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1 Abstract 17 

A big challenge in terms or landslide risk mitigation is represented by the increasing of the 18 

resiliency of society exposed to the risk. Among the possible strategies to reach this goal, there is 19 

the implementation of early warning systems. This paper describes a procedure to improve early 20 

warning activities in areas affected by high landslide risk, such as those classified as Critical 21 

Infrastructures for their central role in society. 22 

This research is part of the project “LEWIS (Landslides Early Warning Integrated System): An 23 

Integrated System for Landslide Monitoring, Early Warning and Risk Mitigation along Lifelines”. 24 

LEWIS is composed of a susceptibility assessment methodology providing information for single 25 

points and areal monitoring systems, a data transmission network and a Data Collecting and 26 

Processing Center (DCPC), where readings from all monitoring systems and mathematical models 27 

converge and which sets the basis for warning and intervention activities. 28 

The aim of this paper is to show how logistic issues linked to advanced monitoring techniques such 29 

as big data transfer and storing, can be dealt with, compatibly with an early warning system. 30 

Therefore, we focus on the interaction between an areal monitoring tool (a ground-based 31 

interferometric radar) and the DCPC. By converting complex data into ASCII strings and through 32 

appropriate data cropping and average, and by implementing an algorithm for line of sight 33 

correction, we managed to reduce the data daily output without compromising the capability of 34 

performing. 35 

 36 
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2 Introduction 37 

Urbanization, especially in mountain areas, can be considered a major cause for high landslide risk 38 

because of the increased exposure of elements at risk. Among the elements at risk, important 39 

communication routes, such as highways, can be classified as Critical Infrastructures (CIs), since 40 

their rupture can cause chain effects with catastrophic damages on society (Geertsema et al 2009; 41 

Kadri et al. 2014). On the other hand, modern society is more and more dependent from CIs and 42 

their continuous efficiency (Lebaka et al., 2016), and this has risen their value over the years. The 43 

result is a higher social vulnerability in the face of loss of continuous operation (Kröger, 2008). The 44 

main objective was to improve the social preparedness to the growing landslide risk, according with 45 

the suggestions of several authors (Gene Corley et al., 1998; Baldridge et al., 2011; Urlainis et al. 46 

2014; 2015). This led to the development of several approaches and frameworks for increasing the 47 

resiliency of society exposed to the risk (Kröger, 2008; Cagno et al., 2011 and references therein). 48 

The resiliency policy of course involves prevention activities but also, and more importantly, those 49 

activities needed to maintain functionality after disruption (Snyder and Burns, 2009) and to 50 

promptly alert incoming catastrophes in order to protect people and prepare for a possible damaging 51 

of the endangered CI. Among these activities, the implementation of integrated landslides early 52 

warning systems (i.e. LEWIS, Versace et al., 2012; Costanzo et al., 2016) reveals its increasing 53 

importance.  54 

In this context, the methodology described in this paper has been conceived; it has been tested and 55 

validated on a portion of an Italian highway, affected by landslides and selected as case study: it is 56 

located in Southern Italy, along a section of the A16 highway, an important communication route 57 

that connects Naples to Bari where a Ground-Based Interferometric Synthetic Aperture Radar (GB-58 

InSAR) has been installed on the test site, in order to obtain spatial monitoring data. 59 

One of the main drawbacks of advanced instruments such as GB-InSAR is how to handle the large 60 

data flow deriving from continuous real-time monitoring. The issue is to reduce the capacity needed 61 

for analyzing, transmitting and storing big data without losing important information. The main 62 

feature of this paper is indeed the management of monitoring data in order to filter, correct, transfer 63 

and access them compatibly with the needs of an early warning system. 64 

 65 

3 Materials and methods 66 

3.1 GB-InSAR 67 

The GB-InSAR is composed of a microwave transceiver mounted on a linear rail (Tarchi et al., 68 

1997; Rudolf et al., 1999; Tarchi et al., 1999). The system used is based on a Continuous Wave – 69 

