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Abstract. Recent flash flood impact studies highlight that road networks are often disrupted due to 10 

adverse weather and flash flood events. Road users are thus particularly exposed to road flooding during 

their daily mobility. Previous exposure studies, however, do not take into consideration population 

mobility. Recent advances in transportation research provide an appropriate framework for simulating 

individual travel-activity patterns using activity-based approach. These activity-based mobility models 

enable prediction of the sequence of activities performed by individuals and locating them with a high 15 

spatial-temporal resolution. This paper describes the development of MobRISK microsimulation 

system: a model for assessing the exposure of road users to extreme hydro-meteorological events. 

MobRISK aims at providing an accurate spatiotemporal exposure assessment by integrating travel-

activity behaviors and mobility adaptation with respect to weather disruptions. The model is applied in a 

flash flood prone area in Southern France to assess motorists' exposure to September 2002 flash flood 20 

event. The results show that risk of flooding mainly occurs in principal road links with considerable 

traffic load. However, a lag time between the timing of the road submersion and persons crossing these 

roads contributes to reduce the potential vehicle-related fatal accidents. It is also found that socio-

demographic variables have significant effect on individual exposure.  Thus, the proposed model 

demonstrates the benefits of considering spatiotemporal dynamics of population exposure to flash 25 

floods and presents an important improvement in exposure assessment methods. Such improved 

characterization of road user exposures can present valuable information for flood risk management 

services. 
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1 Introduction 

Flash flooding is considered as one of the most dangerous natural hazard in term of human losses. The 

rapidness and suddenness of this hydro-meteorological phenomenon makes it hardly predictable and 

decreases the efficiency of rescue operations and the available time for people to protect themselves and 5 

to adapt their daily activities and mobility behaviors. Therefore, several vehicle-related accidents occur 

during flash floods. Death circumstances investigations showed that, in post-industrial countries over 

half of flood victims are motorists trapped by road flooding (Ashley and Ashley, 2007; Sharif et al., 

2012; Terti et al., 2016). Hence, daily mobility is pointed out as one of the primary cause of population 

exposure and vulnerability to flash floods (Ruin, 2010). However, mobility aspects are not 10 

systematically included in studies assessing human exposure and vulnerability to natural hazards. In 

order to integrate social vulnerability in risk measurement, population density data is often used 

assuming a static distribution, which contrasts with the fast dynamics of the flash flood phenomenon. 

Recently, it has progressively been acknowledged that variation of population distribution may provide 

a more accurate assessment of human exposure to natural hazards.  Aubrecht et al. (2012) stressed the 15 

importance of including temporal variations of social vulnerability in every phase of disaster 

management cycle. For instance, Freire and Aubrecht  (2012) considered night and daytime specific 

population densities for assessing population exposure to earthquake hazard in Lisbon Metropolitan 

Area. Results showed that people are potentially at risk in the daytime period. In the context of flash 

floods, Terti et al. (2015, 2017) and Spitalar et al. (2014) showed that daily and sub-daily variation of 20 

population distribution may provide an appropriate assessment of human exposure to such short-fuse 

weather events. 

In fact, motorists' exposure to flood events is directly related to disruption and degradation of the 

road network. Road network studies use graph theory and more specifically directed graph (called 

network) where the so-called edges or arcs represent the road segments linking the nodes or vertices 25 

corresponding to the road intersections. Several studies in transportation research focused on road 

network vulnerability to adverse weather conditions (Koetse and Rietveld, 2009; Transportation 
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Research Board, 2008). Different methods were developed in order to identify critical road segments 

where disruptions would lead to severe consequences. Berdica (2002) defined road segments 

vulnerability as a function of the probability of occurrence of hazardous event and the importance of 

related impacts in term of serviceability of road links. Jenelius et al. (2006) quantified the road network 

vulnerability by introducing the concept of  criticality of the network constituents (e.g. link, node, 5 

groups of links and/or nodes), which includes both the probability of the constituents failing and the 

consequences of that failure for the system as a whole.!Links criticalities depend on their weakness and 

their importance for the functioning of the whole network measured by the increased generalized travel 

cost when these links are closed.  

Recently, Versini et al. (2010a) proposed a method for assessing road susceptibility to flooding 10 

in the Gard region (France) based on an inventory of observed flooded road sections over the last 40 

years. The risk of road flooding is computed by combining susceptibility to flooding on a given road 

with simulated stream discharge of the corresponding river segment (Versini et al., 2010b). Naulin et al. 

(2013) extended the road flooding forecasting tool to the entire Gard region and proposed a method for 

allocating probabilities of flooding to road/river intersections (called "road cuts") depending on return 15 

periods of stream discharges (Naulin, 2012). Versini and Naulin’s studies contribute to better forecast 

the chance of road flooding, hence providing a strong base to further analyze the impacts of those on 

road users exposure. 

To consider the risk for mobile people during flash flood there is a need to integrate travel-

activity behaviors and individual responses to weather disruptions. Recently, impacts of extreme 20 

weather events on traffic flow and travel behaviors received much attention in transportation research 

(Böcker et al., 2013; Al Hassan and Barker, 1999; Koetse and Rietveld, 2009; Chung et al., 2005). 

Böcker et al. (2013) provided an extensive literature review on the potential impacts of weather on 

individual daily travel behaviors such as trip generation, travel destination and mode choices. Tsapakis 

et al. (2013) showed that high intensity of snow and rain decreases travel speed and increases travel 25 

time in the Greater London area. They also found that the impacts of weather conditions largely depend 

on drivers' attitudes, socio-economic characteristics and other contextual factors. Andrey et al. (2013) 

investigated the effect of exposure frequency to adverse weather conditions on drivers’ adaptation 
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behaviors and concluded that drivers do not tend to acclimatize to local weather pattern. Based on a 

survey on travel decisions, Khattak and De Palma (1997) showed that adverse weather has a strong 

impact on travel decision changes such as route choice, transport mode choice and departure time. 

 

These decisions partly depend on individual risk perception and personal evaluation of the 5 

environmental threat, which largely vary between individuals. Ruin et al. (2007) examined the effects of 

socio-demographic characteristics on perceived risk related to driving under heavy rain and through 

flooded roads. It was found that young male drivers have a clear tendency to underestimate the 

corresponding risk. Other factors seem to have significant effect on mobility adaptation to flood events 

such as flood danger knowledge, flooding experience, and route familiarity (Drobot et al., 2007; Ruin et 10 

al., 2009). In addition to risk perception, daily constraints related to professional and family activities 

are strong drivers of mobility whatever the weather conditions (Ruin et al., 2007; Ruin et al., 2014).  

