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1 Abstract 17 

A big challenge in terms or landslide risk mitigation is represented by the increasing of the 18 

resiliency of society exposed to the risk. Among the possible strategies to reach this goal, there is 19 

the implementation of early warning systems. This paper describes a procedure to improve early 20 

warning activities in areas affected by high landslide risk, such as those classified as Critical 21 

Infrastructures for their central role in society. 22 

This research is part of the project “LEWIS (Landslides Early Warning Integrated System): An 23 

Integrated System for Landslide Monitoring, Early Warning and Risk Mitigation along Lifelines”. 24 

LEWIS is composed of a susceptibility assessment methodology providing information for single 25 

points and areal monitoring systems, a data transmission network and a Data Collecting and 26 

Processing Center (DCPC), where readings from all monitoring systems and mathematical models 27 

converge and which sets the basis for warning and intervention activities. 28 

The aim of this paper is to show how logistic issues linked to advanced monitoring techniques such 29 

as big data transfer and storing, can be dealt with, compatibly with an early warning system. 30 

Therefore, we focus on the interaction between an areal monitoring tool (a ground-based 31 

interferometric radar) and the DCPC. By converting complex data into ASCII strings and through 32 

appropriate data cropping and average, and by implementing an algorithm for line of sight 33 

correction, we managed to reduce the data daily output without compromising the capability of 34 

performing. 35 

 36 
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2 Introduction 37 

Urbanization, especially in mountain areas, can be considered a major cause for high landslide risk 38 

because of the increased exposure of elements at risk. Among the elements at risk, important 39 

communication routes, such as highways, can be classified as Critical Infrastructures (CIs), since 40 

their rupture can cause chain effects with catastrophic damages on society (Geertsema et al 2009; 41 

Kadri et al. 2014). On the other hand, modern society is more and more dependent from CIs and 42 

their continuous efficiency (Lebaka et al., 2016), and this has risen their value over the years. The 43 

result is a higher social vulnerability in the face of loss of continuous operation (Kröger, 2008). The 44 

main objective was to improve the social preparedness to the growing landslide risk, according with 45 

the suggestions of several authors (Gene Corley et al., 1998; Baldridge et al., 2011; Urlainis et al. 46 

2014; 2015). This led to the development of several approaches and frameworks for increasing the 47 

resiliency of society exposed to the risk (Kröger, 2008; Cagno et al., 2011 and references therein). 48 

The resiliency policy of course involves prevention activities but also, and more importantly, those 49 

activities needed to maintain functionality after disruption (Snyder and Burns, 2009) and to 50 

promptly alert incoming catastrophes in order to protect people and prepare for a possible damaging 51 

of the endangered CI. Among these activities, the implementation of integrated landslides early 52 

warning systems (i.e. LEWIS, Versace et al., 2012; Costanzo et al., 2016) reveals its increasing 53 

importance.  54 

In this context, the methodology described in this paper has been conceived; it has been tested and 55 

validated on a portion of an Italian highway, affected by landslides and selected as case study: it is 56 

located in Southern Italy, along a section of the A16 highway, an important communication route 57 

that connects Naples to Bari where a ground based interferometer (GB-InSAR) has been installed 58 

on the test site, in order to obtain spatial monitoring data. 59 

One of the main drawbacks of advanced instruments such as GB-InSAR is how to handle the large 60 

data flow deriving from continuous real-time monitoring. The issue is to reduce the capacity needed 61 

for analyzing, transmitting and storing big data without losing important information. The main 62 

feature of this paper is indeed the management of monitoring data in order to filter, correct, transfer 63 

and access them compatibly with the needs of an early warning system. 64 

 65 

3 Materials and methods 66 

3.1 GB-InSAR 67 

The Ground-Based Interferometric Synthetic Aperture Radar (GB-InSAR) is composed of a 68 

microwave transceiver mounted on a linear rail (Tarchi et al., 1997; Rudolf et al., 1999; Tarchi et 69 

al., 1999). The system used is based on a Continuous Wave – Stepped Frequency radar, which 70 

moves along the rail at millimeter steps, in order to perform the synthetic aperture; the longer the 71 

