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Abstract. Drought management frameworks are dependent on methods for monitoring and prediction, but quantifying the 

hazard alone is arguably not sufficient; the negative consequences that may arise from a lack of precipitation must also be 

predicted if droughts are to be better managed. However, the link between drought intensity, expressed by some hydro-

meteorological indicator, and the occurrence of drought impacts has only recently begun to be addressed. One challenge is 

the paucity of information on ecological and socio-economic consequences of drought. This study tests the potential for 15 

developing empirical “drought impact functions” based on drought indicators (Standardized Precipitation and Standardized 

Precipitation Evaporation Index) as predictors, and text-based reports on drought impacts as a surrogate variable for drought 

damage. While there have been studies exploiting textual evidence of drought impacts, a systematic assessment of the effect 

of impact quantification method and different functional relationships for modeling drought impacts is missing. Using South-

East England as a case study we tested the potential of three different data-driven models for predicting drought impacts 20 

quantified from text-based reports; logistic regression, zero-altered negative binomial regression (“hurdle model”), and an 

ensemble regression tree approach (“random forest”). The logistic regression model can only be applied to a binary 

impact/no impact time series, whereas the other two models can additionally predict the full counts of impact occurrence at 

each time point. While modeling binary data results in the lowest prediction uncertainty, modeling the full counts has the 

advantage of also providing a measure of impact severity, and the counts were found to be reasonably predictable. However, 25 

there were noticeable differences in skill between modeling methodologies. For binary data the logistic regression and the 

random forest model performed similarly well based on leave-one-out cross-validation. For count data the random forest 

outperformed the hurdle model. The between-model differences occurred for total drought impacts as well as for two subsets 

of impact categories (water supply and freshwater ecosystem impacts). In addition, different ways of defining the impact 

counts were investigated, and were found to have little influence on the prediction skill. For all models we found a positive 30 

effect of including impact information of the preceding month as a predictor in addition to the hydro-meteorological 

indicators. We conclude that, although having some limitations, text-based reports on drought impacts can provide useful 
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information for drought risk management, and our study showcases different methodological approaches to developing 

drought impact functions based on text-based data. 

1 Introduction 

Drought is a major natural hazard with manifold impacts on the environment, the economy and wider society. While the 

hazard itself can rarely be avoided, drought risk assessment and management are important tools for responding to the 5 

hazard to mitigate impacts and for proactively planning for future droughts (Wilhite et al., 2000). Risk is commonly 

understood as a combination of the probability of an event and its negative consequences (UNISDR, 2009). Hence, it is not 

only important to better understand and predict the hazard, but also the likely consequences of the hazard, which depend on 

the vulnerability of the exposed people and assets at risk. Much research on drought has focused on characterizing the hazard 

(Briffa et al., 1994; McKee et al., 1993; Stagge et al., 2015a), and less on drought impacts (Bachmair et al., 2016a; Naumann 10 

et al., 2015). Also, most drought early warning systems monitor and/or forecast the hazard but do not provide information on 

when and where a precipitation deficit may turn into negative consequences. In a review of flood risk assessment, the 

authors state that hazard assessment receives much more attention than the assessment of negative consequences or damage, 

which “is treated as some kind of appendix within the risk analysis” (Merz et al., 2010). In comparison to drought, however, 

there have been considerable efforts to assess and model flood damage (e.g. Jongman et al., 2012; Merz et al., 2013; Schröter 15 

et al., 2014; Spekkers et al., 2014; Thieken et al., 2005). 

A common approach for assessing the negative consequences of natural hazards is the use of damage functions, variously 

called vulnerability functions or stage-damage-curves depending on the damage variable used and on author conventions 

(e.g. Michel-Kerjan et al., 2013; Papathoma-Köhle et al., 2015; Tarbotton et al., 2015). Such damage functions are usually 

continuous curves relating the hazard intensity (e.g. inundation depth or wind velocity) to the negative effects of the hazard, 20 

often expressed as a damage ratio of buildings. Transferring the concept of (empirical) damage functions to drought risk 

assessment presents many challenges, and has only recently begun to be addressed (Naumann et al., 2015). The main 

challenges can be conceptualized as follows: first, what is a suitable indicator characterizing the drought hazard (abscissa in 

Figure 1a)? Drought is known as a multi-dimensional hazard affecting different domains of the hydrological cycle and with 

different response times (Wilhite and Glantz, 1985). Second, what is a suitable damage variable for drought effect/damage 25 

