
Repsonse to reviewer #1

This study focuses on the seismic detection and identification of the signals generated by 
snow avalanches in the Davos area in the Swiss Alps during the winter 2010. The authors 
tested the capability of a machine learning algorithm (hidden Markov models - HMM) to 
perform this detection and identification from continuous seismic data. They used a 
reference catalog to evaluate the performance of the algorithm. The first results showed 
that the algorithm is capable to achieve relatively high positive identification rates of the 
avalanches in the catalog (70-95% depending on the station that recorded the signals), 
but also with a high rate of supposedly false detections. This led the authors to propose a 
post-processing strategy. Three post-processing steps were investigated: (i) analysis of the
duration of the signals; (ii) computation of a correlation factor to evaluate the coherence of
the signal between each sensor; and (iii) a voting system based on the classification 
returned by each station for a given event. Using one, or a combination of those proposed 
post-processing steps, led to a decrease of false alarm rates, but also in most cases to a 
decrease of the rate of good identification.

The use of seismology to study environmental processes is of growing interest as it
allows producing observations with a unique spatio-temporal resolution. This new 
approach can help to better understand the triggering factors of natural hazards and to 
mitigate their consequences on our societies. In this context, this study contributes to the 
continuing effort to develop robust and versatile methods to explore years of continuous 
data and for the implementation of real-time seismology-based warning systems. Overall, I
think the paper is clearly written, and that the Authors have made a good effort to 
carefully explore the data, explain their approach and discuss their results. Nevertheless I 
listed below several comments and suggestions that might help to improve this paper.

General comment:

The only major concern I have regarding this work is that the downsides of using the HMM 
algorithm are not discussed while most of the results presented in this paper suggests that
HMM alone, without pre- and post-processing, cannot perform identification of seismic 
sources with a high success rate. The strengths of the HMM are usually stated to be: 

 i) it does not need any pre-detection or picking (STA/LTA, etc.), which should ensure 
that no event is missed;

 ii) it does not require any inputs from experts.
Yet this paper demonstrates that 

 i) a pre-detection can be suitable to remove low-amplitude/noise signals (figure 2);
 ii) post-processing steps with thresholds set by experts (duration, etc.) is needed to 

achieve a high accuracy. 

Moreover, the Authors are building their post-processing strategy based on features that 
can be incorporated in the identification models constructed with other machine learning 
algorithms. The post-processing steps the Authors propose seem necessary because the 
HMM cannot include these features (durations of the signals, coherence between signals 
recorded at different stations, vote among stations) in the model due to its core design, 
which is to consider chunk of continuous data and not the entire signal generated by the 
event. This forces the Authors to manually set thresholds on those features, while with 
some other algorithms those thresholds are determined through a statistical analysis of 
the reference data. I think the authors must include a more thorough and objective 
discussion on the pros (which definitely exist) and the cons of HMM compared to other 
algorithms/studies in the light of the results of this work.



We agree with the reviewer that we did not sufficiently discuss the shortcomings of HMM 
models. We now address this in more detail in the Discussion. 
We would like to clarify that the signal amplitude threshold value we used should not be 
considered a pre-detection. We merely applied this threshold to reduce the data volume 
for the feature computation. Since the goal is to develop this method for operational 
application, reducing the computational time is of crucial importance. We would also like 
to point out  that the HMM identifies events and returns a duration for the events. Event 
duration is thus a feature obtained by the model. Furthermore, the coherence between the
sensors could also be used as a feature in the HMM. However, due to the high 
computational time required to calculate the coherence between 21 receiver pairs, we 
decided to use this feature only during post-processing. Calculating the coherence for a 
small number of detections is faster than calculating the coherence for the continuous 
data set. Finally, the reviewer is correct to state that the voting based classification cannot
be included in the HMM.

Specific comments:
P3 L6-8: Are those false alarm rates related to the choice of the algorithms or to the choice
of the features used to parametrized the signals? The latter might be more important and 
should be mentioned. 

These false alarms rates are related to the choice of the algorithm.

Figure 1: I think a colorscale with more colors would allow to better observe the features of
the signals generated by the different sources, especially at frequencies below 50 Hz. This 
is important as the readers might want to understand what guided your choice of features.
Also this figure can be larger. 

We chose this colour scale since it is perceptually uniform. We adapted the colour scale
and enlarged the figure to more clearly highlight the features of the signals. However, the
main  goal  of  this  figure  was  to  highlight  the  ubiquitous  environmental  noise  and not
necessarily those of avalanche signals. The features of a typical avalanche signal are more
clearly visible in Figure 7.

P8 L25-27: How do you compute the duration?

The duration of the avalanches in the reference catalogue was determined by visual 
inspection of the seismic data.  
The onset was defined as the first appearance of  energetic low frequency signals (i.e. 
between 15 and 25 Hz), while the end of the signal was defined as the time when low 
frequency signals reverted back to background levels (P5 L4-6).
The duration of any automatically detected event was determined by the HMM
(P10 L9).
The minimal duration Tmin was determined manually and is described in the results section 
(P14 L12 – P16 L8).

P9 L1-3: How does the voting step in the post-processing would impact the detection of 
“small” events (especially with a threshold set at 5 stations for a network with 7 sensors)? 
Are “small” events detected by the whole network? A figure showing the locations of the 
avalanche corridors and the seismic network would be interesting. 



We have added more details on the spacing between the geophones (see P 4 L5-9 ). A 
figure of the array can be found in van Herwijnen and Schweizer (2011a) and we refer the 
reader specifically to their figures (see Figure 3 and 4 in van Herwijnen and Schweizer, 
2011a and Figure 2 in van Herwijnen and Schweizer, 2011b). 
Due to the short distance between the sensors, the voting step does not neglect small 
avalanches. Signals of small events are recorded at all stations. The deployment of the 
sensors resulting in a less desirable SNR impacts more on the detection of small 
avalanches. Furthermore, most of the confirmed events can be regarded as small 
avalanches regarding international avalanche classifications.

P11 L4-5: Indeed. How would it have impacted your results if you had chosen another 
master event? Is this has been investigated in Hammer et al. (2017)? If yes it should be 
mentioned and referenced.

We used an avalanche event from the 100% group as master event. We compared it with 
other avalanche events and these all had similar features (Fig 5). We therefore can 
expect, that the classification results are similar.
We investigated the effect of using another training event and the overall results were 
very similar. However, since this is a very time consuming  endeavour, we did not  perform
a more in-depth analysis of the influence of the training event. 
Hammer et al (2012) investigated the dependence of classification performance on the 
reference event in detail. They show that the proposed approach is very robust in face of 
various master events.

P13 L11-12: So the selection of the threshold on the duration is not done by considering 
the physics of the sources or the distribution of the durations in the reference catalog, but 
to optimize the POD-FAR ratio? By applying this threshold to the reference data set you 
lose 40% of the events (P14, last line). How is this threshold choice impacting the 
detection of “small” avalanches? Can you show a histogram of the duration of the events 
in the reference catalog? You state on P3 L24 that “For avalanche forecasting information 
on smaller avalanches is also required”. Hence is the approach you propose suitable to 
detect the smaller events?

Indeed, we optimized the duration threshold with the POD-FAR ratio. Since signal duration 
likely relates to avalanche size (van Herwijnen et al., 2013), it is clear that by increasing 
the signal duration threshold the detection rate of the smallest avalanches decreases. 
However, overall most of the avalanches in the reference catalogue can be considered to 
be ‘small’ for the purpose of avalanche forecasting. As such, we believe our approach is 
still suitable to detect smaller events.

P13 L14-16, P20 L6-7, Table 3: Again, it would be great to have a map of the seismic 
network to discuss the discrepancies observed at the different sensors. Distance to the 
sources, traveled paths, attenuation, dispersion, etc., can also be factors impacting the 
amplitude, the duration and more generally the features of the signals that might in return
change the POD at different stations. This could be discussed.

Since the distance between the sensors was rather small (<12 m for the longest distance),
we do not believe that local site effects substantially influence the signals. However, since 
the sensors were inserted in the snow, we are convinced that the main reason for the 
discrepancies in model performance between the different sensors is due to differences in 
snow cover properties, as discussed in P22 L5-10. To clarify this point in more detail, we 
now also mention in Section 2 that sensors 1 and 4 were most deeply covered by snow (P4
L5-8).



P20 L17-18: So in the best case what is your overall accuracy? Considering which range of 
avalanche sizes? I think it is this information that the readers will seek.

Overall accuracy is difficult to estimate. Although we have a reference catalogue, the 
actual number of avalanches in the continuous seismic data remains unknown. This is why
we implemented the subjective probability classes in the reference data set. While such an
approach does not provide a single performance value for the HMM, it shows that for clear 
avalanche signals (100% class) model performance is reasonable. Furthermore, it 
highlights the difficulties in obtaining a reliable and independent avalanche catalogue. 
However, in response to reviewer 2, we now also added information on the detection rate 
of the avalanches that were confirmed by images from the automatic cameras. These 
results show that at least 80% of the confirmed events were detected by all sensors.

P20 28-30: Are the results presented in this study supporting this statement or is it
based solely on the study by Hammer et al. (2017)?