Stepped Frequency radar, which moves along the rail at millimeter steps, in order to perform the 70 

synthetic aperture; the longer the rail the higher the cross-range resolution. The microwave 71 

transmitter produces, step-by-step, continuous waves around a central frequency, which influences 72 

the cross-range resolution and determines the interferometric sensitivity i.e. the minimum 73 

measurable displacement, usually largely smaller than the corresponding wavelength. 74 

The radar produces complex radar images containing the information relative to both phase and 75 

amplitude of the microwave signal backscattered by the target (Bamler and Hartl, 1998; Antonello 76 
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et al., 2004). The amplitude of a single image provides the radar reflectivity of the scenario at a 77 

given time, while the phase of a single image is not usable. The technique that enables to retrieve 78 

displacement information is called interferometry and requires the phase from two images. In this 79 

way, it is possible to elaborate a displacement map relative to the elapsed time between the two 80 

acquisitions. 81 

The main added value of GB-InSAR is its capability of blending the boundary between mapping 82 

and monitoring, by computing 2D displacement maps in near real-time. The use of this tool to 83 

monitor structures, landslides, volcanoes, sinkholes is largely documented (Calvari et al., 2016; Di 84 

Traglia 2014; Intrieri et al., 2015; Bardi et al., 2016, 2017; Martino and Mazzanti, 2014; Severin, 85 

2014; Tapete et al., 2013), as well as for early warning and forecasting (Intrieri et al., 2012; Carlà et 86 

al., 2016a; 2016b; Lombardi et al., 2016). 87 

GB-InSAR systems probably reveal their full potential in emergency conditions. They are 88 

transportable and only require from few tens of minutes to few hours to be installed (depending on 89 

the logistics of the site). Moreover, they can detect "near-real time" area displacements, without 90 

accessing the unstable area, 24h and in all weather conditions (Del Ventisette et al., 2011; Luzi, 91 

2010; Monserrat et al., 2014). On the other hand, some limitations reduce the GB-InSAR technique 92 

applicability: first of all the scenario must present specific characteristics in order to reflect 93 

microwave radiations, maintaining high coherence values (Luzi, 2010; Monserrat et al., 2014); only 94 

a component of the real displacement vector can be identified (i.e. the component parallel to the 95 

sensor's line of sight); maximum detectable velocities are connected to the time that the system 96 

needs to obtain two subsequent acquisitions. Sensors need power supply that, for long term 97 

monitoring, cannot be replaced by batteries, generators or solar panels. 98 

With the specific aim of performing an early warning system, data acquired in situ must be sent 99 

automatically to a "control center" where they are integrated in a complete early warning system 100 

procedure (Intrieri et al., 2013). In this sense, another main limitation is represented by the necessity 101 

to transfer a high quantity of data, whose weight has to be reduced to the minimum, in order to 102 

reduce the load on transmission network. 103 

The employed system is a portable device designed and implemented by the Joint Research Center 104 

(JRC) of the European Commission and its spin-off company Ellegi-LiSALab (Tarchi et al., 2003; 105 

Antonello et al., 2004).  106 

3.2 Early warning system architecture 107 

Morphological features, hydrogeological factors and sudden rainfall can cause diverse types of 108 

movements or fall of earthy and rock materials. The unpredictability and diversity of these events 109 

make structural interventions often inappropriate to reduce the related risk, and real-time 110 

monitoring network difficult to implement. 111 

In the last decade, Wireless Sensor Networks (WSNs) have been largely used in various fields. A 112 

significant increase in the use of WSN, due to their simplicity, low cost of installation, 113 

manufacturing and maintenance, has been recorded in the framework of environmental monitoring 114 

applications (Intrieri et al., 2012; Liu et al., 2007; Yoo et al., 2007). Distinct types of sensor nodes 115 

of these networks, distributed with high density in the monitored areas, send environmental 116 

information to the concentrators nodes, generating a considerable amount and a wide variety of 117 

collected data. Due to the significant growth of data volumes to be transferred, the WSN require 118 
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flexible ad-hoc protocols, able to respect constraints related to energy consumption management 119 