rail the higher the cross-range resolution. The microwave transmitter produces, step-by-step, 72 

continuous waves around a central frequency, which influences the cross-range resolution and 73 

determines the interferometric sensitivity i.e. the minimum measurable displacement, usually 74 

largely smaller than the corresponding wavelength. 75 
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The radar produces complex radar images containing the information relative to both phase and 76 

amplitude of the microwave signal backscattered by the target (Bamler and Hartl, 1998; Antonello 77 

et al., 2004). The amplitude of a single image provides the radar reflectivity of the scenario at a 78 

given time, while the phase of a single image is not usable. The technique that enables to retrieve 79 

displacement information is called interferometry and requires the phase from two images. In this 80 

way, it is possible to elaborate a displacement map relative to the elapsed time between the two 81 

acquisitions. 82 

The main added value of GB-InSAR is its capability of blending the boundary between mapping 83 

and monitoring, by computing 2D displacement maps in near real-time. The use of this tool to 84 

monitor structures, landslides, volcanoes, sinkholes is largely documented (Calvari et al., 2016; Di 85 

Traglia 2014; Intrieri et al., 2015; Bardi et al., 2016, 2017; Martino and Mazzanti, 2014; Severin, 86 

2014; Tapete et al., 2013), as well as for early warning and forecasting (Intrieri et al., 2012; Carlà et 87 

al., 2016a; 2016b; Lombardi et al., 2016). 88 

GB-InSAR systems probably reveal their full potential in emergency conditions. They are 89 

transportable and only require from few tens of minutes to few hours to be installed (depending on 90 

the logistics of the site). Moreover, they can detect "near-real time" area displacements, without 91 

accessing the unstable area, 24h and in all weather conditions (Del Ventisette et al., 2011; Luzi, 92 

2010; Monserrat et al., 2014). On the other hand, some limitations reduce the GB-InSAR technique 93 

applicability: first of all the scenario must present specific characteristics in order to reflect 94 

microwave radiations, maintaining high coherence values (Luzi, 2010; Monserrat et al., 2014); only 95 

a component of the real displacement vector can be identified (i.e. the component parallel to the 96 

sensor's line of sight); maximum detectable velocities are connected to the time that the system 97 

needs to obtain two subsequent acquisitions. Sensors need power supply that, for long term 98 

monitoring, cannot be replaced by batteries, generators or solar panels. 99 

With the specific aim of performing an early warning system, data acquired in situ must be sent 100 

automatically to a "control center" where they are integrated in a complete early warning system 101 

procedure (Intrieri et al., 2013). In this sense, another main limitation is represented by the necessity 102 

to transfer a high quantity of data, whose weight has to be reduced to the minimum, in order to 103 

reduce the load on transmission network. 104 

The employed system is a portable device designed and implemented by the Joint Research Center 105 

(JRC) of the European Commission and its spin-off company Ellegi-LiSALab (Tarchi et al., 2003; 106 

Antonello et al., 2004).  107 

3.2 Early warning system architecture 108 

Morphological features, hydrogeological factors and sudden rainfall can cause diverse types of 109 

movements or fall of earthy and rock materials. The unpredictability and diversity of these events 110 

make structural interventions often inappropriate to reduce the related risk, and real-time 111 

monitoring network difficult to implement. 112 

In the last decade, Wireless Sensor Networks (WSNs) have been largely used in various fields. A 113 

significant increase in the use of WSN, due to their simplicity, low cost of installation, 114 

manufacturing and maintenance, has been recorded in the framework of environmental monitoring 115 

applications (Intrieri et al., 2012; Liu et al., 2007; Yoo et al., 2007). Distinct types of sensor nodes 116 

of these networks, distributed with high density in the monitored areas, send environmental 117 
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information to the concentrators nodes, generating a considerable amount and a wide variety of 139 

collected data. Due to the significant growth of data volumes to be transferred, the WSN require 140 

flexible ad-hoc protocols, able to respect constraints related to energy consumption management 141 

