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Abstract 11 

Extreme temperature anomalies such as heat and cold waves may have strong impacts on human activities and 12 

health. The heat waves in Western Europe in 2003 and in Russia in 2010, or the cold wave in South-Eastern 13 

Europe in 2012, generated a considerable amount of economic loss and resulted in the death of several 14 

thousands of people. Providing an operational system to monitor extreme temperature anomalies in Europe is 15 

thus of prime importance to help decision makers and emergency services which are responsive to an 16 

unfolding extreme event. 17 

In this study, the development and the validation of a monitoring system of extreme temperature anomalies 18 

are presented. The first part of the study describes the methodology based on the persistence of events 19 

exceeding a percentile threshold. The method is applied to three different observational datasets, in order to 20 

assess the robustness and highlighting uncertainties in the observations. The climatology of extreme events 21 

from the last 21 years is then analysed to highlight the spatial and temporal variability of the hazard and 22 

discrepancies amongst the observational datasets are discussed. In the last part of the study, the products 23 

derived from this study are presented and discussed with respect to previous studies. The results highlight the 24 

accuracy of the developed index and the statistical robustness of the distribution used to calculate the return 25 

periods. 26 
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1 Introduction 36 

Extreme temperature anomalies have strong impacts on human health and activities. The heat waves that 37 

occurred over Western Europe in August 2003 caused about 70,000 deaths across twelve countries (Robine et 38 

al. 2008). The heat wave in Russia during the summer 2010, considered as the strongest in the last 30 years 39 

(Barriopedro et al. 2011, Russo et al 2015), caused more than 55,000 victims and 500 billion euro of damage. 40 

In February 2012 a cold wave over Central and Eastern Europe generated more than 700 million euro of 41 

damage, and 825 deaths were reported (de’Donato et al., 2013). Monitoring and cataloguing these events are 42 

crucial in order to place an event in the historic perspective and in order to assess the potential impacts on 43 

human health and activities by combining the information with data from other catalogues (such as EM-DAT, 44 

http://www.emdat.be, which includes information on the impacts). A catalogue would also be appropriate to 45 

analyse the spatial and temporal evolutions of the hazard related to temperature anomalies, and, finally in the 46 

future, to calibrate and validate an operational forecasting system in terms of these extreme events. This 47 

product will be implemented in the operational monitoring system of the European Drought Observatory 48 

(EDO, http://edo.jrc.ec.europa.eu). 49 

From the human health point of view, a heat (cold) wave can be considered as a period with sustained 50 

temperature anomalies resulting in one of a number of health outcomes, including mortality, morbidity and 51 

emergency service call-out (Kovats et al., 2006). Wave intensity and duration, but also time of the year, are 52 

important determinants of the impact on health (Montero et al., 2012; Rocklov et al., 2012). While most studies 53 

focus on daytime conditions only, there is emerging evidences that nocturnal conditions can also play an 54 

important role in generating heat-related health effects, a result of the cumulative build-up of the heat load 55 

with little respite during the night (Rooney et al., 1998).  56 

In the literature, some indicators have been developed to describe the complex conditions of heat exchange 57 

between the human body and its thermal environment. For warm conditions, indices usually consist of 58 

combinations of dry-bulb temperature and different measures for humidity or wind speed, such as: the 59 

humidex (Smoyer-Tomic et al. 2003), the net effective temperature (Li and Chan, 2000), the wet-bulb globe 60 

temperature (Budd, 2009), the heat index (Steadman, 1979) or the apparent temperature (Steadman, 1984). 61 

More generally, efforts have been made to harmonize the large number of indices developed. For example, 62 

the Universal Thermal Climate Index (UTCI, www.utci.org) has been proposed to assess heat and cold waves. 63 

The main inconvenience of most of these indices is technical, i.e., the humidity when the daily maximum or 64 

daily minimum temperature (hereafter Tmax and Tmin) occur is not necessarily known. In addition, the 65 

simulated values of wind speed and humidity provided by numerical weather models are generally less 66 

accurate than the 2m temperature in the reanalysis and observational datasets. The WMO Expert Team on 67 

Climate Change Detection and Indices (ETCCDI) proposed the Warm Spell Duration Index (WSDI) as 68 

standard measurement of heat and cold waves which is calculated using a percentile-based threshold. Russo 69 

et al. (2015) proposed a version of this method that provides the amplitude (or intensity) of a heat wave based 70 

on the maximum temperature and the interquartile range of yearly maximum temperature of the past period. 71 

This method is powerful to compare the heatwaves at climatological scale over the world and their trends with 72 

http://www.emdat.be/
http://www.utci.org/
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a local standardization. Nevertheless, this method is not suitable for monitoring heat waves because it focuses 73 

on the most extreme events (the thresholds are defined according to the yearly maximums), and it does not 74 

take into account the strong human impact of Tmin (WMO, 2015). 75 

In this study we propose an operational system to monitor heat and cold waves based on an adapted index 76 

inspired by the previous studies. In section 2, data and methods are presented and the uncertainties related to 77 

the observations are assessed. Then, the climatology in term of occurrence, intensity and duration of the waves 78 

are presented in section 3. This represents the baseline of the monitoring system that will become operational 79 

and embedded in the EDO system. Finally, concluding remarks are provided in section 4.  80 

