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Abstract. The inhabited zone of the Ugandan Rwenzori Mountains is affected by landslides, frequently causing loss of life, 

damage to infrastructure and loss of livelihood. This area of ca. 1,230 km2 is characterized by contrasting geomorphologic, 

climatic and lithological patterns resulting in different landslide types. In this study, the spatial pattern of landslide 15 

susceptibility is investigated based on an extensive field inventory constructed for five representative areas within the region 

(153 km2) and containing over 450 landslides. To achieve a reliable susceptibility assessment, the effects of (1) using different 

topographic data sources and spatial resolutions and (2) changing the scale of assessment by comparing local and regional 

susceptibility models on the susceptibility model performances are investigated using a pixel-based logistic regression 

approach. Topographic data is extracted from different digital elevation models (DEMs) based on radar interferometry (SRTM 20 

and TanDEM-X) and optical stereo-photogrammetry (ASTER DEM). Susceptibility models using the radar-based DEMs tend 

to outperform the ones using the ASTER DEM. The model spatial resolution is varied between 10, 20, 30 and 90 m. The 

optimal resolution depends on the location of the investigated area within the region but the lowest model resolution (90 m) 

rarely yields the best model performances while the highest model resolution (10 m) never results in significant increases in 

performance compared to the 20 m resolution. Models built for the local case studies generally have similar or better 25 

performances than the regional model and better reflect site-specific controlling factors. On the regional level the effect of 

distinguishing landslide types between shallow and deep-seated landslides is investigated. The separation of landslide types 

allows to improve model performances for the prediction of deep-seated landslides and to better understand factors influencing 

the occurrence of shallow landslides such as tangent curvature and total rainfall. Finally, the landslide susceptibility 

assessment is overlaid with a population density map in order to identify potential landslide risk hotspots, which could direct 30 

research and policy action towards reduced landslide risk in this under-researched, landslide-prone region.  
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1 Introduction  

Landslide susceptibility assessments aim to estimate the probability of spatial occurrence of landslides given a set of geo-

environmental conditions (Guzzetti et al., 2006). Susceptibility maps are fundamental tools for landslide hazard management, 

assisting governments, scientists or other stakeholders in policy decisions (Fressard et al., 2014). The methods used to achieve 

these assessments are either knowledge-driven, process-based or statistical in nature (Guzzetti et al., 1999). Because statistical, 5 

data-driven models provide a quantitative assessment with reasonable data demands, these models are frequently applied at 

local to regional scales (Corominas et al., 2014). However, while literature is constantly growing with new susceptibility 

assessment techniques with increasing complexity (Korup and Stolle, 2014), some issues remain unresolved. Firstly, although 

statistical landslide susceptibility models are often applied, ambiguity regarding methodological issues on, among others, 

landslide sampling, applied resolution and model uncertainty remains. Secondly, due to increasing computing capacities and 10 

the availability of dedicated software tools, landslide susceptibility models are sometimes applied without interpretation of the 

geomorphologic plausibility of the results (Steger et al., 2016). In addition, for many remote regions, reliable landslide 

susceptibility assessments are not available, despite the potentially large impacts of landslides on the local population in these 

areas. For example, for the African continent, a systematic under-investigation of landslides in all their facets is particularly 

pronounced (Maes et al., 2017). Moreover, while recently, landslide susceptibility maps for these regions are issued at various 15 

scales ranging from continental (e.g. Stanley and Kirschbaum, 2017) to country-specific (e.g. Redshaw et al, 2017) and local 

(e.g. Che et al., 2012), the lack of regional and local assessments remains a major limitation in the identification and 

implementation of effective policy measures (Kervyn et al., 2015).  

The Rwenzori Mountains in East Africa are one of those regions where landslides pose a threat to life, livelihood and 

infrastructure (Jacobs et al., 2016a; 2016b; Mertens et al., 2016). Although this threat is now generally recognized, thus far no 20 

quantitative landslide susceptibility assessment is available for the region. Additionally, given the potential role that landslides 

play in multi-hazard events (Jacobs et al., 2016b), an improved understanding of where landslides are likely to occur is needed.  

The primary objective of this work is to identify the factors conditioning the spatial occurrence of landslide events and as such 

better understand the patterns of landslide susceptibility at regional scale. Studies comparing different susceptibility modelling 

approaches are frequent and often indicate minor differences between model performances (Dewitte et al., 2010; Zêzere et al., 25 

2017). This research focuses on providing a reliable susceptibility assessment using a logistic regression modelling approach. 

This requires several methodological choices which will be explored either by consulting previous research findings available 

in scientific literature, for example with regard to landslide sampling or model construction, or by exploring through 

simulations the effect of using different sets of topographic data, altering spatial resolution, applying models at different scales 

and separating landslide types. Therefore, this study aims to also fulfil a methodological objective by investigating the extent 30 

to which these factors influence the susceptibility assessment. Based on a critical geomorphological interpretation of these 

results, the final goal of providing a comprehensive landslide susceptibility assessment for the inhabited region of the Rwenzori 
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Mountain is pursued. This assessment is used to identify which uncertainties regarding landslides’ controlling factors remain 

to be addressed and where potential hotspots for landslide risk may exist.  

2 Study area and landslide inventory 

The Rwenzori Mountains lie on the border of DR Congo and Uganda (Fig. 1). They cover an area of ca. 3,000 km² and reach 

an altitude of 5,109 m a.s.l.. In both countries, the flanks of the mountain are covered by natural vegetation which starts from 5 

1,500-2,000 m a.s.l. and which is largely protected by a pristine national park (Fig. 1). The area of interest for this study is the 

densely inhabited zone below the national park borders in Uganda. This zone is relatively accessible for field surveys allowing 

the construction of landslide inventories. To map landslides in these areas, field surveys are required because of the limited 

possibilities to inventory landslides through remote sensing data interpretation (Jacobs et al., 2017). This limitation is due to 

the very rapid vegetation recolonization of landslide areas or their reclamation by agriculture combined with a restricted 10 

availability of very high resolution optical imagery due to the persistent cloud cover in the humid tropics (Jacobs et al., 2017). 

The Congolese footslopes of the Rwenzori are less populated and are more difficult to access. Moreover, for the Congolese 

side of the mountain no reports of landslides were found (Jacobs et al, 2016a).  

The populated footslopes of the Ugandan Rwenzori Mountains, indicated on Fig. 1, cover ca. 1,230 km², including the lowlands 

in the north-west of the mountain range, where landslide densities are among the highest measured in the region (Jacobs et al., 15 

2017). Because of the large extent of the area of interest, targeted field surveys were conducted in 2014 and 2016, resulting in 

a landslide inventory for 5 study areas (153 km²), here referred to as Bundibugyo, Nyahuka, Kabonero, Mahango and Kyondo 

(Fig. 1). Together they  represent all major lithological groups of the study region (Table 1) including rift alluvium, Stanley 

amphibolite (hereafter referred to as amphibolite), mica schists with quartzitic interbeds (mica schists), TTG gneiss (gneiss) 

and sericite quartzite and quartzite (quartzite). Kabonero, Bundibugyo and Mahango were inventoried in 2014. The landslide 20 

types in these three areas are described in Jacobs et al. (2016b). Nyahuka and Kyondo are two additional areas inventoried in 

2016. For these two study areas, maps of the landslide inventories are given as details in Fig. 1. The sliding mechanisms in 

Kyondo are very similar to those in Mahango and Kabonero where mostly shallow soil and debris slides (estimated sliding 

plane <3 m deep) occur. Nyahuka has similar geomorphological characteristics as Bundibugyo, having a lowland section (with 

a hilly topography at elevations <1,000 m a.s.l.) and highlands characterized by metamorphic rock. The lowlands in the 25 

Bundibugyo study area are dominated by deep-seated rotational soil slides occurring preferentially in thick deposits of rift 

alluvium. In Nyahuka however, shallow landslides prevail. A summary of the surveyed study areas, their areal extension, 

numbers of shallow and deep-seated landslides, their main lithologies and their average annual precipitation depth are given 

in Table 1. Rainfall is the main trigger of landslides in the region with only 14 landslides reported to be earthquake-triggered. 