(Hadadian and Kavian, 2016; Khaday et al., 2015; Parthasarathy et al., 2015). In particular, many 142 

protocols have been developed that offer data aggregation patterns to optimize the sensor nodes 143 

battery life (Kim et al., 2015) or sleep/measurement/data transfer cycles to minimize the energy 144 

consumption (Fei et al., 2013; Venkateswaran and Kennedy, 2013). 145 

LEWIS (Costanzo et al., 2016) uses heterogeneous sensors, distributed in the risk areas, to monitor 146 

the several physical quantities related to landslides. The measured data, through a 147 

telecommunications network, flow into the Data Collecting and Processing Center (DCPC), where, 148 

using suitable mathematical models for the monitored site, the risk is evaluated and eventually the 149 

state of alert for mitigation action is released (Figure 1Figure 1). 150 

The system, through a modular architecture exploiting a telecommunication network (called 151 

LEWARnet) based on an ad-hoc communication protocol and an adaptive middleware, has a high 152 

flexibility, which allows for the use of different interchangeable technological solutions to monitor 153 

the parameters of interest. 154 

 155 

Figure 1. LEWIS architecture. 156 

 157 

The network has been equipped with both single point sensors as well as area sensors. The present 158 

paper addresses a sub-network comprising an area sensor, the GB-InSAR. 159 
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The different sensors types generate asynchronous traffic, thus imposing the adoption of an ad-hoc 160 

transmission protocol. This can support an asynchronous transmission mode to the DCPC, and it is 161 

equipped with message queues management capacity to reconstruct historical data series, between 162 

two connection sessions, in case of null or partial transmission. This operation mode requires the 163 

presence of a software architecture that operates as a buffer, acting as an intermediary or as 164 

middleware (LEWARnet), between the data consumer (DCPC) and the data producers (sensors and 165 

sub-networks of sensors). 166 

The developed middleware also monitors the processes of transmission and data acquisition, 167 

recognizing the activity status of the sensors and that of the DCPC, and integrating encryption and 168 

data compression functions. 169 

A detail description of LEWIS can be found in Costanzo et al. (2015; 2016). 170 

 171 

3.3 Data Collecting and Processing Center (DCPC) 172 

The management of information flows, the telematic architecture and the services for data 173 

management are entrusted to the DCPC. 174 

The DCPC has been designed and performed according to a complex hardware and software 175 

system, able to ensure the reliability and continuity of the service, providing advance information of 176 

possible dangerous situations that may occur. 177 

In the research project, the DCPC has to ensure the continuous exchange of information among 178 

monitoring networks, mathematical models and the Command and Control Center (CCC), that is 179 

responsible for emergency management and decision making. 180 

Data flow from the monitoring network was managed according to a communication protocol, 181 

implemented by the DCPC, and named AqSERV. AqSERV was designed considering the 182 

heterogeneity of devices of monitoring and transmission networks (single point and area sensors) 183 

and the available hardware resources (microcontrollers and/or industrial computers). AqSERV was 184 

devised to link DCPC database (named LEWISDB) to the monitoring networks, after validation for 185 

the authenticity of the node that connects to the center. Data acquisition, before the storage in the 186 

database, is validated both syntactically and according to the information content. The procedures 187 

for extraction of the information content and validation have been realized differently for single 188 

point and area sensors: the latter require a more complex validation, as they work in a 2D domain. 189 

The complete management of the monitoring networks by DCPC has been realized through specific 190 

remote commands, sent to individual devices via AqSERV, to reconfigure the acquisition intervals 191 

or to activate any sensor, depending on the natural phenomena occurring in real time. 192 

The configuration of monitoring networks, composed by devices and sensors, of communication 193 

protocol used by each network, and of rules for extraction and validation of information content is 194 

carried out through a web application that allows for the management of the entire system by the 195 

users.  196 

The real-time search for acquisitions is carried out through a WebGIS, specifically designed for 197 

WSNs, but that can be easily extended to classic monitoring networks.  198 

The WebGIS was designed according to the traditional web architecture, client-server, by using 199 

network services which are web mapping oriented:  200 

- web server for static data; 201 

- web server for dynamic data; 202 
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- server for maps; 214 