Our results support this statement since we also only used one training event for the HMM.

P21 L4-5: How can you incorporate localization parameters in the HMM? Is this done
directly in the model or during the post-processing?

Both methods are possible. Localization metrics, in particular back azimuth and apparent 
velocity, of signals above the amplitude threshold could be used as feature for the HMM. 
On the other hand, it would also be possible to use the localization metrics during post 
processing by rejecting all detections having clear path.



Repsonse to reviewer #2

General comments:

The paper discusses the performance of an automatic seismic detection system of 
snow avalanches using hidden Markov models (HMMs). The study is based on a 
107- day continuous dataset acquired during the winter 2010 by a small seismic 
array consisting of 7 vertical geophones deployed above Davos, Switzerland, and 
surrounded by several avalanches starting zones. The HMMs system is tested 
against a reference avalanche catalogue that is based on the work by van 
Herwijnen and Schweizer (2011a). The reference avalanche catalogue gathers 283 
events distributed into 7 probability classes following an independent re-evaluation
of the avalanche signals of van Herwijnen and Schweizer (2011a) by three of the 
authors. Among the 283 events, only 20 (7%) are finally classified by the 
aforementioned three authors as being with 100% probability a snow avalanche. 
For the HMMs detector, the authors apply the approach developed by Hammer et 
al. (2012) that requires a background noise model and only one training event to 
learn the system. Because important diurnal and seasonal variations are observed 
in the seismic feature of the background noise over the season, a background 
noise model is recalculated for each day. Since the authors observe that the 
change from dry to wet avalanches through the winter does not have a strong 
impact on the selected seismic features used for the HMMs, only one avalanche 
signal is selected as a training event for a single avalanche class HMMs detector. 
The first HMMs avalanche detector results in high probability of detection (POD 70-
95%) in the 100% probability class of the reference avalanche catalogue for all 7 
stations. However, a large number (up to 2091) of additional events (unassigned 
detections) are detected by the HMMs for each sensors. In order to reduce the 
number of unassigned detections, the authors decide to introduce post-processing 
steps to the HMMs: (i) a duration based classification and (ii) an array based 
(multiple-station detection/coherence of signal among station pairs) classification. 
The postprocessing steps reduce the number of unassigned detections by the 
HMMs; however, the POD in the highest probability class of the reference 
avalanche catalogue is also reduced. A manual re-evaluation of the unassigned 
detections after post-processing shows that part of these detections correspond to 
avalanche missed during the manual detection procedure. 

The paper is well structured and clearly written. Despite the noisy character of the 
data, the authors show HMMs as developed by Hammer et al. (2012) to be a 
promising approach for operational avalanche forecasting; however, with fine 
tuning. Strategies will be needed for a regular update of the background noise 
model and post-processing must be implemented. Much attention should be paid 
to the stations deployment. The author recommend to install the sensors 30-50 cm
in the ground below a homogenous snow cover in order to reduce environmental 
noise and increase coherence of the data among the network and thus, stabilize 
the array based post-processing. In addition, a larger sensor inter-spacing would 
allow the system to apply array-processing techniques and enable to incorporate 
localization
parameters of avalanche source area in the automatic system. In my opinion, the 
implementation of the post-processing step is of great interest, as it helps to deal 
with the noise contamination that is found at any surface site data. The main 
concern I have is that the authors didn’t make use of the 33 confirmed avalanches 
of van Herwijnen and Schweizer (2011a) and used instead a re-processed 



probabilistic reference catalogue where only 20 avalanches remain considered as 
certain. In the following, a number of specific comments are related to this 
concern. I leave it to the authors to decide to which point they want to integrate 
these suggestions. It would be interesting to know how the 33 confirmed events 
match the post-processing steps: do they have durations above 12 seconds, are 
they detected by 5 sensors or more, what are the inter-station correlation indices 
for these events. In addition, if the location of the 33 confirmed events is known, 
how important are the variations in the spectral feature of the signals as a function
of station-source distance? Finally, what is the performance of the HMMs system 
including the three post-processing steps against this original 385 events/33 
confirmed events reference catalogue?

We agree with the reviewer that adding the model performance for the confirmed 
avalanches would be insightful. We therefore updated figures (Figures 3 and 9) 
and tables (Table 1,2 and 3) to include these results and discuss them throughout 
the paper (e.g. P10 L10-11). Note that the number of confirmed avalanches 
originally mentioned in the manuscript was wrong and should have been 25. We 
believe that these results better highlight the model performance and we thank 
the reviewer for this valuable suggestion.

Specific comments:

P1 L9-12. Please rephrase and clarify this part of the abstract (according to 
remarks about P4-7 Section 3).

We rewrote this sentence (P1 L10).

P4 L5-7. Although the station inter-spacing is specified in van Herwijnen and 
Schweizer (2011b), you should mention it here, so the reader has an idea of the 
size of the network. 

We now added this information in the text (P4 L6).

P4-7. I think the section 3 needs some clarification so the reader can get a better 
idea of the reference data:

1) What are the exact data that were analyzed visually by van Herwijnen and 
Schweizer (2011a) (385 detection, 33 confirmed events): (1) 107-day of 
continuous data without pre-processing of section 3.1 at sensor number X or (2) 
XX% of pre-processed data (section 3.1) at sensor number X? In case (1), I would 
place P4 L28-30 before section 3.1 for clarity.

We now clarify these points (P5 L1) but prefer to keep the sentence where it is. 

2) Section 3.1: The pre-processing of the data is obscure to me. Was it apply only 
to reduce the amount of data to (re-)process manually? Did van Herwijnen and 
Schweizer (2011a)/Heck et al. AND the HMMs perform only on the 20% of high 



amplitude data (which would impact on the paper title as it would be no more 
continuous data)? If a local network is intentionally deployed to detect small 
avalanches, why place an energy threshold in the investigated data series? See for
example avalanche number 5 (Av 5) in Figure 7 of van Herwijnen and Schweizer 
(2011b) which has poor SNR. Furthermore, HMMs are not dependent on energy 
thresholds, please clarify.

The manual detection of avalanches was performed on the complete data set.
However, calculating the features for all seven sensors and the entire data set is 
extremely time consuming. We therefore applied an amplitude threshold to reduce
the amount of data by only taking those parts of the time series when some 
energy is arriving at the sensors. The amplitude threshold we used was very 
conservative and all the confirmed avalanches were still in the pre-processed data
(Table 1 or Figure 3). Since the goal is to develop this method for operational 
application, reducing the computational cost is of crucial importance. As such, we 
do not believe that the pre-processing step we applied warrants a change of the 
title. 

3) Section 3.2: 20 merged avalanches represent 7% of the 283 reference events. In
these data, where are the 33 confirmed avalanches of P4 L30? You could have 
used 33 confirmed events (9%) against 352 uncertain events of the original 385 
events of van Herwijnen and Schweizer?

We now include these confirmed events in Figure 3 and Table 1,2 and 3. Most of 
these events belong to the 100% or 83% class of the re-evaluated reference data 
set. For sensor 1, 20 of these events were detected and 5 missed.
For the voting based detection without using a minimal duration, also 20 were 
detected and 5 missed. By applying a minimal duration, the number of detections 
reduced to 18 hits and 7 missed.

4) P6 L11-15: I think it would be interesting to discuss here in a few words the 283 
events reference avalanche catalogue in more details. For example, do you find 
trends in the probability classes, are the 20 certain events confirmed detections, 
long duration signals, high energy events detected by all stations? Are the lower 
confidence event simply lower quality events (low SNR, only recorded at a few 
stations and not consistent among the stations)? These low probability events 
represent in my opinion the real challenge of environmental seismology case 
studies. And I expect the subjectivity of the analyst to have more influence on low 
quality data (how would/did you rate avalanche Av 5 in Figure 7 of van Herwijnen 
and Schweizer (2011b)) than on high SNR data? This is where automatic, 
quantitative systems should help :)

We clarified these points by adding model performance statistics for the confirmed
avalanche events throughout the text (Figures 9 and Tables 2 and 3). Furthermore,
we added a figure (Figure 4 in the new manuscript) which shows the distribution of
signal duration for each probability class. This figure clearly shows that the 
number of short duration events decreases with increasing probability class.



5) P7 Figure 3. How does the original catalogue with 385 events, 33 confirmed 
avalanches plot? Are the two periods of higher activity well represented? I 
personally would insert a plot of the 33 confirmed events at the bottom of Figure 3.

We now show the confirmed avalanches in Figure 4. Indeed, most of these 
avalanches also released during the high activity periods in March and April.

P10 L8-20. Does this very sophisticated approach to find a threshold value bring 
more than an approach using common sense (for which arguments are well 
described in P8 L24-29 – P9 L1-20)? The minimum duration can be evaluated (or 
decided) as a function of the expected distance/size of the target events; the 
number of stations that must detect the signal can be selected as a reasonable 
value knowing the network/stations specific performances; the inter-station 
correlation threshold can be evaluated by investigating the 33 confirmed events. 
Please comment.