In total this inventory contains 454 landslides which are used for the susceptibility modelling. More details on the landslide 30 

inventory construction can be found in Jacobs et al. (2016b).  
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3 Methodology 

A pixel-based logistic regression model is applied to assess landslide susceptibility of the study area using landslide 

occurrences derived from the landslide inventory as the dependent variable. The logistic regression model is a widely applied 

statistical approach for predicting dichotomous dependent variables, such as the presence or absence of landslides (Hosmer 

and Lemeshow, 2004; Brenning, 2005):  5 

 

𝑃(𝑦 = 1) =
1

(1+exp −(𝛼+𝛽1𝑋1+𝛽2𝑋2+⋯+𝛽𝑛𝑋𝑛))
  (1) 

With y the dichotomous variable indicating the presence or absence of a landslides, Xi the explanatory variables considered by 

the model and βi the coefficients assigned to each explanatory variable Xi. The output probability values range from 0 to 1, 

corresponding to a zero to 100% spatial probability of a landslide occurrence. The logistic regression has the advantage of 10 

enabling a straightforward interpretation of which independent variables contribute to the prediction and how they do so (Tu, 

1996).  

When applying a pixel-based statistical landslide susceptibility model such as the logistic regression model, several 

methodological choices need to precede the construction of the model and the final susceptibility assessment. These 

methodological choices can notably include the scale of the assessment, the model’s spatial resolution (e.g. Catani et al., 2013; 15 

Tian et al., 2008), the subdivision between model calibration and validation data (e.g. Heckmann et al., 2014; Hussin et al., 

2016) and the landslides sampling strategy (e.g. Nefeslioglu et al., 2008; Yilmaz, 2010).  The motivations behind these 

methodological choices are not always given, limiting the reproducibility of the analyses and the extent to which obtained 

results can be critically evaluated.  

In the following sections the methodological choices made for our specific case study are specified. Where possible this is 20 

based on recommendations found in key methodological research and available knowledge on landslide processes in the 

Rwenzori region. These choices are summarized in Fig. 2 and further explored below. For choices that depend on the 

characteristics of the case study, such as the applied scale and spatial resolution of the assessment, the topographic data source 

used, or the landslide type subdivision, several scenarios are simulated and the outcomes evaluated. This evaluation considers 

jointly (1) the performance and stability of the resulting model and (2) the degree to which the resulting model can be 25 

interpreted and reflects a geomorphologic reality. First, choices regarding the applied spatial scale and resolution and related 

topographic data source are explored. Afterwards, the model construction itself is further discussed with regard to the landslide 

sampling strategy, the landslide type subdivision, the model variable selection and the model calibration and validation.  

Subsequently, the model evaluation method is specified.  Finally, the assessment of potential landslide risk hotspots based on 

the regional landslide susceptibility map is discussed. 30 
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3.1 Selection of spatial resolution, topographic data source, and spatial scale of the analysis 

In studies using pixel-based landslide susceptibility models, the choice of model’s spatial resolution is often motivated based 

on the resolution of the available datasets, with a preference for using the most finely gridded resolution possible. In the context 

of statistical landslide susceptibility assessments, only few studies compared different model resolutions (e.g. Catani et al., 

2013; Tian et al., 2008). Additionally, because of the availability of multiple global digital elevation models (DEMs) such as 5 

the Shuttle Radar Topography Mission (SRTM DEM: NASA JPL., 2013), DEMs derived from optical ASTER imaging 

(ASTER DEM: METI/NASA, 2009) and often also DEMs derived from local topographic data, more than one source of 

topographic information is available for landslide studies. Despite this, these various topographic information sources are 

rarely compared (e.g. Havenith et al., 2006). In the data-scarce setting of the Rwenzori Mountains, the selection of the most 

appropriate model resolution and topographic data source is particularly relevant. Here, to model landslide susceptibility, three 10 

different topographic information sources are used at four different resolutions.  

The SRTM and ASTER DEMs are freely available online for most parts of the world. They are downloaded at the provided 1 

arc-second (~30 m) resolution (METI/NASA, 2009; NASA JPL., 2013). The third topographic source is a TanDEM-X DEM 

(Deo et al., 2013). This DEM is constructed at a ~5 m resolution with the InSAR technique (Interferometric Synthetic Aperture 

Radar - Bürgmann et al., 2000; Hanssen, 2001) using TanDEM-X bi-static images (Moreira et al., 2004) acquired in ascending 15 

and descending orbit. More background on the TanDEM-X DEM construction can be found in Appendix A. The final 

TanDEM-X DEM is resampled to a 10 m resolution with subsequent aggregation to 20 m and 30 m resolution using weighted 

aggregation (Grohmann, 2015). The ASTER DEM and SRTM DEM 1-second are resampled to precisely 30 by 30 m DEMs 

using bi-cubic resampling (Metz et al., 2010). Similar to the TanDEM-X, the SRTM30 is up-scaled to 90 m using weighted 

aggregation resampling. The variants based on TanDEM-X DEMs are hereafter referred to as TANDEMX10, 20 and 30, those 20 

based on SRTM as SRTM30 and 90 and those on ASTER DEM as ASTER30. While the TanDEM-X DEM and the SRTM 

are based on InSAR data, the ASTER DEM is produced by stereo-photogrammetry principles. By testing all three DEMs at 

the 30 m pixel size, the DEM suitability regardless of the pixel size can be assessed. In total thus six different combinations of 

DEM sources and resolutions are tested. Henceforth they are referred to as model variants.  

In this study, the dependency of the model on the spatial scale of the assessment is also assessed. This is achieved by building 25 

models at the local level for individual case studies (ca. 20-43 km²) and at the regional level for all case studies combined (153 

km²). Mahango and Kyondo are investigated together at the local scale due to their proximity and given the low number of 

landslides in Kyondo. Kabonero, Bundibugyo and Nyahuka are investigated separately at the local scale. These four local 

scales and the regional scale are hereafter referred to as levels. The model combining all case study areas thus makes use of 

the landslide data of all case studies, which combined are considered to be representative for the Rwenzori inhabited zone. It 30 

should be noted that the calibration and validation are performed within the surveyed area boundaries and that outside the 

surveyed areas the susceptibility assessment should be considered as an extrapolation of the statistical model.  
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3.2 Model construction 

3.2.1 Landslide sampling 

The sampling of landslides for pixel-based susceptibility modelling is not a well-defined procedure, and different approaches 

exist to select those pixels best representing the conditions under which the landslide occurred. While some studies take the 

whole polygon defining the landslide boundaries as input, others consider either the centroid, a portion of the highest pixels 5 

within the landslide, the source area or construct a seed cell zone around (portions of) the landslide to represent the conditions 

under which the landslide occurred (e.g. Dai and Lee, 2003; Suzen and Doyuran, 2004; Van den Eeckhaut et al., 2006; Che et 

al., 2012; Hussin et al., 2016).  