- database for the management of map data.  215 

 216 

4 Test site 217 

The test site chosen to experiment the integrated system is located in Southern Italy, along a section 218 

of the A16 highway, an important communication route that connects Naples to Bari (Figure 219 

2Figure 2). The A16 selected section develops in SW-NE direction, along the Southern Italian 220 

Apennine, in correspondence with the valley of the Calaggio Creek, between the towns of 221 

Lacedonia (Campania Region) and Candela (Puglia Region). 222 

 223 

Figure 2. Landslides detected through field survey along the monitored section of A16 highway. 224 
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The area is tectonically active, but the landscape, characterized by gentle slopes, is mostly 256 

influenced by lithologic factors rather than by tectonics. The lithologies outcropping in this area are 257 

Pliocene-Quaternary clay, clayey marlstones, and more recent (Holocene) terraced alluvial 258 

sediments (from clay to gravel). The landslides shown in  Figure 2Figure 2 are all located in clay or 259 

clayey marlstones. 260 

The highway runs on the right flank of the Calaggio Creek at an altitude between 300 and 400 m 261 

a.s.l.; the section of interest represents an element at risk in the computation of landslide risk 262 

assessment, due to the presence of unstable areas which can potentially affect the communication 263 

route (Figure 2Figure 2). These unstable areas mainly involve clayey superficial layers. 264 

On 1st July 2014, the GB-InSAR system was installed on the test site. The location of the 265 

installation point was selected taking into account the view of the unstable area and the distance 266 

from the power supply network. A covered structure was built to protect the system from 267 

atmospheric agents and possible acts of vandalism, in the perspective of a long-term monitoring. 268 

The transmission network was provided by a GSM modem, exploiting the 3G network. In addition 269 

to the PC integrated in the GB-InSAR power base, a further external PC was exclusively employed 270 

for data post elaboration and transmission. 271 

The system acquired from the beginning of July 2014 until the end of July 2015. 272 

The installation location allowed the system to detect an area between 40 and 400 meters far from 273 

the its position in range direction, and about 360 m wide in the azimuth direction. These values, 274 

coupled with a 40° vertical aperture of the antennas, allowed operators to detect an area of about 275 

360 m x 360 m. 276 

5 Data management 277 

The most relevant matter of this monitoring was not as much related to the detection of landslide 278 

movements threatening the highway, as to how a long-term monitoring performed with an 279 

instrument providing huge amounts of data could have been run without resorting to large hard 280 

drives nor to fast internet connections. In fact, the monitoring area was covered by a 3G mobile 281 

telecommunication networks, with a limit of 2 gigabyte data transfer per month and there was the 282 

need to reduce the massive data flow produced by the radar. 283 

For this reason, an appropriate data management (Figure 3Figure 5) was developed and is here 284 

described. 285 

 286 
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 287 

Figure 35. Diagram showing the complete data flow from acquisition to final visualization. 288 

5.1 Data acquisition 289 

The GB-InSAR employed produced a single radar image, consisting in a 1001x1001 complex 290 

matrix, every 5 minutes. Each one is around 8 Megabytes large, resulting in more than 2 Gigabytes 291 

of data produced every day. 292 

This amount of data represented an issue for both store capacity and data transmission. 293 

5.2 Data elaboration 294 

After being acquired, data were then transferred through LAN connection to the external PC 295 

implementing a dedicated Matlab script locally performing the actions described as follows. 296 

5.2.1 Data averaging 297 

In order to reduce the noise normally affecting radar data (especially in vegetated areas), the images 298 

acquired every 5 minutes were also averaged using all data of the previous 8 and 24 hours. Then 299 

images averaged on 24 hours have been used to calculate daily displacement maps, every 8 hours to 300 

create 8h displacement maps and non-averaged images to calculate 5 minutes displacement maps. 301 

These time frames have been selected based on the characteristics of the slope movements and 302 

signal/noise ratio in the investigated area. 303 

Averaging is also a mean to make a good use of a high data frequency, since it enables to reduce the 304 

memory occupied in the database as an alternative to their direct elimination.  305 
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5.2.2 Displacement map calculation and ASCII conversion 333 

