the trigger of slope collapse, whereas previous rainfall can be regarded as a potential factor 

of a landslide. Previous rainfall influences the water content of the soil, which in turn affects the amount of rainfall required 

to trigger a landslide (Seo and Funasaki, 1973). 

Figure 1 shows an illustration of rainfall events defined based on EAR (Seo and Funasaki, 1973). The diagram shows a 10 

concentrated rainfall event with no rainfall in the preceding or subsequent 24 hours and can thus be considered a continuous 

rainfall event. A continuous rainfall event that occurs simultaneously with a landslide is the main rainfall event. The 

beginning of the main rainfall event is defined as the time point when the rainfall first reaches 4 mm. The calculation of 

accumulated rainfall ends at the time when the landslide occurs. However, because the exact time of a landslide cannot be 

precisely determined, we regarded the hour with the maximum rainfall during the main rainfall event as the time when the 15 

landslide occurred in this study. 

In accordance with previous studies, we defined EAR as the sum of direct and previous indirect rainfall. Previous indirect 

rainfall is the rainfall accumulated during the 7 days prior to the main rainfall event and can be expressed as follows (Seo 

and Funasaki, 1973; Crozier and Eyles, 1980): 

 
7

1n bn
n PPk               (5) 20 

where Pb denotes the previous indirect rainfall, Pn denotes the rainfall during the n days prior to the main rainfall event (mm), 

and k denotes a diminishing coefficient set as 0.9 in this study (Chen et al., 2005). Direct rainfall encompasses the 

continuous rainfall accumulated during the rainfall events, starting from the first rainfall to the time of landslide occurrence. 

Direct rainfall has a direct and effective impact on landslide occurrence and is thus not diminished. Therefore, EAR could be 

expressed as follows in this study: 25 

br PPEAR                 (6) 

where Pr (mm) represents the rainfall accumulated during the main rainfall event from the first rainfall to the time of 

landslide occurrence, and Pb (mm) represents the previous indirect rainfall. 
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2.3.2 Intensity of Rolling Rainfall (IR) 

Rainfall intensity refers to the amount of rainfall within a unit of time. It is considered a crucial index for evaluating disasters 

because greater intensity or longer durations have considerable impacts on slope stability. Furthermore, rainfall-induced 

landslides may be triggered by several hours of continuous rainfall. The raw rainfall data in this study was hourly 

precipitation; thus, IR (mm/h) can be expressed as follows: 5 

tmtmt
m

mtmR IIIII   211          (7) 

where I denotes rainfall intensity, m denotes the number of rolling hours of rainfall (set as 3 hours in this study), ImR denotes 

the IR during m hours, and It denotes the rainfall intensity during hour t. 

 

2.4 MHEM 10 

The MHEM is a diverse non-linear mathematical model. Based on relative relationships, the MHEM presents an instability 

index (Dt) to indicate susceptibility risk in different areas. The objective is to analyze the variability of landslide-inducing 

factors and estimate the variance of causal predisposing factors and then to determine the weight of each factor according to 

the value of variance, finally to derive a suitable landslide susceptibility assessment model (Su, et al., 1998; Lin et al., 2009; 

Chue, et al., 2015). 15 

The causal predisposing factors in the MHEM are rated based on the frequency of landslide occurrence, which is calculated 

as follows:  

T
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where Ri represents the landslide pixel grid ratio of the various factors in class grade i, ri represents the number of landslide 

pixels grids in class grade i, and rT represents the total number of pixels grids. Thus, landslide percentage Xi is expressed as 20 
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where Xi denotes the landslide percentage of class grade i and Ri denotes the sum of the landslide pixel grid ratios. 

Based on the landslide percentages of the various classes for each predisposing causal factor, the normalized score value of 

classes for each factor (dn) can be calculated using Eq. (10), and presented in relative values ranging from 1 to 10. 
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In Eq. (10), Xi represents the causal rate of the sample region and Xmax and Xmin represent the maximum and minimum 

landslide percentages of the factor in the various sample regions, respectively. 

To estimate the weight of influence of each predisposing causal factor, the coefficient of variation (V) of the landslide ratios 

derived from the class grade of the predisposing impact factors is used to represent the sensitivity of landslide ratios in 

different predisposing impact factor classes grades. A smaller coefficient of variation denotes higher similarity among the 5 

landslide probabilities in the various classes grades, which indicates that this factor grading method cannot determine which 

areas have higher or lower landslide probabilities. By contrast, a greater coefficient of variation denotes that this factor 

grading method can be used to describe the influence of factor classes grades on landslides. Thus, the coefficient of variation 

among the predisposing impact factors can indicate the factor weights. The coefficient of variation is calculated as shown in 

Eq. (11): 10 

%100



X

V          (11) 

where σ is the standard deviation and X is the mean landslide percentage of the various factor classes grades. 

We divided the coefficient of variation of each individual factor by the total coefficient of variation of all factors to derive 

the factor weight, which represented the degree of influence of the factor on landslide occurrence. The factor weight can be 

calculated as shown in Eq. (12), where W is the factor weight and V is a coefficient of variation. 15 
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Finally, the weight (Wi) of each factor is determined by the rank of its variance (V), and each factor is assigned a different 

weight. Subsequently, a nonlinear mathematical model can be derived as follows: 

nW
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t ddddddD  54321

54321          (13) 

where Dt is the instability index of the samples, expressed using relative values ranging from 1 to 10. A cumulative value 20 

closer to 10 indicates greater landslide potential, whereas a cumulative value closer to 1 indicates lower landslide potential. 

By using the concept of log-normal distribution in statistics, we converted the levels of instability index derived using the 

MHEM into probabilities of landslide occurrence. The calculation formula of the log-normal distribution is shown in Eq. 

(14): 
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where x denotes the level of the instability index and μ and σ denote the mean and standard deviation of the level of the 

instability index, respectively. After calculating the probabilities of landslide occurrence by using the log-normal distribution, 

we normalized the probabilities to range from 0 to 1 for convenience. The normalization formula is shown in Eq. (15). 
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In Eq. (15), Xi represents the factor being normalized and Xmax and Xmin represent the maximum and minimum values of the 5 

factor, respectively. 