We used a systematic approach to find threshold values by optimizing model 
performance. Since we had a reference avalanche catalogue this was possible. 
However, in the absence of such a reference data set, for instance when installing 
a system at a new location, we agree that to some extent it should be possible to 
select these thresholds based on some a priori available knowledge on the local 
topography and the array geometry. However, this requires some assumptions on 
the minimum avalanche size that can be detected as well as sensor performance.

P11 L11-13. I agree that in Figure 5a the feature distribution is very similar for the 
4 selected events. However, in Figure 5b, I find events of 21 Jan/21Feb dissimilar to
events of 22Mar/24Apr, especially at the events onset where one group goes up 
while the other one goes down. Please comment on that and see remark on P15 
Figure 8.

Due to the different length of the signals, we decided to use a normalized time. As 
the events in March and April were quite long, the decrease for cepstral coefficient
is longer. In January and March the decrease is shorter, thats why it seems as it 
only increases. This is also visible for the central frequency, where the frequency 
decreases slower for the March and April events.
Furthermore, for the HMM all 4 events are similar, since the feature behaviour (the
decrease) is important. The absolute appearance of the features does not matter. 
This explains why the detection of events with different durations is possible.

P12 Figure 5. In (a) and (b) vertical dotted lines at normalized time 0 and 1 would 
help to visualize start and end time of event. 

Figure 5 changed as suggested.



P15 Figure 8. For both sensor 1 and 7, the HMMs missed 4 events at the end of 
January:
1) I don’t find this 4-event spike in Figure 3?
2) Are any of the 33 confirmed avalanches found at this date? I see there is one 
100% probability class event around this date in Figure 3.
3) Could this speak for an influence of the HMMs system by the avalanche type 
(dry-
wet) selected to train the system?

The small spike in avalanche activity at the end of January was also present in 
Figure 3, marked as 33% avalanches. However, the spike is more obvious in Figure
8 since there we also applied the signal duration threshold to the reference data 
set. None of the confirmed avalanche events occurred on this day, as can now be 
seen in Figure 3 where we added the confirmed events.

P18 L1-6. Clarification for the single sensor results: 
1) Did you investigate the signals of the unassigned detections individually at 
station 1 and 6? Or, 2) Did you look at the signals recorded by all stations at the 
time of the unassigned detections of sensor 1 and 6?
I think these results should be commented. What could explain the higher false 
alarm rate of the array based approach against the single sensor approach?

We investigated the results for each sensor individually. We clarified the sentence 
(P20 L1-2).
The higher false alarm rate is due to the higher signal-to-noise ratio for the other 5
sensors, as stated in the Discussion section (P22 L5-10).

P19 L8-10. Related to comment on section 3. Please clarify. At P4 L28-30, the 33
events are part of the 385 van Herwijnen and Schweizer (2011a) events. (sorry to
insist ;))

The 25 confirmed events were part of the 385 original events and also remained in
the 283 events after applying the amplitude threshold during pre-processing.
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Abstract.

Snow avalanches generate seismic signals as many other mass movements. Detection of avalanches by seismic monitor-

ing is highly relevant to assess avalanche danger. In contrast to other seismic events, signals generated by avalanches do not

have a characteristic first arrival nor is it possible to detect different wave phases. In addition, the moving source character

of avalanches increases the intricacy of the signals. Although it is possible to visually detect seismic signals produced by5

avalanches, reliable automatic detection methods for all types of avalanches do not exist yet. We therefore evaluate whether

hidden Markov models (HMMs) are suitable for the automatic detection of avalanches in continuous seismic data. We ana-

lyzed data recorded during the winter season 2010 by a seismic array deployed in an avalanche starting zone above Davos,

Switzerland. We first visually inspected the data and identified more than 200 events we assume to be generated by avalanches.

::::::::::
re-evaluated

:
a
::::::::
reference

::::::::
catalogue

:::::::::
containing

::::
385

:::::
events

:::
by

:::::::
grouping

:::
the

::::::
events

::
in

:::::
seven

:::::::::
probability

::::::
classes.

:
Since most of the10

data consists of noise we first applied a simple amplitude threshold to reduce the amount of data. As first classification results

were unsatisfying, we analyzed the temporal behaviour of the seismic signals for the whole data set and found that there is a

high variability in the seismic signals. We therefore applied further post-processing steps to reduce the number of false alarms

by defining a minimal duration for the detected event, implementing a voting based approach and analyzing the coherence of

the detected events. We obtained the best classification results for events detected by at least 5 sensors and with a minimal dura-15

tion of 12s. These processing steps allowed identifying two known periods of high avalanche activity, suggesting that HMMs

are suitable for the automatic detection of avalanches in seismic data. However our results also showed that more sensitive

sensors and more appropriate sensor locations are needed to improve the signal-to-noise ratio of the signals and therefore the

classification.

1 Introduction20

During the winter season, snow avalanches may threaten people and infrastructure in mountainous regions throughout the

world. Avalanche forecasting services therefore regularly issue avalanche bulletins to inform the public about the avalanche

conditions. Such an avalanche forecast requires meteorological data, information about the snowpack and avalanche activity

data. The latter are mostly obtained through visual observations requiring good visibility. Avalanche activity data are therefore

1



often lacking during periods of intense snowfall, which are typically the periods when they are most important for forecasting.

A possible alternative approach to determine the avalanche activity is to use a seismic monitoring system (e.g. van Herwijnen

and Schweizer, 2011a).

Seismic monitoring systems are well suited to detect mass movements such as rockfalls, pyroclastic flows and snow and

ice avalanches (Faillettaz et al., 2015; Podolskiy and Walter, 2016; Caplan-Auerbach and Huggel, 2007; Suriñach et al., 2005;5

Zobin et al., 2009). The ability to detect snow avalanches through seismic methods was first demonstrated in the 1970s.

St. Lawrence and Williams (1976) and Harrison (1976) deployed geophones near avalanche paths and manually identified

signals generated by avalanches in the seismogram. They showed that the seismic signature of avalanches differs from other

seismic events such as earthquakes or nearby blasts. A more in-depth analysis of seismic signals generated by avalanches was

performed 20 years later, identifying typical characteristics in both the time and time-frequency domain (Kishimura and Izumi,10

1997; Sabot et al., 1998). Using automatic cameras to film avalanches, Sabot et al. (1998) showed that specific features in the

seismic signals were related directly to changes in the flow of the avalanche; these findings were confirmed by Suriñach et al.

(2000) and Suriñach et al. (2001). Since then, seismic signal characteristics were used to estimate specific properties of single

avalanches such as the flow velocity (Vilajosana et al., 2007a), the total energy of the avalanche (Vilajosana et al., 2007b) or

the runout distance (Pérez-Guillén et al., 2016; van Herwijnen et al., 2013).15

While many studies focused on using seismic signals to better understand the properties of single avalanches, continuous

monitoring of avalanche starting zones to obtain more accurate avalanche activity data is of particular interest for avalanche

forecasting (e.g. van Herwijnen et al., 2016). Leprettre et al. (1996) deployed three-component seismic sensors at two differ-

ent field sites and compared seismic signal characteristics to a database including avalanches, helicopters, thunder rolls and

earthquakes. Lacroix et al. (2012) improved the seismic monitoring system used by Leprettre et al. (1996) by deploying a seis-20

mic array between two known avalanche paths. The array consisted of six vertical component geophones arranged in a circle

around a three component geophone in the centre. Using array techniques, Lacroix et al. (2012) determined the release area

and the path of manually identified avalanches and estimated their speed. These studies mainly monitored medium and large

avalanches. van Herwijnen and Schweizer (2011a), however, deployed seismic sensors near an avalanche starting zone above

Davos in the eastern Swiss Alps to also detect small avalanches. They manually identified several hundred avalanche events in25

the continuous seismic data during four winter months.

While these studies have highlighted the usefulness of seismic monitoring to obtain more accurate and complete avalanche

activity data, using machine learning algorithms to automatically detect snow avalanches has thus far remained relatively

unsuccessful. Nevertheless the interest in these techniques has been evident for several decades (Leprettre et al., 1998; Bessason

et al., 2007; Rubin et al., 2012). The first attempt to automatically detect avalanches focused on using fuzzy logic rules and30

credibility factors derived from features of the seismic signal in the time and time-frequency domain (Leprettre et al., 1996,

1998). In a first step, the features of unambiguously identified seismic events were analysed including avalanches, blast and

teleseismic events. They then formulated several fuzzy logic rules for each type of event to train a classifier used to identify the

type of a new unknown seismic event. While the probability of detection (POD), i.e. the number of detected avalanches divided

2



by the total number of observed avalanches, was high (≈ 90%), one of the main drawbacks of this method is the subjective

expert knowledge used to derive the fuzzy logic rules and the need to adapt these rules to each individual field site.

Bessason et al. (2007) deployed seismic sensors in several known avalanche paths along an exposed road in Iceland. They

used a nearest-neighbour method to automatically identify avalanche events. The method consists of comparing new events

with those in a database. Although a 10-year database was used, the identification performed rather poorly. Seismic signals5

generated by rockfalls and debris flows were wrongly classified as avalanches and vice versa, resulting in a POD of about 65%.