 81 

2 Data and tools 82 

2.1 Datasets 83 

In this study we use daily Tmax and Tmin from three different datasets. The first one is based on the 2m 84 

temperature datasets provided by the European National Weather Services, which, in turn, is used as an input 85 

for the LisFlood hydrological model (De Roo et al., 2000). The observations are gridded onto a regular lat/lon 86 

grid of one square degree. The use of gridded observation data allows i) to focus on large scales heat/cold 87 

waves and ii) to compare the station data with reanalysis. This LisFlood product will be eventually used in the 88 

operational system for the monitoring of extreme temperature waves. To validate the results, a comparison 89 

with two other sets of data is performed: the ERA-Interim reanalysis (ERAI, Dee et al., 2011) and the 90 

EOBS/ECAD dataset Version 14 (Haylock et al., 2008, van den Besselaar et al., 2011), both regridded to the 91 

same one square degree resolution. Note that, according to ECMWF, ERAI datasets are released with a delay 92 

of two months for quality assurance; as a consequence this dataset cannot be used for operational monitoring 93 

purpose. The same problem occurs for the EOBS datasets. 94 

The definition of Tmax and Tmin in the three datasets can differ from the definition of WMO (van den 95 

Basselaar et al. 2012). In LisFlood, the Tmin assigned to the day d is defined as the minimum temperature 96 

value that occurred from 1800Local Time (LT) of the day before (d-1) to 0600LT of the day d. For EOBS, 97 

Tmin is defined as the 24-hour daily minimum. Similarly, Tmax of the day d is the maximum temperature 98 

recorded from 0600LT to 1800LT of the day d for LisFlood data and the 24-hour daily maximum for EOBS. 99 

In ERAI, Tmin (Tmax) of day d is the lowest (highest) value of temperatures recorded at 0000LT, 0600LT, 100 

1200LT or 1800LT of day d. The starting years of the period covered by the datasets are also different (1950 101 

for EOBS, 1979 for ERAI and 1990 for LisFlood). In order to be consistent and in a view of the future use for 102 

the reforecast period of the ECMWF ENS forecast model, the period from 1995 to 2015 (21 years) is used for 103 

all the datasets. Note that most of the results obtained in this study have been compared to a longer period 104 

(starting from 1990) providing very similar results. According to WMO (2009), the recommended durations 105 

of climate samples depend on the purpose of the study: climate evolution, detection of extreme, climatological 106 

reference, climatological evolution of extremes etc. However, there is no clear consensus about a specific 107 
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duration. As the purpose of this monitoring system is the detection of relative intense events according to a 108 

reference period we consider that 21 years is sufficient to provide robust climatology. This baseline duration 109 

is used in plenty of studies/datasets (Kharin et al. 2013, Vautard et al. 2013, Monhart et al. 2016). It is also 110 

worth to note that ECMWF runs an extended ensemble model with hindcast (or reforecast) to create a 111 

climatological baseline to correct the model bias, built a climatology and detect the strongest anomalies 112 

(Vitart, 2004). These hindcasts are also performed using 21 years highlighting the usefulness of this length of 113 

climatological reference. Moreover, the use of a longer period of sampling to estimate the climatology and to 114 

calculate the return period could underestimate the actual return periods of the events due to the non-stationary 115 

of the occurrences and intensities of heat and cold waves in a context of climate change (Gonzales-Hidalgo et 116 

al. 2016). According to the WMO guideline (WMO, 2009) and the mentioned previous studies, but also due 117 

to i) the availability of the datasets and ii) to be consistent with the forecasts that will be implemented in the 118 

same system in the future, we decide to use the 21-year climatology to detect and characterize the intensities 119 

of heat and cold waves.  120 

 121 

2.2 Metric of extreme temperature anomalies 122 

Following the WMO definition, there are many different ways to measure a heat wave (Perkins et al., 2013). 123 

The objective of this study is not to create a new index, but to provide an operational system based on an 124 

adapted method proposed in the literature. This system is inspired by the studies of Russo et al., (2014) and 125 

WMO (2015). First, daily Tmin and Tmax are transformed into quantiles based on the climatological (21 126 

years) calendar percentiles of each variable. To highlight the events with the most potential human impacts, 127 

the year is cut in two periods: the extended summer period, when heat waves usually have stronger impacts 128 

(6 hottest month over Europe, from April to September), and the extended winter period to focus on the cold 129 

waves (from October to March). Note that also during the summer (winter) period, cold (heat) waves may 130 

occur but they are not considered here. The independent calculation of the daily quantiles of observed Tmin 131 

and Tmax is done by applying a leave-one-out method to avoid inhomogeneities (Zhang et al. 2005). The year 132 

studied is removed from the climatology. The data without this year is exploited to perform the observed 133 

cumulative distribution function (CDF). To remove artefacts due to the relative small sampling (21 years), a 134 

window of 11 days centred on the day studied is exploited. The daily temperatures are transformed into 135 

quantile by this procedure to create two daily temperature quantiles from 1995 to 2015, derived from the CDF 136 

of Tmin and Tmax independently.  137 

The main difference with the previous studies is the use of both Tmax and Tmin, rather than Tmax only or the 138 

daily mean temperature. Then a hot day is defined when simultaneously the daily quantiles of Tmax and Tmin 139 

