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Abstract. The possibility of utilising statistical dependence methods in coastal flood hazard calculations is investigated, since 

flood risk is rarely a function of just one source variable but usually two or more. Source variables in most cases are not 

independent as they may be driven by the same weather event, so their dependence, which is capable of modulating their joint 10 

return period, has to be estimated before the calculation of their joint probability. Dependence and correlation may differ 

substantially from one another since dependence is focused heavily on tail (extreme) percentiles. The statistical analysis 

between surge and wave is performed over 32 river ending points along European coasts. Two sets of almost 35-year hindcasts 

of storm surge and wave height were adopted and results are presented by means of analytical tables and maps referring to 

both correlation and statistical dependence values. Further, the top 80 compound events were defined for each river ending 15 

point. Their frequency of occurrence was found to be distinctly higher during the cold months while their main low-level flow 

characteristics appear to be mainly in harmony with the transient nature of storms and their tracks. Overall, significantly strong 

values of positive correlations and dependencies were found over the Irish Sea, English Channel, south coasts of the North 

Sea, Norwegian Sea and Baltic Sea, with compound events taking place in a zero-lag mode. For the rest, mostly positive 

moderate dependence values were estimated even if a considerable number of them had correlations of almost zero or even 20 

negative value. 
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1 Introduction 

In the coastal and inter-tidal zones, high waves and extreme tidal surge events can occur simultaneously with extreme 

precipitation events and high river flows, leading to increased flood severity, duration or frequency as highlighted in Svensson 

and Jones (2002, 2003, 2004a, 2004b, 2005), Hawkes and Tawn (2000), Hawkes et al. (2005). These interactions are generally 

referred to as coincident or compound events (IPCC, 2012). In the current Part I, compound events of surge and wave are those 5 

events that coincidently are above a certain upper percentile criterion (representing a critical threshold). A key component of 

any coincident event assessment is to understand the historical relationships between the different factors that may lead to a 

compound flood event. However, assumptions are often made regarding how these different factors and variables coincide or 

combine, typically leading to either an under- or over-estimation of the probability of flooding (Coles et al., 2000). In reality, 

while some events may indeed occur independently from one another, others involve an interaction, or may have compounding 10 

consequences when they occur simultaneously, and need to be treated as partially dependent for the estimation of their joint 

probability or joint return period (https://www.niwa.co.nz/natural-hazards/faq/what-is-a-return-period). 

 

Joint probability values provide the likelihood of source variables taking high values simultaneously resulting in a situation 

where flooding may occur. Acceptance of joint probability methods has been relatively sparse so far mainly due to the lack of 15 

information on dependence among source variables and the intrinsic difficulty in usage and interpretation of the methods as 

pointed out in Australian Rainfall & Runoff Project 18 (2009), Bevacqua et al., (2017). The main concept of dependence as 

presented by Reed (1999) refers to the tendency for critical values of source variables to occur at the same time resulting in an 

increase in frequency of an extreme event. This is because dependence is able of modulating the joint return period as 

documented in Hawkes (2004), Meadowcroft et al. (2004), White (2007), Australian Rainfall & Runoff Project 18 (2009). 20 

 

The method for estimating the probability of extreme values from a single variable has been well understood and documented 

(Coles, 2001). Such probability is usually expressed in the form of a return period. In a similar way, the (joint) probability of 

two variables producing high or extreme values together, assuming to be fully independent or fully dependent, is also 

considered straightforward as explained in Defra TR0 Report (2003).  On the other hand, examples of coincident flood event 25 

studies, which incorporate a measure of the relationship between the input variables, are generally limited due to the complexity 

of the broader coincident events problem (Bevacqua et al., 2017). Assessing the probability of flooding from the joint 

occurrence of high waves and high sea level values for instance is not an easy process, as high waves and storm surge tides 

may be attributed to the same prevailing storm system; thus, independence cannot and should not be assumed. Further, it is 

more complicated to estimate such conditional (joint) probabilities than those referring to totally independent events 30 

(http://onlinestatbook.com/2/probability/basic.html). However, some approachable and user-friendly methods seem to exist 

for quantifying the statistical dependence between the input variables as noted in Hawkes (2004), White (2007) and applied 

by Zheng et al. (2013 & 2014) and Klerk et al. (2015). 

http://onlinestatbook.com/2/probability/basic.html


3 

 

 

In the case of independent events, the chance of one event occurring is not changed by the occurrence of the other event. 

