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Abstract. The availability of timely and accurate information about ongoing events is important for relief organizations 

seeking to effectively respond to disasters. Recently, social media platforms, and in particular Twitter, have gained traction as 

a novel source of information on disaster events. Unfortunately, geographical information is rarely attached to tweets, which 10 

hinders the use of Twitter for geographical applications. As a solution, analyses of a tweet’s text, combined with an evaluation 

of its metadata, can help to increase the number of geo-located tweets. This paper describes a new algorithm (TAGGS), that 

georeferences tweets by using the spatial information of groups of tweets mentioning the same location. This technique results 

in a roughly twofold increase in the number of geo-located tweets as compared to existing methods. We applied this approach 

to 35.1 million flood-related tweets in 12 languages, collected over 2.5 years. In the dataset, we found 11.6 million tweets 15 

mentioning one or more flood locations, which can be towns (6.9 million), provinces (3.3 million), or countries (2.2 million). 

Validation demonstrated that TAGGS correctly located about 65-75% of the tweets. As a future application, TAGGS could 

form the basis for a global event detection and monitoring system. 

1 Introduction 

Each year, natural disasters affect roughly one million people, causing thousands of deaths, and tens of billions of US dollars 20 

in damages (Guha-Sapir et al., 2012). The availability of timely and accurate information about the impacts of an ongoing 

event can assist relief organizations in enhancing their disaster response activities, and thus mitigate the consequences of 

disasters (de Perez et al., 2014; Messner & Meyer, 2006; Penning-rowsell et al., 2005). Information about an ongoing event 

is, however, often difficult to obtain. Such data is generally collected using measurement instruments such as remote sensors 

(e.g., Sun et al. 2000), well as from both local relief and response professionals and analyses of media reports (Jongman et al., 25 

2015). Recently, social media, and in particular Twitter, has gained traction as a novel source of information on disaster events. 

The Twitter posts (“tweets”) sent out by millions of users around the globe hold great potential in disaster management (Carley 

et al., 2016; Jongman et al., 2015; Sakaki et al., 2010). When correctly analyzed, they can improve the detection of disasters 

(Ghahremanlou et al., 2014) and provide valuable information about the societal impacts of ongoing disaster events (Fohringer 

et al., 2015; Gao et al., 2011; Jongman et al., 2015). In computer science, social media has been studied extensively. 30 
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Researchers have also developed several applications for applied geographic research. Examples of such applications include 

detection systems for flood events and (Jongman et al., 2015) earthquake disasters (Crooks et al., 2013; Sakaki et al., 2010). 

 

One of the key issues in using Twitter information to assess the impacts of natural disasters entails accurately localizing 

individual tweets. Twitter allows users to automatically attach their current GPS location to a tweet, specifying their position 5 

at the moment a tweet is posted (Sakaki et al., 2010). However, because this feature is turned off by default, only 0.9% of the 

tweets have coordinate information attached (Lee et al., 2013). Another method of extracting geographical information from 

a tweet is “geotagging,” an approach that employs text and/or tweet metadata to detect a user’s residence, the location from 

which the tweet was sent, or the location to which a tweet refers (Schulz et al., 2013). For detection and monitoring purposes, 

data on the location referenced by a tweet is required. A geotagging algorithm extracts and locates the mentioned geographical 10 

locations (“toponyms”) from a text. Research has demonstrated that geotagging algorithms can dramatically increase the 

number of geo-located posts (e.g., Schulz et al. 2013; Paradesi 2011; Karimzadeh et al. 2013). 

 

Geotagging has been discussed in numerous studies (Amitay et al., 2004; Ghahremanlou et al., 2014; Lieberman et al., 2010). 

This literature domain has identified two distinct steps that comprise geotagging: toponym recognition and toponym resolution 15 

(Leidner, 2007).  

 

The first step is toponym recognition, which entails identifying geographical names (Lieberman et al., 2010). The simplest 

approach is to extract single and consecutive words from a text and then match them to a comprehensive set of toponyms (i.e., 

geographical locations; Schulz et al., 2013). Such a pre-existing list of toponyms is known as a “gazetteer.” This approach 20 

yields a list of candidate locations independent of the language used in the tweet. The use of a comprehensive gazetteer makes 

it likely for the algorithm to find locations mentioned in a tweet. Unfortunately, since many location names also have other 

meanings in normal language usage (e.g., “Darwin” is both a place name and a family name), the results also include many 

erroneous matches. In contrast, named-entity recognition (NER) analyzes (through natural language processing) the structure 

and grammar of the tweet’s language (Al-Rfou et al., 2015). Employing NER can help to distinguish, for example, among 25 

similarly named place and persons (Amitay et al., 2004). These tools have mostly been developed and trained using more 

formal texts, such as newspapers (Sultanik & Fink 2012). Nonetheless, researchers have developed several NER approaches 

for Twitter (Li et al., 2012), most of which are designed for English-language tweets. However, the short, error-prone, multi-

lingual nature of tweets, along with that medium’s frequent use of slang and abbreviations, has limited the applicability of 

NER (Li et al., 2012). 30 

 

The second step involved in geotagging tweets is toponym resolution, which entails assigning a toponym to a specific 

geographical location (Lieberman et al., 2010). This step is required, because many place names have multiple occurrences 

worldwide (Leidner, 2007). Most studies have restricted their gazetteers to only include unambiguous place names with a 
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relatively high population or assigned tweets to the candidate location with the highest population (Amitay et al., 2004). 

Unfortunately, both approaches introduce errors when an event occurs in a town with both a low population and a name shared 

with another location. These errors arise because either the town is not included in the limited gazetteer or a city with larger 

population takes precedence.  