(Hadadian and Kavian, 2016; Khaday et al., 2015; Parthasarathy et al., 2015). In particular, many 120 

protocols have been developed that offer data aggregation patterns to optimize the sensor nodes 121 

battery life (Kim et al., 2015) or sleep/measurement/data transfer cycles to minimize the energy 122 

consumption (Fei et al., 2013; Venkateswaran and Kennedy, 2013). 123 

LEWIS (Costanzo et al., 2016) uses heterogeneous sensors, distributed in the risk areas, to monitor 124 

the several physical quantities related to landslides. The measured data, through a 125 

telecommunications network, flow into the Data Collecting and Processing Center (DCPC), where, 126 

using suitable mathematical models for the monitored site, the risk is evaluated and eventually the 127 

state of alert for mitigation action is released (Figure 1). 128 

The system, through a modular architecture exploiting a telecommunication network (called 129 

LEWARnet) based on an ad-hoc communication protocol and an adaptive middleware, has a high 130 

flexibility, which allows for the use of different interchangeable technological solutions to monitor 131 

the parameters of interest. 132 

 133 

Figure 1. LEWIS architecture. 134 

 135 

The network has been equipped with both single point sensors as well as area sensors. The present 136 

paper addresses a sub-network comprising an area sensor, the GB-InSAR. 137 

The different sensors types generate asynchronous traffic, thus imposing the adoption of an ad-hoc 138 

transmission protocol. This can support an asynchronous transmission mode to the DCPC, and it is 139 
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equipped with message queues management capacity to reconstruct historical data series, between 140 

two connection sessions, in case of null or partial transmission. This operation mode requires the 141 

presence of a software architecture that operates as a buffer, acting as an intermediary or as 142 

middleware (LEWARnet), between the data consumer (DCPC) and the data producers (sensors and 143 

sub-networks of sensors). 144 

The developed middleware also monitors the processes of transmission and data acquisition, 145 

recognizing the activity status of the sensors and that of the DCPC, and integrating encryption and 146 

data compression functions. 147 

A detail description of LEWIS can be found in Costanzo et al. (2015; 2016). 148 

 149 

3.3 Data Collecting and Processing Center 150 

The management of information flows, the telematic architecture and the services for data 151 

management are entrusted to the DCPC. 152 

The DCPC has been designed and performed according to a complex hardware and software 153 

system, able to ensure the reliability and continuity of the service, providing advance information of 154 

possible dangerous situations that may occur. 155 

In the research project, the DCPC has to ensure the continuous exchange of information among 156 

monitoring networks, mathematical models and the Command and Control Center (CCC), that is 157 

responsible for emergency management and decision making. 158 

Data flow from the monitoring network was managed according to a communication protocol, 159 

implemented by the DCPC, and named AqSERV. AqSERV was designed considering the 160 

heterogeneity of devices of monitoring and transmission networks (single point and area sensors) 161 

and the available hardware resources (microcontrollers and/or industrial computers). AqSERV was 162 

devised to link DCPC database (named LEWISDB) to the monitoring networks, after validation for 163 

the authenticity of the node that connects to the center. Data acquisition, before the storage in the 164 

database, is validated both syntactically and according to the information content. The procedures 165 

for extraction of the information content and validation have been realized differently for single 166 

point and area sensors: the latter require a more complex validation, as they work in a 2D domain. 167 

The complete management of the monitoring networks by DCPC has been realized through specific 168 

remote commands, sent to individual devices via AqSERV, to reconfigure the acquisition intervals 169 

or to activate any sensor, depending on the natural phenomena occurring in real time. 170 

The configuration of monitoring networks, composed by devices and sensors, of communication 171 

protocol used by each network, and of rules for extraction and validation of information content is 172 

carried out through a web application that allows for the management of the entire system by the 173 

users.  174 

The real-time search for acquisitions is carried out through a WebGIS, specifically designed for 175 

WSNs, but that can be easily extended to classic monitoring networks.  176 

The WebGIS was designed according to the traditional web architecture, client-server, by using 177 

network services which are web mapping oriented:  178 

- web server for static data; 179 

- web server for dynamic data; 180 

- server for maps; 181 

- database for the management of map data.  182 
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 183 