However, if the occurrence of one event is dependent on the occurrence of a second event then the events are termed conditional 

even if their correlation might be equal to zero. It should be stressed that correlation and dependence might differ substantially 

from one another. Two source variables may have low correlation but there may exist considerable statistical dependence 5 

between them referring to their upper percentiles where actually extremes reside. Further, it should be well established by now 

that correlation coefficients measure the degree of straight line or linear relationship only and that there are situations in which 

correlations are zero but where strong nonlinear relationships exist among variables (Drouet Mari and Kotz, 2004).  

 

Assuming independence between input variables might underestimate considerably the likelihood of flooding resulting in 10 

higher risk for the coastal community, since the conditional probability of both events occurring at the same time is different 

from the product of their individual probabilities (Blank, 1982). Similarly, assuming total dependence could be too 

conservative (Beersma and Buishand, 2004). What someone should anticipate is the fact that dependence is likely to occur 

when different processes are linked to some common weather (forcing) conditions. It may also arise when the same process is 

studied at different spatial locations or over different periods (Coles et al., 2000). In an estuarine or riverine area, an example 15 

would be a storm accompanied by high winds and intense precipitation phenomena. For such cases where two (or more) 

variables, capable of producing high-impact events, are not totally independent or totally dependent, but may be partially 

dependent, probabilistic approaches are limited in both their reliability and scope (White 2007).  

 

In this work, the possibility of utilizing statistical dependence methods in coastal flood hazard calculations is investigated, 20 

since an estimation of the joint probability (joint return period) is necessary for the calculation of compound flood hazard in a 

coastal area. Such an approach points to taking into account the variability and exact nature of extreme conditions. The basic 

idea behind joint probability theory is to identify extreme data within each of the input variables and statistically correlate their 

linkages and risk of simultaneous occurrence. Therefore, it seems quite important to find an appropriate way to undertake this 

task. Understanding such risks, created by the combination of extreme events, is crucial for the design of adequate and cost 25 

effective river and coastal defences as well as for the true estimate of flood risk as highlighted in Merz et al. (2009), Australian 

Rainfall & Runoff Project 18, (2009). 

 

The current work focuses on data preparation, parameter selection, methodology application and estimation of both correlation 

and statistical dependence between source variables. It also focuses on the prevailing (higher frequency) and dominant (higher 30 

intensity) low-level wind conditions over a set of preselected (top 80) extreme compound events. The critical time period 

during which such extremes take place is also analysed based on monthly frequency values of occurrence. The dependence 

analysis utilises 32 river ending points selected to cover a variety of geographical areas along European coasts. The variable-

pairs presented in this report, which include enough information for calculations, are storm surge and wave height, relevant to 
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most coastal flood defence studies. Two main time intervals were considered for the estimation of maximum values: the half-

day interval (max12) and the one-day interval (max24). 

 

This study represents the first part (i.e., Part I) of the investigation while Part II (storm surge and river discharge) and Part III 

(wave height and river discharge) are to follow.  The reasoning behind such a separate investigation (by parts) is to allow the 5 

reader for a deeper and better understanding of the interaction between different components contributing to a compound 

coastal event. 

 

In Sect. 2, the concept and implications of estimating statistical dependence are documented, while in Sect. 3, the data and 

methods used are presented. Results are shown in Sect. 4, while discussion and conclusions are contained in Sect. 5. 10 

2 Statistical dependence () 

The main concept of the so-called dependence measure  (chi) is related to two or more simultaneously observed variables of 

interest – such as in our case storm surge and wave height – known as observational pairs. If one variable exceeds a certain 

extreme (high-impact) threshold, then the value of  represents the risk that the other variable will also exceed a high-impact 

threshold as explained in Hawkes (2004), Svensson and Jones (2004a & 2004b), Petroliagkis et al. (2016). 15 

 

Following Coles et al. (2000), if all of the extreme observations of two variables exceed a given threshold at the same time, 

this indicates total dependence (  1). If the extreme observations of one variable exceed a given threshold but the second 

variable does not, this indicates total independence (  0). Similarly, if the extreme observations of one variable exceed a 

given threshold but the other variable produces lower observations than would normally be expected, this indicates negative 20 

dependence (  1). In practice, hydro-meteorological analyses based on real data often lead to an assessment of complete 

independence that could result to an under-estimation of the joint probability of concurrent extreme events, whereas, an 

assumption of complete dependence could result to an over-estimation of joint probabilities (Beersma and Buishand, 2004). 