 5 

For Twitter in particular, challenges persist regarding the automated geotagging analysis of text and other metadata. For 

example, users rarely post an unambiguous name or a combination of a place and country name, mainly because of the limited 

length of a tweet (Sultanik & Fink, 2012). Several studies have addressed this issue by using the tweet’s metadata as additional 

spatial information, with examples including the user’s hometown (Hecht et al., 2011) and the relationships between users 

(Takhteyev et al., 2012). Unfortunately, in many cases, these additional spatial indicators are unavailable or unreliable. 10 

Therefore, Schulz et al. (2013) analyzed several spatial indicators, such as the time zone, the user location field, and other 

textual clues, to obtain a more reliable estimate of a particular tweet’s location. Their results revealed that tweet geotagging 

outcomes can be improved using this method, but only for those tweets with available spatial indicators. As additional spatial 

information is not always available, this approach cannot be easily applied to all tweets. Moreover, even when this data is 

available it does not always match the location mentioned by the user. 15 

 

This paper outlines the development of a new algorithm, the toponym-based algorithm for grouped geotagging of social media 

(TAGGS). The algorithm uses grouped geotagging to geotag a much larger percentage of tweets than does the standard 

approach of individual geotagging. The TAGGS approach has two novel aspects: (1) It permits spatial information from related 

tweets to be incorporated in the analysis, allowing users to geotag tweets with few or no spatial indicators of their own. (2) It 20 

can geotag tweets at multiple spatial scales (i.e., countries; first- and second-order subdivisions; and cities, towns and villages). 

We applied TAGGS to over two years of globally sourced tweets with flood-related keywords, collected between July 29, 

2014 and February 23, 2017, to demonstrate its use and validate the algorithm using a set of manually geotagged tweets. 

2 Methodology 

The TAGGS algorithm uses geotagging to match a tweet’s location references to one or more geographic locations. To that 25 

end, a database containing known geo-locations (a “gazetteer”) was used to match a tweet’s text to one or more candidate 

locations (toponym recognition). Thereafter, additional spatial information obtained from both the tweet itself and related 

tweets was employed to determine the actual location(s) that the user had mentioned in the tweet (toponym resolution). In this 

chapter, the collection of the input dataset is described (Sect. 2.1). Afterwards, the process of geotagging via toponym 

recognition and resolution is outlined (Sect. 2.2). 30 
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2.1 Input data 

The TAGGS algorithm uses three types of input data: a gazetteer, tweets collected using the Twitter API, and additional GIS-

based geographical information. To build our gazetteer, we used the GeoNames database (Wick, 2011), a geographical 

database containing over 4 million cities, towns, villages, and administrative divisions. GeoNames’ main dataset contains 

towns and villages, including their administrative parent area, geographical location, and population. Another dataset lists 5 

alternative names, like translations, slang terms, and abbreviations (e.g., for “New York,” it includes, for example, New York, 

The Big Apple, NY, Nueva York), and the language of each alternative name. 

 

The tweets and their associated metadata (e.g., the user’s hometown, the user’s time zone, and the GPS coordinates of the 

device from which the tweet was sent) were collected in real-time via the Twitter streaming API using a series of keywords in 10 

12 major languages, covering a considerable part of the globe (Fig. 1 / Table 1). We collected 35.1 million tweets, posted 

between July 29, 2014 and February 23, 2017. In addition, we used GIS shapefiles of the global time zones (Muller, 2016) to 

match user time zones to locations and country and administrative boundaries (Patterson & Kelso, 2017). 

2.2 Geotagging 

Figure 2 describes the procedure followed by the new TAGGS algorithm. First, we collected tweets over a 24-hour period. 15 

Each tweet from this timeframe was analyzed on an individual basis (Sect. 2.2.1) by matching its text to our gazetteer (toponym 

recognition). Next, each of the tweets’ candidate locations was assigned a score indicating how well it matched the tweet’s 

additional spatial information (Sect. 2.2.2). While previous approaches have relied on the spatial information of the individual 

tweet in question, we grouped all tweets according to the toponym (Sect. 2.2.3) identified during the toponym recognition step. 

Then, we computed the total score for each candidate location by summing the scores of the individual tweets and using a 20 

voting process to assign the best location (toponym resolution) to all tweets in the group (Sect. 2.2.4 / Fig. 3). In addition, a 

toponym resolution table was made to store the toponyms and their resolved geographic locations of the last time step. This 

table is later used to geotag tweets in real time. Once locations had been assigned to the tweets, the same procedure was applied 

to a later timeframe (Sect. 2.2.5 / Fig. 4), which included new incoming tweets. At that stage, tweets older than 24 hours were 

no longer considered. Meanwhile, new incoming tweets were immediately geotagged using the toponym resolution table.  25 

2.2.1 Toponym recognition 

To identify candidate locations for a tweet, a tweet’s text was matched to the gazetteer. Tweets are often written in informal 

language and contain content unnecessary for geotagging. Therefore, we applied Dittrich’s (2016) approach to delete URLs 

and punctuation, split words with medial capitals (camelCase) or underscores, and convert all text to lowercase. Then, all 

contiguous sequences of one and two words were extracted from the text (“uni- and bi-grams”). Subsequently, we looked up 30 
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all uni- and bi-grams in our gazetteer, and the result was a list of potential candidate locations for each toponym mentioned in 

the text. We then further filtered the results to obtain the candidate locations, using the following approach: 

1. All uni- and bi-grams among the 1,000 most common words (Pishdar, 2014) in a tweet’s language are discarded. 

2. Locations are frequently referenced to using alternative names in other languages (e.g., “New York” is “Nueva York” 

in Spanish). If a tweet referenced a location via an alternative name, we only considered that tweet if it uses the same 5 

language as that alternative name (e.g., an alternative name for “Cameroon” is “Cameron,” meaning that all mentions 

of Cameron, the UK’s former prime minister, would otherwise be located in the “Cameroon”). 