4 Test site 184 

The test site chosen to experiment the integrated system is located in Southern Italy, along a section 185 

of the A16 highway, an important communication route that connects Naples to Bari (Figure 2). 186 

The A16 selected section develops in SW-NE direction, along the Southern Italian Apennine, in 187 

correspondence with the valley of the Calaggio Creek, between the towns of Lacedonia (Campania 188 

Region) and Candela (Puglia Region). 189 

 190 

Figure 2. Landslides detected through field survey along the monitored section of A16 highway. 191 

The area is tectonically active, but the landscape, characterized by gentle slopes, is mostly 192 

influenced by lithologic factors rather than by tectonics. The lithologies outcropping in this area are 193 
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Pliocene-Quaternary clay, clayey marlstones, and more recent (Holocene) terraced alluvial 194 

sediments (from clay to gravel). The landslides shown in  Figure 2 are all located in clay or clayey 195 

marlstones. 196 

The highway runs on the right flank of the Calaggio Creek at an altitude between 300 and 400 m 197 

a.s.l.; the section of interest represents an element at risk in the computation of landslide risk 198 

assessment, due to the presence of unstable areas which can potentially affect the communication 199 

route (Figure 2). These unstable areas mainly involve clayey superficial layers. 200 

On 1st July 2014, the GB-InSAR system was installed on the test site. The location of the 201 

installation point was selected taking into account the view of the unstable area and the distance 202 

from the power supply network. A covered structure was built to protect the system from 203 

atmospheric agents and possible acts of vandalism, in the perspective of a long-term monitoring. 204 

The transmission network was provided by a GSM modem, exploiting the 3G network. In addition 205 

to the PC integrated in the GB-InSAR power base, a further external PC was exclusively employed 206 

for data post elaboration and transmission. 207 

The system acquired from the beginning of July 2014 until the end of July 2015. 208 

The installation location allowed the system to detect an area between 40 and 400 meters far from 209 

the its position in range direction, and about 360 m wide in the azimuth direction. These values, 210 

coupled with a 40° vertical aperture of the antennas, allowed operators to detect an area of about 211 

360 m x 360 m. 212 

5 Data management 213 

The most relevant matter of this monitoring was not as much related to the detection of landslide 214 

movements threatening the highway, as to how a long-term monitoring performed with an 215 

instrument providing huge amounts of data could have been run without resorting to large hard 216 

drives nor to fast internet connections. In fact, the monitoring area was covered by a 3G mobile 217 

telecommunication networks, with a limit of 2 gigabyte data transfer per month and there was the 218 

need to reduce the massive data flow produced by the radar. 219 

For this reason, an appropriate data management (Figure 3) was developed and is here described. 220 

 221 
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 222 

Figure 3. Diagram showing the complete data flow from acquisition to final visualization. 223 

5.1 Data acquisition 224 

The GB-InSAR employed produced a single radar image, consisting in a 1001x1001 complex 225 

matrix, every 5 minutes. Each one is around 8 Megabytes large, resulting in more than 2 Gigabytes 226 

of data produced every day. 227 

This amount of data represented an issue for both store capacity and data transmission. 228 

5.2 Data elaboration 229 

After being acquired, data were then transferred through LAN connection to the external PC 230 

implementing a dedicated Matlab script locally performing the actions described as follows. 231 

5.2.1 Data averaging 232 

In order to reduce the noise normally affecting radar data (especially in vegetated areas), the images 233 

acquired every 5 minutes were also averaged using all data of the previous 8 and 24 hours. Then 234 

images averaged on 24 hours have been used to calculate daily displacement maps, every 8 hours to 235 

create 8h displacement maps and non-averaged images to calculate 5 minutes displacement maps. 236 

These time frames have been selected based on the characteristics of the slope movements and 237 

signal/noise ratio in the investigated area. 238 

Averaging is also a mean to make a good use of a high data frequency, since it enables to reduce the 239 

memory occupied in the database as an alternative to their direct elimination.  240 