In reality, as variables reach their extreme values, a special methodology of estimating statistical dependence could be utilised 

as the one documented in Buishand (1984). A brief description of this method based on Coles et al. (2000) is contained in the 25 

Statistical Supplement while the basic theory behind the utilisation of an optimal copula function refers to Nelsen (1998), Joe 

(1997), Currie (1999), Wahl et al. (2015). 

3 Data and methodology 

The current statistical (dependence) analysis is focused over 32 river ending points that have been selected to cover a variety 

of riverine and estuary areas along European coasts. These points were selected mainly for their proximity to tide gauge 30 
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recorders although not many observations were found suitable to be exploited due to the lack of long-period coincident wave 

(buoy) observations in the near-by area. The sea areas used in the study refer to the Mediterranean Sea (central and north 

Adriatic Sea, Balearic Sea, Alboran Sea and Gulf of Lion), West Iberian, North Iberian, Bay of Biscay, Irish Sea, Bristol 

Channel, English Channel, North Sea, Norwegian Sea, Baltic Sea and Black Sea. A map showing the position of RIEN (RIver 

ENding) points used in the study is shown in Fig. 1. Additional details can be found in Table 1 of the Technical Supplement 5 

containing the exact location (lat, lon) of all RIEN points. 

 

Fig. 1. Positions of the 32 RIEN (river ending) points used in the study. Names refer to river names. 
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As already mentioned long-period water level data coinciding with wave observations directly or very close to the exact sites 

of interest (RIEN points) were not available with the exception of the Rhine River (RIEN). For this RIEN, concurrent (close-

by) observations with no gaps of sea level, astronomical tide, storm surge, and wave height from a close-by wave buoy were 

available for a period of about 3 years (1,114 days). 5 

3.1 Storm surge hindcasts 

Storm surge is an abnormal rise of water generated by a storm, over and above the predicted astronomical tide values 

(http://www.nhc.noaa.gov/surge/faq.php). In observations mode, storm surge is calculated as a residual by subtracting 

harmonic tidal predictions from the observed sea level (Horsburgh and Wilson, 2007). Such “residual” may contain surge, 

tide-surge interaction, harmonic prediction errors and timing errors. Tide-surge interaction, harmonic prediction errors and 10 

timing errors are not taken into consideration in this study. On the other hand (e.g. in hindcast mode) a similar “residual” refers 

to the genuine meteorological contribution to sea level that represents the storm surge term. It should pointed out that the effect 

of wind and atmospheric pressure (inverse barometric effect) are contained in both the “residual” and storm surge terms. Based 

on this, it becomes clear that all data (storm surge) sets used in the study contain the effect of the inverse barometric effect 

besides the effect due to wind. This is the reason why the dedicated model (Delft3DFlow) uses as input both ERA-Interim 15 

(Dee et al., 2011) wind and pressure fields. 

 

For assessing dependence, a full set of coincident observation data is needed over a relatively long time period (at least five 

years) for the primary variables, as pointed out in Defra TR2 Report (2005). Such a demanding requirement is too difficult if 

not impossible to be fulfilled only by observational data over all 32 RIEN points, so, the methodology of simulating data 20 

observations by modelling (hindcasts) was applied resulting in a set of long period model simulations (hindcasts) for the two 

primary variables (surge and wave). 

 

For storm surge hindcasts, the Delft3D-Flow hydrodynamic module of the open source model Delft3D (Deltares, 2014) was 

used to compile storm surge time-series due to the combined effect of the wind and the atmospheric pressure gradient. The 25 

model (Delft3D-Flow) has been used successfully in similar applications (hindcasts) in the past (Sembiring et al., 2015). In 

our case, long-term storm surge series for the 32 RIEN points were compiled from a similar hindcast set to that used in 

Vousdoukas et al. (2016). This was obtained by forcing the Deflt3D-Flow module by 6-hourly wind and pressure fields 

retrieved from the ECMWF ERA-Interim reanalysis data set (Dee et al., 2011). The ERA-Interim (ERAI) is a global 

atmospheric reanalysis from 1979 to present. ERAI’s main products include global atmospheric and surface parameters from 30 

1 January 1979 to present, at T255 spectral resolution (~75 x 75 km) on 60 vertical levels. 

 



7 

 