In an attempt to improve the automatic detection of avalanches, Rubin et al. (2012) used a seismic avalanche catalogue pre-

sented by van Herwijnen and Schweizer (2011b) and compared the performance of 12 different machine learning algorithms.

The PODs of all classifiers were high (between 84% - 93%). However, the main drawback were the high false alarm rates,

much too high for operational tasks.10

The methods described above are generally difficult to apply at new sites since they require time to build a training data set

and/or expert knowledge to define thresholds and rules. To overcome these drawbacks, we investigate using a hidden Markov

model (HMM). A HMM is a statistical pattern recognition tool commonly used for speech recognition (Rabiner, 1989) and

was first introduced for the classification of seismic traces by Ohrnberger (2001). The advantage of HMMs compared to other

classification algorithms is that the time dependency of the data is explicitly taken into account. First studies using HMMs for15

the classification of seismic data relied on large training data sets (Ohrnberger, 2001). Using this approach Beyreuther et al.

(2012) created an earthquake detector.

More recently, Hammer et al. (2012) developed a new approach which only requires one training event. This approach

was applied for a volcano fast response system (Hammer et al., 2012) and the detection of rockfalls, earthquakes and quarry

blasts on seismic broad-band stations of the Swiss seismological service (SED) (Hammer et al., 2013; Dammeier et al., 2016).20

Furthermore, Hammer et al. (2017) also detected snow avalanches using data from a seismic broadband station of the Swiss

Seismological Service. During a period with high avalanche activity in February 1999, 43 very large confirmed avalanches

were detected over a 5 day period with only 4 presumable false alarms. While these detection rates are very encouraging, the

investigated avalanche period was exceptional. Furthermore, due to the location of the broadband station at valley bottom, they

could not detect small or medium sized avalanches.25

For avalanche forecasting information on smaller avalanches is also required. To resolve this issue, we investigate a method

to obtain local (i.e. scale of a small valley) avalanche activity data using a seismic monitoring system (van Herwijnen and

Schweizer, 2011a). We therefore implement the approach outlined by Hammer et al. (2017) to detect avalanches in the con-

tinuous seismic data obtained with the sensors deployed near avalanche starting zones (van Herwijnen and Schweizer, 2011b).

Based on the duration of the seismic signals, the majority of these avalanches were likely rather small (van Herwijnen et al.,30

2016). We therefore used this avalanche catalogue to train and evaluate the performance of a HMM model and discuss limita-

tions and possible improvements.
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2 Field site and instrumentation

We analysed data obtained from a seismic array deployed above Davos, Switzerland. The field site is located at 2500 m a.s.l.

and is surrounded by several avalanche starting zones. The site is easily accessible during the entire year and is also equipped

with various automatic weather stations and automatic cameras observing the adjacent slopes.

The array consisted of seven vertical geophones with an eigenfrequency of 14 Hz.
:::
The

:::::::::
maximum

:::::::
distance

::::::::
between

:::
the5

::::::
sensors

::::
was

::::
12m

:
Six of the geophones were inserted in a styrofoam housing and placed within the snow, whereas the sev-

enth geophone
::::::
(Sensor

::
7)

:
was inserted in the ground with a spike

:::
(see

:::::
Figure

::
3

:::
and

:
4
::
in
:::::::::::::::::::::::::::::::::
van Herwijnen and Schweizer (2011a)).

::::::
Sensors

::
1

:::
and

:
4
:::
are

:::
the

::::
ones

::::::
nearest

::
to

:::
the

::::
ridge

::::
and

::::
most

:::::
deeply

:::::::
covered

::::
(see

:::::
Figure

::
2

::
in

::::::::::::::::::::::::::::::::
van Herwijnen and Schweizer (2011b)).

The seismic sensors were deployed at the field site from early December until the snow had melted.

The instrumentation was originally designed to record higher frequency signals in order to detect precursor signals of10

avalanche release (van Herwijnen and Schweizer, 2011b). A 24-bit data acquisition system (Seismic Instruments) was used to

continuously acquire data from the sensors at a sampling rate of 500 Hz. The data were stored locally on a low power computer

and manually retrieved approximately every 10 days. A more detailed description of the field site and the instrumentation can

be found in van Herwijnen and Schweizer (2011a) and van Herwijnen and Schweizer (2011b).

3 Data15

Continuous seismic data were recorded from 12 Jan 2010 to 30 April 2010. These data were previously used by van Herwijnen

and Schweizer (2011b), Rubin et al. (2012) and van Herwijnen et al. (2016). The recorded seismic data contains various types

of events (van Herwijnen and Schweizer, 2011a), including aeroplanes, helicopters and of course avalanches (Figure 1).

3.1 Pre-processing of the seismic data

While during the 107 day period several hundred avalanches were identified, the vast majority of the data consist of noise or20

seismic events produced by other sources. To reduce the amount of data to process, we applied a simple threshold based event

detection method. It consisted of dividing the continuous seismic data stream in non-overlapping windows of 1024 samples.

For each window, a mean absolute amplitude Ai was determined. When Ai ≥ 5A, with A the daily mean amplitude, the data

were used. Furthermore, a data section of ∆t= 60s before and after each event was also included to ensure that the onset and

coda of each event were incorporated. The amount of data to process was thus reduced by 80%(Figure 2).25

Finally, before we used the data for the detection, we applied a bandpass filter. Previous studies showed that seismic sig-

nals generated by avalanches typically have a frequency below 50 Hz (e.g. Harrison, 1976; Schaerer and Salway, 1980). We

therefore applied a 4th order Butterworth bandpass filter to our data between 1 and 50 Hz.
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Figure 1. (a) Spectrogram of an unfiltered 30 minute time series. (b) Corresponding time series. An airplane as well as an avalanche are

visible. Furthermore, noise produced by a snowcat is visible
::
can

::
be

::::
seen in the second half of the time series.

3.2 Reference avalanche catalogue

van Herwijnen and Schweizer (2011a) visually analysed the
::::::::::
unprocessed

:
seismic time series and the corresponding spectro-

gram of one sensor and identifiedN = 385 avalanches between 12 January and 30 April 2010. They thus obtained an avalanche

catalogue consisting of the release time ti and duration Ti for each avalanche.
:::
The

:::::
onset

::::
was

::::::
defined

::
as

:::
the

::::
first

::::::::::
appearance

::
of

::::::::
energetic

:::
low

:::::::::
frequency

::::::
signals

:::
(i.e.

::::::::
between

::
15

::::
and

::::::
25Hz),

:::::
while

:::
the

:::
end

:::
of

:::
the

:::::
signal

::::
was

::::::
defined

::
as

:::
the

::::
time

:::::
when

::::
low5

::::::::
frequency

::::::
signals

:::::::
reverted

::::
back

::
to

::::::::::
background

:::::
levels.

:
However, only 33

::
25

:
of these avalanches were confirmed by visual obser-

vations, i.e. by field observations or on images obtained from automatic cameras. Hence there remains substantial uncertainty

about the nature of the identified events.

5



Figure 2. Example of the pre-processing. (a) The mean energy values of each window shown as the blue line and the threshold value indicated

by the red line. (b) The remaining data cut by the pre-processing step.

To reduce the uncertainty, three of the authors therefore independently re-evaluated this avalanche catalogue. From the

385 avalanches in the original avalanche catalogue only Npre = 283 remained after pre-processing (see section 3.1);
:::::
none

::
of

:::
the

::
25

:::::::::
confirmed

:::::::::
avalanches

:::::
were

:::::::::
dismissed. By visually inspecting the seismic time series of the seven sensors and the

stacked spectrogram for each event, they then assigned a subjective probability pe to each of these possible avalanche events.

Three probabilities were assigned: 1 when it was certain that the observed event was an avalanche, 0 when it was certain5

that the observed event was not an avalanche and 0.5 when it was uncertain whether the event was an avalanche or not. The

probabilities were then combined into seven probability classes depending on the mean probability of each event:

Pava =
1

3

3∑
e=1

pe (1)

with pe the subjective probability that each assigned to a specific event. In Table 1 the number of events in each probability class

is listed. In the reclassified data set, only 20 avalanches merged
::::
were

:::::::::
considered

:
as certain avalanche by all three evaluators10

and 58 events were marked as certainly not an avalanche.
::::::::::
Furthermore

:::
18

::
of

:::
the

::
25

:::::::
visually

:::::::::
confirmed

:::::::::
avalanches

::::
were

::::::
within

::
the

::::
two

::::::
highest

:::::::::
probability

:::::::
classes.

:

The avalanche activity of the season 2010 is shown in Figure 3. Overall, most avalanches were detected in the second half

of the investigated period, with two distinct peaks in the avalanche activity around 22 March and 24 April.
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Table 1. Number of events per probability class Pava after re-evaluation
::
and

:::
the

:::::::::::
corresponding

::::::
number

::
of

::::::::
confirmed

:::::
events

::
for

::::
each

::::
class.