9 
 

5.2.2 Displacement map calculation and ASCII conversion 241 

Each radar image can be represented as in Eq.1: 242 

𝑆𝑛 =  𝐴𝑛 𝑒𝑥𝑝(𝑗𝜑n)                                                                    (1) 243 

where An is the amplitude of the nth image, 𝜑n its phase and j = (-1)1/2 is the imaginary unit. The 244 
displacement Δr occurred in the time period between the acquisition of S1 and S2 has been 245 
calculated with the following (Eq.2): 246 

𝛥𝑟 =  (𝜆/4𝜋)  ·  𝛥𝜑                                                                      (2) 247 

where λ is the wavelength of the signal and 248 

                                                   𝛥𝜑 = 𝜑1 −  𝜑2                                                                                                                 (3) 249 

can be derived from: 250 

                            𝑆3  =  𝑆1 𝑆2
∗  =  𝐴1𝐴2 𝑒𝑥𝑝[𝑗(𝜑1  − 𝜑2)]                                                            (4) 251 

As a result, an ASCII file, only containing the information relative to the displacement for each 252 
pixel, was obtained. 253 

5.2.3 Atmospheric correction 254 

One of the major advantages of GB-InSAR is the capability to achieve sub-millimeter precision. 255 

However, this can be severely hampered by the variations of air temperature and humidity, 256 

especially when long distances are involved. Usually, atmospheric correction is performed by 257 

choosing one area considered stable, taking into account that every displacement value different 258 

from 0 is due to atmospheric noise and assuming that this offset is a linear function of the distance. 259 

Based on this relation all the displacement map is corrected. In our case the whole scenario has been 260 

selected and then only the potential unstable zones and those with a weak or incoherent 261 

backscattered signal were removed. The remaining areas were then considered stable and therefore 262 

were used for calculating the atmospheric effects. This results in a larger correction region that 263 

enables a statistical correlation between the atmospheric effects and the distance and therefore the 264 

calculation of a site-specific regression function that may not necessarily be linear (Figure 4). 265 

 266 
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Figure 4. The color bar is expressed in mm; green indicates stable pixels, while blue and red 267 
respectively movement toward and away from the GB-InSAR. Left: raw interferogram showing 268 
artificial displacement increasing linearly with distance (as typical of atmospheric noise). Right: the 269 
same interferogram after the atmospheric correction. 270 

5.2.4 Line of sight correction 271 

The availability to detect only the Line Of Sight (LOS) component of the displacement vector 272 

represents one of the main limitations of the GB-InSAR technique. A method to partially overcome 273 

this limitation has been applied in this paper, following the procedure described in Colesanti and 274 

Wasowski, 2006 and later in Bardi et al. 2014, 2016. Other methods have been employed by 275 

Cascini et al. (2010; 2013). 276 

Assuming the downslope direction as the most probable displacement path, radar data have been 277 

projected on this direction. Input data as the angular values of Aspect and Slope have been derived 278 

from the Digital Terrain Model (DTM) of the investigated area; furthermore, azimuth angle and 279 

incidence angle of the radar LOS have been obtained. 280 

After calculating the direction cosines of LOS and Slope (respectively functions of azimuth and 281 

incidence angles and aspect and slope angles) in the directions of Zenith (Zlos, Zslope), North (Nlos, 282 

Nslope) and East (Elos, Eslope), the coefficient C is defined as follow (Eq. 5): 283 

                               𝐶 = 𝑍𝑙𝑜𝑠𝑥𝑍𝑠𝑙𝑜𝑝𝑒 + 𝑁𝑙𝑜𝑠𝑥𝑁𝑠𝑙𝑜𝑝𝑒 + 𝐸𝑙𝑜𝑠𝑥𝐸𝑠𝑙𝑜𝑝𝑒                                                   (5) 284 

C represents the percentage of real displacement detected by the radar sensor (Figure 5A).  285 

The real displacement (Dreal) is defined as the ratio between the displacement recorded along the 286 
LOS (Dlos) and the C value (Figure 5 B). 287 
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 288 