Storm surge hindcasts (1 January 1980 to 30 November 2014) span a total interval of 12,753 days (~35 years), having a time 

separation of 3 hours with a spatial resolution of about 0.2 degrees (~25 x 25 km) along the European coastline and the NE 

Atlantic Ocean areas. Hindcast storm surge levels were validated with measurements from 110 tide gauges from the JRC Sea 

Level Database (http://webcritech.jrc.ec.europa.eu/SeaLevelsDb). Details can be found in Vousdoukas et al. (2016). The 

relative rms (root mean squared) error for more than 105 stations was found to be less than 20% and for more than 60 stations 5 

less than 15%. More specifically, the validation performance of hindcasts is contained in the scatter plot of Fig. 4 (Vousdoukas 

et al., 2016) for both RMS error in m (a) and as a percentage of the SSL (Storm Surge Level) range (b) for all the available 

tidal gauge stations. Further, even if there were cases where some extreme storm surge levels were underestimated by the 

hindcasts, the overall model performance is considered to be satisfactory. 

3.2 Wave height hindcasts 10 

In many applications, a selection of heights and periods of the higher waves in a wave train seem to be of practical significance. 

For this reason, the average height of the highest one-third of the waves, after eliminating the ripples and waves of height less 

than one foot is considered as a useful statistical measure. This average is commonly named as "significant wave height" 

(Sverdrup and Munk, 1946) and it is utilised in the current study. 

As in the case of storm surge, global fields of 3-hourly (significant) wave data were assembled by utilizing a set of hindcasts 15 

produced with the latest stand-alone version of ECWAM wave model (for details see Bidlot et al., 2006, Bidlot, 2012 and 

ECMWF, 2015, Philips et al., 2017). The ECWAM model was run on a 0.25 degrees lat-lon global grid (~28 x 28 km) with 

fixed water depth (mean bathymetry, i.e., no surges or tides) being forced by neutral wind fields (as forcing terms) extracted 

from the ERAI reanalysis. Due to such resolution limitations, the model may not represent the best source of wave data for a 

particular single coastal location, but it does offer consistent coverage over the area of this study within an acceptable degree 20 

of accuracy. The reason is that even if model resolution does not seem capable of simulating local coastal topographical details, 

the main characteristics of the large-scale wave evolution are expected to be captured (based on wave in situ observations data 

provided by Dr Jean-Raymond Bidlot (ECMWF) and used for validation and compiling Fig. 2). For more details on wave 

validation and verification data, see https://www.ecmwf.int/en/newsletter/150/meteorology/twenty-one-years-wave-forecast-

verification. 25 

For each RIEN point, 3-hourly hindcast wave data time series for the period of 1 January 1979 to 31 December 2015 were 

assembled (13,149 days) by considering the closest model grid (sea) point, with no missing records. The resulted records 

consist of significant and maximum wave height values, mean wave period and mean wave direction. The ECWAM model 

has been configured in its CY41R1 parametrization cycle employing 30 frequencies and 36 directions for the wave spectra 

(ECMWF, 2015). 30 

 

http://webcritech.jrc.ec.europa.eu/SeaLevelsDb
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Validation of wave hindcasts was made utilising a set of available data collected from 101 buoys over European and NE 

Atlantic sea areas during the period from 1996 to 2015. The exact position of the buoys used in validation is shown in Fig. 2. 

Both bias and rms error scores were considered and results are also shown in Fig. 2, for bias (upper panel) and for rms error 

(lower panel). Both scores (bias & rms error) suggest that the model’s performance was satisfactory, although bias is lagging 

slightly in quality compared to rms error mainly due to the weak ERA-Interim winds that seems to affect the bias more than 5 

rms error. 

 

It should be noted that the maximum common time interval of 12,753 days (~35 years) for surge and wave variables was 

considered for the statistical (dependence) analysis over the 32 RIEN points of this study. Further, as already stated above, 

both sets of hindcasts had already been validated (Vousdoukas et al., 2016, Philips et al., 2017), so, emphasis was given in 10 

demonstrating the methodology of estimating the type and strength of statistical dependence. Such an investigating approach 

was performed initially over the ending point of Rhine River (NL) with very satisfactory results (see next Sect. 3.3) while the 

same approach (of estimating statistical dependence) was adopted for the rest of ending points (RIENs) of the study. 
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Fig. 2. Bias (upper panel) and rms error (lower panel) values (m) for wave hindcasts during 1996 to 2015. 
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3.3 Local joint validation for the RIEN of Rhine River (NL) 