3. Since locations with small populations were not frequently mentioned in tweets, we followed Amitay et al. (2004), 

and discarded those locations with a population of less than 5,000 persons. 

4. Next, all locations with names that were part of another location’s name are discarded. For example, a tweet 10 

containing New York matches both York and New York, although the user was clearly referring to New York. 

Therefore, we excluded York. 

5. If a tweet mentioned a location with a name simultaneously used for a province or country and an identically named 

town within that area (e.g., the city of New York is within the state of New York), the location with the most 

translations provided in the gazetteer—a criterion that we used as a proxy for importance—took precedence (i.e., the 15 

city of New York took precedence over the state). 

2.2.2 Scoring 

For each tweet for which we found one or more candidate locations, as described in Sect. 2.2.1, its additional spatial indicators 

were matched to each candidate location. The bulleted list below describes the matching process for each of the spatial 

indicators. 20 

• User time zone: Twitter’s time zone field signifies an area with a uniform time standard. Twitter initially sets 

users’ time zones, but users can manually adjust this setting. Our gazetteer contained a list of time zones for each 

location, used to match these to the user’s time zone. 

• Coordinate-based indicators: We extracted geographical coordinates for two spatial indicators (see below). We 

considered the coordinates extracted from these indicators a match for a candidate location if they were located 25 

within 200 km of each other or, for administrative areas, if the coordinates were within the same country as the 

candidate location. 

o User hometown: Users can specify their hometowns in their user profile. In doing so, users receive 

assistance from a dynamic menu of location options that appears when they start typing in the Twitter 

text field. Although the box can be ignored, most users do make use of it. This means that in most cases, 30 

the location field is either (1) a town and country name separated by a comma or (2) a country name. 

However, many variations are possible, including fantasy places (Schulz et al., 2013), multiple 

locations, and incomplete data entries (e.g., a user who lives in Washington, D.C. might simply enter 
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“Washington” in the location field). We searched for both the town and country in the gazetteer to create 

a list of candidate towns within the specified country. If no comma was present, we looked up the entire 

field in the gazetteer.  

o Location: When a tweet is sent from a GPS-enabled device, and when the user’s privacy settings or 

manual adjustments assign a location to the tweet, that user’s location at the time of posting is attached 5 

to the tweet. Additionally, the user can attach a geographic entity to a tweet, by manually selecting it 

from a dynamic list. 

• Mentions of related places: We matched user mentions of other locations higher (geographical parent) or lower 

(geographical child) in the hierarchy (e.g., “Los Angeles” is the geographical child of “California,” which is the 

geographical child of “the United States”), other towns within 200 km of a candidate place name, and other 10 

administrative areas within the same geographical parent (Amitay et al., 2004). 

 

Next, we used a scoring system to indicate the likelihood of a match between the location referenced in the tweet and each 

candidate location. An overview of the scores for each of the five spatial indicators is provided in Table 2. These scores were 

summed to obtain the total score (maximum of 7), which indicated the likelihood of a match. 15 

2.2.3 Grouping 

We assumed that multiple tweets that mentioned the same toponym within a given timeframe referred to the same location 

(e.g., if a flood occurred in Boston, UK, we expected that all users mentioning “flood” and “Boston” were referencing Boston, 

UK, rather than Boston, Massachusetts, US.). All tweets mentioning the same toponym were then grouped together. Thus, the 

greater the number of tweets mentioning a location, the larger was the associated group—and therefore, the higher the 20 

probability of metadata being available for that group. Since tweets could contain multiple toponyms, individual tweets could 

belong to more than one group. 

2.2.4 Voting and assigning locations 

In this step, for each group, the total score of each candidate location was computed by averaging the scores for the candidate 

locations of the individual tweets (Fig. 3). If multiple tweets originated from the same user and thus had the same metadata, 25 

only the most recent tweet was considered. In addition, because the mentions of related places rely on textual clues, and since 

users frequently copy each other’s tweets, we only considered the oldest tweet for clusters of similar tweets. To that end, we 

created word vectors for the tweets within a group and then compared those vectors. If the vectors were similar, we eliminated 

the newest tweet. For further details on this approach, refer to Hürriyetoǧlu et al., 2016. 

 30 

Finally, we assigned the location with the highest score to all tweets in the group if that tweet’s referenced toponym was the 

official name of the location or if the tweet’s language matched the toponym language. If multiple locations had an equally 
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high score, we assumed that the correct location was the candidate with the highest population. Tweets that were geotagged in 

multiple locations are discarded if they were further than 1,000 km apart (e.g., “Amsterdam Weather – Floods in Argentina”), 

unless these locations were both a country or a continent (e.g., ‘Whoah! Floods in the UK and USA!!’). 

 

Moreover, it was also possible to discard potential locations for which the average score was below a certain threshold. When 5 

no minimum score (i.e., a minimum score of 0) was set, a large number of tweets was assigned to incorrect locations, due to a 

lack of matching metadata (e.g., numerous tweets were assigned to the city of “Mobile” in Alabama, US.). By increasing the 

threshold to, for example, 0.2, groups with little to no metadata matching any of the candidate locations were discarded. This 

meant that the recall decreased (i.e., fewer tweets were assigned locations), while the precision of the algorithm increased. 