Figure 5. (a) C values map. Blue arrows indicate the downslope direction. (b) Cumulated displacement 289 
values projected along the downslope direction, referred to a period between 1 July 2014 and 1 290 
November 2014. The yellow asterisk in the left of the images represents the location of the GB-InSAR. 291 

Assuming that the studied landslide actually moves along the downslope direction, the GB-InSAR 292 

detectable real displacement percentage ranges between 22 and 60 % (Figure 5A). 293 

In Figure 5B, an example of slope displacement map has been shown. Here, cumulated 294 

displacement data related to a period between 1 July and 1 November 2014 have been projected 295 

along the downslope direction. Data show as the area can be considered stable in the referred 296 

period; maximum displacement values of 4 mm in 4 months (eastern portion of observed scenario) 297 

can be still considered in the range of stability. 298 

5.2.5 Time series extraction 299 

In order to allow for a fast data transfer and velocity threshold comparison, some representative 300 

control points were selected, aimed at providing cumulated displacement time series. Control points 301 

were retrieved from the same displacement maps calculated as described in paragraph 5.2.2 and 302 

therefore can be relative to a time frame of 5 minutes, 8 hours or 24 hours. 303 

In case of noisy data, instead of having a time series relative to a single pixel, these can be retrieved 304 

from a spatial average obtained from a small area consisting of few pixels. 305 
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5.2.6 Scenario cropping 306 

Typically, the field of view of a GB-InSAR is larger than the actual area to be monitored. In fact, a 307 

portion of the radar image may be relative to the ground, sky, areas geometrically shadowed or 308 

covered by dense vegetation. These may be of no interest or even containing no information at all. 309 

For the case here studied around 50% of a radar image had a low coherence and was for all practical 310 

purposes, unusable. Therefore, a cropping of the ASCII displacement map occurred in order to 311 

frame only the relevant area. 312 

5.3 Data transfer and visualization 313 

The interferometric data generated by GB-InSAR, after the pre-processing and proper correction 314 

previously described, are ready for transfer to the DCPC. The transmission of these data to the 315 

DCPC is mediated by the middleware, which interrogates the GB-InSAR for tracking the state, 316 

detects the newest data, and reorders and marks them to properly build data time series to be 317 

transferred to DCPC. 318 

Subsequently, the middleware manages communications with the DCPC, according to the 319 

implemented ad-hoc protocol. This ensures the security of data providers through encrypted 320 

authentication mechanisms, it allows for recovering missing or partially transmitted data, thus 321 

avoiding information loss, and provides data acquired by the sensors to the DCPC in a standardized 322 

format, JSON, able to guarantee uniformity between the various information provided by the 323 

various sensors types. All these particular features fully justify the adoption of an ad-hoc protocol 324 

for data transfer, instead of using a standard protocol such as FTP. 325 

The data files produced by the GB-InSAR have already been locally pre-processed and result in a 326 

matrix expressed in ASCII code; the dimensions of the matrix are known and range from 1x1 (for 327 

the displacement of single control points) to 1001x1001 (for uncropped displacement maps). Before 328 

encapsulating these data in the message to be transferred to DCPC, the middleware converts them 329 

from ASCII code to character strings, using the standard coding ISO / IEC 8859-1, so being able to 330 

obtain a data compression with a factor equal to ≈8. 331 

Eventually the DCPC is entrusted for cumulating the displacements relative to the control points, 332 

which are compared with the respective thresholds, and for visualizing the displacement maps as 333 

WebGIS layers, thus enabling data validation and the evaluation of the extension of moving surface. 334 

6 Early warning procedures discussions 335 

The GB-InSAR is part of a larger early warning system (LEWIS) which also includes other 336 

monitoring systems and simulation models. Therefore, to understand how GB-InSAR data can be 337 

used in an early warning perspective, it is necessary to make reference to LEWIS as a whole. 338 