are above quantile 0.9 during the extended summer (from April to September). The same definition is applied 140 

for cold days when the two quantiles are lower than quantile 0.1 from October to March. The occurrences are 141 

strongly influenced by these thresholds. As this study aims at quantifying the intensity of waves regarding the 142 

climatology and at assessing with robust scores the forecast of these events, it is not possible to focus only on 143 
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the most extreme cases. So these thresholds (quantiles 0.9 and 0.1) are chosen as compromise between the 144 

need to have a minimum number of events and the definition of extremes. They are also used in a large number 145 

of other studies (WMO, 2015, Hirschi et al., 2011). Note that in order to discuss the sensitivity of using the 146 

intersection of Tmin and Tmax rather than one temperature value per day, the same methodology has also 147 

been applied using separately Tmin and Tmax to determine hot and cold days.  148 

Heat and cold waves are associated with a persistence of hot or cold days. Based on the literature (Gasparrini 149 

and Armstrong, 2011, Kuglitsch et al, 2010), as well as on the recommendation of WMO (2015) for health 150 

impacts, we define a heat (cold) wave as an event of at least 3 consecutive hot (cold) days (i.e. when 151 

simultaneously Tmin and Tmax exceed the quantile thresholds). A pool is also introduced when two events 152 

are separated by one day. Note that periods in between two waves are not taken into account in the wave 153 

duration and in the wave intensity. Fig. 1 illustrates the method used to detect heat waves in this study. 154 

The European mean distribution of these cases is presented in Tables 1 and 2 using the LisFlood dataset, but 155 

the results are very similar with the two others datasets (not shown). In the first column of both Tables 1 and 156 

2 the number of hot (cold) days (above or under the quantile thresholds) are indicated. Theoretically these 157 

values should be constant and equal to 10% of the total length of the samplings. Nevertheless, due to undefined 158 

values and values equal to the thresholds, there are some differences. These tables demonstrate also the impact 159 

of using the intersection of Tmin and Tmax above (below) the thresholds. With respect to heat waves (Table 160 

1), for example, in about 150 out of 376 days (i.e. 40%) the Tmin above the thresholds occurred simultaneously 161 

(i.e. the same day) with Tmax above the threshold (Table 1, first column). Also, there is a significantly higher 162 

persistency of Tmax than Tmin. For instance, using Tmax only, 70% of the hot days (269 out of the 382) are 163 

detected as being part of a heat wave, whereas using Tmin only, the ratio is about 60% (i.e. 226 out of 376). 164 

Using both Tmax and Tmin, on average 81.3 days (54% of the hot days) are detected as being part of a heat 165 

wave (Table 1, second column). Finally, the mean occurrences of heat waves are indicated in the last column. 166 

The use of the two temperatures tends to reduce drastically the number of events (from 44 or 51 to 16.9 on 167 

average during the period) but also their durations (5.11 or 5.3 days to 4.8). The continental regions appear 168 

less affected by this reduction than coastal regions (not shown). In analogy, Table 2 shows the same data for 169 

cold waves.  170 

Once a wave is detected, two main characteristics are derived: the duration (in days) and the intensity. To take 171 

into account different characteristics and to assess the sensitivity of the methods, the latter is calculated by 172 

three different methods. The first one is based on the sum of the quantiles above (or under) the threshold 173 

during the detected wave.   174 

 175 

𝐼1(𝑛) = ∑ 𝛽
[𝑄𝑡𝑥𝑖,𝑤 − 𝑇ℎ𝑟𝑒𝑠 + 𝑄𝑡𝑛𝑖,𝑤 − 𝑇ℎ𝑟𝑒𝑠]

2
 

𝑁

𝑖=1

{
𝛽 = 1 𝑓𝑜𝑟 𝐻𝑒𝑎𝑡 𝑤𝑎𝑣𝑒𝑠

𝛽 = −1 𝑓𝑜𝑟 𝑐𝑜𝑙𝑑 𝑤𝑎𝑣𝑒𝑠
 176 

 177 
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Where I1 is the intensity of the wave having a duration equal to N days (except the pool days), Qtn and Qtx 178 

are the daily quantile of Tmin and Tmax and Thres, the quantile thresholds (i.e. 0.9 and 0.1 for heat and cold 179 

days respectively). The purpose of dividing this intensity by 2 is to create an intensity comparable to the 180 

intensities calculated with Tmin and Tmax only. The second method is similar to the first but the quantile 181 

differences are replaced by the temperature anomalies with respect to the climatological daily thresholds. This 182 

method is defined as follows: 183 

 184 

𝐼2(𝑛) = ∑ 𝛽
[𝑇𝑥𝑖,𝑤 − 𝑄𝑇𝑥 + 𝑇𝑛𝑖,𝑤 − 𝑄𝑇𝑛]

