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This document includes the replies to the referees, a list of changes and the manuscript with marked changes in 
italics with a superscript of the change list number. 

Replies to the referees 10 

We would like to thank the two anonymous referees for their valuable comments and their constructive arguments that have 
helped improve the manuscript. Replies to the comments received have been addressed separately for each referee below. The 
line and page numbering used by the referees, which refer to the discussion paper, were also followed here. 

Replies to the comments of Referee 1 (R1) 

R1 presented a valid argument about the fusion between DEM differencing and image correlation with openness. The word 15 
“fusion” was erroneously chosen as it misinterpreted the methodological workflow. There is no fusion between the two 
techniques, a) DEM differencing and b) image correlation. DEM differencing was applied to illustrate the subsequent elevation 
changes. For instance, the DEM differences indicated the dramatic changes occurred between February and May 2016 (Figure 
3f). These elevation changes could explain the NCC function decorrelation (voids in the displacement map, Figure 3c). 
Additionally, the DEM differences illustrated vegetation growth at the foot of the slope (Figure 3f). Due to vegetation 20 
variations, noise was generated (Figure 3c). As was also observed by Referee 2 (R2), elevation differences and displacement 
maps can be jointly used to interpret landslide deformation. The systematic downward horizontal movement of the eastern 
lobe is shown in Figures 3a, b, c and Figure 4a. This movement formed ground accumulation, generating positive elevation 
differences (seen in Figures d, e and f). Figure 4c also illustrates the surface change produced by the horizontal movement 
along Profile AB. Hence, DEM differencing could support the explanation of errors derived from the image correlation 25 
function. It can also illustrate the two types of movement, as observed by R2. Specifically, the first type is the horizontal 
motion of surface structures (mostly observed over the eastern lobe) and the second type is the vertical change generated by 
slope failures (as occurred over the western lobe and at the back scarp), in Figures 3e and 3f respectively. To make these points 
clear, the sentence in the Conclusions (page 7 lines 10-12) “The analysis has illustrated that the fusion of openness 
morphological attribute along with DEM differencing can support the comprehensive interpretation of landslide behaviour, 30 
providing a holistic overview of 3D surface deformation patterns.” was changed to:“The analysis has illustrated that openness 
implemented with image cross-correlation functions can be used in conjunction with DEM differencing to support the 
comprehensive interpretation of landslide behaviour, providing a holistic overview of horizontal and vertical deformation 
patterns.” 

Additionally, R1 commented that DEM differences are hardly mentioned throughout the paper. Numerical results of elevation 35 
differences were added in line 20 of page 5 to address this comment. Specifically: 
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“Part of the western lobe collapsed, creating a dramatic change of -0.70 m maximum ground loss and a +0.50 m maximum 
ground accumulation within 11 months (Figure 3e). The surface ruptured at the upper part of the slope, yielding a maximum 
ground subsidence of approximately -1.70 m and a maximum elevation increase of approximately +1.05 m, as seen in Figure 
3f. In addition, Figure 3f depicts the grass growth…” 

Other corrections were added in line 21 of page 5 as below: 5 

“Also, over the regions with extreme deformations (e.g. back scarp in Figure f), decorrelation created voids on the 
displacement map (Figure 3c).” 

To demonstrate that DEM differencing supported the landslide interpretation, as also observed by R2, the following sentence 
was added in line 33, page 6: 

“The episodic surface ruptures generated vertical ground loss and accumulation, as seen in Figures 3e and f. The horizontal 10 
downward motion of the front part of the eastern lobe was illustrated as positive elevation change. This motion was also 
identified with the image cross-correlation analysis (Figure 3).” 

It was suggested that the first paragraph of the Results section be transferred to the Methodology section as it does not represent 
pure results of the workflow. However, this paragraph constitutes the results of the experiment using synthetic datasets, an 
essential step to tune the NCC parameters (as correctly characterised by R1, the “calibration” step). To address this comment 15 
the following sentence was therefore added to the beginning of the Results section:“Before presenting the horizontal and 
vertical displacements over the Hollin Hill landslide, the results of the synthetic experiment are firstly described. All four…” 

Additional changes were made (line 6, page 5): 

“Some scattered points fell within the ±0.10 m 3D sensitivity level shown in grey, especially for the March-June 2015 and 
June-September 2015 epoch pairs.” 20 

Legends were added to Figure 3 and 4 to aid interpretation (see pages 6 and 7 in the current document). 

 

Replies to the comments of Referee 2 (R2): 

In addressing the first comment of R2, the phrases “3D motion”, “3D” and “3D surface changes“ were removed from the 
manuscript and replaced by the phrase “horizontal motions and elevation differences”. To avoid misunderstanding, the word 25 
“3D” was also removed from the title. This also addresses the specific comment 10 (page 4) regarding the phrase “3D surface 
deformation”. To clarify, there was no combination of 3D vectors in the presented work, but a cross-correlation analysis and 
DEM differencing which produced horizontal 2D motion and elevation changes, respectively. 