3 Study area 

We referred to the historical data on road disasters from the NCDR (2017) and considered road sections where rainfall-

induced landslides occurred frequently in southern Taiwan. We focused on the periods before and after Typhoon Nanmadol 

(2011) and Typhoon Kong-rey (2013) hit southern Taiwan, and we selected part of Provincial Highway No. 20 in the 10 

catchment area of Laonung River in southern Taiwan as our study area (Fig. 2), which includes part of areas from three 

districts in Kaohsiung City (Jiashian, Liouguei, and Taoyan). The Laonung River flows SW cross over the southern of study 

area which originating from the Jade Mountain. The study area is located in a tropical monsoon climate zone. According to 

the climate statistics (1983 - 2012) recorded from the Central Weather Bureau, the average annual rainfall is approximate 

2,758 mm. Provincial Highway No. 20 is east-west direction, the starting point of the highway is Tainan City in southern 15 

Taiwan, and the ending point is Degao Community in Guanshan Town, Taitung County, with a total length of 203.982 km. 

Within the study area, Highway No. 20 starts from Liouguei District (76K + 000) in the west and goes to Taoyan Village 

(87K + 500) in the Taoyan District. According to the survey data from the Directorate General of Highways (2016), the road 

width of the Highway No. 20 passing through the study area is about 8.8 meters. The average traffic flow and the total 

number of vehicles carried per day for both directions are 2,260 PCU (Passenger Car Unit) and 1,434, respectively.  In the 20 

study area, most of the traffic vehicles are sedans, followed by trucks and buses. 

4 Image interpretation and classification 

4.1 Preprocessing of satellite images 

This study employed and interpreted satellite images taken by FORMOSAT-2 (FM2). FM2 images have been extensively 

used to identify natural disasters and land use (e.g., Lin et al., 2004; Lin et al., 2006; Liu et al., 2007; Chen et al., 2009, Lin 25 

et al., 2011; Chen et al., 2013a). The FORMOSAT-2 satellite has a circular and sun synchronous orbit. With its high torque 

reaction wheels for all axes, the FORMOSAT-2 is able to point to a ±45° along track and ±45° across track, and is thus able 

to capture any scene each day in all of Taiwan if necessary (Liu et al., 2007). FORMOSAT-2 images are available in 2 m 
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resolution in panchromatic (pan) and 8 m in multispectral (ms) from visible to near-infrared with a coverage of 24 km×24 

km. In the present study, prior to interpretation, the satellite images underwent spectral fusion, coordinate positioning, 

cropping, and cloud removal. The images taken by FM2 are multispectral with blue, green, red, and near-infrared (NIR) 

wavelengths (Chen et al., 2013a; Chue et al., 2015). Image fusion and coordinate positioning were conducted using the 

import data and coordinate positioning tool of ERDAS IMAGINE (2013). Then, Because clouds and shadows affect the 5 

accuracy of image interpretations, we used the image analysis tool of ArcGIS to remove clouds from the images. 

4.2 Training site selection and mapping 

To map the sample areas required for image interpretation, we overlapped the high-resolution, preprocessed satellite images 

of the study area before and after the typhoons and mapped the training sites by using a GIS platform. Based on field 

investigations and relevant studies (Chen et al., 2009; Chen et al., 2013a; Chue et al., 2015), we selected areas with water, 10 

roads, buildings, crops, vegetation, river channels, and bare land within the study area as the sample area factors for 

interpretation training. 

4.3 Image interpretation and accuracy assessment 

Image interpretation and classification were conducted using the Maximum Likelihood module in ERDAS IMAGINE. The 

interpretation and classification results of the satellite images before and after Typhoon Nanmadol in 2011 and Typhoon 15 

Kong-rey in 2013 are shown in Fig. 3. The different colors in the images represent different interpretation factors. 

To verify the accuracy of the results, we randomly extracted 25 points from the satellite images for each training factor as 

checkpoints and tested the accuracy by using the aforementioned error matrix approach. With the satellite images before and 

after Typhoon Kong-rey in 2013 as an example, Table 2 shows the error matrix and accuracy assessment results of the 

satellite image interpretation and classification processes. Table 3 presents the Kappa values and OA results of the satellite 20 

images captured before and after the two typhoons. As mentioned, Kappa values ranging from 0.4 to 0.8 indicate moderate 

accuracy, and thus the interpretation results had moderate to high accuracy. 

5 Landslide susceptibility assessment 

To evaluate the landslide susceptibility of slopes within the study area, we constructed 8 m  8 m grids by using the GIS 

platform along with the interpretation results of the two typhoons. We also constructed an 8 m  8 m digital elevation model 25 

(DEM) and input the classification results, thematic map of predisposing factors map of the natural environment, and rainfall 

data into the pixel to aid subsequent landslide susceptibility assessments. 
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5.1 Predisposing Impact factor selection and factor correlation test 

5.1.1 Predisposing Impact factor selection 

Referring to Chen et al. (2009), we divided the predisposing impact factors of landslides into three categories: natural 

environment, land disturbance, and rainfall. 

A. Natural environment factors 5 

(A) Elevation 

The influence of elevation varies with the climate and thus affects the distribution of vegetation on the slope and type of 

weathering. In addition, elevation reflects the influence of geological structure, stress, and time. The highest and lowest 

elevations in the study area were 1481 and 365 m, respectively. Using the GIS platform, we extracted the elevation data from 

the DEM of the study area to estimate the mean elevation of each grid. We divided the elevation data into seven classes 10 

grades at intervals of 300 m. 

(B) Slope gradient 

A slope’s gradient generally exerts significant impact on slope stability. By using the DEM and gradient analysis of the GIS 

platform, we calculated the mean gradient of each pixel grid in the study area; subsequently, we divided the gradient values 

in the pixels grids within the study area into seven classes grades. 15 

(C) Aspect 

Rainfall-induced landslides are subject to the influence of seasonal changes such as those related to rainfall and wind 

direction. Thus, the direction of the slope must be considered. As described, we used the DEM and aspect analysis function 

of the GIS platform to calculate the average aspect of the pixels grids in the study area. According to their direction, we 

divided them into six classes from windward to flat ground. 20 

(D) Geology 

Referring to the digital file of the Geologic Map of Taiwan, Scale 1:50,000, Chiahsien, which was compiled by the Central 

Geological Survey of the Ministry of Economic Affairs in 2000, we determined that the geology of the study area includes 

five types of rock: the upper part of Changshan Formation, the Tangenshan Formation, the Changchihkeng Formation from 

the Miocene period, and modern alluvium and terrace deposits from the Holocene period. We divided geological strength 25 

into six classes grades (Chen et al., 2009). 