2
 

𝑁

𝑖=1

{
𝛽 = 1 𝑓𝑜𝑟 𝐻𝑒𝑎𝑡 𝑤𝑎𝑣𝑒𝑠

𝛽 = −1 𝑓𝑜𝑟 𝑐𝑜𝑙𝑑 𝑤𝑎𝑣𝑒𝑠
  185 

Where 𝑄𝑇𝑥 and 𝑄𝑇𝑛 represent the calendar daily thresholds of Tmin and Tmax, i.e. the temperatures for the 186 

quantiles 0.9 (0.1) for the heat (cold respectively) waves. This method allows quantifying intensities with 187 

respect to the seasonal cycle and reflects an anomaly but not necessarily extreme values of absolute 188 

temperatures. This calculation is motivated, for example, by agricultural applications, where the crop yields 189 

can be sensitive to strong anomalies during the transitional seasons (Porter and Semenov, 2005).  The last 190 

method is also based on temperature anomalies but uses a constant threshold. 191 

 192 

𝐼3(𝑛) = ∑ 𝛽 ∗ [
[𝑇𝑥𝑖,𝑤 − 𝑇𝑥𝑚𝑒𝑑(𝑄𝑇𝑥)]

2 ∗  𝜎𝑇𝑥
+

[𝑇𝑛𝑖,𝑤 − 𝑇𝑛𝑚𝑒𝑑(𝑄𝑇𝑛)]

2 ∗  𝜎𝑇𝑛
] 

𝑁

𝑖=1

{
𝛽 = 1 𝑓𝑜𝑟 𝐻𝑒𝑎𝑡 𝑤𝑎𝑣𝑒𝑠

𝛽 = −1 𝑓𝑜𝑟 𝑐𝑜𝑙𝑑 𝑤𝑎𝑣𝑒𝑠
  193 

 194 

Where   𝑇𝑥𝑚𝑒𝑑(𝑄𝑇𝑥) and 𝑇𝑛𝑚𝑒𝑑(𝑄𝑇𝑛) represent the constant temperature of the median of all calendar daily 195 

quantiles of 0.9 (heat waves) and 0.1 (cold waves) of Tmax and Tmin. 𝜎𝑇𝑥  and 𝜎𝑇𝑛  represent the 196 

climatological yearly variance of Tmax and Tmin.  This method is intended to increase the intensities of a 197 

heat or cold waves that occur close to the maximum or minimum of the seasonal cycle. Based on this 198 

calculation, the strongest intensities are generally associated with the warmest or coldest absolute 199 

temperatures. The division by the variance of the seasonal cycle is justified in order to reduce the intensity of 200 

the waves that occur over region with strong seasonal cycle, where the variability of temperature is well known 201 

to be significant. The latter method is conceptually close to the one proposed by Russo et al. (2015) and, due 202 

to its sensitivity to the absolute temperatures, might be more suitable to assess the potential impacts on human 203 

health. Fig.1 illustrates the heat wave detection and the calculation of the two last methodologies. The different 204 

intensities provided by these three methods, which use the same detection method, are discussed in the results 205 

section. 206 

 207 
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3 Results 208 

3.1 Comparison of the datasets 209 

In order to compare the observations and quantify the uncertainties of the results, different datasets, provided 210 

by observations and reanalysis, are used. First, the temporal correlations between different pairs of the daily 211 

quantiles are shown in Fig. 2. We notice that the correlation of the quantiles of Tmin and Tmax from ERAI, 212 

EOBS and LisFlood datasets are quite in agreement (the spatial mean correlation is about 0.89). Note that due 213 

to the fact that the quantiles are used, the seasonal cycle is removed, showing the quality of this agreement. 214 

The scores are generally better for Tmax than Tmin. This can be explained by the larger spatial homogeneity 215 

of Tmax than Tmin and the differences in the Tmin definition amongst National Weather Services. Indeed, 216 

over certain countries, Tmin is measured during night time between 1800LT and 0600LT the following day, 217 

elsewhere from 0000LT to 2400LT or from 0600LT on day d to 0600LT on day d+1, which can result in a 218 

delay of one day. In the EOBS data description, and in van den Besselaar et al. (2011), this point and the 219 

uncertainties associated are deeply analysed. Due to the coarser resolution and only 4 recorded values per day 220 

to calculate Tmin and Tmax, ERAI is associated with a hot bias of Tmin and a cold bias of Tmax in relation 221 

to both LisFlood and EOBS datasets (not shown). The yearly Mean Absolute Errors of Tmin and Tmax (MAE, 222 

Fig. 3, very close to the Root Mean Square Differences) remains, however, relatively low (<1.5 deg.) except 223 

at the borders of the domain, confirming the good agreement especially between EOBS and ERAI. Note that 224 

the LisFlood dataset is slightly less correlated to the others over Scandinavia, Germany and on the North-225 

easternmost part of the domain probably due to the definition of Tmin and Tmax for each country, delay in 226 

the GTS communications and the density of the stations (the E-OBS network over Germany and Scandinavia 227 

is quite dense).    228 

3.2 Climatology 229 

3.2.1 Variability in the occurrence of the waves 230 

The total occurrences of heat and cold waves during the 21 years are calculated using the definitions presented 231 

in section 2. This is performed independently for the three datasets to provide information on the robustness 232 

of the results. As shown in Table 1 and 2 cold waves are more frequent than heat waves for the three datasets 233 

especially in the eastern part of Europe (Figs. 4 and 5, first row). The independent use of Tmin and Tmax to 234 

detect, respectively, heat and cold waves reveals more homogeneous spatial patterns and quite the same 235 

number of occurrence between them, but about 50 to 60% more than the intersection of Tmin and Tmax (Figs. 236 