The perceived importance and flexibility of planned and scheduled activities might play an important 

role in mobility adaptation capacities. Cools et al. (2010) demonstrated that travel change decisions 

related to weather conditions depend on trip purposes, leisure and shopping activities being more 15 

susceptible to be cancelled and postponed than work/school activities. 

These findings thus highlight the relevance of considering both individual socio-demographic 

characteristics and daily activity schedules and constraints to establish an accurate assessment of 

population exposure to road flooding. Recent advances in mobility modeling following an activity-

based approach offer an appropriate framework to micro-simulate individual travel-activity patterns 20 

(Rasouli and Timmermans, 2014). These activity-based models consider travel behavior as derived 

from the demand of activity participation and aim at predicting the sequence of activities conducted by 

individuals (McNally, 1995).  Activity-based models gain increasing interest in dynamic exposure 

assessment research, especially illustrated in air pollution exposure studies (Beckx et al., 2008; Beckx et 

al., 2009; Pebesma et al., 2013) and homeland security application (Henson et al., 2009). Flood 25 

exposure studies can also benefit of the rich information provided by this kind of mobility modeling 

approach. Indeed, the combination of individual travel-activity simulation with roads flooding forecast 
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makes possible a thorough assessment of motorists' exposure and its evolution in time and space as 

regard as the flood hazard.   

In this paper we present the so called MobRISK model, which aims at providing an assessment 

of motorists' exposure to flash floods by taking into account travel-activity behaviors and mobility 

adaptation with respect to weather disruptions and roads flooding. MobRISK is considered as a micro-5 

simulation system since each individual of the population is represented individually similarly to agent-

based models (Gilbert, 2007). It is also an activity-based mobility model in which the full individual 

travel-activity patterns are simulated. We illustrate the potential benefits of the proposed model through 

an application of MobRISK in the Gard region, which is a flash flood prone administrative area (French 

département) located in southern France. The objective of the proposed case study is to quantify 10 

motorists' exposure to the 8-9 September 2002 major flash flood event that triggered 24 victims in the 

Gard area. 

The remainder of the paper is organized as follows. The next section describes the conceptual 

modeling approach used in MobRISK model. Section 3 details the required input data together with the 

description of the individual exposure measurement method. The case study area and results from 15 

MobRISK simulations are illustrated in section 4. Finally, section 5 discusses the results and provides 

insights for further research and potential improvements of the model. 

2 MobRISK modelling approach 

MobRISK is a model for assessing and simulating road users' exposure to road flooding due to extreme 

flash flood events by combining travel-activity simulation following an activity-based approach with 20 

hydro-meteorological data. MobRISK architecture includes: (i) the simulated environmental changes 

considered for the study such as roads' flooding; (ii) an activity based mobility model reproducing 

population travel-activity behaviors; (iii) a decision-making model predicting individual responses to 

weather disruptions. A Discrete Event Simulator (DES) rules the main temporal loop of the simulations. 

In addition, the user input data is stored in a spatial relational database management system (Fig.1).  25 
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2.1 Discrete event simulation 

The core of the MobRISK simulator is a parallel discrete event simulator (PDES) that rules the main 

temporal loop of the simulation. The pending event set is organized as a priority queue, sorted by event 

time and so handled in chronological order (Fujimoto, 1999; Robinson, 2004). Event-driven simulations 

are efficient in term of computation time as they avoid unnecessary time steps. Four types of events are 5 

handled in MobRISK: 

! Road flooding: records different changes in probabilities of road flooding during a simulation 

period, 

! Environmental cue: reports the changes in environment and weather conditions that might be 

perceived by individuals such as precipitation intensities, 10 

! Broadcast: contains diverse warning and alert information that can be received by individuals 

and may affect their travel decisions, 

! Travel-activity: records changes of individual locations (at the road nodes resolution) and the 

travel purposes. 

2.2 Mobility modelling 15 

As explained in Section 1, to better understand and analyze mobility behaviors under environmental 

perturbations, we need to integrate daily travel motivations in the mobility modeling. Following an 

activity-based approach for mobility modeling, travel demand is considered as derived from the human 

need to perform different activities distributed in time and space (Recker et al., 1986). Recently, 

activity-based models have been gaining increasing attention due to the rich information they provide 20 

and the incorporation of behavioral and psychological components and decision-making processes.  

Activity-based approach in travel modeling emerged in the 1970s as complementary of the 

concept of Time-geography of Hägerstrand (1970) and Chapin (1974), which introduced the importance 

of various spatial and temporal constraints on individuals' mobility behavior. While classical trip-based 

models, commonly referred to as “four steps models”, are focusing essentially on the quantification of 25 

trips generated by population mobility without considering the sequential characteristics and the 

behavioral dimension, activity-based models aim at predicting how, why, when, how often, where and 
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with whom the different activities are conducted by the individuals (Bhat et al., 1999). McNally (1995) 

identified the most important specificities of activity-based modeling: (i) Travel is derived from the 

demand for activity participation; (ii) Sequences and patterns of travel behavior are the units of analysis 

instead of individual trips in trip-based models; (iii) Household and socio-demographic characteristics 

affect travel-activity behavior; (iv) Spatial, temporal and interpersonal factors that constrain travel-5 

activity patterns are taken into account.  

Over the last years, several activity-based models have been developed: TRANSIMS (Smith et 

al., 1995), ALBATROSS (Arentze and Timmermans, 2000), CEMDAP (Bhat et al., 2004), MATSIM 

(Balmer et al., 2006), and ADAPTS (Auld and Mohammadian, 2009).  Although the mentioned models 

follow the same activity-based paradigm and provide useful frameworks for modeling individual 10 

motilities, they have some differences regarding the activity scheduling approach used, decision-making 

process integration and required input data structure. These differences depend essentially on research 

purposes and data availability.  

Whereas the mentioned models are essentially applied for transport forecasting and urban 

planning, the main objective of MobRISK is to assess population mobility exposure to road flooding, 15 

which requires essentially the combination of travel-activity simulation with hydro-meteorological data 

and road flooding impact. Census data and travel-activity survey data are needed in order to assign daily 

activity programs to the population. Then, by locating the different activity areas, population mobility is 

generated when individuals attempt to implement their activity programs. Finally, individual exposure 

over the flash flood event is defined by the chance (given the location and timing) of crossing flooded 20 

roads along each individual’s route. 