The second comment concurs with one of the comments of R1, both suggesting that the limitations should be summarised in 
the Conclusions section, even though they were already mentioned in the Discussion section. This was addressed in line 12, 30 
page 7, as follows: 

“Major limitations include the reliance on a priori knowledge of the landslide type and displacement magnitude to tune the 
image cross-correlation function parameters, use of field data for cross validation, manual surface feature identification and 
manual cleaning or threshold definition to remove erroneous displacement vectors. These limitations affect the performance 
of the resulting horizontal motions and elevation changes.” 35 

 

Answers to specific comments are shown below. 

• Comments 1-3, page 1: 

o The word “effective”, in line 13, was deleted. 

o The word “characteristic” is added in lines 16-17. 40 
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o The phrase “unmanned aerial vehicles” was added in line 21. 

• Comments 4 and 5, page 2: 

o The word “implemented” was substituted with the word “combined”. 

o In order to add the size of the targets, lines 29 and 1 were changed to:  

“Circular targets of 0.40 m diameter (equal to 8-10 pixels), with centres easily recognisable in the imagery, were 5 
established. Between 11 and 20 targets were surveyed for each of the different campaigns using rapid static 
Global Navigation Satellite System (GNSS).” 

• Comments 6 and 7, page 3: 

o To improve clarify as to how the sensitivity level was derived the following changes were made in lines 10-11: 
“Peppa et al. (2016) described an approach to derive the vertical sensitivity with the use of DEM standard 10 
deviations. An approximate ±0.10 m sensitivity level, corresponding to the lowest detectable change, was 
estimated by applying error propagation (with a 95% confidence level) to the 3D RMSE values, calculated at 
check points. Both approaches resulted in a sensitivity level of the same order of magnitude.” 

o The phrase “3x3 pixel window” was added in line 20. 

• Comments 8, 9, 11 and 12, page 4: 15 

o COSI-Corr provides displacements in Easting and Northing separately, which can be combined to generate a 2D 
motion map. To clarify this, the following sentence was added in line 4: “The computed displacements in Easting 
and Northing were combined to provide 2D motion maps across successive epochs.“ Figure 3 also presents the 
2D displacement of this combination. Indeed the displacement magnitude is significantly greater in Northing 
than Easting.  20 

o To describe how the 27 sample points were identified, the following sentence was added: “These points were 
identified on visually identifiable characteristic surface breaks and evenly distributed across the site with 
displacement magnitudes from cm- to m-level.” 

o In line 18 the phrase “characteristic surface structures were manually located” means that 2D coordinates from 
particular positions located on December 14 openness were extracted and used as input to the CIAS tool. To 25 
clarify this, the following changes were made: “Thus, characteristic surface structures were manually located 
over the December 2014 openness image and the derived 2D coordinates were used as input to the CIAS tool. 
The planimetric vectors of these locations, between December 2014 and May 2016, were automatically derived 
with the same tool.” 

o To be more specific for the threshold parameters, the following sentences were added in line 20: “For instance, 30 
the sensitivity level could serve as a threshold to remove vectors of lengths lower than ±0.10 m. Based on previous 
knowledge of the Hollin Hill landslide (Uhlemann et al., 2017), a specific azimuth range could be used as an 
additional threshold to exclude vectors showing, for example, backward motion due to rotational failures.” This 
sentence also partly addresses the comment of R1 regarding the knowledge of presence of local rotational failures 
(paragraph C2). To clarify further, the following text was added to the Discussion on page 6: 35 

“Even though threshold definition can automatically remove spurious vectors, it is not a straightforward process 
as it relies on a priori knowledge of the landslide. Where such information is unavailable, additional field data 
may be used. This demonstrates that image cross-correlation performance is strongly related to the landslide 
movement type. For mixed types, such as the Hollin Hill landslide (a combination of rotational failures with 
earth flow, as shown in Uhlemann et al. (2017)), the successful application of image cross-correlation is not 40 
entirely guaranteed.” 

• Comment 13, page 5 line 27: 
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o One sentence was added in line 28 to show how the threshold of 63º was derived. “This threshold was derived 
with the aid of visual inspection along profiles at multiple locations over active parts of the landslide.” 

• Comment 14, page 10 line 3: the full name of SNR was added. 

• Comment 15, Figure 2: 

o The number of samples was added in line 6 of page 5: “33 and 38 sample points across all epoch pairs with 5 
displacement magnitude larger than ±0.10 m were observed manually on orthomosaics and automatically 
derived with COSI-Corr respectively.” 

o The gray zone was also added as a legend in Figure 2. 