4 and 5 second and third row). The detection of the heat waves using Tmin only generates fewer events. These 237 

results highlight two main characteristics: 1) the lower persistency of Tmin with strong anomalies could 238 

partially explain the difference between the occurrence of heat and cold waves; 2) the increase of the 239 

occurrence in the continental regions is mainly explained by an increase of the simultaneous anomalies in 240 

Tmin and Tmax rather than an increase of the two occurrences. These two characteristics may be explained 241 

by the synoptical situations during cold waves and the fact that there are more frequent meteorological 242 

blocking conditions in winter than in summer (Tibaldi et al. 1994, Doblas-Reyes et al, 2002). Several recent 243 
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studies (Tomczyk and Bednorz 2016, Sousa et al. 2017) emphasized the important role of persistent and 244 

intense blocking and associated anticyclones in producing heat or cold waves. The origins of the extreme 245 

blocking situations are still not well understood and could be related to the development of a large-scale 246 

Rossby train (Trenberth and Fasullo 2012). Schubert et al. (2014), who identified Western Russia as the 247 

leading mode of surface temperature and precipitation covariability, have highlighted the potential feedback 248 

of the soil moisture in enhancing the intensities of the heat waves over this region (Fisher et al. 2007, Mueller 249 

and Seneviratne 2013, Miralles et al. 2014, Whan et al. 2015).  250 

The main difference between the datasets is the higher occurrence of both heat and cold waves for ERAI than 251 

for the other datasets. This could be an effect of the coarser resolution in time and space of the reanalysis data 252 

compared to the ground observations that tends to smooth the temporal evolution of the temperature anomalies 253 

and so of the quantiles. Due to that lower temporal variability, the chance to get long-term anomalies is 254 

increased when using ERAI as compared to the other datasets.  255 

The distribution of the wave durations is needed to complete the picture of the total number of occurrences of 256 

all individual waves. Fig. 6 displays the spatial variability of the last quartile of the wave durations recorded 257 

for each grid point. It appears that the difference between the durations of heat and cold waves between the 258 

three different datasets is much lower than the difference of occurrence discussed previously (Figs. 4 and 5). 259 

It is also interesting to note that, especially for cold waves, the regions where the waves are the most frequent 260 

are not the same where they are the most persistent. Finally, it is remarkable to record many of the longest 261 

durations of the cold waves along the coasts of the North Sea and the Baltic Sea. Indeed, the climate along the 262 

coasts is generally more variable than in the continental regions, and so the waves are supposed to be shorter. 263 

According to the same calculations using only Tmin or Tmax (not shown), the spatial heterogeneity of the 264 

cold wave durations is much larger when Tmax is used than when Tmin is used and we observe a strong 265 

increase of the wave durations with Tmax over northern Germany, Denmark, northern Poland, the Baltic Sea 266 

and southern Scandinavia. This highlights the persistency of negative anomalies of Tmax over these regions, 267 

which could increase the chance to get longer durations with the intersection method and could explain the 268 

results in Fig. 6. In other words, the Baltic Sea stabilizes the temperature variability and therefore generates a 269 

signal with lower high frequency modulations. When an anomaly occurs, it has a bigger chance to last longer 270 

and so potentially induce longer heat/cold waves. This is due to our detection method of heat and cold waves 271 

that is based on the quantiles and not on absolute temperature. The latter are generally less variable and less 272 

extreme values are detected along the coasts. In addition the wavelet analysis (Torence and Compo, 1998) of 273 

temperature in winter and summer was also calculated to analyse the frequency variabilities of the signal. it 274 

showed that the regions with low modulations (Eastern Europe in summer or Northern Russia and north of 275 

Poland in winter) are also the regions with high frequency of occurrence or with longer durations (not shown). 276 

3.2.2 Intensity of the heat and cold waves 277 

The climatology of the intensities is important in order to provide a baseline and to calibrate the wave 278 

monitored but very sensitive to the definitions applied. The three methods, I1, I2 and I3 (using the quantiles, 279 
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the temperature anomalies and the constant threshold of temperature, see Sect. 2.2), are compared during heat 280 

and cold waves in Fig. 7. The distributions of each scatter plot indicate the relationships by pairs in between 281 

the three methods for all the events, and the colours indicate the corresponding durations of the events. Note 282 

that Fig. 7 refers to LisFlood, but the same results are obtained for the other datasets. These panels show the 283 

strong dependency of the intensities derived from the quantiles and the durations (colour distribution more 284 

vertically distributed in Fig. 7b and horizontally in Fig.7c and 7e). This is especially true for the cold waves 285 

(correlations in between duration and I1 larger than 0.95). These high correlations highlight the redundancy 286 

in the information with the wave durations. Moreover, I1 is also climatologically bounded by the values 287 

recorded during the past period. For these reasons the use of the quantiles appears not suitable to assess the 288 

heat and cold wave intensities. The methods derived from the temperature anomaly (I2) and the constant 289 

threshold (I3) are therefore chosen. Indeed, the correlations between the wave durations and I2 and with I3 290 

are much lower and not significant (on average 0.72 and 0.59), showing the potential additional information 291 

provided by I2 and I3. Moreover, these values are not bounded by the historical values and so they will be 292 

able to better distinguish the most severe cases. According to the scatter plots in Fig. 7d (for the heat waves) 293 

and Fig. 7f (for the cold waves), these methods appear quite independent at European scale. Nevertheless the 294 

analysis of the correlations at the grip point level reveals a large spatial variability (not shown). For instance, 295 

the correlations of I2 and I3 go up to 0.95 over France and Western Russia, explained by heat (cold) waves 296 

that occurred during the warmest (coldest) months, and go down to 0.5 over Central and Northern Europe. 297 