Introducing a much higher threshold, such as 1.0, would have improve precision but also would have meant discarding a much 10 

higher percentage of tweets. Therefore, we decided to initially set a 0.2 threshold and to perform a sensitivity analysis (Sect. 

3.2). 

 

In addition, the toponyms and their respective resolved locations were saved in a toponym resolution table. That table indicated 

the location with the highest score per toponym, and therefore, the location most likely for a future tweet to reference. This 15 

toponym resolution table was continuously updated and used to geotag new incoming tweets. 

2.2.5 Iteration 

To continuously geotag tweets, we used an iterative process (Fig. 4). When the geotagging of all tweets posted during the 24 

hour time window, the time window was moved. All new tweets posted during the previous iteration was running were 

retrieved from the tweet database and separately analyzed for toponyms and respective spatial indicators (Sect.s 3.3 and 3.4), 20 

while tweets older than 24 hours were excluded. The locations mentioned in those tweets were, again, resolved (Sect. 3.5) and 

used to update the toponym resolution table. As the tweet geotagging process included information from other tweets 

(including locations referred to in future tweets), it was possible for a tweet’s location and respective score to change. In such 

cases, we updated the database accordingly. Such alterations only occurred when in a subsequent iteration, we found a higher 

score for a specific location or identified another location with a higher score (but the same toponym). Because a 24-hour time 25 

interval was used when processing the tweets, those tweets older than 24 hours did not influence new tweets’ scores during 

the updating process. 

 

In addition, when the first iteration was completed, another process analyzing incoming tweets in real-time was initiated. Using 

the procedure described in Sect. 2.1, the text of the tweets was processed, and its uni- and bi-grams are matched with the 30 

toponym resolution table. This resulted in an initial guess regarding the locations mentioned in each tweet. 
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3 Results 

3.1 Application of TAGGS 

We applied TAGGS on the 35.1 million tweets that we collected. Although the algorithm was designed for real-time usage, 

we applied it to a historical dataset and ran it as if data were available in real-time. We therefore iterated over the data with a 

24-hour time window, shifting the time window by 6 hours in each step. To increase the accuracy of the algorithm, a certain 5 

threshold was used (see Sect. 2.2.2), so that all locations found in tweets that scored below the threshold (Sect. 2.2.4) were 

discarded. The results for a 0.2 threshold are summarized in Table 3, and the results of a sensitivity analysis for the threshold 

value are presented in Sect. 3.2.3. 

 

Of the 35.1 million tweets, we found that 11.6 million mentioned at least one location, and 1.9 million tweets referenced 10 

multiple locations. In addition, when distinguishing between administrative levels, roughly half of the locations referenced the 

city, town, or village level, while a quarter of the locations cited both the country and the lower administrative level, 

respectively. 

 

To gain insight into the geotagged tweets, those countries covered by the algorithm (Fig. 1) with a population of at least 10 15 

million people were grouped according to economic development. For that purpose, we employed the income groups defined 

by the World Bank (The World Bank, 2017). For each group, the number of geotagged tweets between August 2014 and 

December 2016  was plotted against the total flood losses over this period, as described in the Munich Re database (Munich 

Re, 2016) on a purchasing power parity (PPP) basis (The World Bank, 2016; Fig. 5). This gives an impression of how many 

tweets were found for each country and how Twitter reporting relates to flood impacts. The data made clear that in high-20 

income (green) countries, there were about one to two orders of magnitude more tweets than in low-income (orange) countries. 

The number of tweets in middle-income (blue & yellow) countries fell between the other two groups, with a particularly large 

spread in the lower-middle-income (yellow) countries. Notably, these numbers likely reflect a size effect, as Indonesia (IDN) 

and India (IND), which had the highest number of tweets within the lower-middle-income group, also have large populations. 

However, the results underscored that relatively small countries, such as Malaysia (MYS) and Nepal (NPL), generated a 25 

significant number of (geotagged) flood tweets within their respective groups. These findings suggest that flood events, and 

not just the size of the population or the Twitter user base, are responsible for the high number of tweets during the investigated 

time period. 

 

The plots also illustrate that in general, more flood tweets seemed to be linked to higher levels of flood damage over the study 30 

period, as the points roughly go from bottom left-hand corner to the top right-hand corner of the diagrams. This relation is 

influenced by many other factors, including (but not limited to) variations in the extent of Twitter usage per country, language 

use per country, and keyword selection, and is therefore by no means strong enough to have any predictive power after 
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regression analysis. That said, the existence of this relationship was in line with expectations. Namely, in countries that suffered 

from disastrous flood events that caused significant damage, a substantial number of tweets about flooding were generated. 

This finding indicated that the algorithm seemed to be successful in capturing flood events around the globe. 

3.2 Validation of TAGGS 

To properly validate the TAGGS algorithm, we defined a baseline with manually geotagged tweets. To achieve that goal, we 5 

adopted an approach similar to that of a human reading tweets and extracting the locations from it. Thus, we only recognized 

locations in instances in which it could be reasonably assumed that a human could resolve the location (e.g., “a flood in block 

five,” in the absence of other spatial indicators, would not be linked to a particular known location). However, we did include, 

for example, adjectives and other terms referencing locations that an algorithm might not recognize as such (e.g., “the English 

weather” would be recognized by a human as referring to England, whereas an algorithm would generally not resolve this). 10 

When multiple locations were mentioned in a tweet, we manually assessed whether they represented alternate means of citing 

a single location or distinct locations. When two locations appeared to be referring to the same place, we tagged them as a 

single location (e.g., for “there is a flood at the A10 near Amsterdam,” we recognized both “Amsterdam” and “A10” as 

references to a flood in Amsterdam). On the other hand, if we recognized multiple, distinct locations (e.g., “flooding in United 

States and England”), we tagged the tweet accordingly. 15 

We manually tagged a random sample of tweets on two separate days: 

• Dec 12, 2015: To check if our model properly for small flood events in multiple languages, we selected a day during 

which multiple such events occurred across the globe, including in Indonesia, India, Kenya, Congo, Norway, the UK, 

Canada, and Paraguay (1,581 tweets)/ 

• Dec 27, 2015: When the number of tweets that mentioned a specific location higher, the probability of sufficient 20 

metadata being available is also higher. Therefore, we validated our algorithm on a date with multiple large events. 