(ordinate in Figure 1a)? This is particularly challenging given that many negative consequences of drought, hereafter drought 

impacts, are non-structural and hard to quantify or monetize (e.g. local water supply shortages or restrictions on domestic 

water use, impaired navigability of streams, or ecological impacts such as irreversible deterioration of wetlands or fish kills) 

(Logar and van den Bergh, 2013). Also, there is a paucity of drought impact data with sufficient spatial and temporal 

resolution except for the agricultural sector (Bachmair et al., 2016b). The third challenge is identifying an adequate 30 

functional relationship for relating hazard intensity to a damage variable (red lines in Figure 1a).  
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Regarding the first challenge (hazard intensity variable), several authors have empirically assessed which drought indicators 

are best linked to certain drought impact types such as, for example, vegetation stress and agricultural impacts, restrictions 

regarding water supply, or power generation (e.g. Bachmair et al., 2016a; Blauhut et al., 2016; Lorenzo-Lacruz et al., 2013; 

Stagge et al., 2015b; Stahl et al., 2012; Vicente-Serrano et al., 2013). These drought indicators tend to be measures of hydro-

meteorological variables which are relatively easy to quantify objectively, such as, for example, rainfall. Regarding the 5 

second challenge (drought damage variable), studies include a variety of data types representing the drought impact, 

including crop yield (e.g. Hlavinka et al., 2009; Naumann et al., 2015; Potopová et al., 2015; Quiring and Papakryiakou, 

2003); wildfire occurrence (e.g. Gudmundsson et al., 2014); drought-induced building damage (Corti and Wüest, 2011); and 

hydropower production (Naumann et al., 2015). While the above data relate to one specific type of drought impact, text-

based reports on drought impacts as assembled by the US Drought Impact Reporter (DIR) (Wilhite et al., 2007) and the 10 

European Drought Impact report Inventory (EDII) (Stahl et al., 2016) provide information on different types, including 

indirect and non-market impacts (e.g. ecological impacts, impacts on human health). However, for empirical damage 

functions such qualitative data needs to be quantified, although this transformation inevitably introduces uncertainties. A few 

studies exploited text-based impact reports from the EDII by converting them into binary time series of impact occurrence 

(Blauhut et al., 2015b, 2016; Stagge et al., 2015b). Building on these efforts, Bachmair et al. (2015, 2016a) derived the 15 

number of impacts based on text-based data, providing a surrogate measure of impact severity. The suitability of these 

different impact quantification methods has not yet been systematically assessed.  

Regarding the third challenge, different data-driven models have been deployed depending on the probability distribution of 

the drought impact variable, and the relation with the hazard indicator (e.g. linear regression, logistic regression, power law 

functions (e.g. Blauhut et al., 2015b; Naumann et al., 2015)). In addition to parametric models, non-parametric approaches 20 

such as classification and regression trees have been successfully applied for flood damage modeling (Merz et al., 2013; 

Spekkers et al., 2014). While an ensemble regression tree approach has also been tested for modeling text-based drought 

impacts (Bachmair et al., 2016a), assessing the performance of different  functional relationships remains an unmet 

challenge.   

The aim of this study is to develop empirical “drought impact functions” based on text-based reports from the EDII as 25 

surrogate information on drought damage, and thereby assess possibilities and limitations of transferring the concept of 

damage functions to drought. Specifically, we test  

 the effect of different methods of quantifying text-based drought impact information, and  

 the predictive performance of three data-driven models for linking drought intensity with drought impacts.   

We use a selection of standardized hydro-meteorological indices as drought hazard indicators. 30 
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2 Data 

2.1 Study area 

We selected South-East England (SEE) as a case study for developing the drought impact functions (Figure 1b). This is a 

level 1 region of the Nomenclature of Units for Territorial Statistics (NUTS1), a spatial unit used in the European Union. 

The reasons for choosing SEE include the good data availability in the EDII for this region, and the importance of drought 5 

risk assessment for this area given the severe droughts that have occurred in south-eastern UK in the past (e.g. Kendon et al., 

2013; Marsh, 2007). The south-east is one of the driest parts of the UK, but with some of the highest water demands. The 

region hosts a large population, approximately nine million (Office for National Statistics, 2016), and high concentrations of 

commercial and industrial activity. Consequently, parts of the region are already water stressed, with pressures on the water 

environment expected to increase in future (Environment Agency, 2009) . The EDII drought impacts for the SEE study area 10 

mainly consists of impacts on the water supply and on freshwater ecosystems. 