Here, the approximate location of the landslide depletion zones was identified in the field and is thus available in the inventory 

(Jacobs et al., 2017). Although selecting all pixels within the depletion zone generally provides better model fits (e.g. Hussin 10 

et al., 2016; Yilmaz, 2010), this is likely an artefact due to the introduction of very similar pixels within the model (Hussin et 

al., 2016). Additionally, it can induce spatial autocorrelation, violating the assumption of independent observations for general 

linear models (Van Den Eeckhaut et al., 2006). Although some models take this into account, they are reported to be 

numerically more demanding and less stable (Brenning, 2005). Therefore, in order to avoid spatial-autocorrelation and equally 

consider landslides regardless of their size, only the centroid of the depletion zone is used to represent the event.  15 

 

3.2.2 Landslide type distinction 

As described in Sect. 2, the Rwenzori Mountains host a diversity of landslide types. Because each landslide type is expected 

to be controlled by a different set of explanatory variables or a different effect of those variables, separating the types is a 

meaningful procedure in landslide susceptibility assessment. However, by doing so, sample sizes are reduced and statistical 20 

significance can be lost. In this study, the effect of separating landslide types between the deep-seated (depth of sliding plane 

> 3m) and shallow landslides (depth sliding plane < 3m) is compared on the regional level. The depth of the sliding plane was 

estimated in the field (Jacobs et al., 2017). The separation of shallow and deep-seated landslides at the regional level allows to 

maintain reasonable sample sizes.  

 25 

3.2.3 Variable selection 

From previous exploratory work on landslide data collected in the region, topographic and lithological variables appear to 

have considerable effects on landslide types and spatial distributions (Jacobs et al., 2017). The topographic information 

extracted from the three different DEMs described in Sect. 3.1 are slope, elevation, profile- and tangent curvature, the aspect 

and the topographic wetness index (TWI) defined as the natural logarithm of the ratio of the specific upstream contributing 30 

area over the tangents of the slope (Beven and Kirkby, 1979). The TWI serves as a proxy for spatial soil moisture patterns in 
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the landscape (Yilmaz, 2010). The aspect is considered as the sine and cosine of both the aspect expressed as degrees counter 

clock of east to express maximum differences in the north-south and east-west axis respectively as well as the aspect in degrees 

counter clock of north-east to express maximum differences between north-west and south-east as well as north-east and south-

west respectively (Chang et al., 2007; Stage and Salas, 2007). Information on the lithology is extracted from the lithological 

map of Uganda at 1:100,000 (GTK Consortium, 2012; Table 1) and converted to dummy variables with gneiss used as the 5 

reference lithology, i.e. each lithological class is compared to gneiss (Dai and Lee, 2003; Goverski et al., 2006).  

Detailed land use mapping serving as input for the landslide susceptibility model is in this study not feasible due to the 

complexity (multiple cropping and multi-layered) and dynamics of the land use with regard to agricultural crops (rapid 

alterations due to a bimodal rainfall pattern). However, especially for shallow landslides, a stabilizing effect of trees on the 

soil could be expected. Therefore, at the regional level where shallow and deep-seated landslides are separated, the tree-cover 10 

percentage as calculated by Hansen et al. (2013) for the baseline year of 2000 is introduced into the model for shallow 

landslides.  Additionally, for all regional simulations, annual average precipitation data on a 7*7 km² grid obtained by the 

COSMO-CLM2 regional climate model, covering a period from 1998-2008, are used to analyse the effect of spatial 

precipitation distribution on landslide susceptibility (Thiery et al., 2015). Due to the relatively large pixel-size of this data set 

compared to the area of the case studies, the risk exists that single pixels in the precipitation data set completely control 15 

precipitation amounts in the case studies. To avoid this, a 3-by-3 moving average filter is applied to the precipitation dataset 

in order to represent regional precipitation patterns. Finally, although elevation is commonly used in landslide susceptibility 

models, its value in our regional model can be questioned. Elevation is often introduced as a proxy for rainfall depth and/or 

weathering (Coe et al., 2004; Dai and Lee, 2003), with the assumption that higher elevations are linked to more rock 

weathering, leading to a weaker lithology. However, in the Rwenzori, rainfall distribution on the regional level is strongly 20 

linked to prevailing climatic systems not represented by the elevation alone (Thiery et al., 2015; Jacobs et al., 2016a). 

Furthermore, precipitation is already introduced in the regional model as an explanatory variable. In addition to this, on the 

regional level, low elevation is expected to reflect mostly higher landslide densities observed on a rift alluvium lithology rather 

than serving as a proxy for spatial rainfall patterns, as higher elevations are linked to more resistant lithological groups (Table 

1, Jacobs et al., 2017), which are already introduced into the model. Therefore, in the regional model assessments, no strong 25 

arguments support the use of elevation as an explanatory variable. For completeness, the regional models are run both with 

and without elevation.  

The final variable selection on all levels and variants is performed by a stepwise selection procedure applied to all variables 

except the categorical variable of lithology for which all dummies are considered together in the model (Agresti 2003; 

Heumann et al., 2017). Forward, backward and both ways stepwise selections are performed and the selection procedure for 30 

the final model and its variables is based on a minimization of the Akaike information criterion (AIC) which penalizes models 

with a large number of parameters and models with poor fit (Goetz et al., 2011).  
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3.2.4 Model calibration and validation and implications for stability 

Similarly to landslide sampling, different approaches exist for separating the landslide inventory into a calibration and 

validation dataset.  In most cases, the training dataset is chosen to be equal or slightly bigger than the validation set with 50-

50%, 75-25% or 60-40% as common subdivisions. Studies comparing model performances at different subdivisions tend to 

show that a minimum of 10-20% of the landslides for the calibration is required after which an increase does not significantly 5 

improve the modelling results (Hussin et al., 2016). Therefore, in this study, for each variant, the landslides in the inventory 

are split randomly in equal proportion datasets equally serving in the calibration and validation stage respectively. Because 

this random split could influence the model construction, especially in these case studies dealing with small landslide datasets, 

this procedure is repeated 20 times for each model variant on each level to verify its stability. Pixels where no landslide occur 

are considered to be all the pixels in the study areas outside the landslide polygons. An equal portion of landslide and non-10 

landslide pixels is used in the model calibration stage (e.g. Brenning, 2005; Hussin et al., 2016). All other pixels are used in 

the validation stage. 

 

3.3 Assessment of model performances and comparisons 

The above methodology results in a set of models of which performances are influenced by the topographic data source used, 15 

the applied resolution and represented scale. To assess the effect of these factors, first the model variants are compared within 

each level, after which the regional level is compared to the local ones.  

The evaluation of model performances using the different topographic data sources and various spatial resolutions at each level 

(model variants) is based on the comparison of the model fit in terms of AUCROC, a summary statistic indicating the model 

performance corresponding to the area under the receiver-operating characteristics curve which combines both sensitivity and 20 

specificity (Fawcett, 2006). AUCROC values of 1 indicate a perfect model fit, while values of 0.5 indicate that the model is not 

performing better than a random distinction. Generally, models with AUCROC values greater than 0.7 are considered to have 

an acceptable model performance (Fressard et al., 2014). The repeated random sampling of landslides for the calibration and 

validation of the models explained in sect. 3.2.4. results in a sample of 20 AUCROC-values per model variant. For each level, 

the performance differences between (1) all variants of DEMs and resolutions tested, (2) the three different TanDEM-X 25 

variants, (3) the two different SRTM variants and (4) the three different variants on the 30m resolution is assessed. The tests 

used for this depend on whether or not the assumption of normality and homoscedasticity can be made. Therefore, the 

distribution of AUCROC values for all model variants is first tested for normality using the Shapiro-Francia test (Thode, 2002).  