Each radar image can be represented as in Eq.1: 334 

𝑆𝑛 =  𝐴𝑛 𝑒𝑥𝑝(𝑗𝜑n)                                                                    (1) 335 

where An is the amplitude of the nth image, 𝜑n its phase and j = (-1)1/2 is the imaginary unit. The 336 
displacement Δr occurred in the time period between the acquisition of S1 and S2 has been 337 
calculated with the following (Eq.2): 338 

𝛥𝑟 =  (𝜆/4𝜋)  ·  𝛥𝜑                                                                      (2) 339 

where λ is the wavelength of the signal and 340 

                                                   𝛥𝜑 = 𝜑1 −  𝜑2                                                                                                                 (3) 341 

can be derived from: 342 

                            𝑆3  =  𝑆1 𝑆2
∗  =  𝐴1𝐴2 𝑒𝑥𝑝[𝑗(𝜑1  − 𝜑2)]                                                            (4) 343 

As a result, an ASCII file, only containing the information relative to the displacement for each 344 
pixel, was obtained. 345 

5.2.3 Atmospheric correction 346 

One of the major advantages of GB-InSAR is the capability to achieve sub-millimeter precision. 347 

However, this can be severely hampered by the variations of air temperature and humidity, 348 

especially when long distances are involved. Usually, atmospheric correction is performed by 349 

choosing one area considered stable, taking into account that every displacement value different 350 

from 0 is due to atmospheric noise and assuming that this offset is a linear function of the distance. 351 

Based on this relation all the displacement map is corrected. In our case the whole scenario has been 352 

selected and then only the potential unstable zones and those with a weak or incoherent 353 

backscattered signal were removed. The remaining areas were then considered stable and therefore 354 

were used for calculating the atmospheric effects. This results in a larger correction region that 355 

enables a statistical correlation between the atmospheric effects and the distance and therefore the 356 

calculation of a site-specific regression function that may not necessarily be linear (Figure 4Figure 357 

6). 358 

 359 
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Figure 46. The color bar is expressed in mm; green indicates stable pixels, while blue and red 381 
respectively movement toward and away from the GB-InSAR. Left: raw interferogram showing 382 
artificial displacement increasing linearly with distance (as typical of atmospheric noise). Right: the 383 
same interferogram after the atmospheric correction. 384 

5.2.4 Line of sight correction 385 

The availability to detect only the LOS (Line Of Sight) component of the displacement vector 386 

represents one of the main limitations of the GB-InSAR technique. A method to partially overcome 387 

this limitation has been applied in this paper, following the procedure described in Colesanti & 388 

Wasowski, 2006 and later in Bardi et al. 2014 and 2016. Other methods have been employed by 389 

Cascini et al. (2010; 2013). 390 

Assuming the downslope direction as the most probable displacement path, radar data have been 391 

projected on this direction. Input data as the angular values of Aspect and Slope have been derived 392 

from the Digital Terrain Model (DTM) of the investigated area; furthermore, azimuth angle and 393 

incidence angle of the radar LOS have been obtained. 394 

After calculating the direction cosines of LOS and Slope (respectively functions of azimuth and 395 

incidence angles and aspect and slope angles) in the directions of Zenith (Zlos, Zslope), North (Nlos, 396 

Nslope) and East (Elos, Eslope), the coefficient C is defined as follow (Eq. 5): 397 

                               𝐶 = 𝑍𝑙𝑜𝑠𝑥𝑍𝑠𝑙𝑜𝑝𝑒 + 𝑁𝑙𝑜𝑠𝑥𝑁𝑠𝑙𝑜𝑝𝑒 + 𝐸𝑙𝑜𝑠𝑥𝐸𝑠𝑙𝑜𝑝𝑒                                                   (5) 398 

C represents the percentage of real displacement detected by the radar sensor (Figure 5Figure 7A).  399 

The real displacement (Dreal) is defined as the ratio between the displacement recorded along the 400 
LOS (Dlos) and the C value (Figure 5Figure 7 B). 401 
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 421 