The first row shows the possible combinations of subjective probability (pe): pe = 1 it was certain that the event was an avalanche, pe = 0.5

it was uncertain and pe = 0 it was certain that the event was not an avalanche.

pe combinations 0,0,0 0.5,0,0 1,0,0

0.5,0.5,0

0.5,0.5,0.5

1,0.5,0

1,1,0

1,0.5,0.5

1,1,0.5 1,1,1

Pava 0% 16.6% 33.3% 50% 66.6% 83.3% 100%

Number of events 58 66 48 34 30 27 20

::::::
Number

::
of

::::::
visually

::::::::
confirmed

:::::
events

:
0

:
0

:
1

:
3

:
3

:
9

:
9

Figure 3. Avalanche activity for the winter season of 2010. The different colours
::::
above

:::
the

::::
zero

:::
line indicate the different probability classes

derived from the manual detection.
::
The

:::
red

::::
bars

::::
below

:::
the

::::
zero

:::
line

::
are

:::::::
indicates

:::
the

::::::
visually

::::::::
confirmed

:::::
events.
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Figure 4.
::::
Event

:::::::
duration

:::::::::
distribution

::
per

:::::::::
probability

::::
class.

:::
The

::::::::::
distribution

:::
of

:::
the

:::::
event

::::::::
duration

:::::::
changed

:::
as

:::
the

::::::::::
probability

::::
class

:::::::::
increased

:::::::
(Figure

:::
4).

:::
All

::::::
events

::
in
::::

the
::::::
lowest

:::::::::
probability

::::
class

::::
had

::
a

:::::::
duration

:::::
< 6s.

:::::
More

::::
than

:::::
90%

::
of

::::
the

:::::
events

::::
had

::::::::
durations

::::::
≥ 12s

:::
for

:::
the

:::::
three

::::::
highest

::::::::::
probability

::::::
classes.

:

4 Methods

4.1 Hidden Markov model5

In this study
::
To

:::::::::::
automatically

::::::
detect

:::::::::
avalanches

::
in

::::
our

:::::::::
continuous

:::::::
seismic

::::
data we used hidden Markov models (HMMs)to

detect avalanches in a continuous seismic data set. This statistical classifier models observations (i.e. the seismic time series

or its features) by a sequence of multivariate Gaussian probability distribution
::::::::::
distributions. The characteristics for

:
of
:

the

distributions (i.e. mean and covariance) are derived from training sets of known events, so called pre-labelled training sets.

Several classes describing different types of events can be implemented in the classifier but each class needs its own training10

set to determine its unique distribution characteristics. Therefore, the actual classifier consists of several HMMs, one for each

class. This classical approach, as used for the classification of seismic time series by e.g. Ohrnberger (2001) and Beyreuther

8



et al. (2012), relies on well known pre-labelled training sets. In our case, however, avalanches are rare events and it is nearly

impossible or too time consuming to obtain an adequate training set. To circumvent the problem of obtaining sufficiently large

training sets, we used a new approach developed by Hammer et al. (2012). This classification approach exploits the abundance

of data containing mainly background signals to obtain general wave-field properties. Using these properties, a widespread

background model can be learned from the general properties. A new event class is then implemented by using the background5

model to adjust the event model description by using only one training event. The so obtained classifier therefore consists of the

background model and one model for each implemented event class. The classification process itself calculates the likelihood

that an unknown data stream has been generated by a specific class for each individual class HMM. More detailed information

can be found in Hammer et al. (2012, 2013).

4.2 Feature calculation10

Although it is possible to use the raw seismic data as input for the hidden Markov model, we used a compressed form of it, so

called features. Several features can be calculated representing different aspects of the time series such as spectral, temporal

or polarization characteristics. The representation of the seismic signals by features is more adequate to highlight differences

between diverse event types. Since we used single component geophones, we only used spectral and temporal features. Based

on preliminary analysis, we used the features listed below.15

– Central frequency

– Dominant frequency

– Instantaneous bandwidth

– Instantaneous frequency

– Cepstral coefficients20

– Half-octave bands

A detailed list of the functions used to calculate these features can be found in Hammer et al. (2012).

To calculate the features, we used a sliding window with width w = 1024 samples. The sliding window is then moved

forward with a step of 0.05s or 25 samples resulting in an overlap of 97%.

For the half-octave bands we used a central frequency of fc = 1.3Hz for the first band and a total number of 9 bands.25

Since the geophones have an eigenfrequency of 14 Hz, only signals with a higher frequency are recorded without any loss of

information. However, preliminary results showed that half-octave bands with a central frequency higher than fmin = 5Hz are

adequate.
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4.3 Post-processing

The HMM classification resulted in several hundred events in the avalanche class. Many of these events were however of very

short duration or only identified at one sensor and did not necessarily coincide with avalanches in the reference catalogue, i.e.

these events were likely false alarms. We therefore investigated three post-processing methods to reduce the number of false

alarms, namely:5

1. Applying a duration threshold for the detected events

2. Analyzing the results of all sensors by introducing a voting based classification

3. Analyzing the coherence between all sensors for each detected event

First, we used an event duration threshold.
::::
The

:::::::
duration

::
Tj:::

of
:::
any

::::::::::::
automatically

:::::::
detected

:::::
event

::
j

:::
was

::::::::::
determined

:::
by

:::
the

::::::
HMM.

:
Based on the analysis of van Herwijnen et al. (2013) and van Herwijnen et al. (2016), we can assume that event duration10

correlates with avalanche size. The first post-processing method therefore consisted of using a minimal duration Tmin for the

events
:
as

:::::::::
described

:::::
below

:::
in

:::::
5.3.1. Any automatically detected event j with Tj ≤ Tmin was thus removed. Similarly, any

avalanche i in the reference catalogue with a duration Ti ≤ Tmin was also removed.

Second, we used a voting based threshold by tallying the classified events of each sensor. Rubin et al. (2012) used a similar

approach and found that with increasing votes the false alarm rate decreased. The overall idea is that although an avalanche15

event might not be recorded by one sensor, for instance due to poor coupling of the sensor, it is unlikely that an avalanche is

missed by all sensors, especially larger avalanches (Faillettaz et al., 2016). Any automatically detected event with Vj ≤ Vmin

with V the number of votes was removed.

Third, we used a threshold based on the cross correlation coefficient between the seven sensors. Wave-fields generated by

avalanches should be relatively coherent, while wave fields generated by noise (e.g. wind) are expected to be incoherent. We20

therefore divided the seismic data in non-overlapping windows of 1024 samples and for each window we defined a mean

normalized correlation coefficient

R(twin) =
1

Npairs

Npairs∑
k=1

rkl(twin) (2)

with Npairs = 21 the number of sensor pairs, rkl(twin) the maximum in the normalized cross correlation between sensor k and

l and twin the time of the sliding window. The normalized cross correlation is defined as:25

φkl(t) =
φkl(t)√

φkk(0)φll(0)
(3)

with φkk(0) and φll(0) the zero lag autocorrelation of each sensor which is equal to the energy of each single time window.

The maximum of the normalized correlation is picked for a maximum lag of tmax = 0.05s, which is the time a sonic wave-field

at a speed of 330m/s needs to travel the maximum distance between the most distant receiver pair (≈ 15m):

rkl(twin) = maxφkl(t), |t| ≤ 0.05s (4)30

10



The normalized cross correlation only yields values between -1 (perfectly anti-correlated) and 1 (perfectly correlated). A value

of 0 means that the signals are completely uncorrelated. Finally, the coherence of each automatically detected event was defined

as

Cj = maxR(twin),0≤ twin ≤ Tj (5)

Any automatically detected event with Cj ≤ Cmin was removed.5

4.4 Model performance evaluation

To evaluate the performance of the HMM classification, we compared the automatic picks with the reference data set described

in section 3.2. To assign an event classified by the HMM as a positive detection we defined a tolerance interval d: the time

tHMM
j of an event had to be within the interval ti− d≤ tHMM

j ≤ ti + d, with ti the release time of the i-th avalanche in

the reference data set and d= 60s. The tolerance interval d was necessary, since the release times ti of the avalanches were10

picked manually and may contain some uncertainties. In addition, the releases times tHMM
j do not necessarily coincide with

the reference data since the classifier is not an onset picker.

To describe the performance of the classifier we used three valuesNhit,Nunassigned andNmiss. The first valueNhit describes

the total number of avalanches which were correctly detected by the classifier, i.e. events identified by the classifier which

corresponded to avalanches in the reference data set. The second value Nunassigned describes the number of events identified15

by the classifier which did not correspond to an avalanche in the reference data set. We do not call these events false alarms

as during the manual detection some avalanche events might have been missed that are therefore not present in the reference

data set. Avalanche events may still be found in the unassigned detections. Finally, the third value Nmiss describes the number

of avalanches in the reference data that were not identified by the HMM classifier. The three values were used to evaluate

the overall model performance in terms of probability of detection (POD) and false alarm ratio (FAR), defined as POD =20
Nhit

Nhit+Nmiss
and FAR=

Nunassigned

Nhit+Nunassigned
(Wilks, 2011).