Any information, coming from the investigated sites and subsequently processed also by using the 339 

simulation models, is used to define an intervention model. This is based on the following elements: 340 

event scenarios, risk scenarios, levels of criticality, levels of alert. 341 

Event scenarios describe the properties of expected phenomena in terms of dimension, velocity, 342 

involved material and occurrence probability. Occurrence probability depends on the associated 343 

time horizon, which should be equal to few hours at most, in the case of early warning systems. 344 
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Evaluation of occurrence probability is carried out by using information from monitoring systems 345 

and/or from outputs of adopted mathematical models for nowcasting. All the properties, to be 346 

analyzed for event scenarios, are listed below; a subdivision in classes is adopted for each one: 347 

• landslide velocity (5 classes from slow to extremely rapid); 348 

• landslide surface (5 classes from very small to very large); 349 

• landslide scarp (5 classes from very small to very large); 350 

• landslide volume (5 classes from extremely small to large);  351 

• thickness (5 classes from very shallow to very deep); 352 

• magnitude (3 classes: low, moderate, high), which combines the previous information; 353 

• involved material (mud, debris, earth, rock, mixture of components); 354 

• occurrence probability (zero, low, moderate, high, very high, equal to 1). 355 

While some of the aforementioned parameters are determined by geological surveys, landslide 356 

velocity is directly derived from monitoring data (such as those collected by GB-InSAR). Landslide 357 

surface can be determined by geomorphological observation but is precisely quantified by GB-358 

InSAR, thanks to its capability of producing 2D displacement maps. 359 

Risk scenarios can be firstly grouped in the following three classes: 360 

A. mud and/or debris movements which could induce a friction reduction between the vehicles 361 

and the tar and therefore facilitate slips; 362 

B. road subsidence induced by landslides that could drag or drop vehicles; 363 

C. falls of significant volumes and/or boulders that could crush or cover vehicles and constitute 364 

an obstacle for other vehicles. 365 

For each previous risk scenario, six sub-scenarios can be identified based on the number of 366 

potentially involved infrastructures, carriageways and lanes (a. hydraulic infrastructures and/or 367 

barriers, b. only emergency lane, c. lane, d. fast lane, e. fast lane of the opposite carriageway, f. lane 368 

of the opposite carriageway). Thus, all possible risk scenarios are 18 (Figure 6), indicated with a 369 

couple of letters (Capital and small). 370 
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 371 
Figure 6. Top and middle: possible risk scenarios involving the scenario A (landslides that could 372 
reduce friction) to increasing sectors of the highway. Bottom: combinations of scenarios with several 373 
types of phenomena (A, B, C) affect the emergency lane, lane and fast lane. 374 

The following information is provided to DCPC: 375 

• Measurements from sensors 376 

• Model outputs 377 

and four states are identified for each of them: 378 

• state 0 = no variation 379 

• state 1 = small variation 380 

• state 2 = moderate variation 381 

• state 3 = high variation. 382 

In practice, for the GB-InSAR, such states are delimited by fixed velocity values (thresholds). In 383 

this application values have been selected according to the gathered data, the first threshold being 384 

just above the instrumental noise; the remaining have been set based on expert judgement waiting 385 

for a more robust calibration, which is possible only after at least a partial mobilization of the slope. 386 

Anyway, the system is open to any method for determining thresholds (Crosta and Agliardi, 2003; 387 

Du et al., 2013; Carlà et al., 2016a) and also to the use of other parameters (acceleration for 388 

example).  389 

Besides information from sensors and models, other information is obtained from meteorological 390 

and hydrological models (named as indicators). 391 

Indicators comprise weather forecasting and output of Forecasting of Landslides Induced by 392 

Rainfall (FLaIR) and Saturated Unsaturated Simulation for Hillslope Instability (SUSHI) models 393 
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(Sirangelo et al. 2003; Capparelli and Versace 2011) on the basis of observed and predicted (for the 394 

successive six hours) rainfall heights. 395 

Two states are defined for indicators: 396 

• state 0 = no variation or not significant, 397 

• state 1 = significant variation. 398 

To sum up, DCPC has the following information in any moment:  399 

 state (0, 1) of indicators (IND), 400 

 state (0, 1, 2, 3) of sensors and models running for the specific highway section (SEN), 401 

and, on the basis of these states, four different decisions can be made by DCPC, one of which with 402 

three options.  403 

All the possible decisions are illustrated in Table 1, in which the weight of the several sensors is 404 

assumed to be the same. Based on the notices of criticality levels provided by the DCPC, and on its 405 

own independent evaluations, the CCC issues the appropriate warning notices (Surveillance, Alert, 406 