A joint validation of surge and wave hindcasts utilising a relatively long series of surge and wave observations close to 

Rockanje (RIEN of Rhine River) was performed for testing the quality of hindcasts during the common period of observation 

records. For this task, storm surge observations close to Rockanje were downloaded from MATROOS (Deltares 

Multifunctional Access Tool foR Operational Oceandata Services database - http://noos.deltares.nl/) database. Such surge 5 

observations were recorded by the near-by Hook van Holland (HvH) tide gauge recorder positioned at about 15 km northeast 

of Rockanje (as depicted in Fig. 3). Referring to observation parameters, sea level is the recorded still (i.e. in the absence of 

waves) water level, and surge is the difference between sea level and predicted tide for that time and location. Similarly, a set 

of significant wave height observations were retrieved from the close-by wave buoy platform of Lichteiland Goeree I (LiG) 

moored in North Sea at about 55 km northwest of Rockanje (see details in Fig. 3). 10 

 

Fig. 3. Position of HvH tide gauge station, Rockanje RIEN and Lichteiland Goeree I (LiG) wave buoy (NL). 

A common time interval of 1,114 days (from 22 September 2010 until 9 October 2013) with no gaps was selected for validating 

surge (SUR) and wave (WAV) hindcast data sets. Such surge and wave hindcasts were different to the ones referring to 

Rockanje RIEN point since they were performed as close as possible to the exact positions of HvH tide gauge recorder (SUR) 15 

and LiG wave buoy (WAV) for obvious reasons. Both types of observation, i.e., surge, over HvH and wave height, over LiG 

were made on an hourly basis, so, daily (max24-hour) and half-day (max12-hour) maximum values were calculated. In 

harmony with observations, 3-hourly based storm surge and 3-hourly wave hindcasts were transformed to daily (max24) and 

half-day (max12) maximum hindcast values. Daily maximum (max24) levels of SUR hindcasts for HvH were compared 

against daily maximum observations measured by HvH tide gauge over the reference period of 1,114 days. The closest storm 20 

surge point used in our analysis was situated ~20 km to the north of HvH (North Sea). 
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Fig. 4. Scatterplot of surge hindcasts against observations for HvH (upper panel) and a subsection of hindcast and 

observation values during 25 December 2011 to 24 January 2012 (lower panel). 
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Fig. 4 (upper panel) contains the scatterplot of surge hindcasts against observations in max24 mode. It appears that SUR 

hindcasts are in most cases lower than their corresponding observation values. This difference might be attributed to the 

relatively low temporal and spatial resolution of ERA-Interim forcing terms, although hindcasts overall were found capable of 

coping well with both the timing and magnitude of extremes. 5 

 

An example of such an extreme taken place on 5 January 2012 is shown in Fig. 4 (lower panel) that contains a subsection of 

SUR hindcasts plotted together with surge observations over HvH. This extreme was selected as a multi-purpose demonstrating 

example (see also Fig. 6 for corresponding maxima of WAV values during the same period and Sect. 4.5 where the de-

clustering technique of Peaks-Over-Threshold approach is explained). It is evident that although SUR hindcasts have a 10 

tendency to underestimate observations, the model simulations seem able to resolve both the magnitude and the duration of 

storm events relatively well. The storm surge peak of 5 January 2012 was found to be linked to a very intense extratropical 

cyclone (Storm Ulli / Emil) affecting the greater area of the North Sea. The position and details of the storm are contained in 

the surface weather map of 12UTC of 3 January 2012 shown in Fig. 5 (upper panel). The corresponding (12UTC) satellite 

picture capturing Storm Emil is contained in the same Fig. 5 (central panel). 15 
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Fig. 5. Surface map (upper panel) and its corresponding satellite image (middle panel) valid for 3 January 2012 12UTC. 

Surface weather map in the late hours (midnight) of 5 January 2017 (lower panel). 
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Studying closely both surge hindcast and observation values referring to Storm Emil (lower panel of Fig. 4) it seems that 

hindcasts could resolve and simulate well both the phase and the magnitude of such an extreme event. It is important to realise 

that such events are linked to intense pressure gradients such as those clearly seen in Fig. 5 (lower panel) prevailing during the 

late-night hours of 5 January 2012. Besides the intensity of pressure gradients, the orientation of isobars that was almost vertical 5 

to the coasts of Holland (as indicated by a purple arrow) it was also contributing strongly to the extremity of the event. 