3 Data and method 

MobRISK microsimulator was developed to measure the exposure of inhabitants and people working in 

the Gard administrative area, a region of Southern France that has a long flash flooding history. This 

region is characterized by a typical Mediterranean climate with heavy rainfall events during the autumn 25 

season (Delrieu et al., 2005; Gaume et al., 2009). In fact, since 1225, the Gard region suffered 506 

floods. Sixty six percent of the 353 municipalities cumulates at least 10 referenced flood events and 
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some of them were affected more than hundreds times (CG30, 2015). Between 1316 and 1999, Antoine 

et al. (2001) recorded 27 fatal flood episodes and 277 deaths in the Gard. Since 1999, five fatal events 

added about 30 casualties to the toll. In 2015, nearly 65% of the businesses and 35% of the population 

of the Gard area were located in flood prone zone.  

In 2010, 726 783 inhabitants were living in the Gard administrative area which has a surface of 5 

5 852km2. Among the 353 municipalities, 267 are essentially rural. Urban areas are mostly located next 

to Nimes, the capital of the department cumulating 145 501 inhabitants, and Alès (41 118 inhab.) 

(Fig. 2).  The road network of the Gard region counts 12 322km of roads likely taken by commuters 

(paved roads) distributed between local roads (83,8%), principal roads (4,8%), regional roads (10,3%) 

and highways (1,1%). The river network is described by 6 443 river sections cumulating 7 087km of 10 

length. Based on the work of Versini et al. (2010), a total of 1970 potential road cuts, which would be 

called “low water crossing” in the USA, have been identified based on road-river intersections1 that are 

sensitive to flooding (see the detailed description in section 3.2) (Debionne et al., 2016).  
 

This section provides an overview of the required input data used in MobRISK model. 15 

MobRISK makes maximum use of existing national databases, both geographical and social. 

SpatiaLiTE, the spatial extension of SQLiTe2 is used extensively for input database building and pre-

processing. The goal of input data pre-processing is to i) identify the socio-demographic characteristics 

of individuals and households corresponding to the study area, ii) attribute daily schedules to every 

individual, and iii) localize the areas where they are susceptible to conduct their activities. Concerning 20 

the geographical data, road and river networks data are used for identifying the vulnerability of road 

sections to flooding.  

                                                
1 Even though the points exposed to flooding may be of 3 distincts types: river crossings, low accumulation points and river 
adjacent points. Low points and river bordering points are much more difficult to identify as they are mostly due to very 
local settings that are not detectable on the DTM (Versini et al., 2010). Therefore those 2 types were not considered in 
Versini’s work, hence in the study presented in this paper.  
!

2!SQLite!is!a!free!relational!database!management!system!contained!in!a!C!programming!Library.!SpatiaLite!is!its!

spatial!extension,!providing!vector!geodatabase!functionality!(Wikipedia) 
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3.1 Population data 

Socio-demographic description of the population is based on census data provided by the INSEE in 

2010 (French National Institute of Statistics and Economic Studies). We use especially the INDCVI 

dataset, which contains the description of socio-demographic characteristics of the individuals, their 

household composition and household geographical localization at the municipality resolution. In 5 

addition, we combine MOBPRO (Professional Mobility) and MOBSCO (Student Mobility) datasets 

issued from the INSEE complementary exploration of census data. These datasets describe individuals’ 

commuting patterns (i.e. municipalities of work and school activities, usual commuting modes of 

professionals3, and traveled distances), socio-demographic characteristics and household characteristics. 

These data are stored into "individual" and "household" tables in a way that every individual is attached 10 

to one household (Fig. 3a).  

The description of individual activity schedules is based on travel activity data, provided by the 

French National Transport and Travel Survey (ENTD) carried out by the INSEE from 2007 to 2008. In 

this survey, the responders were requested to indicate their socio-demographic characteristics (age, 

gender, professional status...), their household composition and their mobility description during one 15 

weekday and one weekend. They were instructed to mention the different trips they made during the 

days of the survey, transport modes, trips' purposes, and time of departure and arrival. Based on these 

information, individuals' schedules are thus retrieved, representing a sequence of activities mentioned 

by responders as trip purposes. Ten main activities are proposed in the survey: home, school, working, 

shopping, medical appointment, administrative procedure, visiting, accompanying persons, leisure, and 20 

holidays activities.  

The main objective of using the ENTD data is to assign daily schedules to the individuals 

described by the census data based on the effects of socio-demographic variables on schedules 

dissimilarities. The dissimilarities between schedules or pairs of sequences are measured by counting 

the number and type of operations needed to transform one sequence into the other (to match them). 25 

The operations considered are insertions/deletions or substitutions of activities. Figure 4 illustrates the 
                                                
3 The usual commuting mode is one of the variable of MOBPRO datasets. It includes 5 modalities of response: 1) no 
transport, 2) on foot, 3) two-wheel vehicle, 4) car, truck and van, 5) public transport.  
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matching of a pair of sequences in two different ways regarding the type of operation:  (i) using only 

substitutions by replacing the different elements of one sequence by those in the second one; (ii) using a 

combination of insertions and deletions operations. The Optimal Matching (OM) distance metric - 

allowing both substitutions and insertion/deletion of activities (Lesnard et al., 2011) is used in this 

study. Then a method proposed by Studer et al. (2011) called “discrepancy analysis” allows measuring 5 

the relationships between categorical variables (e.g. gender, age, education level, professional status…) 

and a set of sequences described by the matrix of dissimilarities (measured with the OM method). It 

consists in measuring the pairwise dissimilarities between different activity sequences and 

implementing an ANOVA test to identify socio-demographic variables that explain the discrepancy of 

the sequences.   10 

Additionally to measuring the effect of socio-demographic variables on sequence dissimilarities, 

Studer et al. (2010, 2011) proposed a complementary regression tree analysis, which consists on a 

recursive partitioning of the sequences based on splitting criterion derived from the dissimilarity 

analysis. All individual activity sequences are grouped in the first node of the tree (root node). A 

discrepancy analysis is displayed to identify the variable explaining the greatest part of sequences 15 

discrepancy. The sequences are then partitioned based on this variable in such a way that the resulting 

child4 nodes are as much as possible homogeneous (with low within dissimilarity). This operation is 

repeated recursively until no significant effect of socio-demographic variables is registered in nodes' 

sequences. Hence, schedule attribution rules can be extracted from the obtained tree with respect to 

strength of relationships between socio-demographic characteristics and activity sequences. Then, every 20 

individual in the study area is connected to an average week schedule and an average weekend schedule 

based on these attribution rules (Fig. 3a). The proposed framework is implemented into a free package 

in R software called TraMineR (Gabadinho et al., 2011). Sequences discrepancy analysis methods have 

been especially used for exploring individual life trajectories (Studer et al., 2010; Widmer and Ritscard, 

2009). Recent applications of sequences analysis methods on activity schedules and diary data have 25 

                                                
4 A child node is a node directly connected to another node when moving away from the Root node of the tree 

!
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revealed the advantages of these approaches for capturing the complex structures of activity patterns 

and providing more accurate schedules classifications (Lesnard and Kan, 2011; Kim, 2014). 