Alarm and Warning) and makes decisions about the consequent actions. 407 

 408 

State of sensors and/or models DCPC decisions 

All INDs and SENs are S0 0 - no decision 

At least one IND is S1 and all SENs are S0 1 – Sensor on demand activation 

At least one SEN is S1 2 – to intensify the presence up to 24 hours/day 

At least n SENs are S1 or at least one SEN 

is S2 
3/1 – to issue a notice of ordinary criticality (level 1) 

At least n SENs are S2 or at least one SEN 

is S3 
3/2 - to issue a notice of moderate criticality (level 2) 

At least n SENs are S3 
3/3 - to issue a notice of high or severe criticality 

(level 3) 

Table 1. DCPC possible decisions. 409 

The information of each sensor and the results produced by the models are used to assess, in each 410 

instant, the occurrence probability of an event scenario in the monitored areas and the possible risk 411 

scenarios.  412 

This combination of heterogeneous data was carried out by identifying for each sensor and model a 413 

typical information (displacement, precipitation, inclination, etc.), evaluating the state in each 414 

instant, according to a threshold system, and combining this result for all sensors placed in a 415 

monitored geomorphological area.  416 

The result is constituted by the occurrence probability of an event scenario, that is associated with a 417 

specific action by the DCPC. In particular, if the occurrence probability is low, moderate or high it 418 

is necessary to issue a notice of criticality (ordinary - Level 1, moderate - Level 2, High - Level 3) 419 

to the CCC. 420 

The DCPC sends two types of information:  421 

1) criticality state of the single monitored geomorphological unit, 422 

2) criticality state of the whole area. 423 
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The adopted communication protocol between the two centers for the exchange of information was 424 

carried out through a web service provided by the CCC, using the classes and attributes of the 425 

methodology named Datex II (which is a protocol for the exchange of traffic data). The use of the 426 

web service allowed to ensure the interoperability of data between the two centers, regardless of the 427 

used hardware and software architecture, through a persistent service capable of ensuring an 428 

immediate restoration of the connections, in case of malfunction and a continuous monitoring 429 

between the two centers, even in the absence of criticality. 430 

 431 

7 Conclusions 432 

The GB-InSAR is a monitoring tool that is becoming more and more used in landslide monitoring 433 

and early warning, especially thanks to its capability of producing real-time, 2D displacement maps. 434 

On the other hand, it still suffers from some drawbacks, such as the limitation of measuring only the 435 

LOS component of a target’s movement and logistic issues like those owing to a massive 436 

production of data that may cause trouble for both storing capacity and data transfer. In particular, 437 

the latter is a more and more common problem of advanced technologies that are able to produce 438 

high quality data with a high acquisition frequency, which may leave the problem of find the 439 

balancing between exploiting all the information and at the same time avoiding unnecessary 440 

redundancy. 441 

These problems have been addressed when a GB-InSAR was integrated within a complex early 442 

warning system (LEWIS) and only a limited internet connection was available. This situation 443 

required that a series of pre-elaboration processes and data management procedures took place in 444 

situ, in order to produce standardized and reduced files, carrying only the information needed when 445 

it was needed. The procedures mainly concerned the transmission of data averaged over determined 446 

time frames, proportionate with the kinematics of the monitored phenomenon. Previously, 447 

transmission data were also corrected (both in terms of atmospheric noise and LOS) and reduced, 448 

by filtering out the information relative to the amplitude of the targets, by eliminating the areas not 449 

relevant for the monitoring and by transforming the matrices into strings. 450 

As a result, GB-InSAR data converged into the early warning system and contributed to it by 451 

producing displacement time series of representative control points to be compared with fixed 452 

thresholds. Displacement maps were also available for data validation by expert operators and for 453 

retrieving information relative to the surface of the moving areas. 454 
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