2.2 Predictors 

As candidate predictors we selected the commonly used drought indicators Standardized Precipitation Index (SPI) (McKee 

et al., 1993) and Standardized Precipitation Evaporation Index (SPEI) (Vicente-Serrano et al., 2010) of 1-6, 9, 12, and 24 

months accumulation period (hereafter SPI-n or SPEI-n). The SPI (SPEI) compares the total precipitation (climatic water 15 

balance) of a certain location over a period of n months with its multiyear average (Vicente-Serrano et al., 2010; Zargar et 

al., 2011), so that negative values of the SPI and SPEI indicate dryer than average conditions and positive values indicate 

wetter than average conditions. SPI and SPEI are based on E-OBS gridded rainfall and temperature data (v12.0, 0.25° spatial 

resolution) (Haylock et al., 2008). We used the R package “SCI” (Gudmundsson and Stagge, 2014) for SPI and SPEI 

calculation (gamma distribution for SPI; generalized logistic distribution for SPEI; standardization period for both variables: 20 

1970-2012). Evapotranspiration was determined using the Hargreaves-Samani method (Hargreaves and Samani, 1982). For 

each month we calculated the regional average of all E-OBS grid cells falling within the polygon covering SEE. The regional 

average was chosen since Bachmair et al. (2015) found little difference between the performances of different regional 

indicator metrics. The SPI/SPEI accumulation durations reflect the water deficit accumulated in the SEE area over that 

duration. As additional predictors, used to account for temporal trend and seasonality, we chose the year (Y) and the month 25 

(M, expressed as a sinusoid) of impact occurrence (Bachmair et al., 2016a). For parts of the analysis the impact data of the 

preceding month was introduced as a further predictor to address autocorrelation of residuals (see section 2.3 for how impact 

data was prepared). All predictor time series have monthly resolution. That is, although most of the SPI and SPEI 

accumulation periods are longer than a month, each index is calculated for a moving window that is shifted one month at a 

time. 30 
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2.3 Drought impacts 

Drought impact information for our SEE case study region comes from the European Drought Impact report Inventory 

(EDII) (Stahl et al., 2016), accessible at http://www.geo.uio.no/edc/droughtdb/ (data extraction: July 2016). The EDII 

contains text-based reports on drought impacts. Each report states: i) the location of occurrence (making reference to 

administrative regions at different NUTS levels); ii) the time of occurrence (at least the start and end year); and iii) the type 5 

of impact (assignment to predefined impact categories and subtypes). For quantitative analysis these reports need to be 

converted into time series of impact information. We tested three different approaches of impact counting to address the 

uncertainty associated with impact report quantification. The general procedure follows previous studies (Bachmair et al., 

2015, 2016a). For our analysis monthly time series are used. Not all impact reports state the start and end month of impact 

occurrence; if only information about the season was available, we assumed drought impact occurrence during each month 10 

of this season (winter= DJF, spring= MAM, summer= JJA, fall= SON). Impact reports only stating the year of occurrence, or 

with incomplete information about impact category or subtype, were omitted.  

Impact counting methods:  

1. Only presence versus absence of drought impacts per month is considered (Blauhut et al., 2015b, 2016; Stagge et al., 

2015b), resulting in binary time series of impact occurrence (hereafter I). 15 

2. All impact reports are counted. If an impact report states n impact subtypes, there are n impact counts for each specified 

month (Bachmair et al., 2015, 2016a). This results in time series of number of impact occurrences (hereafter NI). For 

instance, for impact category “public water supply” seven impact subtypes may be specified, ranging from local water 

supply shortage (e.g. drying up of springs/wells, reservoirs, streams) over bans on domestic and public water use (e.g. 

car washing, watering the lawn/garden, irrigation of sport fields, filling of swimming pools) to increased costs/economic 20 

losses (Stahl et al., 2016)). In total, there are 15 different impact categories in the EDII, each with its own set of 

subtypes. 

3. An impact report assigned to one impact category only counts once, independent of how many impact subtypes are 

specified. The resulting time series shows the same dynamic as for Method 2 but has lower NI. 