Figure 57. (a) C values map. Blue arrows indicate the downslope direction. (b) Cumulated 422 
displacement values projected along the downslope direction, referred to a period between 1 July 2014 423 
and 1 November 2014. The yellow asterisk in the left of the images represents the location of the GB-424 
InSAR. 425 

Assuming that the studied landslide actually moves along the downslope direction, the GB-InSAR 426 

detectable real displacement percentage ranges between 22 and 60 % (Figure 5Figure 7A). 427 

In Figure 5Figure 7B, an example of slope displacement map has been shown. Here, cumulated 428 

displacement data related to a period between 1 July and 1 November 2014 have been projected 429 

along the downslope direction. Data show as the area can be considered stable in the referred 430 

period; maximum displacement values of 4 mm in 4 months (eastern portion of observed scenario) 431 

can be still considered in the range of stability. 432 

5.2.5 Time series extraction 433 

In order to allow for a fast data transfer and velocity threshold comparison, some representative 434 

control points were selected, aimed at providing cumulated displacement time series. Control points 435 

were retrieved from the same displacement maps calculated as described in paragraph 5.2.25.2.2 436 

and therefore can be relative to a time frame of 5 minutes, 8 hours or 24 hours. 437 

In case of noisy data, instead of having a time series relative to a single pixel, these can be retrieved 438 

from a spatial average obtained from a small area consisting of few pixels. 439 
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5.2.6 Scenario cropping 440 

Typically, the field of view of a GB-InSAR is larger than the actual area to be monitored. In fact, a 441 

portion of the radar image may be relative to the ground, sky, areas geometrically shadowed or 442 

covered by dense vegetation. These may be of no interest or even containing no information at all. 443 

For the case here studied around 50% of a radar image had a low coherence and was for all practical 444 

purposes, unusable. Therefore, a cropping of the ASCII displacement map occurred in order to 445 

frame only the relevant area. 446 

5.3 Data transfer and visualization 447 

The interferometric data generated by GB-InSAR, after the pre-processing and proper correction 448 

previously described, are ready for transfer to the DCPC. The transmission of these data to the 449 

DCPC is mediated by the middleware, which interrogates the GB-InSAR for tracking the state, 450 

detects the newest data, and reorders and marks them to properly build data time series to be 451 

transferred to DCPC. 452 

Subsequently, the middleware manages communications with the DCPC, according to the 453 

implemented ad-hoc protocol. This ensures the security of data providers through encrypted 454 

authentication mechanisms, it allows for recovering missing or partially transmitted data, thus 455 

avoiding information loss, and provides data acquired by the sensors to the DCPC in a standardized 456 

format, JSON, able to guarantee uniformity between the various information provided by the 457 

various sensors types. All these particular features fully justify the adoption of an ad-hoc protocol 458 

for data transfer, instead of using a standard protocol such as FTP. 459 

The data files produced by the GB-InSAR have already been locally pre-processed and result in a 460 

matrix expressed in ASCII code; the dimensions of the matrix are known and range from 1x1 (for 461 

the displacement of single control points) to 1001x1001 (for uncropped displacement maps). Before 462 

encapsulating these data in the message to be transferred to DCPC, the middleware converts them 463 

from ASCII code to character strings, using the standard coding ISO / IEC 8859-1, so being able to 464 

obtain a data compression with a factor equal to ≈8. 465 

Eventually the DCPC is entrusted for cumulating the displacements relative to the control points, 466 

which are compared with the respective thresholds, and for visualizing the displacement maps as 467 

WebGIS layers, thus enabling data validation and the evaluation of the extension of moving surface. 468 

6 Early warning procedures discussions 469 

The GB-InSAR is part of a larger early warning system (LEWIS) which also includes other 470 

monitoring systems and simulation models. Therefore, to understand how GB-InSAR data can be 471 

used in an early warning perspective, it is necessary to make reference to LEWIS as a whole. 472 