 

Overall, storm surge hindcasts were found to have a negative bias (defined as difference between the mean of hindcasts and 

the mean of observations; see details in http://www.cawcr.gov.au/projects/verification/) of about -2.65 cm. It was also found 

that hindcast and observation values exhibit a very strong correlation reaching a value of ~0.90, while slightly lower correlation 10 

was found for max12 (0.88).  

Similarly, daily maximum (max24) values of significant wave height (WAV) were compared against daily maximum values 

of observations measured at the LiG wave buoy platform as shown in Fig. 6 (upper panel). The closest wave model point used 

in our analysis was suited ~9.5 km northwest of the position of the LiG platform. As in the storm surge case, WAV hindcasts 

are in most cases lower than their corresponding observation values. 15 

As mentioned already, this might be due to the smoothness of ERAI forcing terms not possessing the required resolution to 

resolve the exact magnitude of wind components. The systematic bias of wave hindcasts was found to be relatively small, 

being equal to 20.30 cm. Wave hindcasts were found to exhibit a very strong correlation value (~0.92) to observations, while 

similar (slightly lower) correlation was found for max12 data pairs (~0.90). 

 20 

As in the case of SUR hindcasts, Fig. 6 (lower panel) contains a subsection of time series of both WAV hindcasts and 

observations (with dates being identical to the previous SUR case). WAV hindcasts appear to be lower than observations and 

besides the unavoidable smoothness of ERAI fields, another explanation for such deviation might be the proximity of the LiG 

buoy to the coast. It is well known that enclosed areas and near-shore locations are indeed much more difficult to model 

(http://www.ecmwf.int/en/newsletter/150/meteorology/twenty-one-years-wave-forecast-verification). 25 

 

Referring to the example (SUR) already presented in the lower panel of Fig. 4, the storm surge extreme of 5 January 2012 was 

found to be in harmony with the significant wave height extreme observed during the same max24 interval (shown in the lower 

panel of Fig. 6). This is also an indication that storm surge and wave compound extremes are linked to the same weather system 

(Storm Emil) with a clear tendency to take place in a zero-lag time mode over the south coasts of the North Sea. 30 

 

http://www.cawcr.gov.au/projects/verification/
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The obvious agreement between hindcasts and observations (Fig. 4) is a clear indication of the model’s (Delft3D-Flow) 

capability to simulate efficiently observations (over the whole spectrum of observations) in hindcast mode having as input 

parameters (wind components and mean sea level pressure) from the ECMWF ERA-Interim reanalysis data set. Same wise 

the obvious agreement between hindcasts and observations (Fig. 6) is a clear indication of the model’s (ECMWF / ECWAM) 

capability to simulate efficiently observations in hindcast mode having as input parameters (wind components) from the 5 

ECMWF ERA-Interim reanalysis data set. 

 

Indicative examples of such capabilities can be seen in Table 2 and Table 3 of Section 2 of the Technical Supplement revealing 

that hindcasts above all were capable of identifying and resolving all seven (7) compound events (based on 98.5% percentile 

threshold) that took place during the common time interval of 1,114 days over HvH area of interest. 10 
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Fig. 6. Scatterplot of wave hindcasts against observations (upper panel) and a subsection of hindcast and observation values 

during 25 December 2011 to 24 January 2012 (lower panel). 

 

Since this study is focused over maxima taken place over 12- and 24-hours based on 3-hour set of hindcast values, timing 5 

errors were investigated over Rhine River (NL) ending point and the overall conclusion has been that hindcasts were able to 

pick up similar (to observations) maxima during both the 12-and 24-hour intervals. Details and examples of the capability of 

hindcasts to identify and resolve compound events of surge and waves are contained in Sect. 2 of the Technical Supplement.  

 

An extra investigation based on extreme values of observations (during the common time interval of 1,114 days) exceeding a 10 

variety of percentile values for the RIEN of Rhine River revealed that both storm surge and their corresponding wave height 

hindcasts were able to capture (resolve) almost all of the 12- and 24-hour extremes (not necessarily compound ones) on the 

same (correct) day but with a weaker intensity (i.e., with a correct footprint of lesser intensity). 