(E) Terrain roughness 

Terrain roughness refers to the degree of change in pixel grid height. Wilson and Gallant (2000) proposed the use of the 

standard deviation of height within a radius to measure the degree of change in height because of its indicative meaning in 

relation to changes in regional height. Using the Neighborhood (Focal Statistics) of Spatial Analyst Tools in ArcGIS, we 30 
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calculated the terrain roughness of the DEM. Statistical cluster analysis was used to automatically divide terrain roughness 

into six classes grades. 

(F) Slope roughness 

Slope roughness refers to the fluctuations in slope gradient in the pixels grids. High slope roughness means that the slope 

gradient varies considerably (Wilson and Gallant, 2000). Slope roughness is calculated through the same method as terrain 5 

roughness, except with the original elevation values being replaced with the slope gradient values obtained using ArcGIS. 

Just as terrain roughness was graded, we first used Spatial Analyst Tools in ArcGIS to estimate the slope roughness of each 

pixel grid, after which we used cluster analysis to automatically divide slope roughness into six classes grades. 

(G) Distance to water 

Streams will cause soil erosion and riparian erosion, which directly or indirectly affect the stability of the slope. We 10 

calculated the distances to water using Tool of Buffer in ArcGIS and divided the distances into seven classes levels. 

(H) Distance to road 

The construction of the roads will also have the influence on the stability of the slope. Therefore, we also calculated the 

distances to road using Tool of Buffer in ArcGIS and divided the distances into seven classes levels. 

B. Land disturbance factors 15 

Land disturbance varies with space and time. Based on the tendency to promote landslides, the index of land disturbance was 

developed, and we made some revisions to the qualitative approach proposed by Chen et al. (2009, 2013b) to calculate land 

disturbance and selected roads, buildings, crops, bare land, and vegetation as the land disturbance factors of landslides in the 

study area. We extracted the disaster and ground surface data from previous satellite image interpretation and classification 

results and input the land disturbance factors into the pixels grids by using the GIS platform. Refer to Chen et al. (2009, 20 

2013b), the scores of the index for disturbance condition (IDC) in the pixels grids are assigned from five decreasing to one 

which corresponding to bare land, roads, buildings, crops and vegetation, respectively. shown in Table 4. 

C. Rainfall factors 

We collected precipitation data from weather stations of the Central Weather Bureau, including Guanshan, Biaohu, Hsiao 

Guanshan, Gaojhong, Sinfa, Jiashian, and Xinan. Table 5 displays the station information. We then calculated the EAR and 25 

3-hour IR (I3R) levels observed at each station. The results from Typhoon Nanmadol in 2011 and Typhoon Kong-rey in 2013 

are compiled in Table 64. By using the Inverse Distance Weighting (IDW) function of ArcGIS and the EAR and maximum 

I3R values of the weather stations, we estimated the rainfall of each pixel grid throughout the study area and then used cluster 

analysis to divide the results into six classes levels. 
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5.1.2 Factor correlation test 

To establish a landslide susceptibility assessment model, we selected elevation, slope gradient, aspect, geology, terrain 

roughness, slope roughness, distance to water, distance to road, IDC, and rainfall as landslide-predisposing triggering factors. 

Rainfall included EAR and maximum I3R. 

We employed the Pearson correlation test tool in SPSS software (2005) to examine the correlation among these factors. The 5 

correlation coefficients ranged from -1 to +1, with +1, -1, and 0 indicating complete positive correlation, complete negative 

correlation, and no correlation between two variables, respectively. Factors with high correlation were then subjected to a 

paired sample t test conducted using SPSS to examine the significance of the correlation between them. Those with high 

correlation were eliminated. 

Table 75 presents the test results regarding the correlation between the predisposing impact factors. As shown, the degree of 10 

correlation between most factors was moderate to low. A high degree of correlation was found only between elevation and 

terrain roughness and between slope gradient and slope roughness. Thus, we administered paired sample t tests to these two 

factor pairs to test the significance of the correlation. The results in Table 86 show that the significance was 0 (<0.05) for the 

correlation between both pairs, indicating no correlation; thus, these factors were not eliminated. 

5.2 Landslide susceptibility assessment and hazard map 15 

To apply the MHEM to establish a landslide susceptibility assessment model, we input the natural environment, land 

disturbance, and rainfall factors into the pixels grids by using the GIS platform. By using the changes in bare land between 

the images before and after the typhoons and applying image subtraction aided by manual checking, we obtained the pixel 

grid data of the rainfall-induced landslide locations in the study area. With the study area after Typhoon Nanmadol in 2011 

as an example, we considered EAR during the rainfall period and rated the classes grades by using the factor weights derived 20 

using the MHEM, as shown in Table A1 of Appendix A. 

The calculation process is explained in this paper by using elevation as an example. In accordance with factor selection, the 

elevation factor was divided into seven classes grades. Aided by the GIS platform, we calculated the total number of pixels 

grids, total number of landslides, and landslide percentage within each elevation level in the study area by using Eqs. (8) and 

(9). Based on the landslide percentages of the elevation factor and the minimum and maximum landslide percentages, we 25 

subsequently obtained the scores of the factors by using Eq. (10). We then calculated the standard deviation, coefficient of 

variation, and weight values by using Eqs. (11) and (12); the results are listed in Table A1 of Appendix A. The presented 

results show that the standard deviation (σ), coefficient of variation (V), and factor weight (W) of landslide percentage were 

0.021, 0.764, and 0.087, respectively. Finally, we calculated the instability indices by using the weight values and scores of 

the factors through Eq. (13). Furthermore, the results in Table A1 of Appendix A indicate that the degrees of land 30 

disturbance (IDC), geology (Gs), slope gradient (Ss), and slope roughness had the greatest influence on landslides in the study 

area, followed by distance to water (Ds), EAR, and elevation (El). 
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We considered EAR and I3R and used an instability index to determine the level of landslide susceptibility of slopes 

throughout the study area. The derived instability index intervals (Table 107) for EAR and I3R were ranged from 2.05 to 9.59 

and 2.02 to 9.96, respectively. By using Eqs. (14) and (15), the landslide probability intervals calculated based on EAR and 

I3R are presented in Table 107. 