NI provides a measure of impact severity, but the information is likely more uncertain than binary data. For our analysis we 25 

considered total impacts in SEE (all impact categories), and two different subsets: water supply impacts and impacts related 

to freshwater ecosystems. These two impact categories make up the dominant part of the total impacts in SEE. As a 

consequence of the specific counting decision as well as the dynamic nature of the EDII, to which new entries may have 

been added and amendments or correction to existing entries may have been made in the meantime, the time series used in 

this study may differ slightly from those used in previously published studies.  30 
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3 Methods 

3.1 Data-driven models 

To establish a functional relationship between drought indicators (and further predictors) and drought impacts I or NI, we 

tested three different models:  

1) logistic regression (LG) for the presence or absence of impact data as a binary response variable (Blauhut et al., 5 

2015b, 2016; Stagge et al., 2015b);  

2) zero-altered negative binomial regression; this parametric model for count data is also known as a “hurdle” model 

(HM) (Zeileis et al., 2008); and 

3) a “random forest” (RF) model (Breiman, 2001), which is an ensemble of regression trees.  

Logistic regression was selected because it has been previously used for drought impact modeling (Blauhut et al., 2015b; 10 

Gudmundsson et al., 2014). For modeling count data we aimed to explore the predictive performance of one parametric 

model and a non-parametric alternative. Since the impact data contains many zeros, we selected the hurdle model, which is 

capable of dealing with excess zeros (Zeileis et al., 2008). The HM has been successfully applied to ecological datasets with 

zero-inflation (Ver Hoef and Jansen, 2007; e.g. Potts and Elith, 2006). The RF model represents a flexible machine learning 

approach that can handle non-linearities and predictor interactions (Breiman, 2001; Liaw and Wiener, 2002). The RF model 15 

has been extensively used for many applications in environmental science (e.g. Bachmair et al., 2016a; Catani et al., 2013; 

Oliveira et al., 2012; Park et al., 2016; Valero et al., 2016). 

LG belongs to the class of generalized linear models (Zuur et al., 2009a). The (logit-transformed) probability of impact 

occurrence (π) is modeled as a linear function of the predictors xi following Eq. (1): 

 20 

The left-hand side represents the logit transformation; the model parameters α and β are estimated by maximum likelihood 

(McCullagh and Nelder, 1989).  

The HM consists of two parts: a hurdle part for modeling zero versus larger counts, and a truncated count part for modeling 

positive counts (Zeileis et al., 2008). We selected a binomial model with logit link for the hurdle part (see LG); since the 

impact data is over-dispersed (variance larger than theoretically expected, in this case larger than the mean) we selected a 25 

negative binomial model for the count part with log link. For details of this model see Zeileis et al. (2008) and Zuur et al.  

(2009b). We used the R package “pscl” for the implementation (Jackman, 2015).  

The RF model is a machine learning algorithm where a large number of regression trees are grown on bootstrapped 

subsamples of the data (Breiman, 2001). We used the R package “randomForest” (Liaw and Wiener, 2002). The default 

values were kept for all model parameters; the variable ntree was set to 1000. Details about drought impact modeling using 30 

RF can be found in Bachmair et al. (2016a). For this study, however, we found that results are best when applying a square 
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root transformation to the response variable for the binary part of the time series, and no transformation for the count part. 

We obtain the final modeled time series by running the RF model twice with: a) square root transformed data, and b) 

untransformed data. The back-transformed output from model a) is replaced with the output from model b) if the modeled 

number of impacts from a) is >=1. Raw residuals refer to the difference between this final modeled time series and observed 

data.    5 

3.2 Modeling approach 

The predictors for LG and HM were selected using stepwise regression (backward and forward selection with the Bayesian 

Information Criterion as the selection criterion (Schwarz, 1978)). The models contain an intercept and linear terms for each 

predictor. For the two-part HM we only kept significant predictors (p < 0.05) for each model part in case a predictor was 

identified as important for one part, yet not for the other. A further criterion was applied when the cross-correlation between 10 

two predictors exceeded 0.7. To avoid co-linearity between the predictors, only the predictor showing the best correlation 

with the predictand (i.e. the impacts) was kept.  

For RF there is no prior predictor selection; best performing predictors are identified within the algorithm. Confidence 

intervals for LG and HM are computed using bootstrapping (resampling with replacement). For RF, confidence intervals are 

based on the predictions of all individual random forest trees; each tree is constructed based on a bootstrapped subsample 15 

containing two thirds of the data (Liaw and Wiener, 2002) .  