3.2 Geographical data 

The next step in pre-processing the data for activity-based mobility modeling consists in locating the 

different areas where individuals might conduct their activities. Concerning housing activities, census 5 

data provide municipality of residency of every household. In order to have more precise spatial 

resolution, we use the RFL data (Household Localized Taxes) published by the INSEE in 2010. RFL 

data concerns the number of households and individual living and their socio-demographic description 

provided at 200mx200m resolution for the whole France territory. Then, each household is located in 

the grid with respect to household densities by pixel. Concerning work and school activities, MOBPRO 10 

and MOBSCO datasets provide the municipalities' codes of both work and school places for workers 

and students. In order to enhance the spatial resolution, work and school places are assumed to be 

mostly located close to municipalities' administrative centers. Therefore, we assign a road node inside a 

buffer with a radius of 200 m around administrative centers of work and school municipalities to every 

worker and student. Finally, since we do not have reliable data for the locations of other activities 15 

(shopping, leisure, visiting...) we randomly assign to every individual a road node inside a buffer of 

500 m around the administrative center of his/her municipality of residency.  

 The road network sensitivity to flooding is based on the connection of three datasets providing 

the description of the road and river networks and a list of the road sections susceptible to flooding 

called "road cuts". Road network data is provided in BD-CARTO® database by the IGN (French 20 

National Mapping Agency) describing the road segments that compose the whole French road network 

by specifying their characteristics (regional, principal or local roads) and their locations in 2010. The 

second geographic information layer used refers to the river network provided by the BD-CARTHAGE® 

database. It contains the different hydrographic segments and their attributes. The road cuts (low water 

crossings) dataset is derived from the intersection of river and road networks and calibrated by using an 25 

inventory of road flooding during the last 40 years provided by the Gard road management services. 

Based on this dataset, Versini et al. (2010a) identified 1 970 road cuts in the Gard road network and 
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produced a classification of these road sections according to their susceptibility to flooding (Fig. 5). The 

four susceptibility classes range from s0 to s3 counting respectively 1 093, 359, 297 and 221 points. The 

“very-low” susceptibility to flooding class s0 corresponds to road-river intersections that have empirical 

return periods of flooding exceeding 40 years. The “weak” s1, “medium” s2 and “high” s3 susceptibility 

classes have an empirical flooding return period smaller than one year in respectively 20%, 35% and 5 

65% of their points. Based on road cuts classification, Naulin et al. (2013) developed a method to 

compute a probability of submersion for each road cut by combining the susceptibility classes and 

simulated stream discharges at the section of river responsible of the road cut. Therefore, an interval of 

probability of submersion is assigned to every road cut for each combination susceptibility class/return 

period of stream discharge. In order to have one value of probability of submersion, the probability 10 

intervals are simplified in this study by considering the average value within interval probabilities limits 

(Table 1).  

3.3 Route choice and exposure measurement methods 

Once the different activities of each individual schedules are located and road section attributes are 

specified, route selection criteria needs to be defined. Although various factors are involved in route 15 

choice process, several studies indicated that minimizing travel time is the principal criterion for 

selecting routes (Papinski et al., 2009; Ramming, 2002, Bekhor et al., 2006). Therefore we chose to use 

the classical Dijkstra’s algorithm, a single source shortest path algorithm that provides trees of minimal 

total length/time in a connected set of nodes (Dijkstra, 1959). The activity patterns attribution concerns 

only the starting times and durations of the activities' sequences, which means that travel duration is 20 

computed based on the distance between the different activity locations for each individual. Therefore, 

the implemented schedules may be distorted compared to the assigned ones in term of travel durations. 

Finally, motorists' exposure to road submersion can be measured based on the probability to encounter 

one or several flooded road cuts on their route during the simulated event period. The more important 

the probability of crossing submerged road cut is, the higher is the individual exposure. Since 25 

individuals are susceptible to cross several road cuts with different probabilities of submersion, total 
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exposure is computed by calculating the joint probability of submersion of all the crossed road cuts. The 

individual exposure index is calculated with the following Eq. (1):  

 

 (1) 

where E(ind) refers to the computed individual exposure and P(Subk) is the probability of submersion in 

the kth road cut crossed.  An example of exposure measurement is illustrated and explained in Fig. 6.   

4 Results 

Even though MobRISK model development is at the scale of the Gard department, we present in this 10 

section a first application of the model in the sub-region of Ales located in the north of the Gard 

administrative area (Fig. 2). 

4.1 Case study 

The objective of this case study is to assess road users exposure to road flooding during the 8-9 

September 2002 event, considered as one of the most catastrophic flash flood in the area since the one 15 

of 1958. In this first application, adaptation decisions generated by the decision making model are not 

considered and we assume that individuals' travel plans do not change with the weather conditions and 

encountered flooded roads. The selected domain of this case study is composed of 61 municipalities 

around Ales, which is the second largest municipality of the Gard region in term of demography (Fig. 

2). This first simulation provides an estimation of motorists' exposure to submersion based on their 20 

daily mobility for the Sunday and Monday of this past flash flood event. During this event, the rainfall 

accumulation exceeded 600 mm in 12 hours causing 24 deaths and economic damages estimated to 1.2 

billion €. A more detailed hydro-meteorological description of this event is provided in Delrieu et al. 

(2005). In terms of human impacts and death circumstances, more than half of the victims were outside 

buildings and five of them are vehicle-related fatalities (Ruin et al., 2008). The flash flood event started 25 

a Sunday evening, which might have limited the number of victims related to car driving accidents.  

In order to evaluate daily mobility exposure to flash flood risk, MobRISK output contains a 

record of the different road nodes crossed by the individuals on their route (including the road cuts), the 
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time at which they passed these nodes and the individual exposure index (Eq.1). The results are 

presented into three main sections: (i) results of population mobility simulation, (ii) analysis of road 

submersion risk, (iii) and analysis of population exposure to road submersion. 