We employed the mean probability of landslide occurrence to differentiate between high and low landslide susceptibility. 5 

Landslides were considered more likely to occur in areas where the probability of landslide occurrence was greater than the 

mean. By contrast, landslides were considered less likely to occur in areas where the probability of landslide occurrence was 

lower than the mean. With rainfall factor EAR as an example, we determined the mean probability of landslide occurrence to 

be 0.46. We further divided landslide susceptibility into four levels: high (0.731–1), medium high (0.461–0.73), medium low 

(0.23–0.46), and low (0–0.23). The results showed that the mean probability of landslide occurrence varied little, regardless 10 

of whether it was calculated using EAR or I3R. 

By using the GIS platform, we considered the landslide susceptibility calculated using EAR for Typhoon Nanmadol in 2011 

as an example. As illustrated in Fig. 4, we included an overlay created by the NCDR and showing the locations of historical 

disasters within the study area. The results revealed a total of 24 historical disasters, 17 of which were situated in areas of 

medium high or high landslide susceptibility. Therefore, the estimation accuracy in this study was approximately 71%. 15 

Regarding Typhoon Kong-rey in 2013, 18 historical disasters occurred within areas of medium high or high landslide 

susceptibility, thereby yielding 75% accuracy. Table 118 presents the accuracy levels associated with using different rainfall 

factors to calculate landslide susceptibility for different typhoons. 

5.3 Investigation of rainfall factors and instability index 

To understand the relationship between the rainfall factors and the degree of instability on the slopes in the study area after 20 

typhoons, we first removed the cloud cover grids from post typhoon images and subsequently employed cluster analysis to 

divide the instability indices of the pixels grids into three levels: high, medium, and low. We then collected random samples 

based on the proportions of landslide and nonslide pixels grids in each level (50 landslide and 50 non landslide pixel grid 

points) and plotted their relationship. Table 129 and Fig. 5a–d present the relationships between the rainfall factors (EAR and 

I3R), instability index, and landslide occurrence in the pixels grids following Typhoon Nanmadol in 2011 and Typhoon 25 

Kong-rey in 2013. Figure 5a and b consider EAR, whereas Fig. 5c and d consider I3R. The presented results indicate that the 

typhoon events increased the degree of slope instability (Dt) and landslide occurrence, regardless of whether EAR or I3R was 

considered. Furthermore, significantly more landslide points were situated in areas of high instability than in areas of other 

levels of instability, and landslides rarely occurred in areas of low instability. Moreover, areas of high slope instability were 

prone to landslides even if their EAR or I3R was low. By contrast, areas of low instability required more rainfall for landslides 30 

to be possible. The results (Table 129) further showed that the EAR and I3R levels of Typhoon Kong-rey in 2013 were greater 

than those of Typhoon Nanmadol in 2011. Thus, in any Dt level, the proportion of landslides that occurred in the study area 

after Typhoon Kong-rey was higher than that after Typhoon Nanmadol. Figure 5e and f present the relationships between 
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EAR  I3R, the instability index, and landslide occurrence; EAR  I3R is the index of rainfall-induced landslide (ILR), with a 

higher value indicating higher susceptibility to a landslide. The figures show that for a high instability index, even a small 

rainfall event could trigger a landslide (lower right corners of the figures). By contrast, for a low instability index, a larger 

rainfall event could not easily trigger a landslide (upper left corners of the figures). 

6 Landslide location analysis 5 

We analyzed the spatial characteristics of landslides by using landslide locations collected from before and after both of the 

two typhoons and the land surface interpretation results of the study area. 

6.1 Investigation of landslide predisposing impact factors and landslide area 

The influence of predisposing causal factors on landslides varies. In this study, we examined the relationships between 

landslide area and various predisposing landslide factors. By using the area of landslides (i.e., the number of landslide pixels 10 

grids) induced by Typhoon Nanmadol in 2011 as an example, we investigated the influences of the predisposing causal 

factors (elevation, slope gradient, aspect, geology, slope roughness, terrain roughness, distance to water, distance to road, 

and degree of land disturbance) on landslides. The various factor classes levels and corresponding numbers of landslide 

pixels grids are shown in Fig. 6a–i. 

Figure 6a presents the relationship between different classes levels of elevation and the number of landslide pixels grids 15 

(landslide area). As shown in the figure, the number of landslide pixels grids in the study area peaked at elevations between 

450 and 750 m and then declined as the elevation increased. Figure 6b displays the relationship between different classes 

levels of slope gradient and the number of landslide pixels grids (landslide area). As shown in the figure, the number 

landslide pixels grids in the study area increased with the slope gradient and peaked between 30° and 55°. Landslides rarely 

occurred on slopes steeper than 55°. Figure 6c illustrates the relationship between aspect and the number of landslide pixels 20 

grids, with aspect divided into eight categories: north, northeast, east, southeast, south, southwest, west, and northwest. As 

shown in the figure, the number of landslide pixels grids was highest on slopes facing south, followed by those on slopes 

facing east and southeast. We speculate that this is because rainfall during the typhoon season in Taiwan promotes poor 

cementation and high weathering on slopes along rivers, which consequently prompts these slopes to develop toward low-

lying rivers (which run from the northeast to the southwest) after rainfall events. 25 

Figure 6d shows the relationship between geology and the number of landslide pixels grids. As shown in the figure, the 

Sanhsia Group and its stratigraphic equivalence lead to landslides more easily than does the Lushan Formation in the study 

area. The Sanhsia Group and its stratigraphic equivalence mainly comprise sandstone, shale, and interbedded sandstone and 

shale. Shale has weaker cementation, lower strength, and a greater tendency to weather and fracture. By contrast, the Lushan 

Formation consists of argillite, slate, and interbedded argillite and sandstone, and its strength is controlled by cleaving; some 30 

areas are prone to weathering and fracturing. Thus, both rock types are more likely to collapse, but on the whole, the Sanhsia 
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Group and its stratigraphic equivalence collapse more easily than does the Lushan Formation. Furthermore, this result 

indicates that the locations of landslide areas within the study area are associated with geology. Figure 6e presents the 

relationship between slope roughness and the number of landslide pixels grids. The number of landslide pixels grids within a 

level of slope roughness first increased with the slope roughness and then began to decline once a certain level of slope 

roughness (35–40) was reached. This result is similar to that of the influence of slope gradient on the number of landslide 5 

pixels grids. Figure 6f displays the relationship between terrain roughness and the number of landslide pixels grids. As 

shown in this figure, the results are similar to those regarding the influence of elevation on the number of landslide pixels 

grids; the number of pixels grids declined when the terrain roughness was greater than 500 and was very small low the 

terrain roughness was greater than 1200. 