• Comment 16, Figure 4: 

o Arrows were included in the legend. Their colour was changed from black to blue to improve their contrast.  10 

o The dark red region, which represents the 0º-63º class of both epochs openness overlap, was included in the 
legend.  

All changes to Figures 2, 3 and 4 are shown below. 
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Figure 1: Scatterplot of estimated surface displacements determined by COSI-Corr with openness plotted against manual 
observation per epoch pair. 

  5 
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Figure 2: Maps of surface displacements and elevation differences of (a and d) December 2014 -March 2015, (b and e) March 2015-
February 2016 and (c and f) February 2016-May 2016, respectively. Manually derived planimetric vectors at sample points are also 
superimposed.  

 5 
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Figure 3: Detailed view of December 2014 and May 2016 openness maps over (a) eastern lobe and (b) back scarp with elevation and 
openness plotted along (c) Profile AB. 
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List of changes 

1. Title: Landslide motion from cross correlation of UAV-derived morphological attributes 

2. The analysis has illustrated that openness implemented with image cross-correlation functions can be used in 
conjunction with DEM differencing to support the comprehensive interpretation of landslide behaviour, providing a 
holistic overview of horizontal and vertical deformation patterns. 5 

3. Part of the western lobe collapsed, creating a dramatic change of -0.70 m maximum ground loss and a +0.50 m 
maximum ground accumulation within 11 months (Figure 3e). The surface ruptured at the upper part of the slope, 
yielding a maximum ground subsidence of approximately -1.70 m and a maximum elevation increase of approximately 
+1.05 m, as seen in Figure 3f. In addition, 

4. Also, over the regions with extreme deformations (e.g. back scarp in Figure f), decorrelation created voids on the 10 
displacement map (Figure 3c). 

5. The episodic surface ruptures generated vertical ground loss and accumulation, as seen in Figures 3e and f. The 
horizontal downward motion of the front part of the eastern lobe was illustrated as positive elevation change. This 
motion was also identified with the image cross-correlation analysis (Figure 3). 

6. Before presenting the horizontal and vertical displacements over the Hollin Hill landslide, the results of the synthetic 15 
experiment are firstly described. All four 

7. Some scattered points fell within the ±0.10 m 3D sensitivity level shown in grey, especially for the March-June 2015 
and June-September 2015 epoch pairs. 

8. horizontal motions and elevation differences 

9. Major limitations include the reliance on a priori knowledge of the landslide type and displacement magnitude to 20 
tune the image cross-correlation function parameters, use of field data for cross validation, manual surface feature 
identification and manual cleaning or threshold definition to remove erroneous displacement vectors. These 
limitations affect the performance of the resulting horizontal motions and elevation changes. 

10. the automated quantification 

11. characteristic 25 

12. unmanned aerial vehicles 

13. combined 
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14. Circular targets of 0.40 m diameter (equal to 8-10 pixels), with centres easily recognisable in the imagery, were 
established. Between 11 and 20 targets were surveyed for each of the different campaigns using rapid static Global 
Navigation Satellite System (GNSS). 

15. Peppa et al. (2016) described an approach to derive the vertical sensitivity with the use of DEM standard deviations. 
An approximate ±0.10 m sensitivity level, corresponding to the lowest detectable change, was estimated by applying 5 
error propagation (with a 95% confidence level) to the 3D RMSE values, calculated at check points. Both approaches 
resulted in a sensitivity level of the same order of magnitude.” 

16. 3x3 pixel window 

17. The computed displacements in Easting and Northing were combined to provide 2D motion maps across successive 
epochs. 10 

18. These points were identified on visually identifiable characteristic surface breaks and evenly distributed across the 
site with displacement magnitudes from cm- to m-level. 

19. Thus, characteristic surface structures were manually located over the December 2014 openness image and the 
derived 2D coordinates were used as input to the CIAS tool. The planimetric vectors of these locations, between 
December 2014 and May 2016, were automatically derived with the same tool. 15 

20. For instance, the sensitivity level could serve as a threshold to remove vectors of lengths lower than ±0.10 m. Based 
on previous knowledge of the Hollin Hill landslide (Uhlemann et al., 2017), a specific azimuth range could be used 
as an additional threshold to exclude vectors showing, for example, backward motion due to rotational failures. 

21. Even though threshold definition can automatically remove spurious vectors, it is not a straightforward process as it 
relies on a priori knowledge of the landslide. Where such information is unavailable, additional field data may be 20 
used. This demonstrates that image cross-correlation performance is strongly related to the landslide movement type. 
For mixed types, such as the Hollin Hill landslide (a combination of rotational failures with earth flow, as shown in 
Uhlemann et al. (2017)), the successful application of image cross-correlation is not entirely guaranteed. 