4.2 Population mobility 

The study area resident population is of 111 511 individuals. An overview of the population socio-5 

demographic characteristics is displayed in Table 2. As explained in Section 3.1, we used travel-activity 

data from the National Travel and Transport Survey to attribute programs of activities to the population 

in our study area. In order to respect the regional statistical representativeness of the survey sample and 

benefit of a rich schedule library with satisfactory variability, we select travel activity data 

corresponding to survey responders living in the Languedoc Roussillon Region5. Since we are interested 10 

in motorists' exposure, only individuals using principally motorized transport modes are selected: 

representing 1 240 week day schedules and 1 087 weekend schedules.  

We conducted a multi-factor discrepancy analysis on the different schedules in order to assess 

the effect of socio-demographic variables on the activity sequences dissimilarity. We analyzed the 

effects of six variables: gender, age, education level, professional status, profession and household 15 

composition. The choice of these variables is based on previous studies on the effect of socio-

demographic characteristics on daily travel-activity behavior (Pas, 1984). These variables are 

considered as independent variables and the matrix of dissimilarities (dij) between sequences is the 

dependent variable. Similar to ANOVA test, individuals are grouped based on the selected factors and 

we attempt to compare the inter-group and intra-group variance to measure how much the chosen 20 

factors explain the total variance. The variance is then calculated based on the Eq. (2) where the Sum of 

Squares (SS) is expressed using the average pairwise squared dissimilarities (Anderson, 2001): 

 25 

 

    (2) 

                                                
5!Before!2015,!France!was!divided!into!22!French!administrative!"Regions"!each!further!divided!into!"départements".1
The!Languedoc!Roussillon1Region!contained!5!"départements"!including!the!Gard.!!
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We observed that these selected variables explain 20 % (R2 = 0.20) of the total discrepancy for 

week schedules and only 3 % (R2 = 0.03) for weekend schedules (Table 3). Globally, there is a 

statistical significant effect of the selected variables on schedule discrepancy (p-value < 0.05). For an 

average weekday, the most significant variable is the professional status (F = 157 530 and p < 0.05). For 

the weekend, results indicate that the majority of variables have moderate but significant contributions 5 

to explain the total discrepancy except the gender which is not significant (F= 4 060, p > 0.05).  

We displayed a regression tree analysis generating 12 clusters for weekday schedules 

representing essentially 3 classes of working men schedules (clusters 1, 2 and 3), 3 classes of working 

women schedules (clusters 4, 5 and 6), two classes of students (clusters 7 and 8) and 4 classes of non 

working persons dependant on their age and gender (clusters 9, 10, 11 and 12) (Fig. 7a). For weekend 10 

schedules, the regression tree generated 10 clusters composed of a class of student (cluster 3), 5 classes 

of working persons dependant on their household type and age (clusters 1, 2, 4, 5 and 6), and 4 classes 

of non-working persons dependant on their age and household size (clusters 7, 8, 9 and 10) (Fig. 7b).  

These results are used to produce "if - then" rules for assigning one weekday schedule and one weekend 

schedule to the individuals living in the study area. Each individual, according to his socio-demographic 15 

profile, is randomly assigned with one of the list of schedules corresponding to the appropriate cluster. 

MobRISK mobility model is implemented to simulate population mobility during one average weekend 

followed by an average weekday in order to have mobility patterns similar to the 8-9 September 2002, 

which happen to be a Sunday and a Monday. MobRISK generated in total 737 135 trips: 333 453 trips 

on Sunday and 403 682 on Monday. The average number of trips per individual is of 3.06 on Sunday 20 

and 3.64 travels on Monday. When we examine the trip goals, we observe that more than 40% of 

individuals' trips are made to reach home destination. Obviously, the main difference between weekdays 

and weekend in term of trip goals consists in commuting trips, which are more important during 

weekdays. Whereas, visiting and leisure travels are more important during the weekend (Fig. 8). 

4.3 Road network sensitivity to flooding 25 

As mentioned in Section 3.2, a probability of submersion is assigned to every road cut by combining the 

flooding susceptibility level of road section and the return period of stream discharge in river section.  
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The CVN distributed hydrological model (Vannier et al., 2016; Branger et al., 2010; Viallet et al., 2006) 

is used to compute the discharge at the 738 road cuts identified in the Ales case study in hourly time 

steps for the 2002 flash flood. The CVN model is especially developed for simulating hydrological 

responses in flash flood events in Cévennes region (south of France). Moreover, the implementation of 

CVN model for reconstructing the 8th and 9th September 2002 event in the Gard region has provided 5 

satisfactory results (Braud et al., 2010; Anquetin et al., 2010). Discharge return periods are then 

computed at each road cut for hourly time steps and translated to submersion probabilities thanks to the 

relationship proposed by Naulin (2012, p93-94). Fig. 9 shows that the period with the highest 

probability of road submersion takes place during the night of Sunday 8th to Monday 9th, leading to 

"weak" population exposure since less people are on the roads in the middle of a Sunday night. The 10 

spatial distribution of the simulated road submersion hazard for the whole flash flood event period, 

computed by summing up the hourly probabilities of flooding, shows a concentration of high flooding 

hazard in the south of the Ales municipality (Fig. 10). 

4.4 Exposure analysis 

A first method for assessing road users exposure to road flooding consists in quantifying the simulated 15 

traffic load in the potential road cuts identified in the study area during the two selected days. The 

computed exposure corresponds to the maximal exposure since the whole daily trips are assumed to be 

motorized. The results reveal that motorists were essentially exposed to road cuts corresponding to the 

two lowest levels of susceptibility (Table 4).  

The spatial distribution of traffic load on potential road cuts shows a high motorists' exposure on 20 

the main roads connecting Ales to the other major cities of the area: Road D6110, Road N106, Road 

D981, Road D904 (Fig.  11). Fig. 12 shows the dynamic of road users' exposure to potential road cuts 

presenting two peaks on Sunday, one at 10 a.m. and the other one at 4 p.m. indicating, for the first peak, 

more than 25 000 motorists crossing potential road cuts per hour. On Monday September 9, three peaks 

are detected at 7 a.m., 12 a.m., and 5 p.m. corresponding essentially to commuting trips and reaching 25 

40 000 people crossing potential road cuts per hour. The comparison between temporal dynamics of 

roads submersion probabilities and traffic load in potential road cuts indicates a clear lag time between 
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the period corresponding to high road submersion probabilities and the one with a larger number of 

exposed road users (Fig.13). Indeed, this lag time is considered as an important factor contributing in 

reducing vehicle related accidents and fatalities for the 2002 flash flood event in this area. 