To determine the best threshold values for the post-processing steps (section 4.3), we plotted POD against FAR values for

all probability classes and for different values of Tmin, vmin and Cmin. One curve therefore illustrates the POD and FAR with

respect to the probability classes for a fixed threshold value. Ideally, when only considering the 100% probability class, the

POD value should be 1 while the FAR value should also be relatively high since all detections of the lower classes are counted25

as false alarms. By taking more probability classes into account, the FAR will decrease while the POD value should stay close

to 1. A perfect model should therefore result in constant POD values of 1 whereas the FAR values should decrease to 0. For

realistic models, however, POD and FAR values are expected to decrease when accounting for more probability classes. By

plotting POD against FAR values for different threshold values, the optimal threshold value can be found by searching for the

largest area under the curve (AUC). A perfect model would result in an AUC value of 1, while an AUC value of 0.5 corresponds30

to a model with a 50-50 chance. Threshold values obtained for models with an AUC value lower than 0.5 are therefore not

reliable and any random threshold value can be chosen. In our case, the POD-FAR curves did not span from 0 to 1 on the

x-axis. To determine the AUC value we therefore calculated the ratio between the area under the POD-FAR curve and the area

11



Figure 5. (a) Temporal variations in the central frequency hourly average (yellow) and daily average (blue). (b) Temporal variations in the

dominant frequency.

under the bisector with the same x-axis limits

AUC =
AUChmm

AUCbisector

AUCHMM

AUCbisector
::::::::::

· 0.5. (6)

5 Results

5.1 Temporal feature distribution

To investigate changes in feature distribution over time, for instance, due to diurnal changes in environmental noise levels or5

seasonal changes in snow cover properties, we calculated hourly and daily mean values for all features (see Figure 5 for the

central frequency and dominant frequency). Throughout the season there were large variations in the feature distribution at

various time scales. First, there were strong diurnal variations (yellow lines in Figure 5). These were observed in all features

(not shown). Second, there were also large variations at longer time scales (blue lines in Figure 5). While for some features there

were significant seasonal trends, for instance, for the dominant frequency (Pearson r =−0.56, p < 0.001; Figure 5b), for others10

there were no clear trends, for instance, for the central frequency (Pearson r = 0.23, p= 0.02; Figure 5a). Building a single

background model to classify the entire season would therefore likely not result in a reliable classification. The background

model thus has to be regularly recalculated. We therefore decided to recalculate the background model each day to classify the

events within the same day.
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Figure 6. (a) Central frequency with normalized time for 4 different avalanche events (colours) from 4 different months. For comparison, the

time was normalized by the event duration with 0 indicating the start of the avalanche and 1 the end of the event. (b) 2nd cepstral coefficient.

5.2 Training event

While building a representative background model is important, choosing an appropriate training event is of utmost importance

for the classifier. As outlined in van Herwijnen et al. (2016), the avalanche catalogue consists of various avalanches of different

size and type. At the beginning of the season the avalanches are most likely dry-snow avalanches, while at the end of the

season there a mostly wet-snow avalanches. Our avalanche catalogue only consists of the release time and little information is5

available on the type of the avalanches. We therefore compared the feature distribution of four different avalanche events, of

21 January, 27 February, 22 March and 24 April 2010 to investigate whether substantial differences related to avalanche type

existed (Figure 6).

While there were some subtle differences in the feature distribution for the four avalanches (e.g. between the avalanches

on 21 January 2010 and 22 March 2010 in Figure 6 (a)), overall the four avalanches exhibited very similar behaviour. Thus,10

when viewing avalanches in the feature space, wet- and dry-snow avalanches appear to be very similar. We therefore used

one single avalanche class for the HMM classifier and used one training event to learn the model. Specifically, we used an

avalanche with Pava = 100% recorded on 22 March 2010 (Figure 7) with a duration of 30s. However, as seen in Figure 6, the

most rapid changes in feature values occurred at the beginning of the events. In the coda changes in feature values were rather

slow, providing limited relevant information for the classifier. We therefore only used the first 8 s of the training event (marked15

by the red rectangle in Figure 7).
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Figure 7. The event used for training the HMM. (a) Stacked spectrogram of all 7 sensors. (b) Seismic waveform for each individual sensor

(colours). The red area highlights the part of the signal used as the training event for the HMM.

5.3 Automatic avalanche classification

5.3.1 Single sensor classification

We used the entire reference data set containing 283 avalanche events to evaluate model performance as function of probability

class.

The first model was built for each individual sensor and without any post-processing. For each sensor a separate model was5

built containing only the data of the specific sensor. In Table 2 the number of detections for each probability class is listed. For

the highest probability class the POD values were relatively high, ranging from 70% to 95% and the values generally decreased

with decreasing probability class.
:::
For

:::
the

::::::::
confirmed

::::::::::
avalanches,

:::
the

::::::::::
probability

::
of

::::::::
detection

::::::
ranged

:::::::
between

::::
80%

::::
and

:::::
92%.

Nevertheless, even for the lowest probability class events were still detected. Furthermore, numerous events, between 124 and

2091 events, were detected for each sensor which were not listed in the reference data set. Clearly without any post-processing10

the number of unassigned events is
::::
was high.

To reduce the number of unassigned events we applied a minimum duration Tmin to remove events. To obtain a reasonable

threshold value, we determined the area under the POD-FAR curve for different Tmin values (Figure 8).
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Table 2. Number of detections (Nhit) and probability of detection (POD) for each sensor
:::
and

:::
each

:::::::::
probability

::::
class as well as the

:::
POD

:::
for

:::::::
confirmed

:::::
events

:::::::
Evtconf :::

and number of events that were not in the reference data set (Nunassigned).

Probability Class 0% 16.6% 33.3% 50% 66.6% 83.3% 100%
::::::
Evtconf: Nunassigned

Sensor 1 POD
12
58

17
66

21
48

17
34

14
30

21
27

19
20 ::

23
25: 149

21% 26% 44% 50% 47% 78% 95%
:::

92%

Sensor 2 POD
28
58

24
66

19
48

11
34

17
30

17
27

14
20 ::

21
25: 1432

48% 36% 40% 32% 57% 63% 70%
:::

84%

Sensor 3 POD
21
58

25
66

21
48

12
34

16
30

17
27

15
20 ::

21
25: 1347

36% 38% 44% 35% 53% 63% 75%
:::

84%

Sensor 4 POD
20
58 ::

11
58

19
66 ::

11
66

18
48 ::

16
48

9
34 ::

14
34

15
30

15
27 ::

20
27

14
20 ::

18
20 ::

21
25: 124

35
::
19% 29

::
17% 38

::
33% 27

::
41% 50% 56

::
74% 70

::
90%

:::
84%

Sensor 5 POD
22
58

27
66

17
48

13
34

19
30

17
27

15
20 ::

21
25: 786

38% 41% 35% 38% 63% 63% 75%
:::

84%

Sensor 6 POD
11
58 ::

20
58

11
66 ::

19
66

16
48 ::

18
48

14
34 ::

9
34

15
30

20
27 ::

15
27

18
20 ::

14
20 ::

20
25: 2091

19
::
35% 17

::
29% 33

::
38% 41

::
27% 50% 74

::
56% 90

::
70%

:::
80%

Sensor 7 POD
29
58

26
66

23
48

16
34

19
30

17
27

14
20 ::

21
25: 2094

50% 39% 48% 47% 63% 63% 70%
:::

84%

Figure 8. (a) POD-FAR curves for sensor 1 for different minimum event durations Tmin (colours). (b) Area under the POD-FAR curve with

Tmin for all sensors (colours). The stars show the Tmin value with the largest area under the curve for each sensor.

15



Table 3. Number of detections (Nhit) and probability of detection (POD) for each sensor
::
and

::::
each

:::::::::
probability

::::
class as well as the

::::
POD

::
for

::::::::
confirmed

:::::
events

::::::
Evtconf::::

and number of events that were not in the reference data set (Nunassigned) using a minimal event duration of

Tmin = 12s.

Probability classes 0% 16.6% 33.3% 50% 66.6% 83.3% 100%
::::::
Evtconf: Nunassigned

Sensor 1 POD
0
0

4
39

6
36

11
23

10
26

15
27

16
19 ::

20
25: 22

0% 10% 17% 48% 39% 56% 84%
:::

80%

Sensor 2 POD
0
0

17
39

12
36

7
23

14
26

17
27

14
19 ::

21
25: 408

0% 44% 33% 30% 54% 63% 74%
:::
84%

Sensor 3 POD
0
0

14
39

13
36

9
23

13
26

16
27

14
19 ::

20
25: 340

0% 36% 36% 39% 50% 59% 74%
:::
80%

Sensor 4 POD
0
0

7
39 ::

3
38

13
36 ::

5
35

5
23 ::

6
22

10
26 ::

8
26

14
27 ::

12
26

13
19 ::

15
19 ::

15
25: 15

0% 18
:
8% 36

::
14% 22

::
27% 39

::
31% 52

::
46% 69

:::
79%

: ::
60%

Sensor 5 POD
0
0

16
39

11
36

9
23

15
26

14
27

13
19 ::

21
25: 157

0% 41% 31% 39% 58% 52% 68%
:::
84%

Sensor 6 POD
0
0

3
38 ::

7
39

5
35 ::

13
36

6
22 ::

5
23

8
26 ::

10
26

12
26 ::