Except for the strongest events, there is an overall good agreement of the datasets in term of the probability 298 

distribution functions (PDF) of the intensities of heat and cold waves. Fig. 8 displays the distribution of 299 

intensities defined by the method of the temperature anomalies (I2) and shows no significant differences for 300 

intensities lower than 60. This figure also confirms our finding of the higher occurrence of cold waves than 301 

heat waves especially with intensities larger than 25. In the tails of the distribution (especially for the heat 302 

waves larger than 90), the differences are associated with a very low number of cases. The spatial variability 303 

of these I2-based intensities in the last 21 years was assessed by the strongest cold and heat waves recorded 304 

over each grid point (Fig. 9). The two strongest heat waves that occurred in Europe can be clearly identified, 305 

namely the one that occurred in Russia in 2010 and the one in France in 2003. For these two events, the 306 

intensities are slightly stronger and longer using ERAI (not shown). For the cold waves, the intensities are 307 

stronger than the heat waves. The most intense events occurred over the continental regions (Central Europe 308 

and South of Russia). The three datasets are well in agreement for the intensities and the spatial variabilities. 309 

It is interesting to highlight that these intensities are not well correlated to the occurrence, i.e., a region with 310 

more cases does not necessarily record the most extreme events (Figs. 4 and 5). We note that the relative short 311 

period of study (21 years) could generate some artefacts over regions that recorded extraordinary events (e.g. 312 

Russia). 313 

To assess meteorological uncertainties, Fig. 10 displays the same distributions but for intensities calculated 314 

using constant thresholds (I3). Even if the scales are different, the spatial distribution of I2 and I3 for the 315 

strongest heat waves is quite similar. The patterns are strongly influenced by the two heat waves in 2003 and 316 
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2010. In opposite, the distribution of the strongest cold waves changes drastically. While the intensities over 317 

Russia are reduced, we note a relative increase of the intensities over Western Europe, especially in North 318 

Germany, the Netherlands, and in Central Europe. As discussed previously, this could be explained by events 319 

that occurred during the transitional months (intense I2 but not I3) or close to the maximum (or minimum) 320 

seasonal temperature (intense I3). The spatial distribution is also influenced by the normalisation according to 321 

the amplitude of the seasonal cycle, which is larger in continental regions (not shown). Even if the results 322 

display significant differences according to the methods and the regions, it is important to note that the three 323 

datasets are still well in agreement. 324 

3.3 Return periods  325 

As the purpose of this study is to provide a methodology that is useable for a monitoring system that must be 326 

robust and understandable for users and decision makers, the information should also be provided in terms of 327 

return periods. This product will quantify, at monthly time scale, the intensity of the cold or heat waves that 328 

have occurred. To build this indicator, all the days defined as cold or heat waves are summed for different 329 

accumulation periods (from monthly to seasonally, see Table 3). Monthly values characterize either one 330 

specific event as defined previously or several consecutives cases. As indicated by WMO (2015), intense or 331 

repetitive extreme waves may have strong impacts on human health and so should be assessed. Once these 332 

monthly values are calculated for each grid point, the return period is estimated. Problems when dealing with 333 

extremes are linked to erroneous values and the sampling. To partially address these issues, we have compared 334 

different datasets and different theoretical distributions have been fitted and tested. This is done at both grid-335 

point and regional level. Different distributions have been applied in the literature such as the Gamma (Meehl 336 

et al. 2000) or the Weibull distribution (Cueto et al 2010). According to the Pearson goodness-of-fit statistic, 337 

and the deviance statistic on the entire distribution, the Gamma distribution is the most suitable (not shown). 338 

By using this theoretical distribution, the return periods can be extrapolated beyond the 21-year period. Once 339 

the parameters of the Gamma distribution are estimated for monthly, bimonthly and seasonal time scales (see 340 

table 3), return periods are calculated for both the cold and heat waves. According to significance tests 341 

employed to guarantee the robustness of the distribution, uncertainties exist for return periods larger than the 342 

duration of the observed sampling. For these reasons, return periods longer than 25-years are reported with 343 

grey shadows and, in addition, the x-axis in Fig. 11 is limited in order to have at least 50% of grid points not 344 

exceeding a 25-y return period. Under these conditions, all the events that have return periods larger than the 345 

duration of the sampling will not be distinguished and all of them will be considered as the ‘most dangerous’. 346 

The return period results were produced using LisFlood dataset, which has been validated in the previous 347 

section, but similar results were obtained with the two other datasets. 348 

 349 

The boxplots (Fig. 11) show the relationships between intensities and return periods over each grid point in 350 

Europe. According to the size of the inter quartiles, a large spatial variability emerges over the domain. For 351 

instance, heat waves with intensities of 20 (10) using I2 (I3) have inter quartiles of return period that span 352 
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from 7 to 50 years (25 to 125 years respectively). The use of other datasets provide similar results. 353 

