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Abstract 21 

This paper discusses how epistemic uncertainties are currently considered in the most 22 

widely occurring natural hazard areas including floods, landslides and debris flows, 23 

dam safety, droughts, earthquakes, tsunamis, volcanic ash clouds and pyroclastic flows, 24 

and wind storms. Our aim is to provide an overview of the types of epistemic 25 

uncertainty in the analysis of these natural hazards and to discuss how they have been 26 

treated so far to bring out some commonalities and differences. The breadth of our study 27 

makes it difficult to go into great detail on each aspect covered here; hence the focus 28 

lies on providing an overview and on citing key literature. We find that in current 29 

probabilistic approaches to the problem, uncertainties are all too often treated as if at 30 

some fundamental level they are aleatory in nature.  This can be a tempting choice when 31 

knowledge of more complex structures is difficult to determine but not acknowledging 32 

the epistemic nature of many sources of uncertainty will compromise any risk 33 

analysis.  We do not imply that probabilistic uncertainty estimation necessarily ignores 34 



the epistemic nature of uncertainties in natural hazards; expert elicitation for example 35 

can be set within a probabilistic framework to do just that.  However, we suggest that 36 

the use of simple aleatory distributional models, common in current practice, will 37 

underestimate the potential variability in assessing hazards, consequences and risks. A 38 

commonality across all approaches is that every analysis is necessarily conditional on 39 

the assumptions made about the nature of the sources of epistemic uncertainty. It is 40 

therefore important to record the assumptions made and to evaluate their impact on the 41 

uncertainty estimate. Additional guidelines for good practice based on this review are 42 

suggested in the companion Part 2. 43 

  44 



1 Introduction 45 
 46 

With the increasing appreciation of the limitations of traditional deterministic 47 

modelling approaches, uncertainty estimation has become an increasingly important 48 

part of natural hazards assessment and risk management.  In part, this is a natural 49 

extension of the evaluation of frequencies of hazards in assessing risk, in part an honest 50 

recognition of the limitations of any risk analysis, and in part because of the recognition 51 

that most natural hazards are not stationary in their frequencies of occurrence.  52 

 53 
The consideration of uncertainty in risk assessments has, however, been relatively 54 

uncommon, particularly in respect of the epistemic uncertainties, i.e. those that are not 55 

well determined by historical observations and therefore represent gaps in knowledge. 56 

In this review we discuss the impact of epistemic uncertainties on risk assessment and 57 

management for different types of natural hazards.  Throughout, we believe it is 58 

important to think about the full hazard-magnitude-footprint-loss setting (e.g. Rougier 59 

et al., 2013) which may be stakeholder specific (Fig. 1). This means that any risk 60 

assessment involves a modelling cascade, each element of which involves epistemic 61 

uncertainties, with the potential for the uncertainty in risk to grow, or be constrained by 62 

additional data, within each component in the cascade (e.g. Beven and Lamb, 2014).  63 

 64 

 65 



Figure 1. Hazard-Magnitude-Footprint-Loss, illustrated by an ashy volcanic 66 
eruption (© Jonty Rougier) 67 
 68 

Probabilistic risk analyses typically assume – even though they do not have to – that 69 

the different sources of uncertainty can, at some fundamental level, be treated as 70 

random or aleatory variables (and that all possible futures have been considered so that 71 

the probability assessments can be taken as complete). There is, however, an increasing 72 

appreciation that this is not the only type of uncertainty that arises in such analyses 73 

across natural hazard areas (Hoffman and Hammonds, 1994; Helton and Burmaster, 74 

1996; Walker et al., 2003; Brown, 2004, 2010; van der Sluijs et al., 2005; Wagener and 75 

Gupta, 2005; Refsgaard et al., 2006, 2007, 2013; Beven, 2009, 2012, 2013, 2016; 76 

Warmink et al., 2010; Stein et al., 2012; Rougier and Beven, 2013; Beven and Young, 77 

2013; Simpson et al., 2016; Mulargia et al., 2017; Almeida et al., 2017). In particular, 78 

since the time of Keynes (1921) and Knight (1921), it has been common practice to 79 

distinguish between those uncertainties that might be represented as random chance, 80 

and those, which arise from a lack of knowledge about the nature of the phenomenon 81 

being considered. Knight (1921) referred to the latter as the “real uncertainties” and 82 

they are now sometimes called “Knightian uncertainties”. While Knight’s thinking pre-83 

dated modern concepts and developments in probability theory (e.g. de Finetti, 1937, 84 

1974; Cox, 1946), the distinction between uncertainties that can be treated simply as 85 

aleatory and as additional knowledge uncertainties holds.    86 

 87 

An argument can be made that all sources of uncertainty can be considered as a result 88 

of not having enough knowledge about the particular hazard occurrence being 89 

considered: it is just that some types of uncertainty are more acceptably represented in 90 

terms of probabilities than others. In current parlance, these are the “aleatory 91 

uncertainties” while the Knightian real uncertainties are the “epistemic uncertainties”. 92 

Aleatory uncertainties represent variability, imprecision and randomness, or factors that 93 

can be modelled as random for practical expediency, which can be represented as forms 94 

of noise within a statistical framework. Within epistemic uncertainties it is possible to 95 

subsume many other uncertainty concepts such as ambiguity, reliability, vagueness, 96 

fuzziness, greyness, inconsistency and surprise that are not easily represented as 97 

probabilities.  98 

 99 



This distinction is important because most methods of decision-making used in risk 100 

assessments are based on the concept of risk as the product of a probability of 101 

occurrence of an event (the hazard, magnitude and footprint components in the model 102 

cascade) and an evaluation of the consequences of that event (the loss component). If 103 

there are important uncertainties in the assessment of the occurrence that are not easily 104 

assessed as probabilities, or if there are significant epistemic uncertainties about the 105 

consequences, then some other means of assessing risk decisions might be needed.  106 

Given lack of knowledge, there is also plenty of opportunity for being wrong about the 107 

assumptions used to describe sources of uncertainty or having different belief systems 108 

about the representations of uncertainties (e.g. Marzocchi and Jordan, 2014; Beven, 109 

2016), hence testing the impact of the assumptions and choices made is increasingly 110 

becoming important (Pianosi et al., 2016).   Epistemic uncertainties are also sometimes 111 

referred to as “deep uncertainties”, including in risk analysis and natural hazards (e.g. 112 

Cox, 2012; Stein and Stein, 2013).  113 

 114 

For the practical purposes of this review, we will define epistemic uncertainty as those 115 

uncertainties that are not well determined by historical observations.  This lack of 116 

determination can be because the future is not expected to be like the past or because 117 

the historical data are unreliable (imperfectly recorded, estimated from proxies, or 118 

missing); because they are scarce (because measurements are not available at the right 119 

scale or long enough period); because the structure of that uncertainty does not have a 120 

simple probabilistic form; or because we expect the probability estimates to be 121 

incomplete (unbounded or indeterminable, e.g. Brown, 2004). 122 

 123 

In what follows we consider the key sources and impact of epistemic uncertainties in 124 

different natural hazard areas.  We also recognise that different types of hazard 125 

mitigation strategy might have different sensitivities to the treatment of epistemic 126 

uncertainties (e.g. Day and Fearnley, 2015).   We see the typical audience of this 127 

opinion piece as a natural hazard scientist who is likely aware of uncertainties in his/her 128 

own specific hazard area, while having limited understanding of other hazard areas and 129 

of the approaches available to deal with epistemic uncertainties. Our aim is to discuss 130 

how epistemic uncertainties have been recognised and treated in the different hazard 131 

areas, to bring out some communalities and differences.  It is difficult to go into great 132 

detail on each aspect covered here; hence the focus is on providing an overview and on 133 



citing key literature.  In the second part of the paper we discuss the different opinions 134 

about the options for addressing epistemic uncertainty and we discuss open problems 135 

for implementing these options in terms of what might constitute good practice (Beven 136 

et al., 2018).  137 

 138 

2 Floods 139 

2.1 Floods and key epistemic uncertainties  140 

Floods account for about one third of all economic losses from natural hazards globally 141 

(UNISDR, GAR 2015). The frequency and magnitude of flood disasters is likely to 142 

increase with a warming atmosphere due to climate change and with increased exposure 143 

of a growing population (Winsemius et al., 2016), which suggests that the fractional 144 

contribution to global disaster losses is likely to increase even further. There are five 145 

aspects of flood risk assessment that involve important epistemic uncertainties.   The 146 

first is the assessment of how much rainfall or snowmelt input occurs (either in past or 147 

future events); the second is the frequency with which such events might occur and how 148 

that might be changing; the third is how much of that input becomes flood runoff; the 149 

fourth is the footprint of the flood inundation; and the fifth is the assessment of either 150 

past or potential damages (see discussion in Section 11 below).   These all apply in the 151 

assessment of expected damages for events of different magnitude for making decisions 152 

in managing the flood risk and in the management of flood incidents in real time (e.g. 153 

Sayers et al., 2002). 154 

 155 

2.2 Uncertainty quantification in flood hazard estimation 156 

In the context of flooding, uncertainties in inputs and runoff generation are often 157 

avoided by estimating the probability of exceedance for different magnitudes of event 158 

in terms of an extreme value distribution of discharges.  That does not mean that such 159 

uncertainties are not important (such as lack of knowledge about the effects of a poorly 160 

known spatial pattern of inputs on runoff generation, the role of antecedent conditions 161 

in controlling runoff generation, or estimates of historical flood peak discharges), only 162 

that they are assumed to contribute to some underlying statistical distribution of events 163 

that is fitted to the available historical data.   That provides estimates of frequency as if 164 

the series of historical floods is drawn from a stationary distribution, which is not easily 165 

modified to allow for future change (e.g. Prudhomme et al., 2010).   166 

 167 



The epistemic uncertainty then is convolved into a question of what statistical 168 

distribution should be used.  This question has often been resolved by institutionalising 169 

the uncertainty into a particular choice of standard distribution.  Different countries 170 

have chosen different distributions and, in some cases, have changed that choice over 171 

time.   There are good theoretical reasons to choose the Generalised Extreme Value 172 

(GEV) distribution.  Asymptotically a sample of extremes with independent 173 

occurrences in successive time periods (e.g. years) from an arbitrary underlying 174 

distribution of events should have the form of the GEV distribution.   It was the 175 

distribution of choice for the analysis of annual maximum floods in the UK Flood 176 

Studies Report (NERC, 1975).    However, the time series available for the analysis of 177 

floods are often relatively short, so the asymptotic condition may not be approached, 178 

and the occurrences of events may not be independent in time or space (e.g. Eastoe and 179 

Tawn, 2010; Keef et al., 2013).   Thus, in revising the UK methodology in the Flood 180 

Estimation Handbook, a change was made to recommend the Generalised Logistic 181 

Distribution since it resulted in fewer sites being assigned parameters that suggested 182 

some upper limit to flood magnitudes (IH, 1999).  Many other distributions have been 183 

used elsewhere.   A recent development in flood risk management has been a concern 184 

with the joint occurrences of flood events, rather than looking at individual sites 185 

independently.  This requires specifying not only one distribution but joint distributions 186 

and the correlation structure between them (e.g. Keef et al., 2013), but which may not 187 

be well defined by historical data. 188 

 189 

The choice of a particular distribution essentially controls the form of the upper tail of 190 

the distribution and consequently the assessment of risk.  This is common to the other 191 

natural hazards that are considered below. Good practice suggests that the statistical 192 

uncertainty associated with the tail of the fitted distribution should be evaluated 193 

(although this is rarely reported even where it is provided by the analysis software) but 194 

essentially we have additional epistemic uncertainties as to what distribution to choose 195 

and whether to treat that distribution as stationary or whether clusters of events might 196 

come from some more complex stochastic structure (e.g. Koutsoyiannis, 2003, 2010; 197 

Montanari and Koutsoyiannis, 2012).   If this is the case, then it might result in a 198 

significant increase in the range of uncertainty relative to classical statistical analysis 199 