Any information, coming from the investigated sites and subsequently processed also by using the 473 

simulation models, is used to define an intervention model. This is based on the following elements: 474 

event scenarios, risk scenarios, levels of criticality, levels of alert. 475 

Event scenarios describe the properties of expected phenomena in terms of dimension, velocity, 476 

involved material and occurrence probability. Occurrence probability depends on the associated 477 

time horizon, which should be equal to few hours at most, in the case of early warning systems. 478 
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Evaluation of occurrence probability is carried out by using information from monitoring systems 505 

and/or from outputs of adopted mathematical models for nowcasting. All the properties, to be 506 

analyzed for event scenarios, are listed below; a subdivision in classes is adopted for each one: 507 

• landslide velocity (5 classes from slow to extremely rapid); 508 

• landslide surface (5 classes from very small to very large); 509 

• landslide scarp (5 classes from very small to very large); 510 

• landslide volume (5 classes from extremely small to large);  511 

• thickness (5 classes from very shallow to very deep); 512 

• magnitude (3 classes: low, moderate, high), which combines the previous information; 513 

• involved material (mud, debris, earth, rock, mixture of components); 514 

• occurrence probability (zero, low, moderate, high, very high, equal to 1). 515 

While some of the aforementioned parameters are determined by geological surveys, landslide 516 

velocity is directly derived from monitoring data (such as those collected by GB-InSAR). Landslide 517 

surface can be determined by geomorphological observation but is precisely quantified by GB-518 

InSAR, thanks to its capability of producing 2D displacement maps. 519 

Risk scenarios can be firstly grouped in the following three classes: 520 

A. mud and/or debris movements which could induce a friction reduction between the vehicles 521 

and the tar and therefore facilitate slips; 522 

B. road subsidence induced by landslides that could drag or drop vehicles; 523 

C. falls of significant volumes and/or boulders that could crush or cover vehicles and constitute 524 

an obstacle for other vehicles. 525 

For each previous risk scenario, six sub-scenarios can be identified based on the number of 526 

potentially involved infrastructures, carriageways and lanes (a. hydraulic infrastructures and/or 527 

barriers, b. only emergency lane, c. lane, d. fast lane, e. fast lane of the opposite carriageway, f. lane 528 

of the opposite carriageway). Thus, all possible risk scenarios are 18 (Figure 6Figure 8), indicated 529 

with a couple of letters (Capital and small). 530 
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 531 
Figure 68. Top and middle: possible risk scenarios involving the scenario A (landslides that could 532 
reduce friction) to increasing sectors of the highway. Bottom: combinations of scenarios with several 533 
types of phenomena (A, B, C) affect the emergency lane, lane and fast lane. 534 

The following information is provided to DCPC: 535 

• Measurements from sensors 536 

• Model outputs 537 

and four states are identified for each of them: 538 

• state 0 = no variation 539 

• state 1 = small variation 540 

• state 2 = moderate variation 541 

• state 3 = high variation. 542 

In practice, for the GB-InSAR, such states are delimited by fixed velocity values (thresholds). In 543 

this application values have been selected according to the gathered data, the first threshold being 544 

just above the instrumental noise; the remaining have been set based on expert judgement waiting 545 

for a more robust calibration, which is possible only after at least a partial mobilization of the slope. 546 

Anyway, the system is open to any method for determining thresholds (Crosta and Agliardi, 2003; 547 

Du et al., 2013; Carlà et al., 2016a) and also to the use of other parameters (acceleration for 548 

example).  549 

Besides information from sensors and models, other information is obtained from meteorological 550 

and hydrological models (named as indicators). 551 
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Indicators comprise weather forecasting and output of FLaIR and Sushi models (Sirangelo et al. 552 

2003; Capparelli and Versace 2011) on the basis of observed and predicted (for the successive six 553 

hours) rainfall heights. 554 

Two states are defined for indicators: 555 

• state 0 = no variation or not significant, 556 

• state 1 = significant variation. 557 

To sum up, DCPC has the following information in any moment:  558 

 state (0, 1) of indicators (IND), 559 

 state (0, 1, 2, 3) of sensors and models running for the specific highway section (SEN), 560 

and, on the basis of these states, four different decisions can be made by DCPC, one of which with 561 

three options.  562 

All the possible decisions are illustrated in Table 1, in which the weight of the several sensors is 563 

assumed to be the same. Based on the notices of criticality levels provided by the DCPC, and on its 564 

own independent evaluations, the CCC issues the appropriate warning notices (Surveillance, Alert, 565 