22. This threshold was derived with the aid of visual inspection along profiles at multiple locations over active parts of 
the landslide. 25 

23. signal-to-noise ratios 

24. 33 and 38 sample points across all epoch pairs with displacement magnitude larger than ±0.10 m were manually 
observed on orthomosaics and automatically derived with COSI-Corr respectively. 

25. Changes in Figures 2, 3 and 4 

  30 
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Abstract. Unmanned aerial vehicles (UAVs) can provide observations of high spatio-temporal resolution to enable operational 

landslide monitoring. In this research, the construction of digital elevation models (DEMs) and orthomosaics from UAV 

imagery is achieved using structure-from-motion (SfM) photogrammetric procedures. The study examines the additional value 10 

that morphological attribute of openness, amongst others, can provide to surface deformation analysis. Image cross-correlation 

functions and DEM subtraction techniques are applied to the SfM outputs. Through the proposed integrated analysis, the 

automated quantification10 of a landslide’s motion over time is demonstrated, with implications for the wider interpretation of 

landslide kinematics via UAV surveys. 

1 Introduction 15 

Landslides are a form of mass movement, which can often be complex in nature, leading to slope failure and the formation of 

characteristic11 surface morphological structures. Monitoring of these structures can provide a valuable insight into a 

landslide’s sub-surface dynamic failure mechanism and thereby help mitigate hazards (Gunn et al., 2013). Conventionally, in 

addition to geotechnical and geophysical monitoring of the sub-surface, survey markers are often used to quantify surface 

displacement by monitoring discrete locations through periodic observations. However, such surveying can be hazardous and 20 

generally provides limited spatial resolution. The development of low cost, mini consumer-grade unmanned aerial vehicles12 

(UAVs) – also known as remotely piloted aircraft systems (RPAS), and drones – equipped with off-the-shelf compact cameras, 

in combination with structure-from-motion (SfM) and multi-view stereo (MVS) algorithms, has facilitated high spatio-

temporal resolution topographic surveys using image-based approaches. In particular, the implementation of the SfM-MVS 

pipeline into user-friendly commercial software packages, such as PhotoScan (PhotoScan, 2016) and Pix4D (Pix4D, 2016), 25 

has enabled the generation of high spatio-temporal resolution point clouds, digital elevation models (DEMs) and orthomosaics 

in the Earth sciences (Remondino et al., 2014; James et al., 2017). 

Differencing of successive co-registered DEMs constitutes a standard approach to estimate ground accumulation and depletion 

in monitoring applications (Daehne and Corsini, 2013; Travelletti et al., 2014). Moreover, image cross-correlation functions 

applied to optical imagery has long been successfully implemented for the quantification of surface planimetric movement in 30 

the context of landslides, glaciers, etc. (Leprince et al., 2007; Ayoub et al., 2009a; Heid and Kääb, 2012). Nevertheless, the 
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application of image cross-correlation functions to UAV-derived orthomosaics can increase noise due to variations in 

illumination conditions (Lucieer et al., 2014). Recent studies have demonstrated that the implementation of image cross-

correlation functions with DEM morphological derivatives can automatically determine the movement of surface features that 

preserve their structural patterns over time (Daehne and Corsini, 2013; Lucieer et al., 2014; Travelletti et al., 2014; Fey et al., 

2015). Among these, Lucieer et al. (2014) and Turner et al. (2015) found the UAV-derived morphological attribute of shaded 5 

relief, combined13 with image cross-correlation functions, to provide better surface displacement estimation of a landslide than 

single bands from the corresponding orthomosaic. To date, however, there has been no comprehensive evaluation of image 

cross-correlation functions with various UAV-derived morphological attributes for landslide deformation monitoring.  

This paper reports on the analysis of horizontal motion and elevation differences of an active landslide from multi-temporal 

co-registered UAV-derived outputs, including DEMs, orthomosaics, and morphological attributes. Firstly, image cross-10 

correlation functions are evaluated through comparative analysis with synthetic datasets. Secondly, the surface deformation of 

a landslide is determined by integrating image cross-correlation functions with morphological attributes and DEM 

differencing. The paper illustrates how to exploit a time-series of UAV survey derivatives in order to quantify and interpret 

landslide kinematics.  

2 Study area 15 

The Hollin Hill study site comprises a slow moving earth-slide, earth-flow landslide with an extent of 290 m E-W, 230 m N-

S and a south-facing slope of an average 12º, located in the Lias mudrocks of North Yorkshire, UK (54º 6' 38.90'' N, 0º 57' 

36.84'' W). The site has been monitored since 2009 by British Geological Survey (BGS) using various methods, including 

terrestrial and airborne laser scanning, as well as ground-based geotechnical and geophysical investigations. BGS 

investigations have revealed that the landslide has a complex behaviour with seasonal surface variations and episodic failures 20 

mostly triggered by intensive rainfall and increased pore-water pressures within the constituent geological materials (Gunn et 

al., 2013; Uhlemann et al., 2017). 