(e.g. Koutsoyiannis and Montanari, 2007) irrespective of other sources of epistemic 200 

uncertainty. 201 



 202 

These issues have led some people to step back to considering the inputs and runoff 203 

generation over a catchment more directly in flood risk estimation.   This approach was 204 

pioneered by Eagleson (1972) using a simple derived distribution model of runoff 205 

generation, but increased computer power has allowed continuous simulation over long 206 

periods of time using rainfall-runoff models which has the advantage that the variation 207 

in antecedent wetness of a catchment prior to an event is part of the simulation (e.g. 208 

Beven, 1987; Cameron et al. 1999, 2000; Lamb and Kay, 2004; Blazkova and Beven, 209 

2004, 2009; Wagener et al., 2004).   In some cases it is possible to use long series of 210 

observed rainfall data to simulate discharges; but for the very long series that are needed 211 

to estimate more extreme events it is necessary to use a stochastic model of the inputs 212 

(similar to the weather generators used to produce future sequences in climate change 213 

impact assessments).  However, this only shifts the epistemic uncertainty issue of the 214 

choice of appropriate distributions or more complex stochastic structures for the space-215 

time characteristics of rainfall (e.g. Chandler et al., 2014).  The extreme events 216 

generated from such a weather generator depend on the tails of the assumed 217 

distribution(s) and there will again be epistemic uncertainty about what type of 218 

distribution to use, even where rainfall series are longer than discharge records.   219 

 220 

A further advantage of the continuous simulation approach is that the weather generator 221 

can be modified to represent future climates (e.g. Cameron et al., 2000; Wilby and 222 

Dessai, 2010; Prudhomme and Davies, 2009; Prudhomme et al., 2010), and that input 223 

data might be more readily available for sites for which there are no discharge records 224 

(the prediction in ungauged basins problem, Wagener et al., 2004; Blöschl et al., 2013; 225 

Hrachowitz et al., 2013).   This latter case still requires that the parameters of a rainfall-226 

runoff model be specified.  This is also an epistemic uncertainty issue, even if 227 

extrapolations from gauged sites are often made using statistical regression or pooling 228 

group methods (e.g. Lamb and Kay, 2004) a process that will be influenced by model 229 

structural uncertainty and other uncertainty sources (e.g. McIntyre et al., 2005; 230 

Wagener and Wheater, 2006). Experience in predicting the flood characteristics in this 231 

way has been somewhat mixed; successful in some basins, but with significant over or 232 

underestimation in others (Lamb and Kay, 2004; Blöschl et al., 2013). Improvements 233 

to such methods might still be possible but epistemic uncertainty will remain a 234 

constraint on accuracy. 235 



 236 

Further uncertainties arise in the estimation of the footprint of the flood event.  There 237 

may be different areas at risk of inundation according to whether the risk is from pluvial, 238 

fluvial, coastal or groundwater flooding.   By making assumptions about various 239 

sources of uncertainty in the modelling of inundation, a (Monte Carlo based) forward 240 

uncertainty analysis can be used to predict uncertainties in inundation areas and depths 241 

(e.g. Berry et al., 2008).   In some cases, historical flood mapping is available that can 242 

be used to condition hydraulic models of inundation and constrain the uncertainty in 243 

model predictions (Bates et al., 2014).   Both Generalised Likelihood Uncertainty 244 

Estimation (GLUE; Aronica et al., 1998; Romanowicz and Beven, 2003; Pappenberger 245 

et al., 2007; Neal et al., 2013; Beven et al., 2014; Beven and Lamb, 2014) and more 246 

formal Bayesian methods (Romanowicz et al., 1996; Hall et al., 2011) have been used 247 

in this type of conditioning process (e.g. Figure 2; see also other examples in Beven et 248 

al., 2014). 249 

 250 

Recent improvements in flood inundation modelling have been less a result of reducing 251 

uncertainties in inputs and hydraulic parameters, but rather due to reductions in 252 

uncertainties in topography as LIDAR surveys have become more widely available or 253 

in land surface properties through remotely sensed information (e.g. Wood et al., 2016).  254 

However, LIDAR cannot identify all the barriers to flow on a flood plain (e.g. Sampson 255 

et al., 2012). A further issue can be that effective hydraulic parameters identified for 256 

one magnitude of event might not hold for a larger magnitude event (e.g. Romanowicz 257 

and Beven, 2003) which would introduce epistemic uncertainty.   It is also common to 258 

assume that the effective parameters are spatially constant which, when interacting with 259 

other sources of uncertainty might mean that it is not possible to get good fits to 260 

inundation observations everywhere in the modelled domain (e.g. Pappenberger et al., 261 

2007; Savage et al., 2016).   262 

 263 



 264 
Figure 2:  Uncertainty in inundation extent  resulting from simulations of the flood 265 
with annual exceedance probability 0.01, River Eden valley in the vicinity of 266 
Carlisle, Cumbria, UK.  The uncertainty scale results from a behavioural 267 
ensemble of LISFLOOD-FP inundation models with different parameters sets, 268 
weighted according to fit to the 2005 flood outline, and driven by realisations from 269 
the joint distribution of peak discharges in the River Eden and the Caldew and 270 
Petteril tributaries (for full details see Neal et al., 2013).  271 
 272 

In many situations, flooding is constrained by the existence of natural levees or artificial 273 

flood defences.  Such defences are always associated with a residual risk of being 274 

overtopped and/or failing, a risk that will vary due to factors including construction 275 

methods, programme of maintenance, unauthorised modifications (van Gelder and 276 

Vrijling, 2014).   These are all subject to epistemic uncertainties but are often dealt with 277 

through using fragility curves that give a probability of failure as a function of water 278 

level (e.g. Lamb et al., 2017).  Although expressed in terms of probabilities, such 279 

fragility curves are often treated as deterministically known (Gouldby et al. 2010). 280 

 281 

2.3 Uncertainty quantification in real-time flood management 282 

In flood incident management, epistemic uncertainties might lead to deterministic 283 

predictions being biased, even where models of flood discharges and extent of 284 

inundation have been calibrated for past events.   This is usually handled in one of two 285 



ways. Traditionally it was handled by the experience and expertise of the flood 286 

forecasters who would make subjective adjustments to model outputs available to them 287 

as an event progressed and more information became available.   In doing so they would 288 

qualitatively allow for perceived epistemic uncertainties based on past experience.  This 289 

approach is still used in many countries. An extension of this approach is to base 290 

estimates of the uncertainty in model predictions based on the performance of the model 291 

in past events. A method such as quantile regression can be used for this (Lopez Lopez 292 

et al., 2014).   The problem for both approaches is that past experience may not be a 293 

good guide to the peculiarities of a new event. 294 

 295 

A different strategy is to assume that all uncertainties can be treated statistically and 296 

use a data assimilation approach to correct for over or under-prediction as the event 297 

proceeds. Techniques such as the Kalman filter, or stochastic autoregressive modelling, 298 

can be used with the advantage that an estimate of the variance of the forecast can also 299 

be updated at the same time (see for example, Sene et al., 2014; Young et al., 2014; 300 

Smith et al., 2012; 2013a).   No explicit account of potential epistemic uncertainties is 301 

normally made in this approach; the aim is only to improve the forecast and minimize 302 

the forecast variance at the required lead-time as new data become available for 303 

assimilation.   The approach will often work well when the required lead-time is less 304 

than the response time of the upstream catchment so that the data assimilation can rely 305 

on measured inputs.  It works less well in flash flood situations in small catchments 306 

with short response times so that forecasts of the inputs are needed to produce a forecast 307 

with reasonable response time (Alfieri et al., 2011; Smith et al., 2013b; Yatheendradas 308 

et al, 2008).  Rainfall forecasts from Numerical Weather Prediction (NWP) models are 309 

still not sufficiently accurate for this purpose but are now used routinely (such as in the 310 

European Flood Awareness System hosted at ECMWF, Bartholmes et al., 2009; De 311 

Roo et al., 2011) for providing flood alerts some days ahead. 312 

 313 

2.4  Floods and The Safety of Dams         314 

 315 

The safety of dams is an interesting example of a hazard that involves both natural 316 

forcing and engineering design, but one in which the consequences of failure can be 317 

catastrophic.   Lists of dam failures (e.g. Vogel, 2001) show that such events are not 318 

common, but the International Commission on Large Dams (ICOLD, 1995) has 319 



estimated that some 0.5% of all dams failed in the period 1951-1986.  The most 320 

fatalities estimated are for the failure of several dams in Henan Province in China in 321 

1975 which killed an estimated 171,000 people and destroyed the houses of 11 million 322 

people.    323 

 324 

Multiple causes subject to epistemic uncertainties (e.g. hydrological forcing, landslides 325 

upstream, poor design or poor maintenance) make dam failures difficult to predict, and 326 

most countries take a highly precautionary approach to regulating for dam safety.   The 327 

design of the dam and spillway channels for large dams are commonly designed to cope 328 

with the estimate of the flood with an annual exceedance probability of 0.0001.   This 329 

is a much smaller probability than for designing normal flood defences, because of the 330 

potential consequences of a failure, but means that such estimates are dependent on 331 

epistemic uncertainties in estimating such tail probabilities.   In addition, the greatest 332 

forcing might not come from the highest flood peak if it is of short duration, but from 333 

the inflow volume associated with an event of longer duration but smaller peak.   One 334 

way of assessing such effects is to run a continuous simulation model and examine the 335 

impact of the most extreme events generated over with long realisations (e.g. Blazkova 336 

and Beven, 2009).  The continuous simulation approach means that the antecedent 337 

conditions prior to any event are handled naturally, but clearly the outputs from such 338 

simulations are dependent on the epistemic uncertainties associated with all the model 339 

components, including the tail assumptions for the driving distributions, the choice of 340 

rainfall-runoff model, and the estimation of model parameters given the historical data.    341 

 342 

Predicting the downstream footprint of a dam failure and consequent threat to life and 343 

potential damages can also be difficult.   There are hydraulic models available designed 344 

to cope with the high discharges and sharp wave fronts expected with a dam failure 345 

(Cao et al., 2004; Xia et al., 2010), but the application in any real case study will depend 346 

on the epistemic uncertainty associated with the characteristics of a breach in the dam 347 

acting as an upstream boundary condition for the hydraulic model and the momentum 348 

losses in the downstream area as a highly sediment-laden fluid interacts with the valley 349 

bottom infrastructure and vegetation.   It is also difficult to verify the outputs of such a 350 

model (though see Hevouet and Petitjean, 1999; Begnudelli and Sanders, 2007; and 351 

Gallegos et al., 2009; for examples of field scale validation) while predictions of 352 

velocities, as well as depths, will be important in assessing the consequences.  353 



 354 

3. Landslides and Debris Flows 355 

3.1 Landslides and key epistemic uncertainties 356 

Globally, landslides are directly responsible for several thousand deaths per year 357 

(Petley, 2012). A widely cited example is that of the Welsh village of Aberfan, where 358 

a flowslide from a colliery spoil tip killed 144 people, 116 of whom were children, at 359 

the Pantglas Junior School in October 1966 (Johnes, 2000). More recently, the Gunsu 360 

mudslide that occurred after heavy rain in August 2010 in China, killed an estimated 361 

1765 people. However, despite the large risks posed by landslides, the ability of 362 

research to guide and inform management decisions is limited by high levels of 363 

uncertainty in model assessments of slope stability. In landslide risk assessment 364 

epistemic uncertainties arise from a range of sources, including errors in measurement 365 

data, gaps in the understanding of landslide processes and their representation in 366 

models, and from uncertain projections of future socio-economic and biophysical 367 

conditions (Lee and Jones, 2004). 368 

 369 

3.2 Uncertainty quantification in landslide hazard estimation 370 

Landslide risk can be assessed qualitatively or quantitatively. The choice depends on 371 

the scale of work (national, regional, local or site-specific), and also on the quality and 372 

quantity of data available. For site-specific slopes, physically-based deterministic 373 

models centred on slope stability analysis are commonly used to assess the probability 374 

of landslide occurrence. Stability conditions are generally evaluated by means of limit 375 

equilibrium methods, where the available soil strength and the destabilising effect of 376 

gravity are compared in order to calculate a measure of the relative stability of the slope 377 

known as the factor of safety. The limit equilibrium method relies on significant 378 

simplifications, such as that the failing soil mass is rigid, the failure surface is known, 379 

and the material’s failure criterion is verified for each point along this surface.  These 380 

simplifications limit both accuracy and applicability. Epistemic uncertainties related to 381 

the limited understanding of system processes and functioning can lead to large errors 382 

in such model predictions. For example, in 1984 an embankment dam in Carsington, 383 