Alarm and Warning) and makes decisions about the consequent actions. 566 

 567 

State of sensors and/or models DCPC decisions 

All INDs and SENs are S0 0 - no decision 

At least one IND is S1 and all SENs are S0 1 – SOD (Sensor On Demand) activation 

At least one SEN is S1 2 – to intensify the presence up to 24 hours/day 

At least n SENs are S1 or at least one SEN 

is S2 
3/1 – to issue a notice of ordinary criticality (level 1) 

At least n SENs are S2 or at least one SEN 

is S3 
3/2 - to issue a notice of moderate criticality (level 2) 

At least n SENs are S3 
3/3 - to issue a notice of high or severe criticality 

(level 3) 

Table 1. DCPC possible decisions. 568 

The information of each sensor and the results produced by the models are used to assess, in each 569 

instant, the occurrence probability of an event scenario in the monitored areas and the possible risk 570 

scenarios.  571 

This combination of heterogeneous data was carried out by identifying for each sensor and model a 572 

typical information (displacement, precipitation, inclination, etc.), evaluating the state in each 573 

instant, according to a threshold system, and combining this result for all sensors placed in a 574 

monitored geomorphological area.  575 

The result is constituted by the occurrence probability of an event scenario, that is associated with a 576 

specific action by the DCPC. In particular, if the occurrence probability is low, moderate or high it 577 

is necessary to issue a notice of criticality (ordinary - Level 1, moderate - Level 2, High - Level 3) 578 

to the CCC. 579 

The DCPC sends two types of information:  580 

1) criticality state of the single monitored geomorphological unit, 581 

2) criticality state of the whole area. 582 
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The adopted communication protocol between the two centers for the exchange of information was 583 

carried out through a web service provided by the CCC, using the classes and attributes of the 584 

methodology named Datex II (which is a protocol for the exchange of traffic data). The use of the 585 

web service allowed to ensure the interoperability of data between the two centers, regardless of the 586 

used hardware and software architecture, through a persistent service capable of ensuring an 587 

immediate restoration of the connections, in case of malfunction and a continuous monitoring 588 

between the two centers, even in the absence of criticality. 589 

 590 

7 Conclusions 591 

The GB-InSAR is a monitoring tool that is becoming more and more used in landslide monitoring 592 

and early warning, especially thanks to its capability of producing real-time, 2D displacement maps. 593 

On the other hand, it still suffers from some drawbacks, such as the limitation of measuring only the 594 

LOS component of a target’s movement and logistic issues like those owing to a massive 595 

production of data that may cause trouble for both storing capacity and data transfer. In particular, 596 

the latter is a more and more common problem of advanced technologies that are able to produce 597 

high quality data with a high acquisition frequency, which may leave the problem of find the 598 

balancing between exploiting all the information and at the same time avoiding unnecessary 599 

redundancy. 600 

These problems have been addressed when a GB-InSAR was integrated within a complex early 601 

warning system (LEWIS) and only a limited internet connection was available. This situation 602 

required that a series of pre-elaboration processes and data management procedures took place in 603 

situ, in order to produce standardized and reduced files, carrying only the information needed when 604 

it was needed. The procedures mainly concerned the transmission of data averaged over determined 605 

time frames, proportionate with the kinematics of the monitored phenomenon. Previously, 606 

transmission data were also corrected (both in terms of atmospheric noise and LOS) and reduced, 607 

by filtering out the information relative to the amplitude of the targets, by eliminating the areas not 608 

relevant for the monitoring and by transforming the matrices into strings. 609 

As a result, GB-InSAR data converged into the early warning system and contributed to it by 610 

producing displacement time series of representative control points to be compared with fixed 611 

thresholds. Displacement maps were also available for data validation by expert operators and for 612 

retrieving information relative to the surface of the moving areas. 613 
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