Figure 6g illustrates the relationship between distance to water and the number of landslide pixels grids. The presented 10 

results show a significantly greater number of landslide pixels grids within 300 m of water. The width of the river channel 

within the study area was determined to range from 100 to 200 m, revealing that the development of landslide areas near 

water in the study area is caused by rainfall significantly raising the water level in the river, which scours the slope toe, 

affects slope stability, and triggers landslides. Figure 6h presents the relationship between distance to road and the number of 

landslide pixels grids. The presented results reveal that areas between 100 and 300 m from roads had the greatest number of 15 

landslide pixels grids. Further examination of the relationship between distance to road and the area and number of 

landslides revealed that most landslides between 0 and 100 m from roads were small collapses, whereas those between 100 

and 300 m from roads were larger in area. The number of landslides 0–100 m from roads was greater than that 100–300 m 

from roads. 

The degree of land disturbance can represent the changes of surface conditions including roads, buildings, crops, bare land, 20 

and vegetation. A greater degree of land disturbance likely indicates a greater degree of surface changes, which can yield a 

greater number of landslide pixels grids. Figure 6i shows the relationship between the degree of land disturbance and the 

number of landslide pixels grids. The presented results indicate that the number of landslide pixels grids increased with the 

degree of land disturbance. 

6.2 Landslide scale and spatial distribution 25 

We employed the terrain tool in ERDAS IMAGINE and the DEM to identify the ridges and valleys in the study area. 

Following the methods in previous studies (Meunier et al., 2008; Chue et al., 2015), we extracted the distances between the 

highest point of a landslide area and the nearest ridge (dr), between the lowest point of the landslide area and the nearest 

stream (ds), and between the ridge and the stream (dt) (Fig. 7). Furthermore, in Taiwan, many slopes are visible on 

developed, mountain roads built between ridges and streams. Therefore, we explored the spatial distribution of landslides 30 

above and below mountain roads. Similar to Fig. 7a, to explore the spatial distribution of landslides, we extracted the 

distances between the highest point of a landslide area on a slope above a road and the nearest ridge (dr), between the lowest 

point of the landslide area and the nearest mountain road (dmu), and between the ridge and the mountain road (dtu) (Fig. 7b); 
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we also investigated this distribution by extracting the distances between the highest point of a landslide area on a slope 

below a road and the nearest mountain road (dmd), between the lowest point of the landslide area and the nearest stream (ds), 

and between the mountain road and the stream (dtd) (Fig. 7c). 

This study examined the spatial distribution of landslides in the region along Provincial Highway No. 20 before and after 

Typhoon Nanmadol in 2011 and Typhoon Kong-rey in 2013. Using the approach shown in Fig. 7a, we mapped the bare land 5 

in the study area, as shown in Fig. 8a–d. Of these figures, Fig. 8a and c show the conditions before the typhoons, whereas 

Fig. 8b and d present the conditions after the typhoons. The presence of bare locations near the Y axis (dr/dt  0) denotes that 

the bare land originated near the ridge. By contrast, the presence of bare locations near the X axis (ds/dt  0) denotes that the 

bare land progressed toward the stream. Thus, the presence of bare locations near the origin denotes that the bare land 

originated near the ridge and progressed toward the stream. 10 

The results in Fig. 8a–d show more bare locations in the lower right halves of the graphs, some of which are larger in area. 

The figures indicate fewer bare locations in the upper left halves of the graphs, and the ones that are present are smaller in 

area. These spatial distribution characteristics are similar to those derived by Meunier et al. (2008). We speculate that this is 

because the frequency of rainfall-induced landslides increases significantly because of bank erosion, which is shown in the 

lower right half of Fig. 8 (dr/dt  0.5 and ds/dt  0.5). Furthermore, the bare locations before and after Typhoons Nanmadol 15 

and Kong-rey show that the bare land does not increase in number but increases significantly in area, implying that old 

landslides may result in more collapses or expansions of the affected area. In addition, the number of old landslides is greater 

than that of new landslides. 

We explored the spatial distribution of landslides on slopes above (Fig. 9) and below (Fig. 10) mountain roads in the study 

area before and after Typhoon Kong-rey in 2013. Figure 9a and Fig. 10a present the spatial distribution of bare land before 20 

the typhoon, whereas Fig. 9b and Fig. 10b present the spatial distribution of bare land after the typhoon. 

As shown in Fig. 9, most landslides on the slopes above the mountain roads occurred close to the roads, most likely because 

road construction involves cutting the slope toe and increasing the gradient. After the typhoon, the bare locations on the 

slopes above the roads in the study area did not increase in number significantly; thus, rainfall did not exert a substantial 

impact on the slopes above the roads. The results in Fig. 10 show bare locations on the slopes below the mountain roads 25 

developing from near the roads to the streams. The bare locations near the streams may also have been affected by rainfall-

induced bank erosion. However, the bare land near the roads may have been a result of roads being constructed in the study 

area, which affects slope stability and increases the probability of landslides. Furthermore, the bare locations near the roads 

slightly increased in number after the typhoon, likely because the roads changed the routes of surface runoff. The area of 

bare land near the streams also increased, possibly because the water flow scours the slope toe and causes continual bank 30 

collapses. Thus, typhoons have a significant impact on the stability of slopes below mountain roads. 
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7 Conclusions 

This study applied the maximum likelihood method to interpret and classify satellite images before and after two typhoons in 

2011 and 2013. We extracted landslide and land use information from the areas surrounding roads and then compiled the 

rainfall and DEM data from the typhoon events. By using the MHEM, we established a landslide susceptibility assessment 

model and examined the relationships between predisposing causal factors and the area and number of landslides within the 5 

study area, as well as the relationships between roads and the spatial distribution of landslides. The results show that the 

Kappa coefficients associated with the use of the maximum likelihood method to interpret and classify satellite images 

before and after Typhoon Nanmadol in 2011 and Typhoon Kong-rey in 2013 ranged from 0.53 to 0.66, whereas the OA 

ranged from 61% to 71%, indicating moderately high accuracy. According to the results of the instability index-based 

landslide susceptibility assessment model, the degree of land disturbance, geology, slope gradient, and slope roughness had 10 

the greatest impacts on landslides. A comparison of historical landslides triggered by the typhoons and the results of the 

hazard map revealed 71% accuracy for Typhoon Nanmadol in 2011 and 75% accuracy for Typhoon Kong-rey in 2013. 