England, slipped, despite the fact that limit equilibrium analysis had indicated that the 384 

slope was not expected to be at risk of failure. This discrepancy has been shown to be 385 

caused by epistemic errors, as brittle soils may exhibit strain-softening behaviour when 386 

loaded, leading to progressive failure, a phenomenon which cannot be reproduced using 387 



conventional limit equilibrium stability analyses. For this type of soil, finite element 388 

analysis using appropriate numerical algorithms and constitutive models are required 389 

to achieve a more accurate prediction of stability, which means that better accounting 390 

of process uncertainty can sometimes be remedied by more detailed modelling (Potts 391 

et al., 1990).  392 

 393 

 394 

All physically-based slope stability models are subject to epistemic uncertainties in 395 

both the constitutive relationships chosen and the parameter values required by those 396 

relationships.   Parameter variability is often assessed by making small scale laboratory 397 

measurements of parameters such as cohesion and coefficient of friction but the 398 

resulting values may not be directly applicable at the large scale because of the effects 399 

of spatial heterogeneities, and additional factors such as root strength (Christian et al., 400 

1994; Rubio et al., 2004; Hall et al., 2004; Hürlimann et al., 2008; Hencher, 2010).   401 

Although spatial variability of soil properties has been recognised as an important 402 

source of epistemic uncertainty in the literature (e.g. El-Ramly et al., 2002; Griffiths 403 

and Fenton, 2004), it has often been ignored in previous analyses using limit 404 

equilibrium methods.  The use of constant values for soil properties over soil deposits 405 

may lead to unreliable estimates of the probability of failure of a slope (El-Ramly et al., 406 

2002; Griffiths and Fenton, 2004; Cho, 2007; Griffiths et al., 2009). To account for this 407 

source of uncertainty in slope stability problems, some investigators combine limit 408 

equilibrium methods with random field theory (e.g. Cho, 2007). Random field theory 409 

allows soil properties to be described by a randomly generated distribution, instead of 410 

a single value across the entire modelled space.  411 

 412 

The finite-element method has the added advantage of being capable of simulating 413 

water flow and coupled hydro-mechanical behaviour under saturated and unsaturated 414 

conditions (Alonso et al., 2003; Gens, 2010). Time-varying boundary conditions to 415 

simulate the effect of rainfall and vegetation can be used (e.g. Nyambayo and Potts, 416 

2010).  Even at sites where the costs of extensive field investigations can be justified, 417 

there is much that remains unknown about the subsurface including the detail of water 418 

flow pathways and knowledge of the hydro-mechanical behaviour of soils. 419 

Understanding the trade-off between data support, model complexity and predictive 420 

uncertainty is therefore crucial. 421 



 422 

To accommodate uncertainty caused by parameter variability in both limit equilibrium 423 

and finite-element methods of analysis, Monte Carlo simulation and/or the first-order-424 

second-moment (FOSM) method are commonly used (e.g. Christian et al., 1994; Wu 425 

and Abdel-Latif, 2000; Haneberg, 2004; Cho, 2007). These methods consider the 426 

uncertainties introduced by the inputs in different ways. Monte Carlo simulation starts 427 

by repeatedly sampling from the probability distributions of the random variables. A 428 

deterministic computation on each of generated input set is performed, and the factor 429 

of safety calculated. Subsequently, the aggregated results of all sets provide an 430 

approximation of the probability distribution of the factor of safety. Alternatively, the 431 

FOSM method can be used to estimate the probability of slope failure. This 432 

probabilistic method determines the stochastic moments of the performance function. 433 

As the input variables are randomly distributed, the performance function is also 434 

randomly distributed, which the FOSM method characterises in terms of its mean and 435 

standard deviation.  In both methods, therefore, the uncertain parameters are treated as 436 

aleatory variables. 437 

 438 

Detailed slope stability models require geotechnical information on site conditions that 439 

can be prohibitively costly to obtain and so tend to be employed only in small areas for 440 

cases where high risk is anticipated, while simpler strategies might suffice in many 441 

straightforward cases. Over large and complex areas, where the use of detailed 442 

physically-based models is not feasible, statistical/data-driven models relating the 443 

probability of spatial landslide occurrence (i.e. susceptibility) and local geo-444 

environmental conditions (e.g. geological, topographical and land-cover conditions) are 445 

used instead (e.g. Guzzetti et al., 1999; Ercanoglu and Gokceoglu, 2002; Guzzetti et al., 446 

2005, 2006). These models have become standard in landslide susceptibility assessment 447 

at a regional scale (Corominas et al., 2014). By estimating where the slope is most likely 448 

to fail (but not the recurrence of failure, i.e. the temporal frequency, or magnitude of 449 

the expected landslide), these models can be of great help in land-use planning, guiding 450 

planners in the delimitation of suitable areas for future development. Guzzetti et al. 451 

(2006), for example, established for the Collazzone area, Italy, a landslide susceptibility 452 

model through discriminant analysis by finding a combination of predictor variables 453 

that maximises the difference between the populations of stable and unstable slopes 454 

with minimal error. The generalisation of a very complex problem into a relatively 455 



simple statistical model, necessarily introduces errors in model predictions, arising 456 

from errors in the predictors used to establish the model, uncertainty in the classification 457 

of the terrain units, etc.  458 

 459 

Despite the above discussed limitations of more complex models for landslide risk 460 

studies, computational advancements do make the use of mechanistic models more 461 

feasible for future applications – even when considering uncertainty and when running 462 

the model over regional scales. Almeida et al. (2017) demonstrated this possibility by 463 

applying the widely used CHASM model (Holcombe et al., 2012) within a Monte Carlo 464 

(MC) framework. The MC framework allowed for the consideration of uncertainties 465 

due to poorly defined geophysical slope properties, which is particularly problematic 466 

for developing regions such as the study’s Caribbean island location where data support 467 

is poor, but hazard risk is especially high. More importantly, Almeida et al. (2017) 468 

demonstrated how epistemic uncertainty can be considered as well. The uncertainty 469 

considered originated from a lack of knowledge about how intensity-duration-470 

frequency (IDF) curves might vary under future climate change. Such IDF curves 471 

provide the design rainfall used by engineers in slope failure risk assessments. Almeida 472 

et al. (2017) used a bottom-up approach in which (in this case) a classification and 473 

regression tree (CART) was developed to identify how much the design rainfall has to 474 

change before specific slopes become significantly more likely to fail (for a more 475 

general discussion of such an approach see Ray and Brown, 2015). Hence, while future 476 

rainfall intensities are unknown, this information still enables engineers to assess which 477 

slopes are at a higher risk of being impacted than others. 478 

 479 

Another large source of uncertainty affecting the assessment of landslide susceptibility 480 

is often introduced by the unavoidable imprecision with which experts approach a 481 

problem, given limited information. To account for the uncertain and inexact character 482 

of the available information and for the possibility of limited information concerning a 483 

real system, fuzzy-based risk assessment models have been suggested in the literature 484 

(e.g. Ercanoglu and Gokceoglu, 2002; Lin et al., 2012). For example,  based on a 485 

landslide inventory database, Ercanoglu and Gokceoglu (2002) applied factor analysis 486 

to determine the important weights of the factors conditioning landslides in the area 487 

(slope angle, land use, topographical elevation, dip direction of movement, water 488 

conditions and weathering depth). Fuzzy-set theory is then applied, accounting for the 489 



judgemental uncertainty (fuzziness, vagueness, imprecision) introduced by the way 490 

experts approach the problem.  In a rule-based fuzzy model, the fuzzy prepositions are 491 

represented by an implication function (e.g. ‘If slope angle is very low then landslide 492 

susceptibility is non-susceptible’) commonly called fuzzy if-then rules or fuzzy 493 

conditional statements. The fuzzy if-then rules are then used to produce a fuzzified 494 

index map for each factor conditioning landslides. These maps are thereafter combined 495 

(by overlaying) to produce a landslide susceptibility map.  496 

 497 

In the context of long-term landslide risk management, as for other natural hazards 498 

fields, such as floods or earthquakes, the probability of exceedance is often calculated 499 

for different sizes of events in terms of an extreme value distribution. This approach 500 

has advantages over a simulation-based analysis, the results of which may be affected 501 

by uncertainties in input forcing data. However, this does not mean that uncertainties 502 

in factors contributing to landslides are ignored in probabilistic estimates of landslide 503 

risk. Instead, probabilistic estimates implicitly account for input uncertainty by fitting 504 

a statistical distribution of events to available historical data. As in the case of floods, 505 

the epistemic uncertainty is convolved into a question of what statistical distribution 506 

should be used and how uncertainty in the tail behaviour is estimated. Probabilistic 507 

models such as binomial model, Poisson model (Crovelli, 2000) and the power-law 508 

distribution (Hungr et al., 1999; Dussauge-Peisser et al., 2002) have been suggested in 509 

the literature to estimate the frequency (or return period) of landslides of a given size. 510 

 511 

3.3 Uncertainty quantification in real-time landslide warning systems 512 

In the context of real-time warning systems, slope failure is commonly estimated by 513 

establishing landslide-triggering thresholds of the initiating agent. The application of 514 

triggering thresholds has been used, for example, in early warning systems in areas 515 

prone to rainfall-induced landslides, by establishing relationships between landslide 516 

occurrence and rainfall indicators, such as antecedent rainfall, duration, intensity and 517 

cumulative rainfall (Aleotti, 2004; Cepeda et al., 2012). An empirical model between 518 

rainfall and landslide initiation has been used to issue warnings during the storms of 12 519 

to 21 February 1986 in the San Francisco Bay Region (Keefer et al., 1987). Since 520 

information regarding data quality is often lacking, one common way to deal with 521 

uncertainty involves tracing the rainfall threshold curves that correspond to different 522 

percentiles and then deciding on a minimum threshold satisfying some performance 523 



criterion (e.g. rainfall threshold curve established so that includes 90% of the historical 524 

events) (Aleotti, 2004). Nevertheless, epistemic uncertainty introduced by lack of 525 

knowledge on landslide occurrence can be significant. For example, Gariano et al. 526 

(2015) show that even a small (1%) underestimation in the number of the considered 527 

landslides can result in a significant decrease in performance of an early warning 528 

system. 529 

 530 

4. Droughts 531 

4.1 Droughts and key epistemic uncertainties 532 

Drought has the potential to cause widespread fatality and economic damage, 533 

particularly when a drought event might last for years or even decades (van Loon et al., 534 

2016a;b). As with floods, droughts may be characterised either in terms of their natural 535 

severity or their impacts.  The definition of drought depends on the type of water deficit 536 

being considered (rainfall, stream flow etc.). Drought follows the hydrological cycle, 537 

as precipitation deficits (meteorological droughts) lead to low soil moisture levels 538 

(agricultural/soil drought) and decreased river flows (hydrological drought) which in 539 

turn may lead to lowering of reservoir levels and water shortages (socioeconomic 540 

drought).   Drought periods associated with high temperatures may also have cascading 541 

impacts such as the large number of excess deaths in Europe in the summer of 2003 542 

(Robine et al., 2008). Unlike many other hazards, droughts other than in their most 543 

meteorological definitions are co-creations of human and environmental effects, in 544 

which the hazard-footprint-loss chain is non-linear. Epistemic uncertainties in drought 545 

risk assessments stem from unknown future climate conditions, from unknown future 546 

water demand scenarios and lack of knowledge about how society might respond to 547 

long-term droughts, from low flow measurements with poorly understood errors, and 548 

from structural errors in hydrological models used to assess the impact of potential 549 

future rainfall deficiencies altered by climate change (Singh et al., 2014). Epistemic 550 

uncertainties in estimates of drought-related consequences and losses stem from the 551 

scarcity of data on and the difficult valuation of impacts and damage induced by water 552 

shortages. 553 

 554 

4.2 Uncertainty quantification in drought hazard estimation 555 

Drought hazard is widely assessed using indices, such as the standardised precipitation 556 

index (SPI) or Palmer Drought Severity Index (PDSI). The most straightforward of 557 



these consider single environmental variables, such as precipitation (SPI) or 558 

groundwater level (Standardised Groundwater Index, Bloomfield and Marchant 2013). 559 