14
27

15
19 ::

13
19 ::

18
25: 597

0% 8
::
18% 14

::
36% 27

::
22% 31

::
39% 46

::
52% 79

:::
69%

: ::
72%

Sensor 7 POD
0
0

17
39

14
36

10
23

15
26

17
27

14
19 ::

21
25: 653

0% 43% 39% 44% 58% 63% 74%
:::

84%

Due to the large number of unassigned events (see Table 2) AUC values were generally below 0.5 and using a minimum

duration threshold did not result in much improvement. However, for sensors 1 and 6 the number of unassigned events was

much lower and there was an optimum Tmin threshold value around 12s (Figure 8 (b)
:
b). In the following, we therefore used the

same minimal duration Tmin = 12s for all sensors. While with this Tmin threshold the POD values for the highest probability

class somewhat decreased, they still remained high (between 68% and 84%; Table 3).
:::::::::::
Furthermore,

:::
the

:::::::::
probability

::
of

::::::::
detection5

::
for

:::
the

:::::::::
confirmed

:::::::::
avalanches

::::
also

::::::::
remained

::::::::
relatively

:::::
high,

:::::::
ranging

::::
from

:::::
60%

::
to

:::::
84%. Note that the duration threshold was

also applied to remove events from the reference data set. For a threshold value of Tmin = 12s, the number of events in the

reference data set reduced from 283 to 170.
:::
170

:::::
while

:::
the

:::::::
number

::
of

:::::::::
confirmed

:::::::::
avalanches

:::
was

:::
not

::::::::
affected.

Overall the number of unassigned events substantially decreased (compare Tables 2 and 3), especially for sensors 1 and 6.

For these two sensors the POD values also substantially decreased for the lower probability classes but the two main avalanche10

periods in March and April are clearly visible in the detections (see Figure 9a for sensor 1). However, for the other sensors,

the POD values remained relatively high for the lower probability classes and there were still many unassigned events and

the two main avalanche periods were less evident (see Figure 9b for sensor 7). Clearly, for some of the sensors the number of

unassigned events remained very high.
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Figure 9. Classification results using a minimal event duration length of 12s for (a) sensor 1 and (b) sensor 7. Gray bars show the number

of matching detections (hit), blue bars show the unassigned events and the red bars show the events that were not detected as an avalanche

(missed).
:::
The

::::::
hatched

:::
bars

:::::::
indicate

::
the

::::::
number

::
of

:::
hits

:::::
(grey)

::
or

:::::
misses

::::
(red)

:::
for

::
the

::::::::
confirmed

:::::
events.

5.3.2 Array based classification

To further reduce the number of unassigned events (potential false alarms), we applied two array based post-processing methods

to eliminate events, namely a minimum number of votes and coherence threshold (see Section 4.3). To define an optimal number

of votes or coherence threshold we used the same procedure as for the determination of a minimal duration threshold (Figure

8). Since for these array based methods the detections from all sensors were pooled, the number of unassigned events was5

very high. This resulted in much higher FAR values and thus poor model performance with low AUC values, all below 0.5.

Arbitrary values for vmin or Cmin could therefore be chosen. However, the overall goal of these post-processing steps was to

reduce the number of unassigned events, while still retaining a reasonable probability of detection. We therefore analysed the

effect of different threshold values on FAR values as well as on POD values for the probability classes.

Overall, for both processing steps the number of unassigned events decreased with increasing threshold values (Figures10

10 and 11). By using a minimal number of 5 votes the POD stayed relatively high with a low number of unassigned events.

Following the same procedure we selected a coherence value of 0.6. Using this value, the POD was relatively high and the

number of unassigned events could be reduced to less than 100 events.

In total, we thus have three different post-processing steps which can be applied to the data: a minimal event duration

Tmin = 12s, a minimum number of votes vmin = 5 and a coherence threshold Cmin = 0.6. By combining these three steps, six15

array based post-processing work flows were implemented:

– v : vj ≥ vmin

17



Figure 10. (a) POD for each probability class depending on the minimum number of votes (colours). (b) Number of unassigned events for

different number of votes (colours).

Figure 11. (a) POD for each probability class depending on the minimal coherence (colours). (b) Number of unassigned events for different

coherence threshold values (colours).
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Figure 12. (a) POD for each probability class for different post-processing work flows (colours). v = minimal number of votes used, t =

minimal event duration and c = minimal coherence. (b) Number of unassigned events remaining after the post processing for each work flow.

– c : Cj ≥ Cmin

– vc : vj ≥ vmin and Cj ≥ Cmin

– tv : Tj ≥ Tmin and vj ≥ vmin

– tc : Tj ≥ Tmin and Cj ≥ Cmin

– tvc : Tj ≥ Tmin, vj ≥ vmin and Cj ≥ Cmin5

The number of unassigned events decreased most with a combined approach always including the number of votes (vc, tv,

or tvc in Figure 12). When using only one array based post-processing step, the number of unassigned events remained high (v

and c in Figure 12b). While the lowest number of unassigned events was achieved when combining all three post-processing

steps, this model also resulted in low POD values for all probability classes (tvc Figure 12a). Overall, the highest POD values

and the steepest decrease for the lowest probability classes were obtained for the voting based processing with and without a10

minimal duration of the events (v and tv in Figure 12a). For both these post-processing work flows the two periods of high

avalanche activity are visible (Figure 13). However, by also applying the duration threshold, the total number of detections

decreased and the two periods in March and April became more clearly visible (Figure 13b).

5.3.3 Unassigned events

We compared the automatic detections with the reference avalanche catalogue and obtained a large number of unassigned15

events. It remains unclear whether the unassigned events are all false alarms or partly correspond to avalanches that were

not identified in the reference data. We therefore visually inspected the unassigned events. In order to keep this reanalysis
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Figure 13. All events detected by at least 5 sensors. The different colours indicate the number of votes. (a) the results without any limitation

of the duration of the events are plotted, (b) only events with a minimum duration as mentioned before are taken into account. On the right

the two main avalanche periods are more clearly visible.

Table 4. Results of the reanalysis of the detections not covered by the test data set. Left side of the table shows the results of the reanalysis of

two single sensors, the right side shows the results of the array based classification. For the single sensors a minimum duration for the events

of tmin = 12s was taken into account. The voting based processing steps analysed are minimum number of votes (v), minimum duration (t)

and coherence (c).

Single sensors Array based

Sensor 1 Sensor 6
:
4 tv vc tvc

Unassigned 22 15 33 40 6

Confirmed as avalanche 36% (8) 47% (7) 12% (4) 28% (11) 33% (2)

Confirmed as false alarm 27% (6) 27% (4) 79% (26) 45% (18) 50% (3)

Uncertain 36% (8) 27% (4) 9% (3) 28% (11) 17% (1)

manageable, we only focused on the post-processing steps which resulted in less than 50 unassigned events. Thus, we only

::::::::::
individually investigated single sensor results from sensor 1 and 6

:
4 with Tmin = 12s and array based results for tv, vc and

tvc. The visual inspection showed that for the single sensor results between 36% and 47% of the unassigned events were likely

unidentified avalanches and less than one third were false alarms (Table 4). For the array based results, however, most of the

unassigned events (between 45% and 79%) were false alarms while fewer events were likely associated with avalanches that5

were missed by van Herwijnen and Schweizer (2011a).
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6 Discussion and Summary

We trained hidden Markov models (HMMs), a machine learning algorithm, to automatically detect avalanches in continuous

seismic data recorded near an avalanche starting zone above Davos, Switzerland for the winter season of 2010. To reduce the

amount of data to process, we pre-processed the continuous data using an amplitude threshold (Figure 2). We then implemented

single sensor and array based post-processing steps and the performance of the models was evaluated using a previously5

published reference avalanche catalogue obtained from the same seismic data (van Herwijnen and Schweizer, 2011a; van

Herwijnen et al., 2016).

After pre-processing the data, the reference avalanche catalogue contained 283 avalanches between 12 January and 30 April

2010, events that were identified by visual inspection of the waveform and spectrogram of a single sensor (van Herwijnen

and Schweizer, 2011a). Since only 33
::
25

:
of these events were independently confirmed avalanches, considerable uncertainty10

remained about the identified events. To reduce the uncertainty in the reference catalogue, three of the authors therefore re-

evaluated the data. This allowed us to assign 7 subjective probability classes between 0% and 100% to each event. Overall,

only 20 events were marked as certain avalanche (Table 1) and hence the performance , of the classifiers can only be evaluated

for these particular events. For the remaining events, there are still uncertainties and hence the performance of the classifier

can only be estimated. Furthermore, this reanalysis highlighted the difficulty in obtaining an objective and reliable reference15

avalanche catalogue. It also showed that expert decisions are biased and there is a need for a reliable automatic classifier to

identify avalanches in continuous seismic data.