3 Data acquisition and processing 

Image acquisition was performed using a mini fixed-wing UAV (Quest 300) equipped with a Panasonic Lumix DMC-LX5 

compact camera of 5.1 mm nominal focal length and an image array of 3648 x 2736 pixels. RGB UAV imagery was captured 25 

during six field campaigns in December 2014, March 2015, June 2015, September 2015, February 2016 and May 2016. The 

Quest 300 was flown from a nominal flying height of 90 m at 18 m/s, with images acquired approximately every 2 s. During 

every field campaign, a GNSS base station was established over stable terrain and surveyed in static GNSS mode. Average 

absolute accuracies of 0.01 m -in planimetry and 0.02 m in elevation were delivered. Circular targets of 0.40 m diameter 
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(equal to 8-10 pixels), with centres easily recognisable in the imagery, were established. Between 11 and 20 targets were 

surveyed for each of the different campaigns using rapid static Global Navigation Satellite System (GNSS).14 

A self-calibrating bundle adjustment, incorporated into the SfM-MVS pipeline, was utilised to process the UAV imagery using 

PhotoScan software, as described in Peppa et al. (2016). The observed coordinates of five circular targets were utilised as 

control in each SfM-MVS bundle adjustment, with the remainder used as independent check points. This resulted in the 5 

reconstruction of six dense point clouds, one per epoch, georeferenced in the Ordnance Survey Great Britain 1936 (OSGB36) 

coordinate system. From an average 0.03 m ground sample distance, DEMs were generated at each epoch with an average 

0.06 m spatial resolution. The 3D co-registration accuracy, calculated from differences between the surveyed and observed 

coordinates at independent check points after the SfM-MVS bundle, was estimated as an average root mean square error 

(RMSE) of 0.03 m. Peppa et al. (2016) described an approach to derive the vertical sensitivity with the use of DEM standard 10 

deviations. An approximate ±0.10 m sensitivity level, corresponding to the lowest detectable change, was estimated by applying 

error propagation (with a 95% confidence level) to the 3D RMSE values, calculated at check points. Both approaches resulted 

in a sensitivity level of the same order of magnitude.15  

4 Methodology 

Four morphological attributes (shaded relief, slope, openness and curvature) were computed from each epoch’s DEM. Shaded 15 

relief was created with the aid of the ambient occlusion tool in the SAGA GIS package. This applies homogenous illumination 

to the DEM, smoothing the shadow effect usually produced by lighting from a single direction (Fey et al., 2015). The remaining 

three morphological attributes were all generated using the Orientation and Processing of Airborne Laser Scanning data 

(OPALS) software (Pfeifer et al., 2014). In this paper: a) slope indicates the steepest slope angle of the surface; b) openness 

represents the minimum angle of a cone fitted in the DEM, as viewed from above the surface (Yokoyama et al., 2002); c) 20 

curvature constitutes the average of minimum and maximum curvature, representing concave and convex surface features 

respectively. All three attributes were computed using a 3x3 pixel window16, equivalent to 0.18 m at 0.06 m pixel resolution.  

An experiment was conducted with synthetic epoch pairs to evaluate the performance of the statistical normalised cross-

correlation (NCC) function, implemented in the Co-registration of Optically Sensed Images and Correlation (COSI-Corr) 

software (Leprince et al., 2007; Ayoub et al., 2009b), as applied to these four morphological attributes. To generate the 25 

synthetic displacement, known translations of a) 0.050 m in Easting and -0.100 m in Northing (i.e. 0.112 m total magnitude) 

were applied to Region A (see Figure 1a), approximating to the ±0.10 m sensitivity level; and b) shifts of 0.455 m in Easting 

and -0.544 m in Northing (0.709 m total magnitude) applied to Region B in the December 2014 DEM, simulating typical inter-

epoch movement of the real landslide. Four pairs of morphological attributes were then derived from both the original 

December 2014 DEM and the synthetically shifted DEM. Each pair, comprising the pre- and post-event images, was imported 30 

into the COSI-Corr function. This computes the maximum absolute value of the correlation coefficient by sliding a rectangular 

patch from the pre-event image systematically within a window in the post-event image. The computed displacements in 
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Easting and Northing, determined by the matched correlation peak between the two images, have a spatial resolution equal to 

a specified step parameter used for the sliding (Ayoub et al., 2009b; Lucieer et al., 2014). After a trial and error procedure, a 

window size of 64x64 pixels (3.84 m) with a step of 16x16 pixels (0.96 m) and a patch of 20x20 pixels (1.20 m) were chosen 

for this research. These settings ensured that the maximum imposed shift over Region B could be detected and was therefore 

chosen in line with a priori knowledge of the Hollin Hill landslide movement rates (Uhlemann et al., 2017). The computed 5 

displacements in Easting and Northing were combined to provide 2D motion maps across successive epochs.17 