On the date in question, several major floods received global news coverage, including floods in the US, the UK, and 

Argentina (1,355 tweets). 

Then, we compared the manually tagged tweets to both the automated individual and automated grouped geotagging (TAGGS) 

approaches. For individual geotagging, we use the location metadata but did not consider other tweets mentioning the same 25 

geographical entities, similar to Schulz et al. (2013). Both the grouped and individual automated geotagging procedures were 

performed with two thresholds (0 and 0.2). 

3.2.2 Number of locations found 

Figure 6 illustrates the number of locations identified using the different approaches and the number of erroneous matches. 

Using the manual approach, of the 2,936 total tweets in our validation set, we found 2,190 locations in 1,657 tweets, because 30 

some tweets mentioned multiple locations. Using individual geotagging we found approximately 29% of these locations, of 
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which roughly 87% were correct. The grouped geotagging technique developed in this paper increased the number of found 

locations to approximately 59%, of which about 89% are correct. In contrast, of the 2,936 tweets, only 58 (~2%) have 

coordinate information attached (Fig. 6). This suggests that the TAGGS approach makes significantly more spatial information 

available than does a strategy relying on either individual geotagging or coordinates alone. Thus, the results indicate the 

feasibility of this new approach. 5 

3.2.3 Precision versus recall: varying the threshold 

With geotagging algorithms, there is a trade-off between the number of tweets that are tagged (recall) and the number of 

correctly tagged tweets (precision; Leidner, 2007). Precision measures assess the number of correctly geotagged tweets relative 

to the total number of geotagged tweets. Hence, precision markers do not provide an indication of the total number of tweets 

within a location. Recall measures reflect the number of correctly geotagged tweets relative to the total number of tweets with 10 

a spatial reference. Basically, the greater the level of precision (i.e., the smaller the number of incorrect tags), the smaller the 

total number of geotagged tweets. Inversely, if one wants to geotag more tweets (higher recall), the number of errors within 

the geotagged tweets (in terms of incorrect location assignments) will also increase (lower precision). 

 

The trade-off between precision and recall can be clearly seen in Tables 4 and 5, which display the percentages of correct and 15 

incorrect location matches. Those tables demonstrate that the number of tweets without geotagged locations was lower using 

a threshold of 0 than a threshold of 0.2. However, at the same time, with the 0.2 threshold, the number of errors (falsely or 

incorrectly geotagged) decreased considerably, implying that precision increased with a higher threshold. The results 

demonstrated that this was particularly the case for the new grouped algorithm. With that approach, the number of incorrectly 

geotagged tweets decreased, and the number of falsely geotagged tweets (i.e., tweets that should not have had a location but 20 

that were given one) fell dramatically (13.1% to 5.1% and 14.6% to 6.6% of all tweets for December 12, 2015 and December 

27, 2015 respectively). 

 

With individual automated geotagging, we found that a higher level of precision was achieved at the expense of the total 

number of geotagged tweets (67.1% and 56.7% of tweets were not geotagged using the 0.2 threshold, instead of 27.5% and 25 

21.9% for December 12, 2015 and December 27, 2015 respectively). This resulted in only 27.6-38.2% of correctly geotagged 

tweets. Hence, the trade-off between precision and recall remained very strong when using the individual geotagging 

algorithm. 

 

When using the newly developed grouped algorithm, this trade-off still existed, but it had a much less pronounced effect. 30 

Instead, the number of tweets that were not geotagged increased only mildly, whilst the number of falsely and incorrectly 

geotagged tweets declined considerably. As a result, a very high percentage (64.7% and 74.1%) of tweets were correctly 

geotagged. 
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3.2.4 Effect of the event size 

Comparing Tables 4 and 5 highlights differences in performance due to different flooding circumstances. On December 12, 

2015, there were various smaller flood events, whilst on December 27, 2015, a couple of very large flood events took place. 

These two cases make clear that the algorithms (both individual and grouped) were approximately 10% more accurate for 

larger-scale flood events than smaller-scale flood events. Such a finding is to be expected, because during the large flood 5 

events in the US and UK, both countries with a high level of Twitter usage, a larger percentage of tweets mentioned the same 

toponym. The grouping approach meant most of these tweets were scored, even though not all them had spatial information 

available. In contrast, single tweets without location metadata were not geotagged. This latter situation is more common when 

a higher number of smaller events occur. Nevertheless, the grouped algorithm still correctly geotagged about two-thirds of the 

tweets with a location, even on days with predominantly smaller flood events. 10 

4 Concluding remarks and outlook 

In this paper, we presented TAGGS, a multi-lingual algorithm that groups topologically related tweets based on their referenced 

toponyms and then geotags those tweets using the mutual spatial information of the entire group. In addition, the algorithm 

successfully differentiates between various administrative levels.  