Afterwards, homoscedasticity is tested for each comparison using the Levene test and the Fligner-Killeen test for normal and 

non-normal distributions respectively (Conover et al., 1981; Glass 1966). For comparisons of variants that are normally 30 

distributed and homoscedastic, the ANOVA single-factor tests are used to compare mean performances over more than two 

variants, while Student’s t-tests are used to evaluate the difference between mean performances of two variants (Lowry, 2014).  
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For non-normal distributions that are homoscedastic, non-parametric tests comparing variant’s sample medians are introduced 

to complement the parametric tests: the Kruskal-Wallis test to compare more than two model variants, and the Mann-Whitney-

U test to directly compare two variants (Lowry, 2014). In case variants are found to be heteroscedastic, an additional Welch-

test is performed to investigate the difference between variants (Welch, 1951).  Based on these assessments, variants for each 

applied level (local and regional) will be selected. To further evaluate these selected variants’ model predictive skill, sensitivity, 5 

specificity and prediction curves are considered separately (Guzzetti et al., 2006, Van Den Eeckhaut et al., 2009). 

For the evaluation of the effect of applied scale on the susceptibility assessment, a pairwise comparison of the regional model 

to the different local models is performed visually and in terms of the variables selected within each model. To quantitatively 

assess the ability of the selected regional model to predict local landslide susceptibility, the regional model is additionally 

validated using the local dataset of landslides and non-landslides at each local level after removal of the points used for the 10 

regional model’s calibration. This performance of the regional model validated on the individual local levels is compared to 

the performance of the regional level validated on all the local levels combined. Discrepancies surfacing through these 

comparisons will allow to identify potential strengths or limitations of the application of the regional model to the entire 

inhabited zone. 

 15 

3.4 Regional landslide susceptibility assessment and preliminary identification of risk hotspots 

Landslide susceptibility- and risk zonation are particularly rare in equatorial Africa but all the more relevant in focusing 

research and policy action (Kervyn et al., 2015). Here, the  regional landslide susceptibility and population density distribution 

is combined to provide a preliminary identification of landslide risk hotspots. The regional susceptibility model for the 

Rwenzori Mountains is obtained by applying all 20 simulations of the optimal model variant and averaging the resulting 20 

susceptibility values. Subsequently, parish population density data for the year 2002 provided by the Uganda Bureau of 

Statistics (UBOS, 2003) are rescaled to continuous values between 0 and 1. By multiplying the rescaled population density 

with the regional landslide susceptibility, a first identification of potential landslide risk hotspots can be made. Evidently, the 

approach applied here is rough and among others does not account for within-parish population concentration, temporal aspects 

of the landslide occurrence nor vulnerability or resilience of the population to the occurrence of a landslide event. The goal is 25 

not to present a risk assessment but to explore where hotspots for landslide risk could possibly occur and consequently which 

regions require particular attention when considering landslide risk assessments. 

 

4 Results  

 30 



10 

 

4.1 Influence of model’s spatial resolution, topographic data source and applied scale 

Variants’ model performances for each level in terms of mean and standard deviation of the AUCROC in the validation is given 

in Table 2. With regard to the regional model, no overall statistical difference between model variants with and without the 

introduction of elevation is found (t-test, p<0.05). Therefore, the regional model without elevation is used throughout this 

study. At the regional level and all local levels, the null-hypothesis that all models variants have the same performance can be 5 

rejected (Table 2). When comparing the DEMs at 30 m at any level, ASTER30 never produces the best model results (Table 

2). Similarly, the SRTM90 performs significantly worse than SRTM30 at the regional level as well as all local levels with the 

exception of Nyahuka where the SRTM90 outperforms the SRTM30 (Table 2). With regard to the optimal resolution of the 

TanDEM-X variants, there is only a significant difference between TanDEM-X variants in Nyahuka and Kabonero. The 

increase in resolution from 20 to 10 m is tested separately and does not increase performances at any level (p<0.05). 10 

Table 2 also indicates that the best performing local models with the exception of Bundibugyo have better performances than 

the best regional model in terms of AUCROC. At the local level, the best performing model variant depends on the location of 

the case study area but in most cases, no single model variant significantly outperforms another. Only in Nyahuka, one variant 

– the SRTM90 variant - clearly outperforms the others. In Kabonero and Kyondo/Mahango, the TANDEMX20 is preferred 

and the SRTM30 provides the best results for Bundibugyo. For the local levels, the variant with the highest AUCROC is selected 15 

and indicated in bold in Table 2. Because of the potential influence of the accuracy of the TanDEM-X DEM on the regional 

susceptibility assessment outside the studied zones, the consistent performance of the SRTM DEM and the lack of performance 

difference between the TanDEM-X variants and the SRTM30, the SRTM30 variant is selected as the basis for the regional 

landslide susceptibility map. For the regional and all local levels, the selected model variants are further explored in terms of 

sensitivity, specificity and prediction rate (Fig. 3).  The results show that also for these performance indices, generally, the 20 

local models outperform the regional model with the exception of model sensitivity in Nyahuka and Bundibugyo and model 

prediction rate in Bundibugyo. However, the variation on these model evaluators between simulations for the local models is 

also larger than that for the regional model. 

Based on these results, the selected variants are interpreted in terms of their selected variables. Table 3 summarizes how many 

times over the 20 simulations a certain explanatory variable is selected by the model variant indicated in bold in Table 2, which 25 

sign the corresponding β-value has, and how often these variables are considered to be significant in the logistic regression. 

Slope is a significant contributor in all study areas and in nearly all runs. Elevation plays different roles at the local levels with 

a positive influence on the occurrence of landslides within Kyondo/Mahango. TWI has a positive response in the landslide 

susceptibility assessment in Nyahuka and to a lesser extent in Kyondo/Mahango, while the opposite is observed in Kabonero. 

Aspect only seems of limited importance in the Bundibugyo where south-east-facing slopes appear more landslide-prone than 30 

north-west-facing slopes, respectively. Profile concave slopes favour landslides in Nyahuka while profile convex slopes favour 

landslides in Kabonero and Bundibugyo. Finally, tangent concave slopes favour landsides on the regional level, in in the typical 

highland regions of Kabonero and -to lesser extent- of Kyondo/Mahango.  
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With regard to lithology, some classes have a more readily interpretable behaviour than others.  Rift alluvium is invariably 

found to be positively indicative for the occurrence of landslides compared to gneiss. In most cases these effects are also found 

to be significant. Amphibolite is strongly negatively associated to the occurrence of landslides compared to gneiss on the 

regional level and in Kabonero but positively associated to landslides in Nyahuka. Mica schists also have complex behaviour, 

with a negative influence on landslide presence in Kabonero and Kyondo/Mahango but a positive effect in Bundibugyo and 5 

Nyahuka compared to the reference lithology, gneiss. Finally quartzite is found to mostly favour landslides albeit non-

significantly.  