For the analysis we used a censored time series based on years with drought impact occurrence rather than the entire time 

series (Bachmair et al., 2015, see 2016a). The rationale is that there may be a lack of impact reporting for certain drought 

events; hence we only focus on parts of the time series with reported drought impacts. All months of all years with drought 

impact occurrence were selected plus an additional six months buffer before and after the drought year to include sufficient 20 

variability for model training. This resulted in n=234 months for total impacts, n=198 for water supply impacts, and n=174 

for freshwater ecosystem impacts.  

To assess the model’s predictive performance we performed leave-one-out cross-validation, i.e. each month is left out once 

for model training, and a prediction is made for this omitted month. We evaluated the model performance regarding its 

capability of predicting binary data and count data (HM and RF). For the binary performance evaluation we rounded the time 25 

series of LG; for HM and RF, data points <1 were rounded, and data points >1 truncated to 1. We used the following 

performance metrics: hit rate (i.e. the proportion of predictions for which the presence or absence of impacts is correctly 

identified), false positive and false negative rate. The model performance metric for the count part of HM and RF is the 

Kling-Gupta-Efficiency (KGE), which is based on the difference in mean, standard deviation, and correlation between the 

observed and the leave-one-out predicted series (Gupta et al., 2009). KGE lies between 1 (perfect fit) and negative infinity 30 

(worst fit). 
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4 Results 

4.1 Selected predictors 

The stepwise approach (see 3.2) resulted in the following predictors being selected for the LG model: SPI-6, SPEI-24, and M 

for modeling total impacts; SPI-6 and SPI-24 for water supply impacts; SPI-3, SPI-6, SPI-24, and Y for freshwater 

ecosystem impacts. The selected predictors for the HM are SPI-6 and SPEI-24 for the hurdle part, and SPI-6 and Y for the 5 

count part (total impacts for both methods of impact quantification). For water supply and freshwater ecosystem impacts 

different predictors were automatically selected for both model parts and methods of impact quantification (water supply 

impacts: SPI of short, medium, and long accumulation periods; freshwater ecosystem impacts: SPI and SPEI of short, 

medium, and long accumulation periods, and Y). For RF, all predictor are used, yet similar predictors as for LG and HM 

were identified as most important during regression tree construction.   10 

4.2 Fitted models 

Figure 2 shows the dependence of the observed or modeled response variable (total impacts, NI quantified after method 3) on 

the selected predictors; note that only the dependence on SPI-6 and SPEI-24 is displayed although the models include further 

predictors (e.g. M and Y). The top panels reveal a complex relationship between drought indicators and observed I or NI. 

Impact counts occur not only for negative drought indicator values: there are a few instances of I for positive values of both 15 

drought indicators (front left quadrant), and several data points with  impact counts yet negative indicator values for only one 

of SPI-6 or SPEI-24. The panels showing fitted data and an additional interpolated surface to aid visualization can be 

regarded as a three-dimensional version of the common two-dimensional damage functions based on one predictor. For LG, 

the fitted data reveal a comparably smooth increase of the likelihood of impact occurrence from positive to negative values 

for both selected drought indicators. For HM and RF, the response surface is more rugged. The RF model better captures 20 

observed NI than HM, especially for cases with negative SPEI-24 but less negative SPI-6; HM strongly underestimates these 

NI. Figure 3 additionally shows time series of observed versus fitted I or NI and confidence intervals. Both count data models 

tend to underestimate medium to high NI. HM additionally shows estimates of impact occurrence when none occurred. The 

confidence intervals for LG and HM are rather narrow, whereas they are wider for RF. Note that for the impact 

quantification method 2 (same dynamics but higher NI), the underestimation of high NI by RF is less pronounced, whereas it 25 

is much more pronounced by HM (not shown).  

An analysis of the residuals revealed significant autocorrelation up to a lag of 8 months depending on the model and impact 

quantification method (see examples in Figure 4). For RF, the autocorrelation of the residuals is less pronounced than for LG 

and HM. To take the autocorrelation into account, impact information for the preceding month was included in the model. 

For the binary part of the model, this meant whether or not impacts occurred in the preceding month. For the counts part, the 30 

number of impacts in the preceding month was added as a predictor. The inclusion of this autoregressive part in the model 
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generally resulted in a considerable decrease in the autocorrelation of the residuals. For HM, however, it also caused 

significant overprediction of NI for two data points (see HM b) in Figure 4).  