In such cases sources of uncertainty are restricted to the reliability of recorded 560 

observation, which may arise for instance from missing data, incomplete or short 561 

records (Hong et al., 2014; Hu et al., 2014). However, the information content of such 562 

indices can be low as rainfall or groundwater levels are not the sole drivers of drought 563 

impacts.  By contrast, more complex indices such as PDSI and the Crop Moisture Index 564 

provide a more applicable representation of drought, but with more sources of potential 565 

uncertainty due to multiple data sources, parameterizations, and model structures 566 

imposed by the indices. For instance, the Palmer Drought Severity Index or the Crop 567 

Moisture Index assume that land use and soil properties are uniform over large spatial 568 

scales; which makes it difficult to accurately identify the spatial extent affected by a 569 

drought (Narasimhan and Srinivasan, 2005). Parameter uncertainty in some drought 570 

indices is rarely considered when characterising drought, yet it has been shown to play 571 

a significant role in the identification of major drought events and in the derivation of 572 

relevant drought statistics (Samaniego et al., 2013). 573 

 574 

Under specific local conditions, shortage of rainfall can have an influence on water 575 

availability for human use at a regional scale within 4 months (Marsh et al. 2007). Long 576 

droughts can be difficult to characterise as multiple periods of drought can be 577 

interrupted by wet weather events, without sufficient rainfall arriving to restore water 578 

storage. Acknowledging this, long drought events such as the 1890-1910 drought in 579 

England and Wales and the Millennium drought in Australia can be pernicious, 580 

gradually depleting water stored in aquifers and reservoirs.  Historically, drought 581 

indices and other water availability metrics such as Deployable Output (DO) in the UK 582 

have been presented without associated quantification of uncertainty. This is 583 

unfortunate, both in terms of the complexity of the calculation of such figures and 584 

because these terms are widely adopted by legal and regulatory systems. Recently, a 585 

risk-based approach has been proposed by Hall et al. (2012). Under this approach, 586 

probabilistic uncertainties are considered explicitly within the model and simulations 587 

are based on environmental time series, allowing metrics such as the probability of 588 

water shortages to be determined. This allows uncertainties to be examined 589 

simultaneously – conditional on the time series used to inform the model being 590 



representative of those driving the real system.    As with other hazard areas, defining 591 

the probabilities required may also be subject to lack of knowledge. 592 

 593 

Estimation of stream flow, and in particular low flows, is essential for hydrological 594 

drought analysis, thus the choice of methods to model and estimate low flow 595 

characteristics can introduce epistemic uncertainties in drought risk assessment. 596 

Distributions fitted to low flows are susceptible to bias introduced by the fitting 597 

methodology and distribution choice (Ries and Friesz, 2000). Uncertainty is introduced 598 

in observations because many river gauging methodologies are especially poor at 599 

recording low flows (Barmah and Varley, 2012; Tomkins 2014; Coxon et al., 2015). 600 

As gauging methods record proxy observations of flow, epistemic uncertainty in 601 

functional relationships (i.e. changes in channel cross-section or vegetation affecting 602 

the correlation between stage and discharge) is likely to have a relatively greater effect 603 

on the absolute errors of low flow observations (Tomkins 2014; McMillan and 604 

Westerberg, 2015). While there is significant attention paid to information-rich events 605 

such as recession rates following flood events, the assumption that recession parameters 606 

determined in this way are optimal for determining the hydrology of extended low flow 607 

series is not valid (Prudhomme et al. 2012, 2013).  Hydrological models, which are 608 

routinely applied to model low flow occurrence and to characterise hydrological 609 

drought duration and deficits in response to particular climatological conditions, also 610 

introduce epistemic uncertainty in drought risk assessments. For example, Duan and 611 

Mei (2014) have shown that hydrological model structural uncertainty induces large 612 

differences in drought simulation, while Hartmann et al. (2017) demonstrated that 613 

fluxes connecting surface and groundwater are often modelled with insufficient process 614 

realism in large-scale hydrologic models – the scale where drought assessment is most 615 

relevant.  616 

 617 

Drought risk can be characterised using metrics of drought duration and intensity (the 618 

deficit of water during a drought event), or the joint probability of a sequence of reduced 619 

flow events either in isolation or in combination with a water supply system model to 620 

assess future drought risk. Drought duration is indicative of drought severity rather than 621 

directly responsible for consequence in itself, as a long period of low flow is not 622 

necessarily worse than a short, sharp drought. Intensity can be considered a more robust 623 

metric of shortage as deviation from a threshold state can develop as a consequence of 624 



brief periods of extreme shortfall, longer mild shortfall or some combination of the two. 625 

Both these methods are sensitive to the identification of a threshold, which can be non-626 

stationary due to environmental factors. Autocorrelation in drought series can be 627 

difficult to identify due to the requirement of capturing both the different temporal 628 

scales (daily, annual) and the continuous range of low flows, as correlation in Q99 629 

events may be independent from correlation in Q95 events). 630 

 631 

Epistemic uncertainties related to future climate conditions influence drought risk 632 

assessment for water resource planning purposes. A number of studies have 633 

investigated forward uncertainty analysis of the potential impacts of climate change on 634 

droughts (e.g. Wilby and Harris, 2006).  Borgomeo et al. (2014) developed a risk-based 635 

method to incorporate epistemic uncertainties related to climate change in water 636 

resources planning and to assess drought and water shortage risk in water supply 637 

systems. This risk-based method incorporates climate change epistemic uncertainty by 638 

sampling the United Kingdom Climate Projections (UKCP09) change factor 639 

distribution. Sampling different vectors of change factors allows for exploration of 640 

some degree of epistemic uncertainty in future climate, within the range of the UKCP09 641 

scenarios. Epistemic uncertainties arising from emissions scenarios and climate model 642 

choice has been addressed using a similar approach by Paton et al. (2013). 643 

 644 

Although climate models may provide information about future drought risks, there are 645 

issues here about how far current climate models can reproduce the type of blocking 646 

high-pressure conditions that lead to significant droughts in Europe.  Consequentially, 647 

the probabilities of multi-year droughts under future climates will almost certainly be 648 

poorly estimated. In this context, the historical periods of 1933-1934 and 1975-1976 in 649 

the UK are still used as extreme cases for water resource planning purposes.  This is a 650 

form of precautionary approach that does not require any estimate of probability 651 

associated with that event, but one which involves some epistemic uncertainty about 652 

whether a more extreme event might occur in future. Worst-case scenario approaches 653 

have been applied by Kasprzyk et al. (2009) and Harou et al. (2010) to assess drought 654 

risk and evaluate drought management strategies in water resources supply systems 655 

undergoing change when human interventions modify vulnerability in a risk-based 656 

analysis, in addition to any climate changes (Mechler et al., 2010). 657 

 658 



5. Earthquakes 659 

5.1 Earthquakes and key epistemic uncertainties 660 

Predicting earthquake occurrence is difficult, especially large seismic events in the very 661 

near future.  Recently, the 2011 Tōhoku earthquake in Japan has highlighted that 662 

estimation of the maximum magnitude of mega-thrust subduction earthquakes involves 663 

significant epistemic (“deep”) uncertainty related to segmentation of seismic sources 664 

and maximum magnitude (Stein et al., 2012; Kagan and Jackson, 2013), which can lead 665 

to the gross underestimation of earthquake scenarios.  In a rather different scenario, 666 

during the 2010-2011 Christchurch sequences in New Zealand, the complex behaviour 667 

of interacting fault systems caused clustering of multiple major events in the Canterbury 668 

region, that also resulted in major economic impact.  Generally, earthquake hazards are 669 

influenced by stochastic nature of earthquake occurrence and their size as well as by 670 

uncertainties in ground motions at sites of interest, which are contributed by 671 

uncertainties in source, path and site characteristics.   672 

 673 

A standard approach for characterising potential future earthquakes is Probabilistic 674 

Seismic Hazard Analysis (PSHA; Cornell, 1968; McGuire, 2001, 2004).  PSHA was an 675 

engineering endeavour to develop a set of seismic hazard estimates for aiding the 676 

revision and implementation of seismic design in national building codes, using 677 

numerical methods that reflected limitations in the computing power of the time.  In 678 

PSHA, key uncertainties related to earthquake occurrence in time and space, earthquake 679 

magnitude, and ground motion prediction, are all captured.  However, in the past, major 680 

earthquakes have often been surprises, indicating that our knowledge is not perfect and 681 

that some of the probabilistic assumptions were inappropriate.  We learn new things 682 

from these events and are sometimes required to revise theories and pursue alternative 683 

frameworks in the light of new observations (e.g. Mulargia et al., 2017).   684 

 685 

5.2 Uncertainty quantification in earthquake hazard estimation 686 

PSHA takes into account numerous earthquake sources and scenarios and integrates 687 

their contributions probabilistically as if all variables considered are aleatory in nature. 688 

Outputs from PSHA are provided in various forms, such as site-specific hazard curves 689 

for safety-critical facilities and regional hazard contour map. The contour map shows 690 

expected ground motions (e.g. peak ground acceleration and spectral accelerations) 691 



across a wide area or region at a selected annual exceedance probability level (typically 692 

1/500 to 1/10,000).   693 

 694 

Representations of uncertainties in PSHA. PSHA involves various types and sources 695 

of uncertainties, and thus it is crucial to adopt an adequate mathematical framework to 696 

handle uncertainties as probabilities for individual model components and their 697 

dependency (Woo, 2011). Physically, these uncertainties can be associated with 698 

earthquake occurrence processes in time and space, seismic wave propagation, and 699 

seismic effects on structures and socioeconomic systems.  PSHA also allows the 700 

identification of critical hazard scenarios at different probability levels through seismic 701 

disaggregation (McGuire, 2004). This essentially closes the loop between probabilistic 702 

and deterministic seismic hazard approaches, which are complementary in nature 703 

(McGuire, 2001).  The deterministic scenario approaches (e.g. Zuccolo et al., 2011) 704 

allow the use of more definitive models and data, but without attempting to associate a 705 

probability with a given scenario. For evaluating seismic risk impact to safety-critical 706 

facilities and infrastructure, both approaches should be implemented and should also 707 

be accompanied by rigorous sensitivity analysis.       708 

 709 

Epistemic uncertainties arise both in the choice of structure for the component models 710 

and in the effective values of the parameters necessary.  As with the other natural 711 

hazards, this means that when model predictions are compared to observational data the 712 

prediction errors can have a complex structure that may not be simply aleatory. In 713 

PSHA, representations of alternative hypotheses and assumptions for individual model 714 

components are often framed with a logic tree approach (Kulkarni et al., 1984), and the 715 

final estimates of seismic hazard parameters are obtained by integrating relevant 716 

uncertain model components and by weighting of alternative assumptions.  A benefit 717 

of using a logic tree, despite its simplicity, is the transparency in characterising 718 

epistemic uncertainties. In this regard, the logic tree approach is similar to the condition 719 

tree of analysis assumptions outlined by Beven and Alcock (2012).  Nevertheless, major 720 

difficulties arise because not all models, which analysts wish to apply, are based on 721 

consistent data or assumptions, and the probabilities of alternatives in the logic tree are 722 

often poorly known, unknown, or unknowable (Bommer, 2012; Stein and Stein, 2013).  723 

 724 



Thus, in practice, given these epistemic sources of uncertainty, it is not a trivial task to 725 

assign weights to individual branches of the constructed logic tree and, often, resorting 726 

to expert elicitation is the only practical solution.  For major industrial facilities (e.g. 727 

dams and nuclear power plants), the development of the logic tree is often carried out 728 

according to the Senior Seismic Hazard Analysis Committee (SSHAC) guidelines for 729 

using expert advice (Budnitz et al., 1997).  In the face of epistemic uncertainties and 730 

wide spreads in experts’ opinions, special care is essential to avoid the inflation of 731 

elicited uncertainties and parameter distributions (Aspinall and Cooke, 2013).  732 