To evaluate the difference of the regional susceptibility model with the local models, the susceptibility maps are pair-wise 

displayed in Fig. 4. Overall, topographic patterns are consistent over the pairs, except for Nyahuka where the strong imprint 

of TWI in the local model is evident. Furthermore, important visual discrepancies are present along lithological boundaries in 10 

Nyahuka and Kyondo. The local model for Nyahuka appears to be less influenced by lithology compared to the regional model. 

In Kyondo the opposite can be observed, with more pronounced lithological effect on the local susceptibility model as to the 

susceptibility assessment predicted by the regional model. This is in accordance with the findings from Table 3 where 

amphibolites are positively selected in the local Nyahuka model in contrast to the negative selection in the regional model, 

while mica schists are more often selected as a negative predictor in the local model for Kyondo than in the regional model, 15 

and therefore contrast more with gneiss and quartzite. These visual discrepancies are also translated in a lower AUCROC of the 

regional SRTM30 model when validated at the local levels individually compared to the AUCROC of the regional model 

validated at the regional scale (i.e. using the data from all local levels combined) with the exception of Kabonero (Fig. 4). In 

the case of Bundibugyo and Nyahuka this decrease in AUCROC is significant.. In other words, models calibrated and validated 

at the local level generally outperform the regional model applied to that level and applying the regional model at the local 20 

level could result in a decrease of model reliability.  

 

4.2 Influence of separating landslide types 

 

Based on the findings above, the SRTM30 is applied for the separation of landslide types. The model fit for shallow landslides 25 

slightly decreases (average AUCROC 0.67) compared to a model encompassing all landslides. For deep-seated landslides, the 

type separation improved the model performance with an increase of AUCROC from 0.71 to 0.81. The variables selected by 

both models are summarized in Table 4. Major differences between the model for shallow and deep-seated landslides can be 

found in the response to lithology, topography and precipitation. With regard to lithology, rift alluvium is a significant 

explanatory variable for deep-seated landslides but less often so for shallow landslides. In contrast, the presence of amphibolite 30 

is a strong negative predictor for shallow landslides but rarely significant for deep-seated landslides. With regard to topography, 

the influence of tangent concave slopes becomes less important in the model for deep-seated landslides. Furthermore, the effect 
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of annual average precipitation disappears in the model for deep-seated landslides. Finally, the percentage tree-cover 

introduced in the model for shallow landslides is rarely selected. 

4.3 Regional landslide susceptibility and population distribution: identifying risk hotspots 

The regional susceptibility model is obtained by applying all 20 model simulations of the regional SRTM30 variant for all 

landslides and subsequent averaging (Fig. 5a). This approach seems to produce some artefacts in the north sections of the 5 

lowland region (red arrow, Fig. 5a). Here, even at low slope gradient, medium to high landslide susceptibility values are 

assigned because of the occurrence of rift alluvium, strongly positively connected to landslides in the regional model. However, 

it could be expected that slopes below 5˚ generally do not favour the occurrence of landslides in these lowlands (Jacobs et al., 

2017). Here a slightly more conservative threshold of 3° is considered,  below which susceptibility values are reclassified. To 

avoid an abrupt change in susceptibility values at this threshold, the susceptibility in these mapping units is not set to zero but 10 

rescaled to values between 0-0.35 (i.e. rescaled to the lowest susceptibility class) according to their initial susceptibility value 

(Fig. 5b). This corrected landslide susceptibility map is combined with the rescaled population densities provided by UBOS 

(2003) (Fig. 5c) to produce a preliminary identification of potential landslide risk hotspots (Fig. 5d). 

5 Discussion 

 15 

5.1 Effect of the model’s spatial resolution and applied DEM on landslide susceptibility: 

 

With regard to the spatial resolution selected, it has to be noted that an increase in model resolution does not necessarily 

influence the explanatory variables in equal ways: DEM resolution has potentially very different influences on the actual values 

derived for elevation, slope or other derivatives (Dewitte et al. 2010, Kervyn et al. 2008). In this case, a decrease of spatial 20 

resolution from 30 to 90 m in general decreased model performances. An increase in resolution from 20 to 10 m however does 

not result in performance increases. This is in accordance with the concept of “optimal model complexity” where an increase 

in information does not necessarily improve the model performances (Grayson et al., 2002) but instead performances tend to 

reach an optimum after which increasing data availability does not increase or even decreases performance (Dewitte et al., 

2010). This is in congruence with results found by Catani et al. (2013) and Lee et al. (2004).  25 

Besides spatial resolution, the DEM source also influences the predictive power of the applied susceptibility model. The DEM 

based on optical imagery (ASTER) at the 30 m resolution never results in susceptibility models that significantly outperform 

those based on InSAR technology (SRTM and TanDEM-X) and on three levels, the SRTM30 and TANDEMX30 significantly 

outperform the ASTER30 variants. This is supported by earlier comparisons of the SRTM and ASTER DEMs by Kervyn et 

al. (2008) who found that the ASTER DEMs have lower vertical accuracies and that they are affected by more small-scale 30 
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noise and resulting apparent topographic variability than the SRTM DEM. Similar findings are also found by Guth (2010) and 

Li et al. (2013).  

 

5.2 Variables influencing landslide susceptibility  

 5 

With the exception of Bundibugyo, all local models outperform the regional model in terms of AUCROC and prediction rate. In 

general, by increasing the scale from regional to local level, more and more similar landslide processes are simulated within a 

single model. Because different landslide processes are controlled by different geo-environmental conditions, a downscaling 

to the local level can thus potentially result in a better performing model more tailored to the local conditions and sliding 

processes. An adverse effect can be observed in Bundibugyo, characterized by two very diverse sets of mass movements with 10 

deep-seated rotational slides in its lowlands and shallow soil- and debris slides in its highlands (Jacobs et al. 2016b). Therefore, 

downscaling from the regional to the local level for this case study area does not increase the model performance. Additionally, 

it is important to point out that the landslide sampling procedure used here assumes that the topography at the location of the 

depletion centroid was not altered. Particularly in the lowlands in Bundibugyo where large landslides are likely to leave 

important topographic signatures, this assumption could be violated, which could influence model performances. The increase 15 

in variation (or the decrease in stability) of AUCROC, sensitivity and specificity and prediction curves on the local levels 

compared to the regional simulations can be explained by a decrease in landslide sample size for models built on the local 

level.   

The visual analysis of the resulting susceptibility maps and the interpretation of their selected variables, in general reveal 

similar patterns between the local and the regional landslide susceptibility model. However, important exceptions to this can 20 

be found in Nyahuka where there is a strong imprint of TWI on the local susceptibility map and in Nyahuka and Kyondo where 

local and regional susceptibility differences are very pronounced for particular lithological groups. In Nyahuka, landslides in 

the lowland portion of the study area concentrate along rivers (Fig. 4). At the 90m resolution, pixels with high TWI are large 

enough to include the depletion zone of the centroid, explaining the strongly positive influence of TWI in the local model and 

the exceptional preference for the SRTM90 variant.  Additionally, in the regional model for Nyahuka, pixels on amphibolite 25 

have very low susceptibility values. This contrasts with the Nyahuka local model, where amphibolites are considered to favour 

the occurrence of landslides compared to gneiss. An adverse effect is noticeable in Kyondo, where mica schists are relatively 

less susceptible than what the regional model predicts. In Nyahuka, this unexpected lithological response of amphibolite could 

be due to the mapping accuracy of the lithological map. The lithological map used here is the most recent and most detailed 

map available for the region. However, the producers of the map report that field observations are limited to a section along 30 

the eastern foot-hills (Geological Survey of Finland, GTK, 2014). Previous lithological maps found in literature do not show 

the presence of an amphibolite group in the Nyahuka region (Bauer et al., 2010; Koehn et al., 2010; GTK, 2014). The landslides 

located on the amphibolite lithology in Nyahuka occur close to the lithological boundaries (Fig. 4) and therefore relatively 
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small mapping errors could lie at the basis of this different apparent response of amphibolites in this region. For both Nyahuka 

and Kyondo the unexpected local lithological effects could also be due to regional differences between lithological groups not 

reflected in the classification system. It is possible that lithologies belonging to the same group will have different weathering 

patterns due to different climatic or tectonic regimes and thus different effects on landslide susceptibility. This is also stated 

by Dewitte et al. (2010), who point out that the relevance of a variable in a landslide susceptibility assessment does not only 5 

depend on whether that variable plays a role in the landslide process itself but also depends on the quality of that variable. 