Regarding the influence of the predisposing causal factors, an elevation of 450–750 m, a slope gradient of 30°–55°, and 

distances within 300 m of water or roads were associated with a larger scale of landslides. The scale of landslides also 

increased with the degree of land disturbance. The relationships between the ILR, instability index, and landslide occurrence 15 

indicate that for a high instability index, even a smaller rainfall event could trigger a landslide. By contrast, for a low 

instability index, a larger rainfall event could not easily trigger a landslide. Thus, the instability index can effectively reflect 

landslide susceptibility. Comparisons of the distribution of bare land before and after typhoon events showed that most 

landslides in the study area were caused by stream water scouring away the toes of bank slopes. Although bare locations did 

not significantly increase in number after the typhoon events, they increased significantly in area, implying that the number 20 

of old landslide areas holding more collapses or expansions was greater than that of new landslide areas developing. In 

addition, the results obtained from observing changes in slopes above and below mountain roads after the typhoon events 

indicate that the number of bare locations on the slopes above the roads in the study area did not increase significantly, 

whereas the bare locations near the roads on the slopes below the roads slightly increased in number after the typhoon events, 

likely because of the roads changing the routes of surface runoff. The amount of bare land near streams also increased, 25 

possibly because the water flow scours the slope toe. 
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Figure 1: Definition of Rainfall Events based on Effective Accumulated Rainfall (modified from Seo and Funasaki, 1973). 
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Figure 2: Study Area in the southern Taiwan, purple line depict the distribution of mountain road. 
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Figure 3: Interpretation and Classification Results of Satellite Images Before (Left) and After (Right) Typhoon Nanmadol (Top) 

and Typhoon Kong-rey (Bottom). 
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Figure 4: Landslide Susceptibility in Study Area, in which cross symbols represent the historical disasters collected from NCDR 

(2017). 
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(a) Typhoon Nanmadol (2011) based on EAR (b) Typhoon Kong-rey (2013) based on EAR 

  

(c) Typhoon Nanmadol (2011) based on I3R (d) Typhoon Kong-rey (2013) based on I3R 

  

(e) Typhoon Nanmadol (2011) based on EARI3R (f) Typhoon Kong-rey (2013) based on EARI3R 

Figure 5: Relationships among Instability Index, Effective Accumulated Rainfall, and Landslide Occurrence in Study Area after 

Typhoons Nanmadol (2011) and Kong-rey (2013), respectively. 
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(a) Elevation (b) Slope gradient 

  

(c) Aspect (d) Geology 

  

(e) Slope roughness (f) Terrain roughness 
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(g) Distance to water  (h) Distance to road 

 

(i) Degree of land disturbance  

Figure 6: Relationships between Landslide Predisposing Factors and Number of Landslide Pixels in Study Area. 
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(a) Entire slope (b) Slope above mountain road (c) Slope below mountain road 

Figure 7: Diagrams of Landslide Area on Slope, in which dr represents the distance between the highest point of a landslide area 

and the nearest ridge, ds the distance between the lowest point of the landslide area and the nearest stream, and dt the distance 

between ridge and stream. 
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(a) Before Typhoon Nanmadol in 2011  (b) After Typhoon Nanmadol in 2011 

  

(c) Before Typhoon Kong-rey in 2013 (d) After Typhoon Kong-rey in 2013 

 

Figure 8: Spatial Distribution of Bare Land in the Study Area before and after the Typhoons Nanmadol (Top) and Typhoon Kong-

rey (Bottom), the scales of bubble reflect the area of each bare land. 
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(a) Before typhoon (b) After typhoon 

 

Figure 9: Spatial Distribution of Bare Land on Slopes above Mountain Roads in the Study Area before and after Typhoon Kong-

rey in 2013, the scales of bubble reflect the area of each bare land. 
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(a) Before typhoon (b) After typhoon 

 

Figure 10: Spatial Distribution of Bare Land on Slopes below Mountain Roads in the Study Area before and after Typhoon Kong-

rey in 2013, the scales of bubble reflect the area of each bare land. 
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Table 1: Relationship Table of Error Matrix (Verbyla, 1995). 

 
Actual ground surface 

Total 
Class A Class B 

Classification 

results 

Class A X11 X12 X+i 

Class B X21 X22 X+i 

Total Xi+ Xi+ X++ 
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Table 2: Error Matrix of Interpretation Results of Satellite Images before and after Typhoon Kong-rey in 2013. 

 Water Roads Buildings Crops Vegetation 
River 

channels 

Bare 

land 
Subtotal 

User’s 

accuracy (%) 

Water 15 0 0 0 0 0 0 15 100 

Roads 1 7 2 0 0 3 0 10 70 

Buildings 2 0 22 0 0 0 0 24 92 

Crops 0 4 0 11 0 0 1 16 69 

Vegetation 1 5 0 12 25 0 2 45 56 

River channels 6 3 1 0 0 24 4 38 63 

Bare land 0 6 0 2 0 1 18 27 67 

Subtotal 25 25 25 25 25 25 25 175  

Producer’s accuracy 

(%) 
60 28 88 44 100 95 72   

Kappa = 0.64; OA = 70% 
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Table 3: Interpretation Results of Satellite Images before and after Typhoons Nanmadol and Kong-rey. 

Time of satellite image  Kappa OA (%) 

Before Typhoon Nanmadol (2011.08.17) 0.64 69 

After Typhoon Nanmadol (2012.10.14) 0.53 61 

Before Typhoon Kong-rey (2013.08.17) 0.66 71 

After Typhoon Kong-rey (2013.11.23) 0.64 70 
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Table 4: Scores of Index for Disturbance Condition (revised from Chen et al., 2009, 2013). 

Index for 

disturbance 

condition 

Bare land Roads Buildings Crops Vegetation 

Score 5 4 3 2 1 
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Table 5: Information of Weather Stations Used in This Study (Central Weather Bureau). 