 733 

Two of the critical elements in PSHA, which are linked but both subject to considerable 734 

epistemic uncertainties, are the estimation of long-term occurrence rates of large 735 

earthquakes and the evaluation of the maximum magnitude for use in a PSHA, for a 736 

given seismotectonic environment.  On occasion, the upper bound of the maximum 737 

magnitude may not be constrained either physically or statistically (Kagan and Jackson, 738 

2013). The difficulty simply stems from the fact that records of seismicity data are 739 

insufficient to derive such long-term occurrence rates reliably, solely from historical 740 

catalogues or instrumental databases.  The quality, completeness and reliability of an 741 

earthquake catalogue evolves over time, affected by the distribution of human 742 

settlements and the way in which major events in the historical record have been 743 

reported/recorded, and by advances in measurement technology and, more recently, the 744 

wider geographical coverage of seismographic networks.  This often results in 745 

inhomogeneous detection and monitoring capabilities of instrumental catalogues 746 

(Tiampo et al., 2007), which needs to be accounted for in evaluating earthquake 747 

occurrence rates. In addition, new information from terrestrial and ocean geodesy 748 

(McCaffrey et al., 2013; Bürgmann and Chadwell, 2014) will help constrain seismic 749 

hazard estimates derived from PSHA.   750 

 751 

Epistemic uncertainties in earthquake occurrence characterisation. Estimating 752 

frequency of occurrence of events for an individual fault or fault system and their 753 

magnitudes is highly uncertain and depends strongly on assumptions (Murray and 754 

Segall, 2002). In particular, it is difficult to determine the continuity of fault 755 

segmentation (Shen et al., 2009). In such cases, different hypotheses regarding the 756 

rupture behaviour of the fault system may be represented by branches of a logic tree. 757 

Recent PSHA studies for potentially active but less well-instrumented seismically 758 



active regions (e.g. the East African Rift) have extended the modelling basis for 759 

regional seismicity beyond historical and instrumental earthquake catalogues by using 760 

information from mapped geological faults and geodetically-determined rates of strain 761 

accumulation (e.g. Hodge et al., 2015). It is noteworthy that while such PSHA 762 

assessments remain significantly uncertain, they may be better able to capture potential 763 

extreme (surprise) events.  Rigorous sensitivity analysis should include testing 764 

alternative hypotheses and comparing the impacts of the adopted assumptions on 765 

regional seismic hazard assessments (see, for example, the flooding example by Savage 766 

et al., 2016).  In this regard, a PSHA should be reviewed, even from a modern 767 

instrumental perspective, such that a better understanding of seismic hazard 768 

assessments and their uncertainties can be achieved (Woo and Aspinall, 2015). 769 

 770 

It has become more established in recent years that the mean occurrence rates of 771 

earthquakes on many mature fault systems and in subduction zones (where multiple 772 

plates meet and interact) are non-Poissonian and quasi-periodic (in contrast with a 773 

homogeneous Poisson model in the classical formulation of PSHA), and thus the hazard 774 

and risk potential posed by specific faults or subduction zones may be regarded as time-775 

dependent (Sykes and Menke, 2006).  Both physics-driven occurrence models 776 

(Shimazaki and Nakata, 1980) and statistics-based renewal models (Cornell and 777 

Winterstein, 1988; Matthews et al., 2002) have been adopted in PSHA.  A notable 778 

example of an active seismic region that is affected by a renewal earthquake process is 779 

the Cascadia subduction zone.  A unique aspect of this subduction zone is that repeated 780 

occurrences of Mw9-class mega-thrust earthquakes - due to subduction plate motions - 781 

have been recognised from field evidence only relatively recently (Satake et al., 2003; 782 

Goldfinger et al., 2012).  In other words, the occurrence and rupture processes of the 783 

Cascadia subduction zone involve major epistemic uncertainties, and yet detailed 784 

hazard and risk assessments are necessary from an earthquake disaster preparedness 785 

viewpoint. In the last decade, various seismic hazard and risk studies for possible risk 786 

mitigation have been carried out by adopting a wide range of time-dependent models 787 

and possible rupture scenarios as a way of trying to account for sources of epistemic 788 

uncertainty (Goda and Hong, 2006; AIR Worldwide, 2013).  This situation contrasts 789 

with the case for the 2011 Tōhoku earthquake, where the consideration of extreme 790 

events was not taken up in risk mitigation actions prior to this event, even though there 791 

were indications of the impacts of past major tsunami-inducing events in the region 792 



(Stein et al., 2012). In this case and that of the Cascadia zone, current knowledge and 793 

understanding of subduction events are likely to be further updated in the very near 794 

future by seafloor geodesy, in particular, and so the scientific assessment framework 795 

and tools for better quantifying the characteristics and patterns of such earthquakes 796 

should also evolve dynamically. 797 

 798 

Characterising seismicity for the purposes of PSHA is always challenging, even in areas 799 

with plentiful data, and even more so when it comes to estimating background or diffuse 800 

seismicity away from known active regions or in low seismicity areas. Conventionally, 801 

this has been tackled, following Cornell (1968), by developing an area source zone 802 

model, each component of which is associated with an annual occurrence rate (above a 803 

minimum magnitude) and a Gutenberg-Richter type magnitude distribution.  However, 804 

because earthquakes are a manifestation of a geological process, epistemic uncertainties 805 

in relation to earthquake magnitude-occurrence rates – especially at high magnitudes – 806 

should not be derived solely from the statistical properties of recent monitoring datasets 807 

or even historical catalogue information, either of which is just a limited snapshot 808 

sample of the underlying process. The danger here is that the analyst, in considering 809 

how to characterise a seismicity model for PSHA, is seduced into deriving a model 810 

conditioned on the available data, rather than understanding the probative weight of 811 

that data given an infinitude of plausible causal process models: naively letting “the 812 

data speak for itself” in PSHA can easily be undermined by future events, as evinced 813 

by the Tōhoku earthquake. Thus epistemic uncertainty quantification of seismicity 814 

should be based on a wider assessment that integrates in other, difficult aspects, using 815 

expert judgment - such as slip and strain/stress rates and geological and tectonic 816 

controls - in order to supplement the limitations of available data (Aspinall, 2013; 817 

Aspinall and Cooke, 2013). This precept applies equally, or should do, to other factors 818 

and parameters in a PSHA, e.g. maximum magnitude and focal depth distribution. The 819 

corollary to this, in practice, is that rigorous sensitivity testing of input parameters can 820 

provide a wider perspective for epistemic uncertainty in earthquake occurrence 821 

characterisation. 822 

 823 

Epistemic uncertainties in ground motion modelling. In modern practice, considerable 824 

effort has been invested in respect of ground motion prediction equations, which 825 

constitute another major source of uncertainties in PSHA. Empirically derived 826 



prediction models using observed strong motion records are inherently limited by the 827 

availability of such data. Even following the dramatic expansions of strong motion 828 

networks in active seismic regions (e.g. California and Japan), near-source strong 829 

motion data and strong motion data for very large earthquakes (with the notable 830 

exception of the 2011 Tōhoku earthquake) are still lacking.  This reality forces us to 831 

update existing empirical ground motion models from time-to-time by incorporating 832 

newly available data or to use computational model simulations of strong motion (e.g. 833 

Skarlatoudis et al., 2015).  Another important issue, related to ground motion modelling 834 

using observed records, is that the majority of the existing ground motion models have 835 

been developed based on the ergodic assumption (Anderson and Brune, 1999).  The 836 

ergodic assumption in the context of ground motion modelling implies that the ground 837 

motions required at a specific location can be substituted by recorded ground motions 838 

at different locations. There may be limited physical validity for this assumption in 839 

reality and, at best, adopting it faute de mieux engenders exaggerated epistemic 840 

uncertainty in the site-specific case via regression scatter estimates. In practice, the 841 

consequences of adopting this working hypothesis are biased seismic hazard 842 

assessments (Atkinson, 2006).  New formulations of ground motion models have 843 

started to address some of these issues (e.g. Stafford, 2014) but require additional 844 

functional relationships and parameters that remain subject to epistemic uncertainties. 845 

 846 

6. Tsunamis 847 

6.1 Tsunamis and key epistemic uncertainties 848 

Massive tsunamis triggered by large earthquakes pose major threats to modern society, 849 

generating fatalities, disrupting socioeconomic activities, and causing grave economic 850 

impact across the world. Forecasting tsunamigenic earthquakes is challenging for the 851 

same reasons discussed above for prediction of mega-thrust earthquakes. Major sources 852 

of epistemic uncertainties are related to earthquake rupture processes (e.g. source areas 853 

and size, asperity, and kinematic/dynamic rupture process) and inundation/run-up 854 

process (e.g. topographical effects, land surface friction, and flow dynamics in urban 855 

areas).  856 

 857 

6.2 Uncertainty quantification in tsunami hazard estimation 858 

As noted in the last section, estimating potential earthquake size is one of the most 859 

critical factors in predicting the impact of great tsunamis. Inappropriate application of 860 



seismological theories could result in gross underestimation of earthquake magnitude 861 

of mega-thrust subduction earthquakes (Kagan and Jackson, 2013).   A large earthquake 862 

may also trigger a submarine landslide, which acts as secondary sources for tsunami 863 

generation (Tappin et al., 2014). To gain further insights into the earthquake rupture 864 

process, source inversions can be carried out to characterise the space-time evolution 865 

of tsunami-causing ruptures by matching key features of simulated data with 866 

observations. Although sophisticated mathematical frameworks for source inversion 867 

have been developed and implemented, derived earthquake rupture models vary 868 

significantly, depending on the methods and data used for inversion (Mai and Beroza, 869 

2002; Lavallee et al., 2006).  870 

 871 

Topographical features of near- and on-shore areas have major effects on tsunami 872 

waves and inundation/run-up. The spatial resolution and accuracy of bathymetry and 873 

digital elevation models (DEM) are important for representing local terrain features 874 

realistically. Typically, the frictional properties of terrain features are modelled by 875 

Manning’s roughness coefficients. Different data resolutions will require different 876 

effective roughness coefficients, thus affecting tsunami inundation extents. The impacts 877 

of uncertainty in the DEM and roughness coefficients will depend on tsunami hazard 878 

parameters (Kaiser et al., 2011). For instance, the inundation depths are less sensitive 879 

to the data resolutions and characteristics, whereas the flow velocity and momentum, 880 

which are also important in evaluating the tsunami-induced forces on buildings 881 

(Koshimura et al., 2009), are more sensitive. This issue becomes even more critical 882 

when tsunami inundation in dense urban areas is investigated, where buildings may be 883 

represented as (impermeable) elevation data. The simulated flow velocities in urban 884 

streets can be very high.  885 

 886 

It is rare that that uncertainties of the DEM data and roughness coefficients are taken 887 

into account in conducting tsunami simulations but adopting the same modelling 888 

philosophy as the PSHA of the last section, probabilistic tsunami hazard analysis 889 

(PTHA) has been developed and applied to some major tsunami-prone regions (e.g. 890 

Annaka et al., 2007; Thio et al., 2007; Horspool et al., 2014). The main focus and 891 

advantage of PTHA are to integrate potential tsunami hazards from various sources 892 

(both near-field and far-field) in a probabilistic framework. Epistemic uncertainties are 893 

represented in PTHA through a logic-tree approach by assigning weights to alternatives 894 



for different model components, noting that the criticisms of PSHA (e.g. Mulargia et 895 

al., 2017) are also applicable to PTHA. The final output is a tsunami hazard curve and 896 

probabilistic tsunami inundation maps of inundation depth and other relevant 897 

parameters. A major difference between PTHA and PSHA is that differential equations 898 

of tsunami wave propagation and run-up (typically shallow water equations) are 899 

evaluated directly, whereas in PSHA, seismic wave propagation (as well as earthquake 900 

rupture and site response) is approximated using empirical ground motion models. The 901 

direct simulation of tsunami waves reduces the uncertainties associated with tsunami 902 

hazard assessment and provides additional information on the tsunami wave time-903 

history and arrival time.   904 

 905 

However, PTHA can be computationally demanding. To achieve computational 906 

efficiency, PTHA is often formulated based on linear superposition of tsunami waves 907 