Finally, the local models in general outperform the regional model applied to the local levels (Fig. 4). This supports the 

observation of visual discrepancies between local and regional maps. In summary, the local maps are more tailored to represent 

the spatial probability of the sliding processes in that area and should therefore, wherever available, be preferred over the 

regional model.  Furthermore, the regional model performance when applied to single local levels decreases significantly for 10 

two out of four local levels compared to the regional model performances when validating using the data of all the local levels 

combined, indicating that model results should be interpreted at the scale they were obtained. 

 

5.3 Separation of landslide types 

 15 

The separation of landslide types influences the predictive powers of susceptibility models improving the performances deep-

seated landslides susceptibility zonation. This can be explained by the strong dependency of deep-seated landslides to lithology 

and in particular on rift alluvium, which is selected and found significant in all runs for each model considering only deep-

seated slides. Rift alluvium in the Rwenzori Mountains is characterized by deep clay-rich deposits, lacking solid bedrock and 

therefore providing a medium for deep-seated shear planes.  20 

Also for shallow landslides, the separation of landslide types allows a better understanding of their regional controls, despite 

a decrease in model performance. Notably the consideration of only shallow landslides allows to better isolate topographic and 

climatic effects: the concentration of soil moisture in the landscape, the tangent curvature and the annual average precipitation 

distribution are important positive predictors of shallow landslides at the regional scale while their effects weaken or disappear 

in the model for deep-seated landslides. Finally, tree cover fraction was expected to be a negative predictor for the occurrence 25 

of shallow landslides due to the potentially stabilizing effect of tree roots on the hillslopes, however this is not supported by 

the model results. This, however, does not a priori indicate that tree cover is not important predictor but might relate to 

limitations of the datasets itself. Firstly, as the tree cover fraction is taken from the baseline year of 2000, it does not account 

for alterations preceding the most recent landslides in the inventory. Unfortunately, detailed and reliable temporal information 

on the mapped landslides is often not available, limiting the possibility to include land cover (change) as a reliable predictive 30 

variable. Secondly, in the tree cover fraction classification, confusion exists between tree cover and cocoa, a common land use 

in the lowland areas of Bundibugyo and Nyahuka where nearly half of the shallow landslides occur, potentially resulting in an 

insensitivity of the regional model to tree cover fraction.   
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5.4 Regional landslide susceptibility and population distribution: identifying risk hotspots 

 

From Fig. 5d, which shows where high landslide susceptibility co-occurs with a high population density, some zones can be 

isolated presenting apparent hotspots for landslide risk.  First of all, in Bundibugyo town and its surrounding parishes, 5 

population densities and landslide susceptibility are very high, leading to a potential hotspot (Fig. 5d: I.). However, also on the 

western flank of mountain’s horst itself, a high landslide susceptibility is combined with high population densities (Fig. 5d: 

II.). This observation is in contrast to the north-east flanks of the Rwenzori mountains where higher landslide susceptibilities 

are mostly combined with low population densities or vice versa (Fig. 5d. zones A and B respectively). In the south-east of the 

Rwenzori mountains, the area around Kilembe, located in the Nyamwamba valley appears to be a potential hotspot for landslide 10 

risk. Moreover, this valley is also known for its flash flood risk (Jacobs et al., 2016b). Currently, the construction of a 

hydropower station in the Kilembe valley is ongoing. To which extent landslide and flood risks are taken into account in its 

design is unclear. South of the towns of Kasese and Kilembe, high landslide susceptibility values are again often combined 

with high population densities (Fig. 5d: III. to V.). Hotspot III. largely coincides with Mahango Sub-County: a region where 

landslides have regularly caused fatalities. The South of the Rwenzori Mountains, e.g. Hotspots IV. and V. are so far very little 15 

researched. These areas are not systematically investigated, nor did they appear as a landslide hotspot in archive studies (Jacobs 

et al. 2016a). In an effort to collect more landslide data in various remote areas of the Rwenzori region, a network of 20 

inhabitants, referred to as geo-observers, is established. The geo-observers are trained to report on natural hazards occurring 

within their environment, among which landslides, by means of a digital questionnaire filled in using smartphone devices 

(VLIRUOS, 2017). 20 

It needs to be stressed that this approach for identifying potential landslide risk hotspots entails major constraints and results 

should be considered as indicative and interpreted with extreme care. Evidently, the use of only landslide susceptibility and 

population density should as such not be considered as a risk estimate. In addition to this, the regional susceptibility model 

does not have a perfect performance and is, as stated above, an extrapolation for those areas outside the surveyed case studies 

and, as shown above, local landslide susceptibility patterns can differ from the pattern predicted by the regional susceptibility 25 

model. Landslide risk is also intrinsically connected to the size and speed of the landslide, parameters which are not accounted 

for here. Finally, within-parish distribution of population densities can significantly influence landslide risk, as within-parish 

spatial variation of landslide hazards can be expected and population dynamics since 2002 are not taken into account. 

Population density estimations could be improved by using satellite imagery for the mapping of built-up areas (Wu et al., 

2005). The risk hotspot assessment presented here is not an estimate of landslide risk, but should be considered as a first 30 

indication of where research and policy priorities should be concentrated. 
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6 Conclusions 

 

In this study, a regional landslide susceptibility assessment for the inhabited area of the Rwenzori Mountains is provided by 

analysing the effects of the considered scale (local assessments vs. regional assessment), topographic data sources and their 

spatial resolution as well as the separation of the landslide types. With regard to the DEM source, susceptibility models based 5 

upon DEMs derived from InSAR products (SRTM and TanDEM-X) tend to outperform the DEM derived from optical imagery 

(ASTER). While a resolution decrease of 30 to 90 m generally decreases model performances, an increase from 20 to 10 m 

does not improve model performances. The separation of landslide types at the regional level allows to improve model skills 

for deep-seated landslides and to better understand the factors contributing to the susceptibility of shallow landslides. This 

study shows that at the regional level, slope and prevailing lithology strongly controls landslide susceptibility. Shallow 10 

landslides seem to be more controlled by regional rainfall distribution and local runoff concentration in the landscape while a 

strong effect of the presence of rift alluvium influences the occurrence of deep-seated landslides.  