Station No. Station name 
Longitude 

(degrees) 

Latitude 

(degrees) 
X(TWD97 Taiwan) Y(TWD97 Taiwan) 

C1O880 Guan-shan 120.5941 23.1734 208443.362 2563542.352 

C0V150 Biao-hu 120.6647 23.2602 215693.732 2573135.951 

C1V220 
Hsiao Guan-

shan 
120.8136 23.1542 230913.463 2561372.400 

C1V230 Gao-jhong 120.7167 23.1349 220987.130 2559250.525 

C1V240 Sin-fa 120.6601 23.0521 215169.331 2550097.989 

C0V250 Jia-sian 120.5918 23.0801 208178.971 2553211.279 

C1V270 Xi-nan 120.8064 23.0760 230166.772 2552711.336 
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Table 64: Effective Accumulated Rainfall and Intensity of Rolling Rainfall Observed at Weather Stations during Typhoon 

Nanmadol and Typhoon Kong-rey. 

Weather station 

name 

2011 Typhoon Nanmadol 2013 Typhoon Kong-rey 

EAR (mm) Max I3R (mm/h) EAR (mm) Max I3R (mm/h) 

Guan-shan 74 57 376 147 

Biao-hu 68 39 413 145 

Hsiao Guan-shan 101 48 415 123 

Gaojhong 337 69 544 136 

Sinfa 504 61 288 123 

Jiasian 379 46 233 101 

Xi-nan 192 48 518 102 

 

  5 
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Table 75: Correlation Test Results Between the Predisposing Factors. 

 Elevation 
Slope 

gradient 
Aspect 

Slope 

roughness 

Terrain 

roughness 

Distance 

to water 

Distance 

to road DCI  EAR 

Elevation 1 0.39 -0.01 0.47 0.99 0.52 0.62 -0.23 -0.66 

Slope 

gradient 
- 1 -0.07 0.85 0.37 0.11 0.18 -0.09 -0.19 

Aspect - - 1 -0.09 -0.03 0.13 0 0 -0.12 

Slope 

roughness 
- - - 1 0.48 0.14 0.23 -0.11 -0.25 

Terrain 

roughness 
- - - - 1 0.53 0.63 -0.24 -0.67 

Distance 

to water 
- - - - - 1 0.49 -0.21 -0.47 

Distance 

to road 
- - - - - - 1 -0.14 -0.61 

DCI  - - - - - - - 1 0.14 

EAR - - - - - - - - 1 
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Table 86: Paired Sample t Test Results Between Elevation and Terrain Roughness and Slope Gradient and Slope Roughness. 

 

Paired difference 

t 

Degree 

of 

freedom 

Significance 

(Two-tailed) Mean S.D. 

Standard 

error of 

mean 

95% confidence interval of 

difference  

Upper limit Lower limit 

Elevation-terrain 

roughness 
-2.69 46.5 0.07 -2.83 -2.54 -36.8 407493 0 

Slope gradient-

slope roughness 
-0.11 7.9 0.01 -0.14 -0.08 -9.1 407493 0 

 

  



45 

 

Table 9: Weights and Scores of Predisposing Factors after Rainfall Brought by Typhoon Nanmadol in 2011. 

Predisposing 

factor 

Class 

No. 

Number 

of pixel 

Number 

of 

landslides 

Landslide 

percentage 
Score 

Predisposing 

factor 

Class 

No. 

Number 

of pixel 

Number 

of 

landslides 

Landslide 

percentage 
Score 

Elevation 

(El) 

1 0 0 0 1 

Slope 

gradient (Ss) 

1 0 0 0 1 

2 0 0 0 1 2 4096 378 0.092 9.21 

3 8377 175 0.021 4.62 3 74623 7545 0.101 10 

4 45633 2043 0.045 8.75 4 119696 6704 0.056 5.99 

5 84049 4370 0.052 10 5 100477 1666 0.017 2.48 

6 209648 8023 0.038 7.62 6 61442 369 0.006 1.53 

7 59787 2182 0.036 7.32 7 47160 131 0.003 1.25 

σ=0.021, V=0.764, W=0.087 σ=0.044, V=1.111, W=0.127 

Aspect (As) 

1 72961 3381 0.046 10 

DCI  

1 18462 7278 0.394 10 

2 129113 4569 0.035 7.87 2 37591 3735 0.099 3.26 

3 95534 3839 0.040 8.80 3 33686 2924 0.087 2.97 

4 75666 3505 0.046 10 4 78519 2611 0.033 1.75 

5 34220 1499 0.044 9.51 5 216535 83 0 1 

6 0 0 0 1 6 22701 162 0.007 1.15 

σ=0.018, V=0.504, W=0.058 σ=0.148, V=1.431, W=0.163 

Slope 

roughness 
(Sr) 

1 32672 4136 0.127 10 

Terrain 

roughness 
(Tr) 

1 20809 496 0.024 1 

2 83465 7085 0.084 7.01 2 36844 1969 0.053 10 

3 104560 3903 0.037 3.6 3 47547 2257 0.047 8.18 

4 75349 1260 0.017 2.12 4 67105 3330 0.050 8.84 

5 51143 342 0.007 1.4 5 98836 4121 0.042 6.43 

6 60305 67 0.001 1 6 136353 4620 0.034 4.05 

σ=0.05, V=1.098, W=0.125 σ=0.011, V=0.266, W=0.03 

Distance to 

water (Ds) 

1 134641 5610 0.042 8.08 

Distance to 

road (Dr) 

1 165766 3581 0.022 1 

2 169659 8983 0.053 10 2 120008 4871 0.041 3.08 

3 69076 1446 0.021 4.56 3 44993 3505 0.078 7.16 

4 19906 754 0.038 7.44 4 25015 2597 0.104 10 

5 8336 0 0 1 5 25101 1065 0.042 3.28 

6 5627 0 0 1 6 21848 986 0.045 3.58 

7 249 0 0 1 7 4763 188 0.039 2.96 

σ=0.023, V=1.029, W=0.117 σ=0.028, V=0.528, W=0.058 
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Predisposing 

factor 

Class 

No. 

Number 

of pixel 

Number 

of 

landslides 

Landslide 

percentage 
Score 

Predisposing 

factor 

Class 

No. 

Number 

of pixel 

Number 

of 

landslides 

Landslide 

percentage 
Score 

EAR 

1 15768 139 0.00882 2.05196 

Geology 

(Gs) 

1 70071 738 0.011 2.56 

2 113386 3590 0.03166 4.77831 2 43675 598 0.014 3.02 

3 163395 7879 0.04822 6.75433 3 222814 13575 0.061 10 

4 73522 3191 0.0434 6.17931 4 70934 1882 0.027 4.92 

5 26439 1994 0.07542 10 5 0 0 0 1 

6 14984 0 0 1 6 0 0 0 1 

σ=0.028, V=0.797, W=0.091 σ=0.023, V=1.233, W=0.141 
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Table 107: Intervals of Instability Index and Landslide Probability of Rainfall Factors. 