(i.e. Green’s functions) for simplified earthquake sources and is carried out only for 908 

near-shore locations (e.g. at 30 m depth). The inundation and run-up processes are often 909 

modelled by applying amplification factors (e.g. Løvholt et al., 2014). To improve the 910 

tsunami hazard prediction and quantify the effects of epistemic uncertainties, it is 911 

desirable to integrate the stochastic source modelling approach (which carries out fully 912 

nonlinear inundation simulation of tsunami waves; Goda et al., 2014) into the PTHA 913 

methodology. De Risi and Goda (2016) have developed probabilistic earthquake-914 

tsunami multi-hazard analysis based on the stochastic source modelling approach. Such 915 

an extended PTHA can reflect the variability of source characteristics for specific 916 

scenarios as well as numerous tsunami sources in developing tsunami hazard curves 917 

and maps. 918 

 919 

7. Volcanic eruptions and ash clouds  920 

7.1 Volcanic eruptions, ash clouds and key epistemic uncertainties 921 

The 2010 eruption of Eyjafjallajökull in Iceland provided a dramatic demonstration of 922 

the potential for volcanic ash clouds to become a natural hazard. Because of the 923 

synoptic weather at the time of the eruption the ash cloud caused enormous disruption 924 

to air travel across Europe and the Atlantic with some 10 million air travellers being 925 

affected. The total global cost in GDP over the entire eruption was estimated at $5 926 

billion (Mazzocchi et al., 2010). Since then there has been considerable effort expended 927 

in the monitoring and prediction of volcanic ash clouds.  Ash clouds can also be a 928 



problem in many other parts of the world, for example as a result of the continuing 929 

eruption of Mount Sinabung in Indonesia and the recent 2015 eruption of the Calbuco 930 

volcano in Chile. Globally, a network of nine Volcanic Ash Advisory Centres (VAACs) 931 

provides warning services based on monitoring and modelling.  Major epistemic 932 

uncertainties include the magnitude of the source term or mass emission rate, near field 933 

processes affecting ash size distribution and deposition, and the interaction of the 934 

eruption and synoptic weather patterns in affecting the far-field ash dispersion. 935 

 936 

7.2 Uncertainty quantification in volcanic and ash cloud hazard estimation 937 

Infrared satellite observations are perhaps the most important tools for monitoring ash 938 

but are not without their problems. Ash detection is complicated by a number of factors. 939 

The brightness temperature difference (BTD; the difference between brightness 940 

temperatures at two infrared channels) used as the basis for infrared ash detection can 941 

be affected by false positives and false negatives due to atmospheric conditions 942 

(Simpson et al., 2000; Mackie and Watson, 2015), land surface type and temperature, 943 

presence of other aerosols (Prata, 1989; Prata et al., 2001; Pavolonis et al., 2006; Lee 944 

et al., 2014) and water/ice (Rose et al., 1995), in addition to particle size (e.g. Millington 945 

et al., 2012) and ash cloud opacity (Rose et al., 2001) (see Figure 3).  946 

 947 

Many assumptions are made about the physical properties of ash in order to make 948 

estimates of other physical properties such as ash column loading, ash cloud height and 949 

effective radius. For example, in the Met Office 1D-Variational (1D-Var) volcanic ash 950 

retrieval scheme (Francis et al., 2012) it is assumed that ash particles are spherical to 951 

simplify the absorption and scattering calculations, the particle size distribution (PSD) 952 

is assumed to be lognormal in shape, and the geometric standard deviation of the 953 

distribution is selected from a number of possible values. However, this value can have 954 

a significant effect on retrieved ash column loading e.g. (Western et al., 2015). Ash 955 

composition, and hence, refractive index data must also be assumed, adding 956 

considerable uncertainty (Mackie et al., 2014). There are limited ash refractive index 957 

data available, and this choice can also have a significant effect on derived ash 958 

properties (e.g. Francis et al., 2012). The PSD geometric standard deviation and 959 

refractive index data set are varied within the 1D-Var algorithm and the solution with 960 

the lowest cost is generally used; the solution cost of the 1D-Var scheme can be used 961 



as an uncertainty measure, with high costs indicating high uncertainty (Stevenson et al., 962 

2015). 963 

 964 

 965 

 966 

 967 

 968 

Within volcanic ash retrieval schemes, other sources of uncertainty are introduced, for 969 

example in the simulation of satellite imagery using a radiative transfer model, in the 970 

meteorological data used within the model, interpolation of that data and so on. Some 971 

of these uncertainties are very generally accounted for the in 1D-Var algorithm but not 972 

Figure 3.  Meteosat Second Generation Spinning Enhanced Visible and InfraRed Imager 
(SEVIRI) brightness temperature difference image (brightness temperature at the 10.8 µm 
channel minus the brightness temperature at the 12 µm channel) indicating the extent of the 
Eyjafjallajökull ash cloud at 0300 UTC 8th May 2010. The negative values of BTD (indicating 
ash) are shown in blue and the scale in Kelvin is given on the legend. The positive BTD is 
plotted in grey. A likely false negative ash signal can be seen south of Iceland where the ash 
plume appears to be obscured, possibly by meteorological cloud, due to the high ash 
concentration causing opaqueness, a large fraction of large particles or the presence of water 
in the plume. A negative BTD signal can be seen over North Africa / south eastern Spain, 
possibly due to a night-time clear arid land surface. Raw data supplied by EUMETSAT. 



all. Other types of observations (e.g. hyperspectral satellite observations, satellite, 973 

aircraft or ground-based lidar) can add useful information on ash layer depth, particle 974 

size distribution and the height of the ash cloud. Combining these observations with 975 

infrared satellite observations can help reduce epistemic uncertainty in the derived 976 

observational data. However, they can often be of much lower temporal or spatial 977 

resolution and carry their own assumptions and uncertainties.  978 

 979 

Modelling of the hazard using volcanic ash dispersion models is, however, a problem 980 

of forecasting. At the UK Met Office the Numerical Atmospheric-dispersion Modelling 981 

Environment (NAME) model (Jones et al., 2007) is used in both simulation and 982 

forecasting of ash to inform the London VAAC which covers eruptions in Iceland and 983 

the impacts on northwest Europe. As with all models, NAME is a simplified 984 

representation of the problem, and does not include some of the complex physical 985 

processes that control the behaviour of an ash field close to the source of the eruption, 986 

notably fall out of very large grains and particle aggregation. Near-field processes are 987 

still the subject of current research (e.g. Taddeucci et al., 2011). Currently, the effects 988 

of gravity currents (Bursik et al., 1992a; Sparks, 1986) are also not included in most 989 

atmospheric dispersion models. These near-source processes are likely to dominate ash 990 

dispersion and transport close to the source,  and for large eruptions they could 991 

dominate for hundreds of kilometres (Bursik et al., 1992a, 1992b; Sparks et al., 1997), 992 

but far from the source are unlikely to affect downwind ash clouds for weak eruptions 993 

(Costa et al., 2013; Devenish et al., 2012b). 994 

 995 

In NAME an effective source term is used as a boundary condition for forecasting the 996 

far-field transport and deposition of ash.  This includes assumptions about the PSD of 997 

the ash. Plume behaviour can vary significantly over time and information derived from 998 

deposited ash, often after an event, does not necessarily give a good indication of the 999 

PSD within the distal ash cloud (Bonadonna and Houghton, 2005). Operationally, a 1000 

default source term PSD has been used by the London VAAC, based on empirical 1001 

measurements from Hobbs et al. (1991) which aims to represent the fine ash that 1002 

survives near-source fall-out (Webster et al., 2012). This component may be of the 1003 

order of 0.05 – 10 % of the total erupted mass (Mastin et al., 2009) and consequently 1004 

constitutes a significant source of uncertainty. Mass emission rate (MER) and particle 1005 

density are also required and are also very difficult to determine experimentally. MER 1006 



is often represented as a simple empirical power law as a function of plume height with 1007 

fixed parameters (e.g. Mastin et al., 2009), while in a study of the Eyjafjallajökull 1008 

eruption, Webster et al. (2012) used a fixed ash density value of 2300 kg m-3. It is 1009 

thought that the empirical function for MER may be biased towards observed data from 1010 

larger eruptions (Woodhouse et al., 2013). Plume height measurements used to 1011 

determine MER (e.g. radar) are subject to uncertainties (Arason et al., 2011; Folch et 1012 

al., 2012), and plumes from weak eruptions such as Eyjafjallajökull can become 1013 

distorted by local winds, increasing plume height measurement uncertainty and 1014 

therefore affecting the MER calculation (Webster et al., 2012). Meteorological data can 1015 

also introduce uncertainty to dispersion forecasts, and can lead to cumulative transport 1016 

errors (Dacre et al., 2016). All of these factors represent primary epistemic uncertainties 1017 

in the application of such models. Even a cursory treatment of those uncertainties 1018 

results in a significant predictive uncertainty (Devenish et al., 2012a). The treatment of 1019 

uncertainties in complex models such as NAME can be difficult due to computational 1020 

constraints. Emulation is one strategy to overcome this limitation as demonstrated in 1021 

the study by Harvey et al. (2018) using the NAME model. Their emulator allowed for 1022 

the estimation of prediction uncertainties and for identifying key uncertain parameters. 1023 

 1024 

One way of constraining such uncertainty during simulation (rather than forecasting) is 1025 

to use inversion modelling to learn more about model eruption source parameters 1026 

(ESPs) (and possibly dispersion processes such as sedimentation, wet and dry 1027 

deposition and atmospheric turbulence parameters), based on the available observations 1028 

and prior information (e.g. Kristiansen et al., 2012; Moxnes et al., 2014; Pelley et al., 1029 

2015; Stohl et al., 2011). In this way, Kristiansen et al. (2012) estimated optimal 1030 

volcanic ash source terms for the Eyjafjallajökull eruption using an inversion algorithm 1031 

with satellite-retrieved ash column loadings, a number of emission scenarios and two 1032 

atmospheric dispersion models. The inversion-estimated source terms were applied 1033 

within the models a posteriori to perform long-range forecasts and results were 1034 

validated using LIDAR and in-situ PSD measurements from research flights. 1035 

Uncertainties in the a priori emission estimates, model and observations were taken into 1036 

account within the inversion algorithm, allowing the result to deviate from the a priori 1037 

emission assumptions and the observations according to the errors.   1038 

  1039 



Wilkins et al. (2014, 2016) used data insertion to initialise NAME using measurement-1040 

derived data. Instead of releasing ash with a defined release rate from the volcano vent, 1041 

it was released several times from “snapshots” of downwind ash clouds defined using 1042 

retrieved data from infrared satellite imagery, in situ and other remotely sensed data. 1043 

While this method does not explicitly deal with uncertainties in the model or 1044 

observations, it could potentially be used to bypass basic epistemic uncertainties in the 1045 

ESPs, for instance where the location of the volcano is unknown. The method does, 1046 

however, require estimations of ash layer thickness, vertical distribution and PSD. An 1047 

inversion modelling based Bayesian method was adopted by Denlinger et al. (2012) to 1048 

propagate uncertainty in ESPs within an atmospheric dispersion model and estimate 1049 

forecast uncertainty. A genetic algorithm variational method was applied by Schmehl 1050 

et al. (2011) to elucidate wind direction, wind speed and mass emission rate to be used 1051 

for forward assimilation in a dispersion model. By sampling the source term parameter 1052 

ranges iteratively, the results could be used to constrain uncertainty in ESPs and/or 1053 

meteorological fields.   1054 

 1055 

7.3 Uncertainty quantification in real-time volcanic and ash cloud hazard warning 1056 

systems 1057 

When such models are used for forecasting it is possible to compensate for epistemic 1058 

uncertainties, at least in part, by the real-time assimilation of information about the ash 1059 

cloud derived from remote sensing and other direct sources such as experimental 1060 

flights. Data assimilation will then implicitly compensate for some of the epistemic 1061 

uncertainty associated with the model. However, the propagation of complex 1062 

uncertainties in computationally expensive atmospheric-dispersion models is a time 1063 

consuming and difficult problem to quantify. The characterisation of volcanic ash 1064 

forecast uncertainties in an operational time scale therefore remains a challenging task. 1065 

 1066 

8. Pyroclastic density currents 1067 

8.1 Pyroclastic density currents and key epistemic uncertainties 1068 

Rapidly-moving flows of hot, fragmented gas-rich magmatic products in Pyroclastic 1069 