This exposure measurement provides an estimation of traffic load on potential road cuts. Hence, 

by combining the flood hazard, represented by the hourly probabilities of submersion at road cuts, with 5 

human exposure, given by maximal traffic load passing these road cuts, it is thus possible to identify the 

number of persons who might have been endangered by crossing road cuts at the time they were 

submerged. The proposed risk index (Eq. 3) characterizes the number of motorists who could be in 

effective danger by multiplying for every hour time step the probability of submersion in road cuts with 

the number of motorists crossing them. 10 

 

(3) 

where (rc) refers to the crossed road cut and (t) is the time period. 15 

In Fig. 13, the time evolution of the risk index reveals a different pattern than those associated with 

flooding hazard or with the traffic load at road cuts. It clearly illustrates that the period corresponding to 

the highest risk of flooding for road users occurred on September 9th from 5 a.m. to 11a.m. with a peak 

at 7 a.m. representing more than 1 500 motorists/hour in significant danger of flooding. The spatial 

distribution of the risk index cumulated for the whole event shows that the majority of road cuts 20 

presenting a considerable danger in term of potential victims are located around Ales municipality (Fig. 

14). The results of the simulation for the entire event show that in average, 15 individuals might have 

crossed dangerous road cuts. Geo-located vehicle-related fatal accidents data provided by Ruin et al., 

(2008) are used as a first evaluation of this result. One vehicle-related victim (Fig. 14) was identified in 

our study area at a location that effectively corresponds to a road cut with high risk level (the 16th most 25 

dangerous road cut, N(Inddanger) = 162). The proposed risk index mapping might thus provide an 

efficient indicator of flood risk magnitude in road network since it combines both environmental and 

social parameters. 

Finally, we investigate the effect of socio-demographic variables on individual exposure to road 

submersion. The MobRISK simulation of the probability, for each individual, of crossing submerged 30 
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road sections on his daily route, indicates that the average individual exposure (Eq. 1) is 0.17 (a 

probability of 17% to cross submerged roads during the event period) with a variance of 0.10. 75% of 

the road users have a zero-risk of crossing submerged road cuts. Individual exposure varies with socio-

demographic characteristics such as: age, gender, professional status and profession. For instance, men 

are more exposed than women (Exposuremen= 0.18; Exposurewomen= 0.15). Not surprisingly, workers are 5 

the most exposed with an average risk of 0.28 while retired and unemployed have an average risk of 

0.10. Managers, laborers and professors seem to be the most exposed professionals with an average 

exposure of 0.27 (Table 5). An analysis of variance (one way ANOVA test) showed that the effects of 

the 4 selected variables are statistically significant (Table 6). The most exposed individuals are mainly 

young working males who are generally more motorized and commute daily longer distances (Debionne 10 

et al., 2016). These results confirm the benefit of integrating mobility behaviors into social vulnerability 

assessment. This integration points out different socio-economic vulnerability profiles that are usually 

not considered when dealing with static (resident) vulnerability. Classic static social vulnerability index 

usually attributes high vulnerability level to women, elders and persons with low professional status 

(Cutter et al., 2000). These social profiles seem to be less exposed to road flash flooding.  15 

5 Discussion and perspectives 

MobRISK microsimulator is to our knowledge the first of its kind combining social and hydro-

meteorological state of the art knowledge to understand the dynamic of human exposure and behavioral 

response6 to short fuse weather event. This first implementation of MobRISK shows the potential of this 

tool for emergency planning and road management in crisis situation. Other examples of 20 

microsimulations often use a multi-agent platform to simulate such dynamic interactions (see for 

instance, Dawson et al., 2011) nevertheless those models do not allow to address the scale of a French 

department (c.a. about 6000km2) involving about 700 000 agents. Because MobRISK is newly 

developed, several improvements are planned for improving its reliability, optimizing its functioning 

and moving toward a more operational tool.  25 

                                                
6!The!case!study!presented!in!this!paper!do!not include the output of the behavioral model that was not yet fully operational at the time 
of the writing of this paper. !
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The next step of its development is to better reproduce the travel durations observed in the 

ENTD dataset. In fact, activity-based mobility modeling approach requires data describing the location 

of different activities conducted by the individuals. Whereas work and school activities locations are 

identified based on census data, it is more complicated to locate secondary activities such as shopping 

and leisure activities. We assume for this first application that secondary activities are located within a 5 

buffer of 500m around the place of residency. However, future efforts are needed to improve the 

secondary activities location rules by taking into consideration travel cost and places knowledge 

(Marchal and Nagel, 2005). The buffer size used for secondary activities locations may affect the 

simulated travel durations. A comparison between simulated trip duration in MobRISK and observed 

trip duration retrieved in the ENTD data indicates an under estimation of simulated travel durations 10 

corresponding especially to secondary activities travels (Fig. 15). This underestimation may be 

explained by the buffer size selected for secondary activities location, which seems to be too small 

compared to the real size of activities space and the shortest path criteria used for route choice. As a 

consequence, our model currently underestimates the computed motorists' exposure.  

Another important issue is to investigate the link between exposure and human impact. 15 

Individual exposure measurement is merely defined as the probability of encountering flooded roads 

without taking into account the water height and flow level. This limitation is due to the difficulty to 

provide the necessary information because of the large number of parameters to integrate regarding 

roads infrastructures and geomorphologic specificities of road cuts. On the social side, understanding 

behavioral responses is key to the estimation of human impacts. Since recently, this aspect is taken into 20 

account in MobRISK that now incorporates a decision making module to consider possible activity 

rescheduling decisions and mobility adaptation to weather disruptions. The integration of individual 

decisions and coping capacities enables us to shift from exposure measurement to social vulnerability 

quantification (Terti et al., 2015). To advance in this direction the use of well-described, geolocalised, 

time-stamped and reliable human impact datasets is needed for model verification (Terti et al., 2017).  25 

While activity-based mobility models are using classically travel-activity patterns simulation we 

opted for a schedule assignment method based on the effect of socio-demographics on activity 

sequences discrepancy. This choice is consistent with the main purpose of MobiCLIMeX project, which 
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aimed at understanding the driving forces of dynamic exposure over past flash flooding events. 