Apart from the displacements in Easting and Northing, the COSI-Corr function also calculates a signal-to-noise ratio (SNR), 

indicative of the correlation quality. SNR values closer to unity are indicative of more reliable results. A comparative analysis 

of the estimated displacements and derived SNRs, obtained with the four morphological attributes, was then performed to 

determine which of the morphological attributes produced the optimal results. The chosen morphological attribute, together 10 

with the COSI-Corr function, was applied to successive epoch pairs of the Hollin Hill landslide to estimate 2D motion. The 

COSI-Corr result was cross-validated with the surface displacements calculated from 27 sample points, manually measured 

across the orthomosaics. These points were identified on visually identifiable characteristic surface breaks and evenly 

distributed across the site with displacement magnitudes from cm- to m-level.18 Elevation change was derived by subtracting 

each DEM from the subsequent DEM on a pixel-by pixel basis.  15 

Having generated a time-series of horizontal motions and elevation differences8 across the site, an additional investigation 

over sub-regions with the largest deformations was then performed. The morphological attribute of openness was then chosen 

due to its unique representation of discernible surface patterns within the landslide body. The NCC function was applied to 

openness for December 2014 and May 2016 datasets, as implemented in the Correlation Image Analysis (CIAS) package 

(CIAS, 2012; Heid and Kääb, 2012) using the aforementioned window and patch sizes. Unlike COSI-Corr, CIAS allows 20 

individual feature tracking. Thus, characteristic surface structures were manually located over the December 2014 openness 

image and the derived 2D coordinates were used as input to the CIAS tool. The planimetric vectors of these locations, between 

December 2014 and May 2016, were automatically derived with the same tool.19 Manual cleaning to remove spurious vectors 

was also necessary, although this process could be automated by application of various threshold parameters, if necessary. For 

instance, the sensitivity level could serve as a threshold to remove vectors of lengths lower than ±0.10 m. Based on previous 25 

knowledge of the Hollin Hill landslide (Uhlemann et al., 2017), a specific azimuth range could be used as an additional 

threshold to exclude vectors showing, for example, backward motion due to rotational failures.20 

5 Results 

Before presenting the horizontal and vertical displacements over the Hollin Hill landslide, the results of the synthetic 

experiment are firstly described. All four6 morphological attributes underestimated the imposed displacement of Region A, 30 

delivering an average displacement 0.030 m ± 0.027 m in Easting and 0.054 m ± 0.030 m in Northing. For Region B, the 

closest result to truth in Easting was delivered by openness, with an average value of 0.435 m ± 0.145 m, whereas shaded relief 
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detected the best average displacement in Northing of -0.528 m ± 0.131 m. Figure 1a and 1b depict the SNR results, derived 

from openness and shaded relief respectively, over stable terrain outside Regions A and B. Figure 1c presents the boxplots of 

the comparative SNR analysis. SNR values close to zero (Figure 1b) indicated decorrelation, which is also illustrated as outliers 

in the boxplot of shaded relief over stable terrain, whereas the other three morphological attributes were less noisy (Figure 1c). 

For Regions A and B all morphological attributes with the exception of curvature produced similar boxplots. The boxplots 5 

reveal greater variation in SNR in Region B than in Region A (Figure 1c), possibly due to the noise caused by the extreme 

local surface variations around Region B. Overall, slope and openness provided comparable displacements and noise levels. 

In this study, openness was finally chosen for the estimation of Hollin Hill landslide motions, as it highlights characteristic 

breaks in slope sliding downwards over time. 

The comparison of the COSI-Corr derived-displacements with the manually observed surface movements at 27 sample points 10 

(Figure 2) indicates the sensitivity of the NCC function to different displacement magnitudes. The scatterplot in Figure 2 shows 

a general systematic overestimation of the displacement magnitude derived from COSI-Corr. Some scattered points fell within 

the ±0.10 m 3D sensitivity level shown in grey, especially for the March-June 2015 and June-September 2015 epoch pairs.7 

33 and 38 sample points across all epoch pairs with displacement magnitude larger than ±0.10 m were manually observed on 

orthomosaics and automatically derived with COSI-Corr respectively.24 Significant movement was observed mostly between 15 

December 2014-March 2015, September 2015-February 2016 and February 2016-May 2016 epoch pairs. Overall, the NCC 

function delivered results in good agreement with the manual measurements (closer to the straight line) for small 

displacements, but miscalculated the surface movement of the last epoch pair. 