4.3 Predictive performance 

For each of the different models, the predicted series from the leave-one-out cross-validation was compared with the 

observed series. The evaluation of the predictive performance considering binary data and count data (HM and RF) 5 

separately yielded the following findings (Figure 5): 

1) noticeable differences between models,  

2) small differences between impact counting methods (i.e. all types of response data are equally well predicted),  

3) a positive effect of including impact information of the preceding month as an additional predictor, and  

4) similar results regarding between-model differences for different impact subtypes.  10 

Generally, for binary data, LG and RF perform similarly well with a hit rate of roughly 0.8; the hit rate of the hurdle model is 

distinctly lower (Figure 5 columns 1-2). For count data, RF is superior to HM. The temporal dynamics of NI are better 

reproduced by RF than HM (see Figure 6). However, underprediction of higher impact counts for the RF model lead to a 

lower mean and standard deviation than observed, resulting in KGE values less than 0.6. The HM shows an even stronger 

underprediction of high NI and frequent impact occurrence predictions despite absent impacts, resulting in KGE values less 15 

than 0.4. The impact quantification method (Figure 5 column 1 vs. 2) has hardly any effect on RF performance for either 

binary or count data. For HM, counting method 3 (lower NI) leads to a small but notable increase in performance.  

For all the models there is generally a positive effect of including the impact information from the preceding month as an 

extra predictor variable (Figure 5 column 1 vs. 3). The hit rate of LG and RF increases to > 0.9, and KGE values increase by 

ca. 20 percent. For HM, however, strong overestimation can be noticed for summer 2006 (Figure 5). When subsetting the 20 

total impacts on water supply and freshwater ecosystems, respectively, the same general picture of between-model 

differences as for total impacts is seen. That is, RF and LG are similar regarding binary data, and RF is superior to HM for 

the counts part (Figure 5 column 4-5). However, apart from this the results are varied. There is either a slightly increased or 

decreased predictive performance depending on the model, impact counting method, and binary versus count data 

performance metric (only impact counting method 2 is shown). Notable is a decreased performance of HM for water supply 25 

impacts, yet an increase for freshwater ecosystem impacts, compared with the prediction of total impacts.  

5 Discussion 

Previous studies exploiting impact data from the EDII have primarily used impact occurrence information coded as a binary 

variable (presence versus absence of impacts). This method of impact quantification has several advantages: it is simple to 

implement and communicate, and contains fewer subjective decisions and lower uncertainty. However, it does not provide 30 

information about the severity (in some quantitative sense) of the drought impacts. For characterizing drought onset and 
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termination binary data may be sufficient. Once in drought, however, there is less possibility of identifying specific times or 

regions more severely affected than others. Although the number of drought impacts is undeniably more uncertain than a 

simple measure of presence/absence of impacts, it provides a measure of impact severity and was reasonably predictable. We 

therefore conclude that there is value in using the number of impacts as a variable to express drought damage. The fact that 

the differences between both methods of impact counting were mostly small demonstrates that either approach is useful and 5 

relatively robust. For the hurdle model, however, the method resulting in lower impact counts (only differentiating between 

impact categories but not subtypes) yielded better results. Overall, we recommend interpreting impact counts as a severity 

metric rather than as representing the true number of observed impacts. Since information about impact severity, in a 

quantitative (or at least systematically and objectively estimated) sense is currently not available from the EDII database,  

exploring different methods for counting the number of impact reports as we do here is in our opinion the best way currently 10 

to address impact severity.  

Further sensitivity tests on the assumptions during impact quantification are desirable in future research, e.g. testing the 

effect of assigning a time of occurrence when impact reports only provide an approximate time indication. Testing three 

data-driven models revealed the superiority of RF with respect to predictive model performance. The discriminatory power 

of LG and the RF (based on square root transformed data) was comparable, with about 80 percent of the binary data 15 

correctly predicted. However, in addition the RF model also provides information about impact severity. The machine 

learning algorithm seems to be most capable of fitting “difficult” data points. For example, water supply related impacts may 

persist because of low groundwater levels, despite shorter-term wet conditions. These cases manifest themselves as high 

observed NI for very negative values of SPEI-24, but positive or only slightly negative values of SPI-6 (see Figure 2). In fact, 

the selection of predictor variables for most of the models include a combination of such shorter-term and longer-term time 20 

scales of SPI or SPEI, sometimes together with the month (for seasonality) or year (for trend) of impact occurrence. While 

for the RF model all predictors are used, the above-named ones were identified as the most important ones. 