Nevertheless, this tool could also be used to evaluate the longer-term evolution of human exposure 

related to climate change and its consequences in terms of extreme weather patterns. To move toward 

this direction, the module reproducing travel-activity patterns by schedule assignment would need to 

evolve toward the simulation of mobility scenarios. 5 

In terms of implementations of MobRISK, the next step is to extend the simulation of the 8-9 

September 2002 flash flooding event to the whole Gard area, as nearly all the municipalities of the Gard 

were impacted by this event. Other lesser severe events with a different space-time distribution of the 

rainfall may also be implemented to investigate the influence of the timing of the event on motorists’ 

exposure.  10 

6 Conclusion  

This paper describes the MobRISK model, developed to capture the spatial temporal dynamics of 

motorists' exposure to road submersion, in particular associated with flash-flood hazard, for which 

fatalities are often vehicle-related when! water! level! and! velocity! would! cause! a! vehicle! to! be! washed!

away. MobRISK is one of the first of it kind as it allows simulating the coupled dynamics of social and 15 

hydro-meteorological processes at the scale of a French department of several thousands square 

kilometres. The small temporal and space resolutions (of the order of magnitude of the minute and the 

meter) address the specific need of short-fuse weather events as flash floods that perturb and affect daily 

and sub-daily social practices. Its current application allows reproducing past flooding events in order to 

evaluate the variability of human exposure according to the distribution of rainfall and the timing of 20 

occurrence of the road flooding. MobRISK simulates individual mobility using an activity-based 

approach and individual exposure to road submersion benefiting from previous works and existing 

datasets characterizing road network sensitivity to flash flood in the Gard area. The first application of 

MobRISK simulation over the Ales area for the period of the 8-9 September 2002 flash flood event 

offers the possibility to identify in time and space the road sections bearing a higher risk for population 25 

both in term of submersion probability and traffic load. 
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The results show that road submersion hazard was mainly located on principal roads connecting 

Ales municipality to other major cities of the Gard area. The temporal analysis indicates that the highest 

road submersion hazard occurred at night, at the end of a weekend, when traffic load is supposed to be 

lower. The simulation combining road submersion and individual mobility dynamics confirm this 

hypothesis and show a clear lag time between traffic load patterns and road flooding. In order to take 5 

into account both hydro-meteorological hazard and social exposure, a risk index is proposed by 

multiplying roads submersion probability with the maximal number of motorists passing these roads.  

The risk index helps to better characterize spatio-temporal dynamics of population exposure to 

road submersion. Its output seems coherent with the location of the fatal vehicle-related accident that 

happened on Monday September 9th at 6am within our study area. In fact the road section where the 10 

accident occurred effectively shows one of the highest risk levels of the area. To further assess the 

performance of this model a diversity and large amount of ground truth data would be needed. 

Fortunately, fatal accidents are extremes and exceptional events. During flash flooding many dangerous 

situations actually emerge and hopefully end up happily with no casualty (Ruin et al., 2014).  

Geolocated and time-stamped data on traffic accidents, 911 calls, emergency safety operations, or even 15 

social media observations would be vary valuable for the assessment of such model. 

This methodology also allows investigating the socio-demographic profiles of the most exposed 

people. The results highlight significant effects of some socio-demographic variables such as age, 

gender and professional activity. We show that young working males are clearly the most exposed to 

road flooding which is coherent with analyses based on vehicle-related accidents in the USA (see for 20 

instance Terti et al., 2017).  

The presentation of the model development and results to emergency and risk managers shed light on 

their interest for such dynamic approach and on the potential of this model for operational purpose. 

Identifying the hot spots of the road network associated with various hydro-meteorological and 

vulnerability scenario would indeed help, for instance, to prepare for flood crisis road management or to 25 

pre-position emergency response teams. Another interest of such tool is its potential ability to also 

address the exposure of people when they are not traveling. In fact, knowing about people’s usual 

space-time mobility means that the model can also provides information about the exposure of people 
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when they are not moving and spend time in flood prone zones.  Moving toward an operational tool that 

could eventually be used on near real-time is one of our goal. We are planning to address it by 

enhancing our collaboration with scientists experts in the various domains of the model (meteorologists, 

hydrologists, psychologists and transport modelers) and operational stakeholders experts of warning 

response systems.  5 
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Figure 1: MobRISK model architecture. 
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Figure 2: Map of study area municipalities. Source: Compiled by author from BD-TOPO for regions' and municipalities' 
boundaries (http://professionnels.ign.fr/bdtopo).  
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Figure 3: MobRISK relational database scheme. 
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Figure 4: Schematic representation of sequence matching operations 
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Figure 5: The spatial distribution of the 1970 road cuts identified in the Gard region with the different flooding susceptibility 
levels. Source: Compiled by author from BD-CARTHAGE® for hydrographic network (http://professionnels.ign.fr/bdcarthage), 
BD-CARTO® for road network (http://professionnels.ign.fr/bdcarto) and Versini et al (2010a) for road cuts locations and 
susceptibility levels.  5 
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Table 1: Probabilities of submersion of the road cuts depending on the return periods of stream discharge, Q, and the 
susceptibility levels as defined by Naulin (2012) with the average values used in our case study. 

 

 Return periods 

 Q2 / 2 < Q < Q2 Q2 < Q < Q10 Q10 < Q < Q50 Q > Q50 

Susceptibility 
levels 

Probability of 
submersion 

Utilized 
value 

Probability of 
submersion 

Utilized 
value 

Probability of 
submersion 

Utilized 
value 

Probability of 
submersion 

Utilized value 

High 0 to 67% 33.5 % 67 to 100% 83.5 % 100 % 100 % 100% 100% 

Moderate 0 to 33 % 16.5 % 33 to 57% 45 % 57 to 61% 59 % 61 to 100% 80.5 % 

Low 0 to 20 % 10% 20 to 34% 27 % 34 to 35% 34.5 % 35 to 100% 67.5 % 

Very low 0 % 0 % 0 % 0 % 0 % 0 % 0 to 100% 50 % 

 5 

 
 
Figure 6: Probability tree diagram representing the method to measure motorists’ flood risk exposure. The highlighted (bold lines) 
path represent the example of a motorist who crossed 3 road cuts (rc) with the following probabilities of submersion: P(rc1 = 0.8), 
P(rc2 = 0.4) and P(rc3 = 0.5). His/her exposure is represented as a probability tree diagram where the nodes are the encountered 10 
road cuts and the arcs represent the probability of submersion in each road cut as shown in the Figure. First, we calculate the 
probability that the driver doesn't cross a flooded rod cut that corresponds to the product of probability of not submersion in the 
crossed road cuts: P(not submerged road cuts) = (1 - P(rc1)) * (1 - P(rc2))  * (1 - P(rc3)) = 0.06. Then, final exposure corresponds to: 1 
- P(not submerged road cuts)  = 0.94.  

 15 
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Table 2: Description of socio-demographic characteristics of the population in the study area. Source: INSEE (Census data,  
2010). 