Rainfall factor Dt,min Dt,max P(F)min P(F)max 

EAR 2.05 9.59 0.312 0.982 

I3R 2.02 9.96 0.305 0.998 
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Table 118: Accuracy of Landslide Susceptibility Map in Considering Different Rainfall Factors and Typhoons. 

Typhoon 

event 

Rainfall 

factor 

Landslide susceptibility at locations of 24 historical disasters 

Accuracy  

(%) 

Mean 

accuracy 

(%) Low 

susceptibility 

Medium low 

susceptibility 

Medium 

high 

susceptibility 

High 

susceptibility 

Typhoon 

Nanmadol 

(2011) 

EAR 2 5 11 6 71% 
71% 

I3R 3 4 13 4 71% 

Typhoon 

Kong-rey 

(2013) 

EAR 2 4 13 5 75% 
75% 

I3R 2 4 11 7 75% 
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Table 129: Numbers of Landslide Pixels in Study are corresponding to Different Dt Levels under Different Rainfall Factors after 

Typhoons. 

Rainfall 

event 

Numbers of landslide and 

non-landslide pixel  

(Proportion of landslide pixel) 

Number of pixels in each level 

based on EAR  

Number of pixels in each level 

based on I3R  

Dt level Dt level 

Low Medium High Low Medium High 

Typhoon 

Nanmadol 

(2011) 

Whole area 

Landslide 16793 211 3031 13551 216 3603 12974 

Non-

landslide 
390710 168259 166289 56153 177396 166358 46947 

(Landslide/ Non-

landslide) 
0.00125 0.01822 0.24132 0.00122 0.02166 0.27635 

Random 

sampling 

Landslide 50 0 11 39 0 12 38 

Non-

landslide 
50 24 21 5 25 21 4 

Typhoon 

Kong-rey 

(2013) 

Whole area 

Landslide 20771 392 4303 16076 434 4482 15855 

Non-

landslide 
396175 182810 181824 31541 181079 185305 29791 

(Landslide/ Non-

landslide) 
0.00214 0.02367 0.50969 0.00240 0.02419 0.53221 

Random 

sampling 

Landslide 50 1 6 43 0 11 39 

Non-

landslide 
50 27 20 3 20 27 3 
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Appendix A 

 

Table A1: Weights and Scores of Predisposing Factors after Rainfall Brought by Typhoon Nanmadol in 2011. 

Predisposing 

factor 

Class 

No. 

Number 

of pixel 

Number 

of 

landslides 

Landslide 

percentage 
Score 

Predisposing 

factor 

Class 

No. 

Number 

of pixel 

Number 

of 

landslides 

Landslide 

percentage 
Score 

Elevation 

(El) 

1 0 0 0 1 

Slope 

gradient (Ss) 

1 0 0 0 1 

2 0 0 0 1 2 4096 378 0.092 9.21 

3 8377 175 0.021 4.62 3 74623 7545 0.101 10 

4 45633 2043 0.045 8.75 4 119696 6704 0.056 5.99 

5 84049 4370 0.052 10 5 100477 1666 0.017 2.48 

6 209648 8023 0.038 7.62 6 61442 369 0.006 1.53 

7 59787 2182 0.036 7.32 7 47160 131 0.003 1.25 

σ=0.021, V=0.764, W=0.087 σ=0.044, V=1.111, W=0.127 

Aspect (As) 

1 72961 3381 0.046 10 

DCI  

1 18462 7278 0.394 10 

2 129113 4569 0.035 7.87 2 37591 3735 0.099 3.26 

3 95534 3839 0.040 8.80 3 33686 2924 0.087 2.97 

4 75666 3505 0.046 10 4 78519 2611 0.033 1.75 

5 34220 1499 0.044 9.51 5 216535 83 0 1 

6 0 0 0 1 6 22701 162 0.007 1.15 

σ=0.018, V=0.504, W=0.058 σ=0.148, V=1.431, W=0.163 

Slope 

roughness 
(Sr) 

1 32672 4136 0.127 10 

Terrain 

roughness 
(Tr) 

1 20809 496 0.024 1 

2 83465 7085 0.084 7.01 2 36844 1969 0.053 10 

3 104560 3903 0.037 3.6 3 47547 2257 0.047 8.18 

4 75349 1260 0.017 2.12 4 67105 3330 0.050 8.84 

5 51143 342 0.007 1.4 5 98836 4121 0.042 6.43 

6 60305 67 0.001 1 6 136353 4620 0.034 4.05 

σ=0.05, V=1.098, W=0.125 σ=0.011, V=0.266, W=0.03 

Distance to 

water (Ds) 

1 134641 5610 0.042 8.08 

Distance to 

road (Dr) 

1 165766 3581 0.022 1 

2 169659 8983 0.053 10 2 120008 4871 0.041 3.08 

3 69076 1446 0.021 4.56 3 44993 3505 0.078 7.16 

4 19906 754 0.038 7.44 4 25015 2597 0.104 10 
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Predisposing 

factor 

Class 

No. 

Number 

of pixel 

Number 

of 

landslides 

Landslide 

percentage 
Score 

Predisposing 

factor 

Class 

No. 

Number 

of pixel 

Number 

of 

landslides 

Landslide 

percentage 
Score 

5 8336 0 0 1 5 25101 1065 0.042 3.28 

6 5627 0 0 1 6 21848 986 0.045 3.58 

7 249 0 0 1 7 4763 188 0.039 2.96 

σ=0.023, V=1.029, W=0.117 σ=0.028, V=0.528, W=0.058 

EAR 

1 15768 139 0.00882 2.05196 

Geology 

(Gs) 

1 70071 738 0.011 2.56 

2 113386 3590 0.03166 4.77831 2 43675 598 0.014 3.02 

3 163395 7879 0.04822 6.75433 3 222814 13575 0.061 10 

4 73522 3191 0.0434 6.17931 4 70934 1882 0.027 4.92 

5 26439 1994 0.07542 10 5 0 0 0 1 

6 14984 0 0 1 6 0 0 0 1 

σ=0.028, V=0.797, W=0.091 σ=0.023, V=1.233, W=0.141 
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