 15 

Studies on event detection often work with geo-located tweets by using the coordinates attached to them. In our validation set, 

however, only 2% of all tweets actually had coordinates attached. By geotagging tweets using the tweet content, this study 

doubled the number of correctly geo-located tweets when a 0.2 threshold was employed. Moreover, using the grouping 

approach developed in TAGGS also boosted the precision level without lowering the number of geotagged tweets (i.e., 

lowering recall) to an unacceptable degree. As a result, approximately 65-75% of tweets were correctly geotagged. At the same 20 

time, the number of incorrectly geotagged tweets remained below 10% for all tweets with a location, while the number of 

tweets that were falsely given a geotag was low, at only 6% (of all tweets). 

 

Unfortunately, our algorithm also introduced several minor problems: (1) Using the individual geotagging approach, a tweet 

is only tagged in a location if the metadata matches that location. When a tweet mentions a location with a toponym that is 25 

also frequently used in normal speech, all tweets mentioning this word can be tagged in that location, rather than only those 

tweets that used the word as a toponym. An example of this is “turkey,” a term that can refer to both the country of Turkey 

and the bird of the same name. (2) In rare cases, when a flood occurs in two different places with identical place names, all 

tweets are put into one group and hence tagged in in only one of these locations. (3) Tweets often mentioned areas (e.g., the 

East Coast), rivers, and airports. Although the algorithm can resolve such locations using metadata, many such areas have not 30 

been included in this study’s gazetteer. Including these entities in the gazetteer could improve the recall of the algorithm. 
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Currently, using the approach described in this paper, we only tag each tweet using the spatial information from that tweet 

itself and from other tweets mentioning the same toponym. In future research, we plan to expand on this approach by detecting 

sudden changes in the number of mentioned locations in an area. This technique would allow us to improve the geotagging 

algorithm by taking into account sudden increases in mentions of nearby locations, using such a rise as an additional spatial 

indicator. In addition, it would allow us to create a detection and monitoring algorithm for disaster events based on sudden 5 

changes in the number of tweets. Moreover, while this paper focused on tweets, the approach outlined within this text has other 

applications. In addition, this method could be combined with other types of mass data, such as newspapers and other social 

media platforms, to yield even more geotagged information. 

5 Code availability 

The algorithm uses Python 3 scripts and connects to an Elasticsearch and PostgreSQL (with PostGIS) database. All code is 10 

publicly available on GitHub (https://github.com/jensdebruijn/TAGGS) as well as Zenodo 

(http://doi.org/10.5281/zenodo.802960). 

6 Data availability 

For this research, tweets publicly available from the Twitter streaming API are used as well as other open source data. 

Information about this input data is provided in the aforementioned GitHub repository. The authors are willing to share selected 15 

geotagged tweets to other researchers in line with Twitter’s privacy policy. 
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11 Tables 

Table 1: Keywords related to floods, and percentage of tweets per language over the period 2014-2017. 

Language Keywords Number of 

tweets per 

language (%) 

English flood, floods, flooding, flooded, inundation, inundations, 

inundated 

59.87 % 

Indonesian banjir, banjirjkt, bantubanjir 17.88 % 

Filipino baha, bumabaha, apaw, pagbaha, pag-apaw, guho, koppu, 

typhoonkoppu 

2.13 % 

French inonder, inondation, submerger, noyer, engorger, avalanche, 

maree haute, torrent de l'eau 

0.65 % 

German flut, hochwasser, sintflut, Überflutung, erdrutsch 0.06 % 

Italian inondazione, inondacioni, frana, alluvione, Acqua alta, 

acquaalta, aquaalta, passerelle venezia, sotto acqua, sott’acqua, 

Paratia, paratie 

0.19 % 

Dutch overstroming 0.04 % 

Polish powódź, powodzie, potop, przypływ, wylew rzeki, zalanie, 

zalew, zalwewie, zatopienie, osuwisko 

0.03 % 

Serbian poplava, poplave, поплава, поплаве, klizišta, Ландслиде 0.05 % 

Portuguese inundação, inundacão, inundaçao, inundacao, alagar, 

transbordar, jorrar, diluvio, inundações, deslizamento de terra 

0.69 % 

Spanish inundación, inundacion, inundar, torrente, desbordar, anegar, 

diluvio, pleamar, inundaciones, deslizamiento de tierra, 

deslizamiento tierra 

11.45 % 

Turkish sel, taşkın, tufan, su baskını 6.96 % 
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Table 2: : Score for each of the spatial indicators assigned to individual tweets. The scores are in the order of magnitude found by Schulz et 

al. (2013). 

Indicator Score 

Time zone 1 

User home town 1 

Coordinates 2 

Mentions of related places 3 

 

Table 3: Results of the automated geotagging of 35.1 million tweets 

(using a threshold of 0.2; see Sect. 2.2.4) 

 
Number of tweets 

Total 35.1 million 

One or more location 11.6 million 

Multiple locations 1.9 million 

Country level 2.6 million 

Lower administrative level 3.3 million 

City, town, village etc. 6.9 million 
 

 

 

Table 4: Results of the TAGGS validation using 1,355 tweets posted on December 12, 2015, with thresholds of 0 and 0.2. 

12 December 2015 Individual (%) Grouped (%) 

 
thresh. 0 thresh. 0.2 thresh. 0 thresh. 0.2 

Falsely geotagged (should 

not have location) * 18.1 18.1 13.1 5.1 

Incorrectly geotagged** 10.8 5.3 11.2 8.2 

Not geotagged** 27.5 67.1 21.9 27.1 

Correctly geotagged** 61.8 27.6 66.9 64.7 

* percentage of all tweets 
    

** percentage of all tweets with location 
   

 5 
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Table 5: Results of the TAGGS validation using 1,581 tweets posted on December 27, 2015, with thresholds of 0 and 0.2. 