The HM showed the lowest predictive performance regarding both the binary and the count parts, with both frequent false 

alarms and underprediction of high impact counts. One could argue that text-based drought impact information is vaguer or 

fuzzier than, e.g., data representing ecological processes, where HM was found to be suitable (Ver Hoef and Jansen, 2007; 25 

e.g. Potts and Elith, 2006). An increased performance of HM for more conservatively counted impact data (Method 3) 

supports this speculation. One can infer that for text-based drought impact data non-parametric methods may be most 

suitable. Future work could test other machine learning or flexible approaches that have been applied to drought modeling 

(e.g. Morid et al., 2007). On the other hand, a slight improvement of HM performance by re-assessing the predictor selection 

may not be ruled out; we do not claim to have identified the optimal model by automatic predictor selection. Nevertheless, 30 

small tweaks regarding the in- or exclusion of certain predictors only yielded marginal differences. It can be noted that the 

study region is very diverse geologically, which affects the response time of river flows to rainfall. The SPI duration 

showing the strongest relationship with monthly mean streamflow can vary greatly between catchments even over short 

distances, due to the geological heterogeneity of south-east England (Barker et al., 2016). For most catchments, Barker et al. 
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(2016) found the correlation with streamflow to be strongest for SPI durations less than a year, but for very permeable 

catchments with a large groundwater contribution to flows, correlations remained strong up to the longest duration studied: 

two years. Hence, it seems reasonable to include SPI predictors representing both the fast and the slow response to rainfall 

(the latter including groundwater as well as streamflow in permeable catchments). 

The between-model differences discussed above also apply when subsetting the total impacts on water supply and freshwater 5 

ecosystem impacts, respectively. We expected that using subsets of the total impacts would lead to more homogeneous data 

and thus a closer relation between drought intensity and impact occurrence. However, the analysis did not generally support 

this. Possible explanations include that the rainfall response of streamflow in very permeable catchments (affecting 

freshwater ecology) can be as slow as that of groundwater (affecting water supply). Another reason may be that the subsets 

may result in less representative data than the lumped data. Data-driven models need sufficient data for training. Because of 10 

this we limited the development of drought impact functions to impact categories with many data points, and the larger-scale 

region SEE. The suitability of our methods for constructing local-scale drought impact functions needs further investigation. 

For smaller regions there is less data available in the EDII.  A previous study found decreased  RF performance for regions 

with lower data availability (Bachmair et al., 2016a). To overcome the data scarcity, a number of suggestions appear possible 

given the will and resources. Options include semi-automated newspaper clippings and other big data approaches as well as 15 

trained observer networks as explored with the USA drought monitoring (see e.g. Smith et al. (2014). They also include a 

more directed and targeted monitoring of drought impacts in general as part of routine environmental and water resources 

monitoring. For example, on a more localized (catchment) scale it may be possible to develop impact functions using 

ecological response data (for example, in the case of South East England reported here, capitalizing on regular monitoring 

undertaken in the National Drought Surveillance Network (Dollar et al., 2013).  20 

 

There are a range of potential applications for impact functions in water resources management, with two obvious examples 

being: long-term strategic drought and water resources planning; and real-time, monitoring and early warning to support 

operational decision-making during drought events. For the case of long-term drought and water resources planning, in 

particular, scenarios provide a common tool to test and improve existing drought plans (for example, in relation to England 25 

as in this case study: Watts et al. (2012); Anderton et al. (2015)). Currently such tests are mostly done at the level of 

individual water suppliers, with very specific failure functions, and generally such approaches focus on security of water 

supply; Watts et al. (2012) argued that social or environmental impacts should be incorporated into such tests in future, to 

enable the consequences of management decisions to be appreciated and thereby provide a more realistic test of Drought 