Variables Groups Percents (%) 
Male 47.76 Gender 
Female 52.23 
< 18 years old 19.84 
18 - 29 years old 10.62 
30 - 45 years old 20.22 
46 - 60 years old 21.78 

Age 

> 60 years old 27.52 
No education 33.06 
School - College 39.1 
Bachelor 13.07 

Education level 

University 14.77 
Farmers 0.43 
Shop or business owners 3.92 
Managers and academics 3.72 
Manual laborers 10.29 
Administrative, Sales or Service Occupations 9.41 
Technicians 13.10 
Retired 25.29 

Profession 

Unemployed 3.80 
Working 34.10 
Student 6.44 
Retired 25.29 
Unemployed 7.58 

Professional status 

Other situation 21.26 
1 person 15.93 
2 persons 32.82 

Size of household 

> 2 persons 51.23 
Owner 60.33 
Lodger 36.81 

Occupation status 

Other status 2.84 
No car 10.58 
1 car 42.33 

Number of cars by household 

>1 car 47.08 
 

 5 

 

 

 

 

 10 
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Table 3: Results of the discrepancy analysis of activities sequences for each covariate in an average weekday and an average 
weekend. (SST) is the sum of all schedules pairwise distances divided by the number of schedules; (SSW) is the sum of all schedules 
pairwise distances within groups divided by the number of schedules; (R2) refers to the part of discrepancy explained by the 
variables ; (a) refers to the number of groups in each variables; (N) is equal to n(n-1)/2 where n is the sample size. 5 

€ 

R2 =
SSB
SST

 ; 

€ 

F =
SSB /(a −1)
SSW /(N − a)

 

Formulas to calculate F and R2 for the total model are provided in Studer et al. (2011) and Anderson (2001).  

 
Type of day Variables  R2 p-value 

Gender 29308 0.005 0.001*** 

Age 184 434 0.113 0.001*** 

Education level 33 868 0.034 0.001*** 

 Professional status 157 530 0.127 0.001*** 

Profession 89 305 0.103 0.001*** 

Average week day 

Household type 7 098 0.003 0.001*** 

Global 33.64 0.203 0.01** 

Gender 4 060 0 0.079 

Age 19 935 0.153 0.001*** 

Education level 6 819 0.007 0.001*** 

 Professional status 15 923 0.016 0.001*** 

Profession 10 508 0.015 0.001*** 

Average weekend day 

Household type 7 316 0.004 0.001*** 

Global 3.96 0.033 0.001*** 

* Significance level: p < .1; ** Significance level: p < .05; *** Significance level: p < .01. 
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Figure 7: Regression tree results for weekday schedules (a) and weekend schedules (b) indicating 12  and 10 clusters of schedules respectively. On top, 
the regression tree is displayed: each node represents the variable splitting the schedules into 2 groups and each arc represents the group/category. A 
visual representation of the schedules corresponding to each cluster is displayed at the bottom: each activity is represented by a color and each line is 5 
representing a sequence of activities. 
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Figure 8: Differences in travel percents by travel purposes between an average Sunday and an average Monday.  
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Figure 9: Temporal distribution of the simulated submersion risk in road cuts during 8th and 9th September 2002. 
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Figure 10: Spatial distribution of cumulative simulated flooding risk in road cuts in study area for the 8th and 9th September 2002 
flash flood event. The value represented in the map is computed by summing up the hourly probabilities of submersion in every 
road cut during the event period in order to take into account both the frequency and intensities of submersions. 5 

 
Table 4: Maximal number of motorists crossing potential road cuts during the event period (individuals can be counted several 
times if they crossed many road cuts in their itineraries). 

Sensitivity levels of 
road cuts 

Number of 
road cuts 

Percent of road cuts 
by sensitivity level 
(%) 

Number of motorists 
crossing road cuts (pers) 

Percent of motorists 
crossing road cuts 
(%) 

Very low 523 70.87  327 603 63.88 
Low 103 13.96  81 488 15.89 
Moderate 75 10.16   98 021 19.11 
High 37 5.01 5 742 1.12 
Total 738 100 512 854 100 
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Figure 11: Spatial distribution of simulated traffic load in road cuts during the flash flood event period. 

 
Figure 12: Temporal distribution of simulated traffic load at road cuts, which represent the hourly number of exposed persons. 
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Figure 13: Time lag between temporal distribution of submersion risk (colored bars) and traffic load in road cuts (line). The risk 
index referring to the number of persons potentially in danger in danger (resulting from the combination of both probabilities of 
submersion and traffic load) is illustrated by the dotted line. 5 
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Figure 14 Spatial distribution of risk index representing the potential number of persons significantly in danger of submersion in 
road cuts during the event period. The location of past victim (black square) corresponds to a road cut with a high risk index. 
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Table 5: Motorists' exposure mean and standard deviation per socio-demographic characteristics. The bold numbers refer to the 
most exposed groups by variable. 

Variables Groups Exposure (mean) Exposure (Standard deviation) 
Male 0.18 0.31 Gender 
Female 0.15 0.34 
< 18 years old 0.14 0.30 
18 - 29 years old 0.21 0.36 
30 - 45 years old 0.23 0.37 
46 - 60 years old 0.20 0.35 

Age 

> 60 years old 0.11 0.26 
Farmers 0.16 0.32 
Shop or business owners 0.21 0.36 
Managers and academics 0.28 0.40 
Manual laborers 0.27 0.39 
Administrative, Sales or Service Occupations 0.27 0.39 
Technicians 0.22 0.36 
Retired 0.10 0.25 

Profession 

Unemployed 0.13 0.29 
Working 0.28 0.39 
Student 0.22 0.36 
Retired 0.10 0.25 
Unemployed 0.10 0.26 
House wife/husband 0.09 0.25 

Professional 
status 

Other situation 0.12 0.26 
 
Table 6: Results of Analysis of Variance (ANOVA) for testing the effect of socio-demographic variables on individual submersion 
risk. Formulas to calculate F and p-value are provided in Anderson (2001). 5 

 
Variables  p-value 
Gender F(1, 32637) = 48.03 0.00*** 
Age F(4, 32634) = 166.5 0.00*** 
Professional status F(5, 32633) = 366.9 0.00*** 
Profession F(7, 32631) = 174.6 0.00*** 
* Significance level: p < .1; ** Significance level: p < .05; *** Significance level: p < .01. 
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Figure 15: Comparison of travel duration distribution obtained from MobRISK simulations and ENTD data for a weekday and a 
weekend and corresponding to commuting and secondary activities trips (we presented only trips with duration less than 60 mn 
which represent more than 94% for all the cases). 5 
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