Nevertheless, ERAI has less spatial variability (lower spread of the boxes), and lower return periods associated 354 

with the larger wave intensities (not shown). 355 

 356 

The spatial variabilities are then analysed in more detail with a regional classification. This classification is a 357 

simplification of the one shown in the EEA report (2016) that takes into account the climatology of the regions 358 

(Continental, Mediterranean, Oceanic, Scandinavian, small panels in Fig. 11). Over these regions, the return 359 

periods are assessed and compared (coloured dots in Fig. 11). Even if the results for the two intensities (left 360 

and right panels) cannot be compared directly, it is interesting to compare the ranking of the regions according 361 

to the return periods. For heat waves, the British Isles stand out by using the two intensities. The few intense 362 

heat waves recorded generate return periods in the outliers of the box distribution in Europe. On the contrary 363 

the Russian region records the lowest return periods for similar intensities using I2 showing the large hazard 364 

of these heat waves in this region. Nevertheless, the use of the I3 calculation (more sensitive to waves that 365 

occurred during the heart of the season) shows a different distribution with more cases over Central Europe 366 

for return periods lower than 5 years (in yellow) and the North-West European region (red) for the most intense 367 

heat waves. For the cold waves, the British Isles and the Mediterranean regions are the least affected in the 368 

two intensity calculations, whereas the continental parts of Europe (Russia and Central Europe) are associated 369 

with more regular intense cold waves.  370 

In Fig. 12, both I2 and I3 intensities of the heat and cold waves with a return period of 10 years are plotted. 371 

As these values depend on the observed waves in the analysed period, a hot spot over western Russia appears 372 

(Fig. 12, left panel). In that region in the last 21 years, waves were more frequent (Figs. 4 and 5) and more 373 

intense (Fig. 9). The results with I3 show different behaviours (Fig. 12 right panels). This is due to the different 374 

location of the most intense waves (Fig. 10). The potential impacts of these heat and cold waves will be 375 

calculated as a function of the absolute intensities and the return periods. However, we can expect that identical 376 

wave intensities over two different regions, and therefore with two different return periods may have different 377 

impacts. For example, the absolute value of the heat wave intensity recorded in August 2003 over France 378 

using I3 does not give extreme values with respect to the intensities recorded in continental regions. 379 

Nevertheless, the equivalent return value over France is larger than 50 years (not shown), in agreement with 380 

Barriopedro et al. (2011) and Trigo et al. (2005), which suggest the potential strong risk associated.  381 

Given the 21-years period used in this study, the return periods can identifying the most extreme situations. 382 

The same information will also be available for the 2-month and seasonal time scales (not shown).  383 

   384 

4 Discussion 385 

The purpose of this study was to develop a system to monitor potential high-impact climate extreme events. 386 

Defining the intensity of an extreme event is important since it provides the hazard component to be related 387 
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to human or economic impacts. Many studies have already dealt with this issue, but no consensus has been 388 

reached so far for heat and cold waves. Large local differences usually prevent to use a single definition for 389 

impact-oriented global studies. One option is to apply a constant threshold such as 35 or 40 degrees for heat 390 

waves and -10 or -20 degrees for cold waves across an entire continent, as these definitions are understandable 391 

and easy to communicate. Nevertheless, such a choice can be questionable. For example, the heat wave in 392 

France in 2003 was associated with absolute temperatures close to 40 degrees; which are relatively close to 393 

the climatology for Southern Spain. The impacts, therefore are not just temperature dependent, but they vary 394 

according to the geographical location (and thus the local climate), the societal exposure and vulnerability. 395 

For all these reason, it is difficult to identify the most robust indicator. The ones chosen in this study are based 396 

on the rarity of the events. The implicit assumption made is that the rareness is associated with a lack of 397 

specific adaption and thus with a higher risks.   398 

5 Summary and Conclusions 399 

In this study, we assessed the feasibility of monitoring heat and cold waves by using a method based on the 400 

persistency of the exceedance of quantiles of daily minimum and maximum temperatures at grid point level. 401 

In the first step, three methods to detect and quantify the intensities of heat and cold waves were assessed. The 402 

use of Tmin, Tmax and of both values was investigated. It demonstrated how the combined use of the two 403 

daily temperatures reduces the frequency of the extremes. To make the analysis more robust, three datasets 404 

were compared, two derived from station data (LisFlood and EOBS) and one from reanalysis data (ERAI). 405 

The two observational datasets only showed minor differences in heat and cold waves occurrences and 406 

intensities. This is probably due to the good agreement in representing both Tmin and Tmax. Using ERAI 407 

some differences appeared mainly due to the coarser resolution of the original grid and the use of only 4 values 408 

per day to define Tmin and Tmax. In this case, the persistency and the spatial correlation increased, generating 409 

less spatial distinction and more intense waves with respect to the other two datasets. However, the main 410 

results are in overall agreement for all three datasets and show a larger hazard for heat and cold waves in the 411 

continental part of Europe. Return periods were also estimated and this information will be used operationally 412 

in the EDO system to provide robust and comprehensible products for decision makers and users.  413 