Recent work by Hammer et al. (2017) showed very promising results for applying a HMM to automatically detect avalanches

in continuous seismic data. While they only focussed on a five day period during an exceptional avalanche cycle in 1999, our

goal was to classify continuous seismic data spanning more than 100 days. This prevented us from building a single background20

model to classify the entire season since temporal variations in feature distributions at various time scales were present (Figure

5). Indeed, when using a single background model to classify the entire season for sensor 1 only two thirds of the events

were detected by having almost 6 times the number of unassigned events. One possible reason for these variations in feature

distribution was likely the setup of the sensor array. The geophones were packed in a Styrofoam housing and inserted within the

snowpack. As such, less snow covered the sensors than if they has been inserted in the ground, making them more susceptible25

to environmental noise. Furthermore, it is also likely that the snow cover introduced additional noise in spring due to the

rapid settlement and water infiltration. We therefore recalculated the background model for each day and for each sensor to

classify the data from the same day. However, for the operational implementation this would be impractical, since there would

always be a 24 hour delay in the detections. Other strategies for regularly updating the background model should therefore be

investigated (e.g. Riggelsen and Ohrnberger, 2014).30

We performed the automatic classification over the entire season by recalculating the classifier for each day and for each

sensor. Overall, probability of detection (POD) values decreased with decreasing probability class and the highest POD values

were associated with the highest probability class for all sensors (Table 2). Indeed, between 70% and 95% of all avalanches

in the highest probability class were detected, which is comparable to the results presented by Bessason et al. (2007) and
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Leprettre et al. (1996), who reported POD values of approximately 65% and 90%. Nevertheless, without any post-processing,

the number of unassigned events was high, questioning the reliability of the models as many of these events were likely

false alarms. Post-processing of the results was therefore required. Applying a minimal signal duration drastically reduced

the number of unassigned events while still retaining reasonable POD values, in particular for sensor 1 and sensor 6
:
4
:
(Table

3). However, there were large differences in model performance between the sensors (Figures 8 and 9). The reason for these5

performance differences is very likely the deployment of the sensors. Indeed, sensor 1 and 6
:
4
:
were deployed at the top of the

slope closest to a cornice where the snow was the deepest (van Herwijnen and Schweizer, 2011a). The other 5 sensors were

covered by less snow due to local inhomogeneities, leaving these sensors more sensitive to environmental noise. For future

deployments it will thus be important to deploy the sensors below a homogeneous snow cover and not within the snow cover.

This should reduce the amount of environmental noise and consequently the number of false alarms.10

To further reduce the number of false alarms, we implemented two array based post-processing steps, namely a voting

based approach and a signal coherence threshold. In combination with the minimal event duration, we thus investigated 6

array based post-processing work flows. Results showed that these array based methods were effective in reducing the number

of unassigned events (Figure 12). However, the POD values generally also decreased, resulting in overall fewer detections.

Combined post-processing methods which included the voting based approach resulted in better model performance, in line15

with results presented by Rubin et al. (2012). The best model performance was obtained by combining the event duration

threshold for events with at least 5 votes. The number of unassigned events reduced to about 30 and POD values were highest (∼
55%) for the highest probability class and decreased for the lower classes. Despite the large differences in model performance

for the individual sensors, the model still performed marginally better when pooling the data from the entire array. These results

are promising as with an improved sensor deployment strategy array based post-processing is likely to further improve.20

Comparing our model performance to previously published studies is not straightforward. We assigned subjective probability

classes to our reference avalanche catalogue rather than using a yes or no approach. Furthermore, we used geophones deployed

in an avalanche starting zone, while Bessason et al. (2007), Leprettre et al. (1996) and Hammer et al. (2017) used sensitive

broadband seismometers deployed at valley bottom. Therefore, it is very likely that there was more environmental noise in

our data and many of the detected avalanches in our reference data set were rather small (van Herwijnen et al., 2016). Given25

these differences in instrumentation and deployment, our detection results are encouraging and highlight the advantage of using

HMMs for the automatic identification of avalanches in continuous seismic data. Indeed, our model only required

:::
The

:::::
main

:::::::::
advantages

:::
of

:::
the

::::::::
proposed

::::::::
approach

::
is

:::
that

:::::
only one training event (Figure 7)

:
is

::::::
needed

:
to classify the entire

season. As shown by Hammer et al. (2017), for large avalanches it is possible to build a HMM with a high POD and very low

FAR with one training event. As such, HMMs are well suited to detect avalanchesas they
::::
Even

:::::::
though

::
we

:::::
used

:::
less

::::::::
sensitive30

::::::
sensors

::
in

::::
this

:::::
work,

:::
we

::::
were

::::
also

::::
able

:::
to

::::::
identify

:::::::
periods

::
of

::::
high

:::::::::
avalanche

:::::::
activity

::::::::
(compare

::::::
Figure

:
3
:::::

with
::::::
Figure

:
9
::::
and

:::
13).

:::::::::::
Furthermore,

:::::
when

::::
only

::::::::::
considering

:::
the

:::::::
visually

::::::::
confirmed

::::::::::
avalanches,

:::
the

:::::::::
probability

:::
of

:::::::
detection

::::
was

::::::::
typically

::::::
around

::::
80%

:::
(see

::::::
Tables

::
2
:::
and

:::
3).

::::
This

::::::::
suggests

:::
that

:::::::
HMMs can easily be implemented at new sites. In contrast, the model used by

Bessason et al. (2007) relied on a 10-year data base, and Leprettre et al. (1996) used a set of fuzzy logic rules derived by the
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experts. Note that the post-processing steps we investigated are likely site-dependent, in particular the event duration threshold.

However, such a threshold value is intuitive, has a linear influence on model outcome and is thus easily tunable.

:::
For

:::::::::
operational

::::
use,

:::
the

:::::
model

::::::
should

:::
be

::::
able

::
to

:::::::::::
automatically

:::::
detect

::::::::::
avalanches

::
in

::::
near

::::::::
real-time.

::::
The

::::
main

::::::::::::
disadvantages

::
of

:::
the

::::::::
proposed

::::::::
approach

::
is
:::
its

::::::::::::
computational

::::
cost.

::::
The

:::::::
feature

:::::::::
calculation

:::
for

::::
one

::::
day

::::
takes

::::::
≈ 1h

:::
for

:::
the

::::::::::::
pre-processed

:::
data

::::
and

:::::
≈ 7h

:::
for

:::
the

:::::::::::
unprocessed

::::
data.

:::::::::
Replacing

:::
the

:::::
used

:::::::
features

::::
with

::::::::::::::
computationally

:::
less

:::::::::
expensive

::::::::
attributes

::::::
would5

:::::::
decrease

:::
the

:::::::::
processing

::::
time

:::::::::
drastically

::::
and

::::::::
encourage

::::::::
real-time

:::::::::::
applications.

::
In

::::
this

:::::
work,

:::
we

::::::::
classified

:::
the

::::
data

::::
from

:::::
each

:::::
sensor

:::::::::::
individually,

::::::::
requiring

:
a
:::::::
separate

::::::::::
background

::::::
model

:::
for

::::
each

::::::
sensor.

::::
The

::::::
results

::::
from

:::
the

::::::::
different

::::::
sensors

:::::
were

::::
then

::::::::
combined

:::::
using

:::::::::::::
post-processing

::::
rules

:::::
either

::
on

::
a

:::::
voting

:::::
based

::::::::
approach

::
or

:::::
taking

:::
the

:::::::::
coherence

:::
into

:::::::
account.

:::::::
Strictly

::::::::
speaking,

::
the

:::::::::
coherence

:::::
could

::::
have

::::
been

::::::
added

::
to

:::
the

:::::
model

::
as

:::
an

::::::::
additional

:::::::
feature.

::::::::
However,

:::::::::
calculating

:::
the

:::::::::
coherence

::
for

:::
21

:::::::
receiver

::::
pairs,

:::::
even

::::
after

:::::::
applying

:::
the

:::::::::
amplitude

::::::::
threshold

:::::
during

:::::::::::::
pre-processing,

::::
was

:::
still

::::
very

::::
time

::::::::::
consuming

:::::::
(≈ 200%

::::
real

:::::
time).

:
10

Overall, our results suggest that HMMs may be well suited for the automatic detection of avalanches in a continuous seismic

datafor operational avalanche forecasting. The variable model performance between the different sensors highlighted some

problems which can likely be overcome by improving the sensor deployment strategy. Specifically, we suggest that the sensors

should be deployed 30 to 50 cm underground at a site with a homogeneous and preferably thick snow cover . Furthermore,
:::
and

::
to

:::::::
increase the distance between the sensors should be increased to apply array processing techniques for source localization15

(Lacroix et al., 2012).
::
In

::::::::
addition,

::::::
further

::::::::
avalanche

::::::
events

::::
may

::
be

::::
used

:::
for

:::::::
training

::
to

:::::::
improve

::::::
model

:::::::::::
performance.

:
Finally,

incorporating localization parameters as new features in the HMM could open the door for further model improvement, as is

done for the automatic detection of avalanches in continuous infrasound data (Marchetti et al., 2015; Thüring et al., 2015)
:
.

:::::
These

:::::::
features

:::
can

::::
then

:::::
either

::
be

:::::::::::
implemented

:::::::
directly

:::
into

:::
the

::::::
HMM

::
or

::
be

:::::
used

::
in

::::::::
additional

:::::::::::::
post-processing

:::::
steps.
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