Plans. Similarly, impact functions may facilitate more regional to country scale assessment of the risk of certain sectors to 30 

drought and hence enable the co-ordination of drought management plans across sectors. In a real time context, an impact 

function enables the interpretation of a given drought index as a threshold or trigger of action. Impact functions thereby 

translate drought intensity expressed by a hydro-meteorological indicator into the possibility of experiencing socio-economic 

or ecological effects, based on historical experience. Currently, operational systems like the US Drought Monitor or the 
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European Drought Observatory allow the user to select different drought indices. We propose that in the future users should 

ideally also be able to select an index that provides information on whether socio-economic or ecological effects can be 

expected for this drought intensity, which could be addressed by impact functions. This would go some way to countering a 

recognized deficiency in current monitoring and early warning systems, i.e. a capacity to quantify and eventually predict 

impacts on society and ecosystems (Bachmair et al. 2016). 5 

If near real-time monitoring of drought impacts is available, as is the case for the US DIR, impact predictions could be 

supported by impact information of the preceding time steps. Our analysis revealed an increase in predictive performance 

when including such knowledge. Furthermore, impact functions as surrogates for damage functions could be used with 

hazard scenarios to derive an estimate of risk (e.g. Stoelzle et al., 2014). However, drought impact functions represent a 

(rather loose) measure of severity; monetary risk estimates could only be derived by coupling them with approaches to 10 

quantify the willingness to pay for the restoration of certain (ecosystem) services (Banerjee et al., 2013; Logar and van den 

Bergh, 2013; Mens et al., 2015). On the other hand, hydro-economic models or engineering approaches could be tested 

against such empirically derived impact functions. A caveat is that our impact functions do not incorporate dynamics of 

vulnerability; i.e. the link between hydro-meteorological indicators and impacts may change over time due to adaption and 

preparedness measures (Blauhut et al., 2015a), for example the increasing resilience of water supply systems to drought. For 15 

monetary losses such changes may be accounted for (e.g. by price adjustment (Kron et al., 2012). In our case the variable Y 

(year) may cater for trends in vulnerability or impact reporting to some extent as suggested by Stagge et al. (2015b). 

Interestingly, the year is included as a predictor for all the models of freshwater ecosystem impacts, whereas the LG and HM 

use only SPI of different durations for estimating water supply impacts. However, clearly the inclusion of a linear trend by 

year is necessarily an approximation, and resilience changes episodically, with major events themselves being major 20 

catalysts for improvements in water governance or water supply system resilience. To better account for the dynamics of 

vulnerability, expert elicitation could be used to gain an understanding of the dynamics of adaption measures over time for a 

specific application and region. One would need to test whether quantifying such information and adding it as further 

predictor variable would improve the reliability of impact functions. 

In assessing the most suitable impact function for any application, further evaluation criteria may be useful in addition to the 25 

predictive performance, such as the capability of extrapolation beyond the training data, interpretability and simplicity of 

communication, and ease of application. Especially the ability of RF to predict impact occurrence for yet unexperienced 

drought scenarios needs to be explored Although the RF method means that complicated relationships between the (many) 

predictors and the predictand can be incorporated, the fewer predictors used in the LG and HM approaches make 

interpretation of the link between indicators and impacts more transparent. In the choice of modelling methodology, a 30 

balance therefore needs to be struck between these several different criteria. 
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6 Conclusion 

This study tested the potential for developing empirical “drought impact functions” based on hydro-meteorological drought 

indicators and text-based reports on drought impacts as a surrogate variable for drought damage. With a view to transferring 

the concept of damage functions (widely used in other hazards) to drought, we tested different methods for quantifying text-

based information and three data-driven models for linking hazard intensity with the derived drought impact variables for 5 

one example region in South-East England. We conclude that although having some limitations, text-based reports on 

drought impacts can provide useful information for drought risk management. While the conversion of text-based reports 

into number of drought impact occurrences is undeniably more uncertain than binary data of presence/absence of impact 

occurrence, it provides an additional measure of impact severity that was found reasonably predictable. Unlike more 

commonly used damage functions linking one hazard variable to one particular type of damage, modeling the impacts of the 10 

multi-faceted hazard of drought requires several drought indicators (in our case different accumulation periods of SPI and 

SPEI). Out of the three models tested, the random forest model generally performed best. While logistic regression and the 

random forest model showed a similar discriminatory power for binary impact data, the random forest additionally predicts 

count data and thus information about impact severity. When using subsets of the total impacts (impacts on water supply and 

impacts on freshwater ecosystems, respectively) similar between-model differences are revealed. While the flexible machine 15 

learning algorithm seems most suitable for modeling the complex relation between drought indicators and text-based data, 

we do not claim to have generally identified the best model. Instead, our study showcases different methodological 

approaches to developing drought impact functions based on text-based data, depending on data availability and purpose of 

analysis. 
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