Recent research efforts have led to an increased availability of global, regional, and even country-specific landslide 

susceptibility maps, also for data-scarce regions such as equatorial Africa (Broeckx et al., 2017; Redshaw et al., 2017; Stanley 

and Kirschbaum, 2017). In contrast, local and regional susceptibility assessments remain particularly rare in these regions. For 15 

the Rwenzori Mountains the local susceptibility assessments are generally better suited for representing the site specific 

controlling mechanisms of landslides. In parallel to smaller scale landslide susceptibility studies, adequate attention should 

therefore also be given to study landslide susceptibility on the local and regional levels.  For the Rwenzori Mountains, the 

combination of regional landslide susceptibility with population density data allows to visualize areas where landslide risk 

could be particularly high and where research and policy-oriented action needs to be taken. 20 

Data Availability 

Landslide susceptibility maps presented in this study and landslide data used for their construction can be requested by 

contacting the corresponding author.  

Appendix A: InSAR processing to construct the TanDEM-X DEM 

Over the last two decades, Interferometric Synthetic Aperture Radar (InSAR) has been one of the main satellite-based tool 25 

used to evaluate ground displacements (Massonnet and Feigl, 1998; Bürgmann et al., 2000; Hanssen , 2001). This technique 

also allows to construct DEMs and in particular the DLR (Deutsches Zentrum für Luft- und Raumfahrt - German Aerospace 

Center) TanDEM-X mission was specifically designed to generate a consistent global DEM (Deo et al., 2013). Indeed, within 

the TanDEM-X bi-static mode (Moreira et al., 2004), two satellites in close formation acquire the radar complex images 

(amplitude + phase components) of the same area at the same time. Each pixel of a SAR image is represented by a complex 30 
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number: the amplitude corresponds to the backscattered energy by the surface illuminated by the radar microwave impulse 

while the phase equals a fraction of the complete wavelength (having a value between 0 and 2π). The phase difference from 

two SAR images (the interferogram) reveals variations in the distance between the ground and the satellites and appear as 

coloured fringes. Since the TanDEM-X images are acquired simultaneously no ground deformation and atmospheric changes 

will be observed between the two acquisitions and the interferogram contains only the topography phase component and 5 

random noise (Bürgmann et al., 2000; Hanssen, 2001). For this work, each pair of the TanDEM-X SAR images are processed 

with the ENVI-SARscape© software and these steps are followed to produce the DEMs: 

(1) the images are co-registered (i.e. geometrically overlapped) using the amplitude components  

(2) the phase difference ∆𝜑 (the interferogram) is evaluated and contain just two components:  

∆𝜑 =  𝜑𝑡 + 𝜑𝑛  (A1) 10 

where 𝜑𝑡is the topographic phase component (i.e. the DEM), 𝜑𝑛 is the noise phase component. For the i-th pixel, Δ 𝜑𝑖  ranges 

from 0 and 2π, by looking at the Δ 𝜑 of neighbour pixels and counting the fringe it is possible to evaluate the altitude. Indeed, 

each fringe corresponds to a variation on the altitude of the same value: 

 

ℎ𝑎 = |
𝜆𝑅𝑠𝑖𝑛(𝜃)

2𝐵⊥
|  (A2) 15 

Where θ is the local incidence angle, ha is called altitude of ambiguity (Massonnet and Rabaute, 1993; Hanssen, 2001), λ is the 

wavelength of the satellite (~3 cm for TanDEM-X), R is the satellite altitude and 𝐵⊥ is the perpendicular baseline between the 

two satellites. 

(3) To reduce the noise the image is multi-looked, i.e. the average over two pixels of SAR complex data is made in range (x) 

and azimuth (y). As the initial Single Look Complex data have spatial resolutions of ~2.5 m x 2.5 m, the resulting DEM 20 

is obtained at a resolution of ~5 m.  

(4) The SRTM-1arcsec DEM (Farr et al., 2000) is used to produce a synthetic interferogram, i.e. it is projected in radar 

looking geometry and then the altitude is converted in phase value. The synthetic interferogram is removed from the 

initial one to obtain the flattened interferogram. With TanDEM-X bi-static images, this difference represents the 

topographic changes compared to the SRTM DEM.  25 

(5) To further reduce the noise, an adaptive filter (Goldstein et al., 1998) is applied on the flattened interferogram to obtain 

the final filtered interferogram. The filter strength is evaluated for each pixel on the basis of the coherence (γ) value: the 

lower coherence, the stronger the filter. The coherence is the cross-correlation value between the phase of one pixel and 

its neighbours within a window with preselected dimensions (in azimuth and range) and it ranges from 0 (not coherent) 

to 1 (complete coherence). This filter allows to smooth the phase of the noisiest pixels since their coherence is low.   30 

(6)  To convert the  Δ 𝜑 values of the filtered interferogram in elevation data the unwrapping step is required.  Here the 

minimum cost flow algorithm is used (Goldstein et al., 1988; Costantini, 1998). A 0.25 unwrapping threshold is used (all 

the pixels with coherence lower than this value are discarded).  
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(7)  The absolute calibrated and unwrapped phase is finally re-combined with the synthetic phase associated to the SRTM 

DEM and it is converted to height. Then, the height map is geocoded using the SRTM DEM into the Lat/Lon cartographic 

system (WGS-84 ellipsoid).  

The vertical precision of the measurement, σz, is a function of the acquisition geometry and the standard deviation of the phase, 

σϕ; 5 

      σz = (ha/2 π)* σϕ   (A3) 

where ha is the altitude of ambiguity (Eq.2). The standard deviation of the phase corresponds to the noise level of the 

interferogram and can be characterized, at first order, by the coherence parameter γ. For the Rwenzori InSAR DEMs produced 

from each image, the vertical error is on average < 7m. 

Here 9 and 7 TanDEM-X couples in ascending and descending orbits respectively are used to construct two different DEMs 10 

that cover the entire Rwenzori region. These DEMs were compared to the SRTM-1 arc-sec and a horizontal shift was noticed 

that depends on the satellite acquisition geometry and it is principally due to the geocoding process, to the error on the orbital 

data and to the horizontal error on the SRTM (~20 m – Farr et al., 2000). Therefore, in order to limit this propagation, a mosaic 

of ascending and descending DEMs is constructed to cover the entire Rwenzori region. The seams of the mosaicked image do 

not run through the surveyed areas. For the inhabited region, the vertical error of this mosaic is on average <3m.  15 
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Figures 

 

Figure 1. Overview of the surveyed study areas on the Rwenzori Footslopes. The study areas are numbered from North to South: 1: 

Bundibugyo, 2: Nyahuka, 3: Kabonero, 4: Mahango and 5. Kyondo. For Nyahuka (2) and Kyondo (5) a detailed map is provided 

showing the locations of shallow and deep-seated slides. Landslide maps of other study areas can be found in Jacobs et al. (2016b).  5 
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Figure 2. Schematic representation of the methodological options considered in this study and how they are evaluated and selected.  
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Figure 3. Model performance indicators for the selected model variants (indicated in bold in Table 2). (a) to (e), Sensitivity (red), 

specificity (green) and prediction rate curve (blue). (f), mean prediction rates for selected models on the regional and local levels. 
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Figure 4. Pair-wise comparison of the regional susceptibility model (left) and the local model (right) applied to the five 

case study areas. Dots represent landslide locations. Each of the models are achieved by averaging results of the 20 

model runs for the selected variant. *Indicates the average performance in AUCROC for the regional model as applied 

to the local study area.  5 
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Figure 5. Landslide susceptibility (LS susc) and population density (pop dens) distribution in the  Rwenzori Mountains inhabited 

zone. (a) landslide susceptibility (red arrow indicates artefacts in regional landslide susceptibility model). (b) corrected landslide 
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susceptibility. (c) population density at parish level (source: UBOS, 2003). (d). preliminary identification of landslide hotspots. A 

and B indicate polygons discussed in the text. I to V indicate particular hotspot locations elaborated in the text. 