In perspective, these datasets and results should be compared to the ones derived from forecast products in 414 

order to be able to provide a comprehensive and seamless tool for monitoring and forecasting heat and cold 415 

waves in Europe. 416 

       417 
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 HOT DAYS DAYS IN HW NUMBER OF HW 

TMIN 376 (17.9) 226 (31.8) 44.2 (5.1) 

TMAX 382 (10.7) 269 (31.0) 51 (4.9) 

TINT 150 (36.3) 81.3 (33.9) 16.9 (6.1) 

Table 1 Spatial mean (and standard deviation in brackets) of total number of days detected as hot days (larger 570 

than quantile 0.9, first column), over the entire period (21 years) of analysis, spatial mean of total days detected 571 

during heat waves (HW, with persistency longer than 3 days, second column) during the same period and 572 

spatial mean of total number of HW during the 21 years (third column) using only Tmin (first row), only Tmax 573 

(second row) and the intersection of the two variables (Tint, third row). 574 

 575 

 576 

 COLD DAYS DAYS IN CW NUMBER OF CW 

TMIN 380 (20.8) 272 (30.5) 50 (5.3) 

TMAX 380 (14.8) 282 (27.4) 50.3 (4.3) 

TINT 196 (48.2) 128 (42.7) 25.2 (7.6) 

 577 

Table 2 Same as Table 1 for the cold days and cold waves (CW). 578 

 579 

 580 

Months JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 

Type Cold Cold Cold Heat Heat Heat Heat Heat Heat Cold Cold Cold 

Duration 1, 2 1, 2 1, 2, 

S 

1 1, 2 1, 2 1, 2 1, 2 1, 2, 

S 

1 1, 2 1, 2 

 581 

Table 3 Accumulation periods used to calculate the return period of wave intensities. The type of waves (cold 582 

or heat) is indicated in the second row and the accumulation period of the sum of intensities are indicated in 583 

the last row (1 for 1-month accumulation period, 2 for 2-months accumulation period and S for Season, i.e. 6-584 

months accumulation period). 585 

  586 
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 619 

Figure 1 Schema of the detection method and the calculation of the intensities of heat waves, based on 620 

temperature anomalies of a calendar day threshold: Q90 of both Tmax and Tmin (I2 calculation), or based 621 

on the constant climatological threshold defined by the median of the daily quantiles: Med(Q90) of both 622 

Tmax and Tmin (I3 calculation).  623 

624 
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 625 

Figure 2 Temporal correlation of the temperature quantiles of Tmin (first row), and Tmax (second row) 626 

provided by ERAI, EOBS and LisFlood datasets from 1995 to 2015. The datasets compared are indicated on 627 

the top of each column. 628 

  629 
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 630 

Figure 3 Mean Absolute Error of temperature (in K) for the three datasets, calculated from 1995 to 2015 for 631 

Tmin (first row) and Tmax (second row). The datasets compared are indicated on the top of each column. 632 

633 
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 634 

Figure 4 Number of occurrences of heat waves in Europe from 1995 to 2015 using the intersection of both 635 

Tmin and Tmax (Tint, first row), only Tmin (second row), and only Tmax (third row) with LisFlood (first 636 

column), E-OBS (second column) and ERAI (third column) datasets.  637 
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 639 

Figure 5 Number of occurrences of cold waves in Europe from 1995 to 2015 using the intersection of both 640 

Tmin and Tmax (Tint, first row), only Tmin (second row), and only Tmax (third row) with LisFlood (first 641 

column), E-OBS (second column) and ERAI (third column) datasets.  642 
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 644 

 645 

Figure 6 Last quartile of the wave durations (in days) for the heat (top panels) and cold (bottom panels) waves 646 

using LisFlood, E-OBS and ERAI datasets. 647 
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 649 

Figure 7 Matrix of scatter plots of the three intensity (in deg. For I2 and I3) calculations related to quantiles, 650 

temperature anomalies and temperatures anomalies with constant thresholds (I1, I2 and I3 respectively) during 651 

heat (a, b, d) and cold (c, e, f) waves using LisFlood. The colours indicate the duration (in days) of each wave. 652 
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 654 

Figure 8 Histograms of heat (left panel) and cold (right panel) waves intensities defined as temperature 655 

anomalies (I2) for the three datasets. Note that the frequency axis are on a Log-scales. 656 
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 658 

 659 

Figure 9 Spatial distribution of the strongest heat (top panels) and cold (bottom panels) waves intensities, 660 

defined as temperature anomalies (I2), using LisFlood, E-OBS and ERAI datasets. 661 

662 
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 663 

Figure 10 Same as Fig. 9 using the intensity based on the constant threshold (I3) for heat (top panels) and 664 

cold (bottom panels) waves, and based on LisFlood (first column), E-OBS (second column) and ERAI (third 665 

column). 666 
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 668 

Figure 11 Return periods of monthly intensities of heat (top) and cold (bottom panels) waves for two intensities 669 

(I2, left panels and I3, right panels). Boxes assess the spatial variability for the grid points. Coloured dots 670 

indicate the return period calculated over the regions defined in the small panels.   671 
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 672 

Figure 12 Intensity of the heat (top panels) and cold (bottom panels) waves defined with the temperature 673 

anomalies (I2, left panels), or with constant thresholds (I3, right panels) with a 10-year return period using 674 

LisFlood dataset. 675 