Density Currents (PDC; also known as nuées ardentes or pyroclastic flows and surges) 1070 

are the biggest threat to human life during explosive volcanic eruptions.  The 79CE 1071 

eruption of Vesuvius and the remains found at Herculaneum and Pompeii represent a 1072 

classic historic example of the disastrous impacts of PDCs, and any repeat at this 1073 



volcano in the future, even on a smaller, less intense scale, could have massive 1074 

consequences for the heavily-populated surrounding area.  Hazard and risk assessments 1075 

for this situation, undertaken in the last twenty years for the National Emergency Plan 1076 

(DPC, 1995; 2001), were mostly based on the characterisation of a single “Maximum 1077 

Expected Event” (MEE).  Such an event largely corresponds in the expected intensity 1078 

of effects to the hazardous phenomena that occurred during the last sub-Plinian eruption 1079 

of Vesuvius, in 1631CE. However, that definition was not based on a fully quantitative 1080 

analysis of the whole system and potential ranges of eruptive activity, and no 1081 

probabilistic estimates were provided for the occurrence of the hazard events being 1082 

considered.  Significant knowledge gaps still exist regarding the factors that control 1083 

their initial formation, their movement across terrain and the ways they injure and kill 1084 

people, and damage structures.   1085 

 1086 

8.2 Uncertainty quantification in pyroclastic density currents hazard estimation 1087 

In an extensive study of the Vesuvius region, Neri et al. (2008) discuss how a structured 1088 

expert elicitation procedure was implemented to complement more traditional data 1089 

analysis and interpretative approaches, and to add a formalised approach to the generic 1090 

incorporation of epistemic uncertainty in the assessment by way of the Event Tree 1091 

formulation. A Vesuvius ‘Event Tree’ was created to summarise the relative likelihoods 1092 

of the genesis and style of eruption, development and nature of volcanic hazards, and 1093 

the probabilities of occurrence of different volcanic risks in the next eruption crisis. To 1094 

achieve a complete parameterisation for this approach, hazard and risk models were 1095 

needed. These were quantified with uncertainty distributions for pyroclastic flow run-1096 

out distances, peak pressures and temperatures rather than use of ‘best-estimates’. 1097 

 1098 

In Neri et al. (2008) the focus lay on addressing the issues of epistemic uncertainty in 1099 

relation to the physical characterisation of PDC potential during a Sub-Plinian column 1100 

collapse eruption, and how the topography of the volcano influences hazard and risk 1101 

mapping results.  A transient 3D parallel code PDAC was used to simulate the dynamics 1102 

of the collapse of the volcanic column and the propagation of the associated PDCs 1103 

(Esposti Ongaro et al., 2007; Neri et al., 2003). However, the full ranges of plausible 1104 

volcanic and other physical input parameter variations are not amenable to 1105 

comprehensive exploration in a restricted number of scenario runs, which are limited 1106 

by computing power and cost.  Under these circumstances, the few PDAC runs that 1107 



were possible were used as indicative reference simulations, with expert elicitations 1108 

used to derive rational, quantitative statements about the most appropriate values to use 1109 

for variables of interest and, more importantly, to give expression to the scientific 1110 

uncertainty that attaches to the outcomes of such model runs.  For instance, 1111 

distributional expressions for uncertainties on pyroclastic flow run-out distances, peak 1112 

pressures and temperatures were obtained by elicitation, after detailed consideration of 1113 

the few simulation model results that were achievable, and of field evidences, old and 1114 

new.  1115 

 1116 

This information was subsequently used to subdivide the Vesuvius area into different 1117 

Sectors (Figure 4).  Sector A includes the area “not protected” by Mt. Somma, and 1118 

Sector B, the area which is “protected” - representing a first-order source of epistemic 1119 

uncertainty in respect of the extent to which the presence of the Mt. Somma topography 1120 

could determine which areas could be invaded by flows or modify properties of the 1121 

flows that might affect the two sectors. While overall predictive uncertainties were quite 1122 

large, the elicited probabilities of invasion of the different sub-sectors of Sector A are 1123 

each very similar, and apparently only weakly affected by the preferential propagation 1124 

directions shown by some of the 3D simulations (Esposti Ongaro et al., 2008) or by 1125 

reconstructions of past Sub-Plinian events (Rosi et al., 1993; Cioni et al., 2008). 1126 

 1127 

The large epistemic uncertainties regarding the directional controls on PDC 1128 

probabilities and likely run-outs influence the expected values of the main physical 1129 

variables that can be associated with a PDC scenario: e.g. peak dynamic pressure and 1130 

peak flow temperature. The fact that the Vesuvius study also resulted in large credible 1131 

intervals associated with these parameter estimates, as well as with the PDC run-outs, 1132 

clearly reflects expert perceptions of the significant degree to which epistemic 1133 

uncertainties must affect current attempts to forecast the complex hazard processes 1134 

being considered.  One conclusion is that more field and more numerical work is needed 1135 

in order to further constrain the areas likely to be affected by future PDCs at Vesuvius. 1136 

 1137 



A   1138 

 1139 

B   1140 

Figure 4. A. Broad segmentation of area around Vesuvius recognising the first-1141 
order effect of Mt. Somma topography in determining areas that might be invaded 1142 
by pyroclastic density current flows (PDC) as the result of a Sub-Plinian I 1143 
eruption.  The bracketed values in each sector show elicited modal probabilities 1144 
that a PDC will affect that sector (expressed in percentage terms) together with 1145 
the corresponding credible intervals, in quantile form [5th, 50th, 95th percentiles].   1146 
B.  Elicited estimates of maximum run-out distances (in km) for PDCs occurring 1147 
during a Sub-Plinian I eruption, by sector.  Inner arcs (blue) are 95% confidence 1148 
levels for exceeding distance shown (e.g. 2.5 km for Sector A1), central arcs (green) 1149 
are expected (50th percentile) values, and outer arcs (orange) are the run-out 1150 
distances assessed has having only a 5% chance of being exceeded. (from Neri et 1151 
al., 2008, with permission). 1152 



 1153 

9. Windstorms 1154 

9.1 Windstorms and key epistemic uncertainties 1155 

Weather	  hazards	  are	  a	  major	  source	  of	  societal	  risk	  causing	  death,	  destruction	  to	  1156 

infrastructure	  and	  disruption	  to	  transport	  and	  business.	  Global	  insured	  losses	  due	  1157 

to	  windstorms,	  currently	  estimated	  to	  cost	  $2.7	  billion	  annually	  (Podlaha	  et	  al.,	  1158 

2017),	  are	  expected	  to	  rise	  dramatically	  due	  to	  climate-‐‑change	  related	  trends	  in	  1159 

weather	  extremes,	   increasing	  exposure	   in	  developing	   countries,	   and	   increasing	  1160 

world	  population.	  Extra-‐‑tropical	  cyclones	  (also	  known	  as	  windstorms)	  are	  major	  1161 

contributors	   to	   this	   impact	   e.g.	   insured	   losses	   in	   Europe	   of	   $9	   billion	   for	  1162 

windstorm	  Daria	   (25/1/1990).	   Furthermore,	  windstorms	   often	   arrive	   in	   close	  1163 

succession,	   which	   enhances	   the	   risk	   of	   large	   aggregate	   losses	   e.g.	   the	   winter	  1164 

2013/14	  cluster	  of	  European	  windstorms	  Christian,	  Xavier,	  Dirk	  and	  Tini	  caused	  1165 

insured	  losses	  of	  $1.38,	  0.96,	  0.47	  and	  0.36	  billion	  totalling	  $3.3	  billion	  (source:	  1166 

www.perils.org).	   	   Epistemic	   uncertainties	   in	   the	   estimation	   of	   windstorm	   risk	  1167 

stem	   largely	   from	   the	   (poorly	  supported)	   choices	   that	  have	   to	  be	  made	  during	  1168 

hazard	  and	  impact	  estimation.	  1169 

 1170 

9.2 Uncertainty quantification in windstorm hazard estimation 1171 

Windstorm	  loss	  distributions	  are	  inferred	  from	  historical	  weather	  measurement	  1172 

data	   (mainly	   available	   since	   1950)	   and	   also	   increasingly	   from	   storm	   data	  1173 

simulated	   ab	   initio	   from	   numerical	   weather	   and	   climate	   prediction	   models	  1174 

(Schwierz	  et	  al.	  2010;	  Pinto	  et	  al.	  2010;	  Della-‐‑Marta	  et	  al.	  2010;	  Renggli	  et	  al.	  2011;	  1175 

Karremann	   et	   al.	   2014).	   The	   loss	   distributions	   are	   estimated	   by	   Monte	   Carlo	  1176 

simulation	   using	   ad	   hoc	   combinations	   of	   various	   statistical,	   dynamical	   and	  1177 

engineering	  type	  models:	  statistical	  models	  for	  estimating	  trends	  and	  correcting	  1178 

inhomogeneities	   in	   the	   historical	   data	   (Barredo	   2010),	   either	   low-‐‑order	  1179 

parametric	  stochastic	  models	  (the	  traditional	  basis	  of	  many	  catastrophe	  models),	  1180 

or	  more	  recently,	  numerical	  weather	  and	  climate	  models	  for	  simulating	  large	  sets	  1181 

of	   artificial	   hazard	   events,	   statistical	   models	   for	   adjusting	   biases	   in	   numerical	  1182 

model	   output,	   and	   stochastic	   models	   for	   simulating	   losses	   from	   the	   artificial	  1183 

windstorm	  events	  (e.g.	  compound-‐‑Poisson	  event-‐‑loss	  table	  models).	  	  1184 



Since	  many	  choices	  are	  required	  to	  develop	  these	  models,	  there	  are	  many	  sources	  1185 

of	  epistemic	  uncertainty.	  To	  list	  just	  a	  few	  of	  the	  major	  uncertainties	  in	  each	  type	  1186 

of	  model:	  1187 

•   Stochastic	  hazard	  and	  loss	  models	  often	  use	  highly	  idealised	  non-‐‑physical	  1188 

description	  of	  complex	  storm	  processes	  (e.g.	  polynomial	  representation	  of	  1189 

storm	  tracks).	  There	  is	  the	  possibility	  of	  over-‐‑fitting	  to	  the	  data	  available	  1190 

from	  relatively	  short	  historical	  periods.	  	  There	  are	  often	  overly	  restrictive	  1191 

assumptions	  in	  simulating	  losses	  e.g.	  homogeneity	  in	  time,	  independence	  1192 

of	  events,	  independence	  of	  frequency	  and	  severity;	  1193 

•   Statistical	  models	   require	   distributional	   assumptions	   e.g.	   extreme	   value	  1194 

models	  (Brodin	  and	  Rootzén	  2009;	  Della-‐‑Marta	  et	  al.	  2009),	  assumptions	  1195 

about	  model-‐‑dependence	  of	  simulated	   storms	  (Sansom	  et	   al.	  2013),	   and	  1196 

assumptions	   about	   dependency	   in	   space-‐‑time	   and	   between	   events	  1197 

(Bonazzi	  et	  al.	  2012;	  Economou	  et	  al.	  2014);	  1198 

•   Numerical	  weather	  and	  climate	  models	  show	  biases	   in	  storm	  properties	  1199 

that	   have	   resisted	  model	   improvements	   over	   the	   past	   40	   years	   e.g.	   too	  1200 

zonal	  storm	  tracks	  over	  W.	  Europe	  (Zappa	  et	  al.	  2013),	  poor	  representation	  1201 

of	  small	  horizontal	  scale	  processes	  even	  at	  very	  high	  resolution	  e.g.	  wind	  1202 

gusts	   (Ólafsson	   and	   Ágústsson,	   2007),	   missing	   processes	   e.g.	   sting	   jets	  1203 

caused	  by	  mesoscale	  features	  such	  as	  stratospheric	  intrusions	  (Catto	  et	  al.	  1204 

2010)	   and	   non-‐‑adiabatic	   forcing	   of	   storms	   by	   anomalous	   oceanic	  1205 

conditions	  (Ludwig	  et	  al.	  2014).	  	  1206 

Finally,	  there	  is	  also	  a	  major	  overarching	  source	  of	  epistemic	  uncertainty	  in	  how	  1207 

these	  different	  model	  components	  should	  be	  coupled	  together.	  At	  present	  there	  is	  1208 

no	  accepted	  theory	  for	  how	  one	  should	  and	  should	  not	  do	  this.	  	  1209 