Tables 

Table 1. Overview of surveyed study areas (Fig.1) , their surface area and number of total, shallow (SLS) and deep-seated landslides 

(DSLS) mapped together with the prevailing lithologies in those study areas according to the GTK consortium (2012) and the average 5 
annual precipitation as simulated by Thiery et al. (2015).  

Study area 
Area 

(km2) 

Elevation range 

(m a.s.l.) 

Average 

slope (°) 

# of 

SLS 

# of 

DSLS 

Total # 

of slides 
Lithology 

Average annual 

precipitation (mm) 

Bundibugyo 42.6 715-2,200 12 83 125 208 rift alluvium, mica 

schists, gneiss 

1,010 

Nyahuka 20.4 830-2,200 12 48 17 65 rift alluvium, mica 

schists, amphibolite, 

gneiss 

1,540 

Kabonero  39.8 1,400-2,300 20 53 17 70 gneiss, amphibolite, 

mica schists 

810 

Mahango 29.6 1,240-2,200 20 69 22 91 gneiss 930 

Kyondo 20.4 1,130-2,140 20 18 2 20 gneiss,  quartzite, 

mica schists 

1,040 

Total  153     271 183 454     

 

Table 2. Overview of the mean and standard deviation (S.D.) of AUCroc over 20 runs for the different model variants at each level. 

Selected model variants are marked in bold, values in italic indicate non-normally distributed samples (Shapiro-Wilk test, p<0.05). 

Wherever applied, all non-parametric tests and the Welch-test confirm the results of the parametric tests and results are therefore 10 
combined here. Symbols indicate significant differences detected between variants.  

    TANDEMX10 TANDEMX20 TANDEMX30 ASTER30 SRTM30 SRTM90 

REGIONAL Mean AUCroc 0.71 0.71 0.71 0.68 0.71 0.68 
◊ /  ○ / ∆  S.D. AUCroc 0.01 0.01 0.01 0.01 0.01 0.02 

BUNDIBUGYO Mean AUCroc 0.70 0.69 0.70 0.63 0.70 0.65 
◊ /  ○ /  ∆  S.D. AUCroc 0.03 0.02 0.01 0.03 0.02 0.02 

NYHUKA Mean AUCroc 0.69 0.69 0.64 0.66 0.69 0.75 

◊ /  □ / ∆  S.D. AUCroc 0.04 0.03 0.06 0.06 0.05 0.05 

KABONERO Mean AUCroc 0.75 0.78 0.76 0.75 0.75 0.69 
◊ / □ /  ∆  S.D. AUCroc 0.05 0.04 0.03 0.05 0.05 0.05 

KYONDO 
/MAHANGO 

Mean AUCroc 0.71 0.73 0.71 0.68 0.73 0.66 

◊ / ○  / ∆  S.D. AUCroc 0.04 0.04 0.03 0.05 0.03 0.04 
Significant difference between all variants (◊ at p<0.05)  
Significant difference between TANDEMX variants (□ at p<0.05) 
Significant difference between all variants at 30m (○  at p<0.05) 
Significant  difference between SRTM variants ( ∆ at p<0.05) 
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Table 3. Overview of the frequency a variable is selected with a positive coefficient (+β, shaded cells) or negative coefficient (-β, 

unshaded cells) based on the AIC-criterion and the frequency that variable is found to be significant at a p<0.05 level for all local 

levels and the regional level. NP stands for Not Present in the study area, CURV stands for curvature 

 

  REGIONAL BUNDIBUGYO NYAHUKA KABONERO KYONDO/MAHANGO 

Variables +β p<0.05 -β p<0.05 +β p<0.05 -β p<0.05 +β p<0.05 -β p<0.05 +β p<0.05 -β p<0.05 +β p<0.05 -β p<0.05 

RIFT ALLUVIUM 20 20 0 0 20 17 0 0 20 13 0 0 NP NP NP NP NP NP NP NP 

AMPHIBOLITE 0 0 20 12 NP NP NP NP 19 8 1 0 0 0 20 8 NP NP NP NP 

MICA SCHISTS 8 0 12 0 20 7 0 0 20 8 1 0 0 0 20 1 0 0 20 14 

QUARTZITE 14 0 6 0 NP NP NP NP NP NP NP NP NP NP NP NP 18 1 2 0 

ELEVATION / / / / 1 1 3 0 4 2 0 0 0 0 3 1 11 9 0 0 

SLOPE 20 20 0 0 20 20 0 0 20 18 0 0 18 15 0 0 20 20 0 0 

TANG CURV 0 0 18 12 1 0 1 0 2 1 2 1 0 0 15 13 0 0 7 3 

PROF CURV 2 2 0 0 7 5 0 0 0 0 11 5 12 6 0 0 4 2 0 0 

TWI 1 0 0 0 2 1 2 0 19 18 0 0 1 1 6 2 12 8 0 0 

N-S aspect 3 2 1 0 1 1 1 0 3 1 0 0 2 1 0 0 2 2 3 1 

E-W aspect 0 0 6 4 4 3 2 2 5 3 1 0 1 1 1 0 2 2 3 1 

NW-SE aspect 0 0 4 4 0 0 10 6 0 0 6 2 1 0 2 0 3 0 0 0 

NE-SW aspect 2 2 1 0 1 1 0 0 1 1 2 1 5 1 0 0 1 0 3 2 

PRECIPITATION 12 8 0 0 NP NP NP NP NP NP NP NP NP NP NP NP NP NP NP NP 

 5 
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Table 4. Overview of the frequency a variable is selected with a positive coefficient (+β, shaded cells) or negative coefficient (-β, 

unshaded cells) based on the AIC-criterion and the frequency that variable is found to be significant on a p<0.05 level. This is given 

for the models on the regional level including all landslides, including only the shallow landslides and only the deep-seated landslides. 

The distinction between the latter two is made based on a 3m threshold of the depth of the sliding plane. NP stands for Not Provided 

as input to the model. 5 

  REGIONAL SHALLOW SLIDES REGIONAL  
DEEP-SEATED SLIDES 

REGIONAL 

Variables +β p<0.05 -β p<0.05 +β p<0.05 -β p<0.05 +β p<0.05 -β p<0.05 

RIFT ALLUVIUM 20 20 0 0 16 3 4 0 20 20 0 0 
AMPHIBOLITE 0 0 20 12 1 0 19 11 5 0 15 1 
MICA SCHISTS 8 0 12 0 8 0 12 1 10 1 10 0 
QUARTZITE 14 0 6 0 16 0 4 0 6 0 9 0 
SLOPE 20 20 0 0 20 20 0 0 20 20 0 0 
TANG CURV 0 0 18 12 0 0 15 11 0 0 7 4 
PROF CURV 2 2 0 0 1 0 0 0 6 3 1 0 
TWI 1 0 0 0 3 2 0 0 2 0 0 0 
N-S (aspect) 3 2 1 0 0 0 0 0 3 0 2 2 
E-W (aspect) 0 0 6 4 1 0 1 1 1 1 4 2 
NW-SE (aspect) 0 0 4 4 0 0 2 2 3 1 1 0 
NE-SW (aspect) 2 2 1 0 2 2 0 0 2 2 2 1 

PRECIPITATION 12 8 0 0 14 14 0 0 2 1 2 0 

TREE COVER NP NP NP NP 3 2 1 1 NP NP NP NP 

 

 

 