27 December 2015 Individual (%) Grouped (%) 

 
thresh. 0 thresh. 0.2 thresh. 0 thresh. 0.2 

Falsely geotagged (should not 

have location) * 22.6 22.6 14.6 6.6 

Incorrectly geotagged** 15.3 5.1 11.1 9.2 

Not geotagged** 21.9 56.7 14.6 16.7 

Correctly geotagged** 62.8 38.2 74.3 74.1 

* percentage of all tweets 
    

** percentage of all tweets with location 
   

11 Figures 

 

Figure 1: Countries where at least one of the languages spoken, as specified in the GeoNames (Wick, 2011) database, is analyzed. 
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Figure 2: Overview of the TAGGS geotagging process.  

 

Figure 3: In this example, three tweets mention Boston within 24 hours. The metadata of the first and second tweet match Boston, 

UK, while the third one did not have any matching spatial indicators. Using the spatial information for the first two tweets makes it 5 
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possible to correctly assign the third tweet to Boston, UK. In this example, the total score for Boston, UK, is 6 and the average score 

is 2. 

 

Figure 4: Schematic overview of the geotagging process. As indicated, 24 hours’ worth of cached tweets were geotagged by grouping 

and analyzing their additional spatial information. Moreover, this step entailed creating or updating the toponym resolution table 5 
used to geotag subsequent incoming tweets. Tweets older than 24 hours were excluded from this process. 
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Figure 5: The number of geotagged tweets relative to losses due to flood events between July 29, 2014 and December 31, 2016 for 

four country income groups. 
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Figure 6: Comparison of the number of geo-located tweets our the validation set in the middle of the UK for various geo-location 

methods. The green dots represent correctly identified locations, and the red dots represent incorrectly identified locations. 

12 References 

Al-Rfou, R., Kulkarni, V., Perozzi, B., & Skiena, S. (2015). POLYGLOT-NER : Massive Multilingual Named Entity 5 

Recognition. In Proceedings of the 2015 {SIAM} International Conference on Data Mining (pp. 586–594). 

http://doi.org/10.1137/1.9781611974010.66 

 

Amitay, E., Har’El, N., Sivan, R., & Soffer, A. (2004). Web-a-where. Proceedings of the 27th Annual International Conference 

on Research and Development in Information Retrieval - SIGIR ’04, 273–280. http://doi.org/10.1145/1008992.1009040 10 

 

Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2017-203
Manuscript under review for journal Nat. Hazards Earth Syst. Sci.
Discussion started: 13 June 2017
c© Author(s) 2017. CC BY 3.0 License.



20 

 

Carley, K. M., Malik, M., Landwehr, P. M., Pfeffer, J., & Kowalchuck, M. (2016). Crowd sourcing disaster management: The 

complex nature of Twitter usage in Padang Indonesia. Safety Science, 90, 48–61. http://doi.org/10.1016/j.ssci.2016.04.002 

 

Crooks, A., Croitoru, A., Stefanidis, A., & Radzikowski, J. (2013). #Earthquake: Twitter as a Distributed Sensor System. 

Transactions in GIS, 17(1), 124–147. http://doi.org/10.1111/j.1467-9671.2012.01359.x 5 

 

de Perez, E. C., Monasso, F., van Aalst, M., & Suarez, P. (2014). Science to prevent disasters. Nature Geoscience, 7(2), 78–

79. http://doi.org/10.1038/ngeo2081 

 

Fohringer, J., Dransch, D., Kreibich, H., & Schröter, K. (2015). Social media as an information source for rapid flood 10 

inundation mapping. Natural Hazards and Earth System Sciences, 15(12), 2725–2738. http://doi.org/10.5194/nhess-15-2725-

2015 

 

Gao, H., Barbier, G., & Goolsby, R. (2011). Harnessing the crowdsourcing power of social media for disaster relief. IEEE 

Intelligent Systems, 26(3), 10–14. http://doi.org/10.1109/MIS.2011.52 15 

 

Ghahremanlou, L., Sherchan, W., & Thom, J. A. (2014). Geotagging twitter messages in crisis management. Computer Journal, 

58(9), 1937–1954. http://doi.org/10.1093/comjnl/bxu034 

 

Guha-Sapir, D., Vos, F., Below, R., & Ponserre, S. (2012). Annual disaster statistical review 2011: the numbers and trends. 20 

Centre for Research on the Epidemiology of Disasters (CRED) (Vol. 17). 

 

Hecht, B., Hong, L., Suh, B., & Chi, E. H. (2011). Tweets from Justin Bieber’s heart: the dynamics of the location field in user 

profiles. Proceedings of the 2011 Annual Conference on Human Factors in Computing Systems, 237–246. 

http://doi.org/10.1145/1978942.1978976 25 

 

Hürriyetoǧlu, A., Gudehus, C., Oostdijk, N., & van den Bosch, A. (2016). Relevancer: Finding and Labeling Relevant 

Information in Tweet Collections. In International Conference on Social Informatics (pp. 210–224). Springer, Cham. 

http://doi.org/10.1007/978-3-319-47874-6_15 

 30 

Jongman, B., Wagemaker, J., Romero, B., & de Perez, E. (2015). Early Flood Detection for Rapid Humanitarian Response: 

Harnessing Near Real-Time Satellite and Twitter Signals. ISPRS International Journal of Geo-Information, 4(4), 2246–2266. 

http://doi.org/10.3390/ijgi4042246 

 

Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2017-203
Manuscript under review for journal Nat. Hazards Earth Syst. Sci.
Discussion started: 13 June 2017
c© Author(s) 2017. CC BY 3.0 License.