The planimetric displacements across the Hollin Hill landslide between December 2014-March 2015, March 2015-February 

2016 and February 2016-May 2016 are mapped in Figure 3a, Figure 3b and Figure 3c respectively. Observations from June 20 

2015 and September 2015 campaigns were excluded from the maps in Figure 3 due to small displacements and additional 

noise caused by vegetation change. Blue hatched polygons represent areas with more reliably estimated surface displacements, 

as the SNR is greater than 0.7. This value is equivalent to the lowest whisker of the openness boxplot (Figure 1c), representing 

the outlier threshold, as derived from Eq. (1): 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙ℎ𝑖𝑖𝑙𝑙𝑖𝑖𝑙𝑙𝑖𝑖 = 𝑄𝑄1 − 1.5𝑥𝑥(𝑄𝑄3 − 𝑄𝑄1)         (1) 25 

where Q1 and Q3 the 25% and 75% percentiles of the data respectively.  

There are a few erroneous displacements, mostly at the edges of the study site, around vegetated areas and outside the blue 

hatched polygons, as evidenced in Figure 3a, Figure 3b and Figure 3c. The elevation differences between the same epoch pairs 

are depicted in Figure 3d, Figure 3e and Figure 3f, excluding deformations within the ±0.10 m sensitivity level. Part of the 

western lobe collapsed, creating a dramatic change of -0.70 m maximum ground loss and a +0.50 m maximum ground 30 

accumulation within 11 months (Figure 3e). The surface ruptured at the upper part of the slope, yielding a maximum ground 

subsidence of approximately -1.70 m and a maximum elevation increase of approximately +1.05 m, as seen in Figure 3f. In 

addition,3 Figure 3f depicts the grass growth at the foot of the slope, which in turn caused false surface movement in Figure 
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3c. Also, over the regions with extreme deformations (e.g. back scarp in Figure f), decorrelation created voids on the 

displacement map (Figure 3c).4  

To further investigate these significant deformations, the May 2016 openness image was superimposed over the corresponding 

image from December 2014 and is presented in Figure 4a and 4b. Figure 4c illustrates that narrow angles of openness can 

distinguish surface undulations sliding down-slope. For instance, point 1 moved 1.10 m along the profile AB towards the south. 5 

To visualise these structures a threshold of 63º was applied to the openness images (Figure 4a and 4b). Different thresholds 

can visualise different morphological features. This threshold was derived with the aid of visual inspection along profiles at 

multiple locations over active parts of the landslide.22  Openness also captured the surface rupture that occurred at the top of 

the slope between February and May 2016 (Figure 3f and 4b). The planimetric vectors of distinctive features are plotted in 

Figure 4a and 4b, as automatically determined after applying the NCC function implemented in CIAS. Spurious vectors at the 10 

edges of the back scarp, which were manually removed, were possibly generated due to rotational failures investigated by BGS 

(Uhlemann et al., 2017). 

6 Discussion 

The comparative analysis of the NCC function with synthetic data was necessary to tune the function’s optimal settings. If 

small displacements close to the UAV-derived sensitivity level do not fit within the specified window size, they cannot be 15 

precisely estimated (e.g. Region A), as was noted by Fey et al. (2015). Small step and window sizes improved the spatial 

resolution of the surface displacement magnitude map but increased the computational time and noise. This occurred as 

features with similar / repetitive patterns within the vicinity of the specified window sizes generated false displacements 

(Travelletti et al., 2014; Fey et al., 2015). Hence, the choice of the function’s parameters is usually based on the required spatial 

resolution, the computational effort and the displacement magnitude (Daehne and Corsini, 2013; Travelletti et al., 2014; Fey 20 

et al., 2015).  

The analysis with synthetic data also demonstrated that imagery derived from various morphological attributes can generate 

different displacement estimations and noise levels. Slope, openness and curvature outperformed shaded relief in terms of 

noise over stable terrain, even though all attributes are insensitive to illumination variations and shadows (Daehne and Corsini, 

2013; Lucieer et al., 2014; Fey et al., 2015). A possible error source could be the grass cover, well known to affect the results 25 

of image cross-correlation (Lucieer et al., 2014; Stumpf et al., 2017). 

The production of reliable surface displacements with the image cross correlation functions over vegetated terrain constitutes 

a significant challenge. As vegetation covers surface features, the NCC function generates additional noise. Conversely, grassy 

surfaces produce images with low texture and without distinctive surface features which can also affect the NCC function’s 

performance (Travelletti et al., 2014), as evidenced in Figure 1b, Figure 3a, 3b and 3c around the eastern lobe. Hence, noisy 30 

results attributed to vegetation presence cannot be entirely removed, even with UAV surveys of high temporal resolution. The 

use of morphological attributes computed with larger spatial distances, thereby producing a higher level of smoothing, can 
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potentially decrease this noise. Finally, to generate optimal NCC results with the least amount of noise possible, accounting 

for the vegetation variation, winter would constitute the best period to conduct UAV surveys.  