Clustering	  of	  windstorms	  provides	  a	  good	  example	  of	   an	  epistemic	  uncertainty	  1210 

that	  has	  recently	  received	  much	  attention	  and	  thereby	  led	  to	  model	  developments.	  1211 

Analysis	   of	   historical	   reanalysis	   data	   revealed	   that	   windstorm	   modulation	   by	  1212 

large-‐‑scale	   climate	   modes	   leads	   to	  more	   clustering	   over	   Europe	   than	   one	   can	  1213 

expect	  by	  chance	  i.e.	  from	  a	  homogeneous	  Poisson	  process	  (Mailier	  et	  al.	  2006).	  1214 

Furthermore,	  clustering	  was	  also	  found	  to	  increase	  for	  more	  extreme	  wind	  speeds	  1215 



(Vitolo	  et	  al.	  2009),	  in	  contradiction	  to	  the	  assumption	  often	  made	  by	  actuaries	  1216 

suitable	   for	   identically	   distributed	   variables.	   This	   research	   raised	   much	  1217 

awareness	  about	  clustering	  in	  the	  natural	  catastrophe	  insurance	  industry	  that	  has	  1218 

led	  to	  major	  developments	  in	  windstorm	  catastrophe	  models	  (Khare	  et	  al.	  2014).	  1219 

The	  findings	  are	  also	  stimulating	  new	  research	  into	  mechanisms	  for	  clustering	  of	  1220 

extreme	  storms	  (e.g.,	  Rossby	  wave	  breaking;	  Pinto	  et	  al.,	  2014).	  	  1221 

 1222 

10. Co-emergent and Cascading Hazards 1223 

The earlier discussion has mostly been concerned with the characteristics of individual 1224 

hazards but it is clear that an assessment of risk often needs to allow for the joint 1225 

occurrences of cascading multiple hazards, either for hazards of different types 1226 

affecting a single location, or the joint occurrence of a hazard at multiple locations 1227 

simultaneously (e.g. Lamb et al., 2010; Gill and Malamud, 2014; Keef et al., 2013; De 1228 

Risi and Goda, 2016; Goda et al., 2017).  Both will affect the assessment of the joint 1229 

risk.  In some cases the joint risk may be causative, including the dependence of 1230 

numerous aftershocks triggered by a main shock (Yeo and Cornell, 2009); tsunamis 1231 

initiated by ocean floor earthquakes and landslides (Tappin et al., 2014; Goda et al., 1232 

2016); the landslide and avalanches that result directly from earthquakes; and the 1233 

potential for landslide as well as flood impacts on dam safety (an epistemic uncertainty 1234 

that is usually neglected but which has caused past dam overtopping).  In other cases 1235 

independent occurrences might contribute to an increased risk, such as the joint 1236 

occurrences of fluvial floods, high tides and atmospheric surge on the risk of estuarine 1237 

and coastal flooding.   Assessing the joint frequency of such events has been receiving 1238 

increasing attention (e.g. Svensson and Jones 2004).  In particular, the covariation of 1239 

different causes of the hazard, and joint occurrences across multiple locations has been 1240 

investigated using flexible functional relationships based on overlap likelihood 1241 

relationships (Gill and Malamud, 2014) and copulas (e.g. Keef et al., 2013).   An 1242 

interesting application of the latter was used to produce the probabilistic flood map of 1243 

Figure 2 in Section 2.2, which is affected by the joint occurrences of high flows both in 1244 

the mainstream river and two major tributaries entering from the south (Neal et al., 1245 

2013).        1246 

 1247 

11. Uncertainty quantification related to the consequences of natural hazards 1248 



Alongside uncertainties related to the characterization and propagation of the hazard 1249 

itself (e.g.  the footprint and magnitude of an earthquake), risk assessments also entail 1250 

epistemic uncertainties arising from the uncertain consequences and damages of the 1251 

hazard (i.e., the loss part of the risk assessment). Key components of such assessments 1252 

are (Tesfamariam and Goda, 2013): exposure (e.g. spatial locations of populations and 1253 

assets), vulnerability (e.g. characteristics of buildings and infrastructure), and loss (e.g. 1254 

characteristics of assets and loss generation mechanisms). All these involve significant 1255 

uncertainties.  In the risk equation (i.e. convolution of hazard, exposure, vulnerability, 1256 

and loss), these uncertainties are propagated and integrated.  Uncertainties in exposure 1257 

and loss are attributed to a lack of information, incomplete knowledge, as well as 1258 

simplification adopted in the models, and thus are largely epistemic. 1259 

 1260 

The consequences of hazards are often difficult to quantify and there is still little 1261 

research available linking the characteristics of the hazard (e.g., e.g. drought duration 1262 

and severity) to the related consequences (e.g. Jenkins 2013). For past events there 1263 

might be some epistemic uncertainty about the damages associated with the event, but 1264 

there is often considerable uncertainty about what is actually at risk, i.e. the exposure 1265 

(e.g. Chatterton et al., 2014).  Damages that are claimed against insurance are generally 1266 

well known (but subject to commercial confidentiality restrictions and not readily 1267 

available in other than very general summary form), but, not all damages are insured 1268 

and not all are easily expressed in monetary terms (such as damage to habitats, cultural 1269 

heritage, and loss of life).  Indirect damages to businesses and individuals (e.g. as a 1270 

result of infrastructure failures, health and psychological impacts) can also be difficult 1271 

to assess.  More geographically explicit damage relationships are needed for hazards 1272 

such as droughts (Bachmair et al., 2015; Blauhut et al., 2015) or tsunamis (Goda and 1273 

Song, 2016), which cover potentially large and heterogeneous areas. Potential sources 1274 

of damage are even more difficult to estimate for future events, as a result of epistemic 1275 

uncertainties (e.g. about policy changes in flood risk management, planning decisions 1276 

for flood plain developments, changes in availability of insurance cover, etc).  Different 1277 

chosen loss models might result in quite different estimates of the consequences of an 1278 

event (e.g. Jongman et al., 2012; Chandler et al., 2014), to the extent that estimates of 1279 

risk might generate significant controversy as a result of the epistemic uncertainties 1280 

inherent in the assessment processes (e.g. Penning-Rowsell, 2015).   1281 

 1282 



Epistemic uncertainties in the risk assessment of natural hazard consequences also arise 1283 

from the interactions of the hazard with human actions. Consider the example of 1284 

droughts. Because of their temporal and spatial extent, droughts are more prone to 1285 

mitigation or exacerbation by socio-economic drivers than some other natural hazards. 1286 

Those responding to or managing water resources during drought will make use of 1287 

nearby water resources or stored water, thus actively intervening to influence the 1288 

development and consequences of the event (Van Loon et al., 2016a). For instance, 1289 

epistemic uncertainties arise from incomplete knowledge of how demand responds 1290 

during times of drought to both environmental conditions (weather) and management 1291 

actions (i.e., water use restrictions, price increases) (Kenney et al., 2008). Although 1292 

hot/dry weather may increase demand in the short-term, it is not clear which climatic 1293 

variables are best suited to explain water consumption patterns (Kenney et al., 2008). 1294 

Over larger spatial and temporal scales, changes in water demand are difficult to project 1295 

and add a level of epistemic uncertainty to any water resources planning decision. 1296 

Water managers often rely on extrapolation processes (Jorgensen et al., 2009; House-1297 

Peters and Chang, 2011), yet this process has not been entirely successful, with the 1298 

UK’s largest reservoir at Kielder built to meet projections which did not foresee the 1299 

decline in heavy industry in the North of England (Walker, 2012), a clear case of the 1300 

impact of epistemic uncertainty about future boundary conditions but which, 1301 

opportunely, has served to mitigate the effects of drought in the area. This type of 1302 

uncertainty, combined with data gaps, makes the modelling tools available largely 1303 

inadequate to predict drought impacts. Severe limitations exist in predicting the impacts 1304 

of feedbacks and modifications to drought events due to human actions, calling for a 1305 

new framework for drought risk assessment that includes the human role in mitigating 1306 

(or enhancing) the consequences of drought (Van Loon et al., 2016b).  1307 

 1308 

12. Generalisations across hazard areas 1309 

In reviewing the way in which epistemic uncertainties are handled in each of these 1310 

natural hazard areas, certain commonalities are apparent. Most notable is the tendency 1311 

for treating all sources of uncertainty as aleatory variables, for both the hazard and the 1312 

consequences or impacts that make up the risk equation.  In most hazard areas, 1313 

probabilistic methods are replacing older deterministic probable maximum event 1314 

methods.  The probabilistic approach is attractive in that the power of statistical theory, 1315 

including the use of judgement-based probabilities in a Bayesian framework, can be 1316 



utilized.  However, when used to represent epistemic uncertainties such an approach 1317 

will be subject to limitations that include:  1318 

•   not allowing for the incompleteness of probability assessments (including the 1319 

probabilities associated with the branches of logic trees);  1320 

•   the potential of over-fitting to limited historical records in estimating the 1321 

frequencies of extreme events of unknown (and potentially non-stationary) 1322 

distributional form; and  1323 

•   the limitations of expert elicitation of prior probability and scenario 1324 

information.   1325 

This suggests that an extension to a more explicit recognition of epistemic uncertainties 1326 

might be necessary in future but might require the development of new methodologies 1327 

that go beyond classic risk-based decision making which is based on assuming that all 1328 

sources of uncertainty can be treated in terms of aleatory variability. This will 1329 

particularly be the case for what Day and Fearnley (2015) define as permanent 1330 

mitigation strategies.   Both responsive and anticipatory mitigation would benefit from 1331 

the availability of more and better observations, though as noted in a number of the 1332 

sections above, such observations may also be associated with epistemic uncertainties.     1333 

 1334 

13. Conclusions 1335 

This paper has reviewed examples of how uncertainties in general, and epistemic 1336 

uncertainties in particular have been handled in assessments of risk associated with 1337 

different natural hazards. In most cases, epistemic uncertainties are not considered 1338 

explicitly, but are still treated as if they can be considered as aleatory variables of 1339 

specified distributional form. This can often lead to an underestimation of the 1340 

uncertainty in the risk assessment and might lead to a lack of robustness of decision and 1341 

to future surprise.  It is therefore both possible and desirable to extend the analysis to 1342 

explicitly include different scenarios of epistemic uncertainty. The analysis of different 1343 

natural hazard areas presented above makes it clear that there are different degrees of 1344 

appreciation for and approaches to dealing with epistemic uncertainty.  We hope that 1345 

making this comparison will enable researchers in different areas to learn about 1346 

structured approaches that are being used elsewhere, particularly in dealing with 1347 

uncertainties that are less amenable to being treated probabilistically.   1348 

 1349 



Where observational data are available that can be used to constrain the prediction 1350 

uncertainties in an application, then care should be taken in the form of model 1351 

evaluation.   Treating a residual series as a simple aleatory variable can be used to define 1352 

a formal statistical likelihood function, but if the uncertainties are dominated by 1353 

epistemic sources the result may be overconfidence in model selection and over-1354 

constraint of the predictive uncertainty.  In the particular case of real-time forecasting, 1355 

data assimilation can be used to adaptively compensate for unknown uncertainties in 1356 

improving forecasts and constraining forecast uncertainties over the lead times of 1357 

interest, at least where the data and models can be processed within the time scale of 1358 

the system response or at a temporal resolution useful to decision makers. 1359 

 1360 

The variety of assumptions and approaches being used in different hazard application 1361 

areas reinforce the discussion that follows in Beven et al. (2018 - Paper 2) about the 1362 

importance of a framework for structured analysis and communication of the 1363 

assumptions and the meaning of an uncertainty analysis, particular to the decision 1364 

makers and other users. There is no single way of assessing the impacts of epistemic 1365 

uncertainties on risk (for good epistemic reasons), but in encouraging good practice we 1366 

can at least demand clarity in the assumptions that are made, with the possibility that 1367 

this then might lead to some consideration and maybe even testing of alternative 1368 

assumptions and a consequent reduction in the potential for future surprise. 1369 
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