21 

 

Karimzadeh, M., Huang, W., Banerjee, S., Wallgrün, J. O., Hardisty, F., Pezanowski, S., … MacEachren, A. M. (2013). 

GeoTxt: a web API to leverage place references in text. In Proceedings of the 7th Workshop on Geographic Information 

Retrieval - GIR ’13 (pp. 72–73). ACM. http://doi.org/10.1145/2533888.2533942 

 

Lee, K., Ganti, R., Srivatsa, M., & Mohapatra, P. (2013). Spatio-temporal provenance: Identifying location information from 5 

unstructured text. In 2013 IEEE International Conference on Pervasive Computing and Communications Workshops 

(PERCOM Workshops) (pp. 499–504). IEEE. http://doi.org/10.1109/PerComW.2013.6529548 

 

Leidner, J. L. (2007). Toponym resolution in text. ACM SIGIR Forum, 41(2), 124. http://doi.org/10.1145/1328964.1328989 

Li, C., Weng, J., He, Q., Yao, Y., Datta, A., Sun, A., & Lee, B.-S. (2012). TwiNER: named entity recognition in targeted 10 

twitter stream. In Proceedings of the 35th international ACM SIGIR conference on Research and development in information 

retrieval - SIGIR ’12 (pp. 721–730). ACM. http://doi.org/10.1145/2348283.2348380 

 

Lieberman, M. D., Samet, H., & Sankaranarayanan, J. (2010). Geotagging with local Lexicons to build indexes for textually-

specified spatial data. Proceedings - International Conference on Data Engineering, (May 2009), 201–212. 15 

http://doi.org/10.1109/ICDE.2010.5447903 

 

Messner, F., & Meyer, V. (2006). Flood Damage, Vulnerability and Risk Perception – Challenges for Flood Damage Research. 

Flood Risk Management: Hazards, Vulnerability and Mitigation Measures. NATO Science Series, 67, 149–167. 

http://doi.org/10.1007/978-1-4020-4598-1_13 20 

 

Muller, E. (2016). tz_world. Retrieved February 27, 2017, from http://efele.net/maps/tz/world/ 

 

Munich Re. (2016). NatCatSERVICE | Munich Re. 

 25 

Paradesi, S. M. (2011). Geotagging Tweets Using Their Content. Proceedings of the Twenty-Fourth International Florida 

Artificial Intelligence Research Society Conference, 355–356. Retrieved from 

https://aaai.org/ocs/index.php/FLAIRS/FLAIRS11/paper/view/2617 

Patterson, T., & Kelso, N. V. (2017). Natural Earth. Retrieved March 1, 2017, from http://www.naturalearthdata.com/ 

 30 

Penning-rowsell, E., Johnson, C., Tunstall, S., Tapsell, S., Morris, J., Chatterton, J., & Green, C. (2005). The benefits of flood 

and coastal risk management: a manual of assessment techniques. Flood Hazard Research Centre. Flood Hazard Research 

Centre. http://doi.org/10.1596/978-0-8213-8050-5 

 

Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2017-203
Manuscript under review for journal Nat. Hazards Earth Syst. Sci.
Discussion started: 13 June 2017
c© Author(s) 2017. CC BY 3.0 License.



22 

 

Pishdar, N. (2014). 1000 Most Common Words. Retrieved February 1, 2017, from http://1000mostcommonwords.com/ 

 

Sakaki, T., Okazaki, M., & Matsuo, Y. (2010). Earthquake shakes Twitter users. Proceedings of the 19th International 

Conference on World Wide Web, (January 2010), 851–860. http://doi.org/10.1145/1772690.1772777 

 5 

Schulz, A., Hadjakos, A., Paulheim, H., Nachtwey, J., & Mühlhäuser, M. (2013). A Multi-Indicator Approach for 

Geolocalization of Tweets. Seventh International AAAI Conference on Weblogs and Social Media, 573–582. 

http://doi.org/papers3://publication/uuid/62449928-74D1-4674-A1A7-24D5F6813F85 

 

Sultanik, E. a., & Fink, C. (2012). Rapid Geotagging and Disambiguation of Social Media Text via an Indexed Gazetteer. 10 

Proceedings of the 9th International ISCRAM Conference, (April), 1–10. Retrieved from 

http://www.iscramlive.org/ISCRAM2012/proceedings/190.pdf%5Cnhttp://www.iscramlive.org/portal/iscram2012proceedin

gs 

 

Sun, X., Mein, R. G., Keenan, T. D., & Elliott, J. F. (2000). Flood estimation using radar and raingauge data. Journal of 15 

Hydrology, 239(1–4), 4–18. http://doi.org/10.1016/S0022-1694(00)00350-4 

 

Takhteyev, Y., Gruzd, A., & Wellman, B. (2012). Geography of Twitter networks. Social Networks, 34(1), 73–81. 

http://doi.org/10.1016/j.socnet.2011.05.006 

 20 

The World Bank. (2016). World Bank Open Data. Retrieved May 1, 2017, from http://data.worldbank.org/ 

 

The World Bank. (2017). Knowledge base. Retrieved May 1, 2017, from https://datahelpdesk.worldbank.org/knowledgebase 

 

Wick, M. (2011). GeoNames. Retrieved February 1, 2017, from http://www.geonames.org 25 

 

 

 

Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2017-203
Manuscript under review for journal Nat. Hazards Earth Syst. Sci.
Discussion started: 13 June 2017
c© Author(s) 2017. CC BY 3.0 License.