Independently of the NCC function’s sensitivity to displacement magnitude and vegetation presence, the presented analysis 

also revealed other limitations, already well reported in previous studies (Daehne and Corsini, 2013; Lucieer et al., 2014; 

Travelletti et al., 2014; Fey et al., 2015; Stumpf et al., 2017). A priori knowledge of the displacement magnitude is required 5 

for tuning the function’s settings, therefore somewhat limiting the automated fashion of the workflow. In addition, 

decorrelation occurs when a surface has significantly changed between two consecutive epochs. Finally, image cross-

correlation functions generate unreliable estimations over regions with rotational failures, creating spurious vectors or voids, 

whereas performance is much better over translational earth flow slides. Even though threshold definition can automatically 

remove spurious vectors, it is not a straightforward process as it relies on a priori knowledge of the landslide. Where such 10 

information is unavailable, additional field data may be used. This demonstrates that image cross-correlation performance is 

strongly related to the landslide movement type. For mixed types, such as the Hollin Hill landslide (a combination of rotational 

failures with earth flow, as shown in Uhlemann et al., (2017)), the successful application of image cross-correlation is not 

entirely guaranteed.21 

Overall, heterogeneous horizontal motions and elevation differences8 were observed at the Hollin Hill landslide through the 15 

combination of multiple co-registered UAV products. The orthomosaics supported the identification of vegetated areas and 

cross-validation of the results. The use of openness, together with the COSI-Corr tool supported the quantification of the 

movement over the whole site. DEM differencing was also applied to quantify the episodic surface ruptures and interpret the 

generated voids on displacement maps. The episodic surface ruptures generated vertical ground loss and accumulation, as 

seen in Figures 3e and f. The horizontal downward motion of the front part of the eastern lobe was illustrated as positive 20 

elevation change. This motion was also identified with the image cross-correlation analysis (Figure 3).5 The CIAS tool applied 

to openness tracked the evolution of discernible surface patterns over the eight-month duration in a semi-automated fashion. 

Openness maps of different angle thresholds express surface formations in different ways, and as a result can complement 

investigation of landslide motion. The exploitation of available image cross-correlation tools (COSI-Corr and CIAS) with 

openness decreased the intensive task of manual feature tracking. However, this task is still essential for cross-validation, 25 

especially in cases where ground truth observations are lacking over the monitoring period.  

7 Conclusions and future work 

This paper has presented an investigation of UAV-derived products of DEMs and orthomosaics along with DEM 

morphological derivatives of openness to automatically quantify the spatio-temporal motion of an active landslide. The 

research has demonstrated the successful integration of image cross-correlation functions with morphological attributes and 30 

the importance of the comparative analysis with synthetic data. The analysis has illustrated that openness implemented with 

image cross-correlation functions can be used in conjunction with DEM differencing to support the comprehensive 
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interpretation of landslide behaviour, providing a holistic overview of horizontal and vertical deformation patterns.2 Major 

limitations include the reliance of a priori knowledge of the landslide type and displacement magnitude to tune the image 

cross-correlation function parameters, use of field data for cross validation, manual surface feature identification and manual 

cleaning or threshold definition to remove erroneous displacement vectors. These limitations affect the performance of the 

resulting horizontal motions and elevation changes.9 Future work will assess the performance of image cross-correlation 5 

functions with shaded relief, slope, curvature and other possible DEM derivatives, computed with various pixel radial 

distances, implemented with real-world data. It will also apply other techniques to automatically filter spurious results. 

Ultimately, future research will investigate the correlation of the horizontal motions and elevation differences8 with rainfall 

observations to enhance the understanding of the landslide mechanisms.  
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Figure 4: SNR maps of stable terrain derived from COSI-Corr with (a) openness and (b) shaded relief superimposed over December 
2014 orthomosaic. (c) Box plots of signal-to-noise ratios23 (SNRs) for stable terrain in Regions A and B, as derived from the 
implementation of COSI-Corr with shaded relief, slope, openness and curvature applied to synthetic datasets. The median is displayed 5 
as a red line, the mean as a red rectangle, the whiskers as black horizontal lines and the outliers as black crosses.  
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Figure 524: Scatterplot of estimated surface displacements determined by COSI-Corr with openness plotted against manual 
observation per epoch pair.  
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Figure 624: Maps of surface displacements and elevation differences of (a and d) December 2014 -March 2015, (b and e) March 2015-
February 2016 and (c and f) February 2016-May 2016, respectively. Manually derived planimetric vectors at sample points are also 
superimposed.  5 
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Figure 724: Detailed view of December 2014 and May 2016 openness maps over (a) eastern lobe and (b) back scarp with elevation 
and openness plotted along (c) Profile AB. 
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