4 Results 

The main tools for estimating statistical dependence () are briefly summarised in the next section (Sect. 4.1). Besides the 15 

ability of surge and wave hindcasts to simulate correctly observations over HvH tide gauge and LiG wave buoy platforms 

respectively (as analysed in Sect. 3.3), their potential for resolving the correct type and strength of both correlation and 

dependence between primary variables in a joint (compound) mode environment is investigated over a common period of 
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1,114 days in Sect. 4.2. Referring to the full span of hindcasts, analytical maps and tables have been assembled containing 

both correlation and dependence values between surge and wave over the 32 RIEN points considered in this study. Both 

correlation and dependence values were estimated over maximum values of surge and wave during 12- and 24-hour intervals 

(labelled as max12 and max24 respectively). These results are presented in Sect. 4.3 (southern European areas) and Sect. 4.4 

(northern European areas). An evaluation of the low-level flow during the top 80 extreme compound events utilising wind rose 5 

diagrams is contained in Sect. 4.5. The critical period (of the year) for such high-impact events to take place is also assessed 

by considering monthly frequencies of occurrence. 

4.1 Main tools for estimating statistical dependence 

The main tools for assessing dependence between surge and wave has been a set of Matlab routines (mat_chi) for estimating 

the asymptotic behaviour of statistical dependent variables. Other Matlab routines such as mat_chibar (see details and examples 10 

in the Statistical Supplement) for assessing the asymptotic behaviour of statistical independent variables were also used and 

main findings are contained in Table 4 and Table 5 of the Technical Supplement. Besides Matlab functions additional routines 

from the statistical package R, namely “taildep” of module extRemes and “chiplot” of module evd (Extreme Value 

Distributions) were used for estimating and inter-comparing  values (see details in the Statistical Supplement). 

 15 

An optimal threshold of ~2.3 events on a yearly basis was found to provide quite stable dependence graphs (see details in the 

Statistical Supplement) while the maximum strength of almost any compound (surge and wave) event tends to take place 

during the same 24-hour (max24) time or during the same 12-hour (max12) period corresponding to zero-lag mode. Exceptions 

were found for Rhone, Ebro, Danube, Thames and Goeta RIEN points with one-day lag (2 half-days in case of max12), 

suggesting that storm surge values were (slightly) higher correlated with wave height values of the previous day. Results in 20 

Tables and Figures refer to zero-lag values. 

4.2 Validation of hindcasts in “compound” mode 

First, the (Pearson) correlation between the two source variables (surge & wave) in observations mode is estimated while the 

same type of correlation is calculated in hindcast mode (see details in Table 1) for inter-comparison. Daily maximum (max24) 

values of storm surge observations collected at HvH station for the common time period (obs_com) are plotted against 25 

corresponding significant wave height observations recorded at the LiG buoy as shown in Fig. 7 (upper panel). 

Observations of surge and wave seem to be well correlated with a coefficient reaching a value of 0.70. In hindcast mode 

(hind_com), the exact correlation value (0.70) was found between surge and wave hindcasts during the selected common 

interval. Surge and wave values in hind_com are plotted in Fig. 7 (lower panel). In both obs_com and hind_com the maximum 

values of correlations were achieved in zero lag mode (i.e., during the same 24-hour interval). 30 
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Table 1. Details and abbreviations of data sets used in the study. 

obs_com Observations during the common period (1,114 days) 

hind_com Hindcasts during the common period (1,114 days) 

hind_tot Hindcasts during the total period (12,753 days) 

Similar results were found in max12 case with a (slightly lower) correlation value reaching 0.69 in zero-lag mode. A slightly 

higher correlation value (0.73) was found in zero-lag mode when the total 12,753 daily data pairs of hindcasts (hind_tot) were 

used. This deviation should not be considered significant since different number of data pairs was used. Similar (slightly lower) 

values of correlation were found for the max12 data pairs (0.71). Overall, it seems that hindcasts in this case were able of 5 

resolving and estimating both the correct type and strength of correlation between source variables. 

As in the case of correlations, the capability of hindcasts to resolve correctly the statistical dependence between surge and 

wave focusing on the upper (extreme) percentiles is investigated by inter-comparing dependencies estimated in obs_com and 

in hind_com (1,114 days). Fig. 8 shows the full range of  values for all different types of data pairs considered in this study. 

The Peak-Over-threshold (POT) methodology (see details in the Statistical Supplement) was applied for a minimum three-day 10 

separation of extremes and an optimal selection of threshold was made not allowing more than ~2.3 events per year to exceed 

it, resulting in quite stable  graphs over a wide range of percentile values as shown in Fig. 8 (for obs_com, hind_com and 

hind_tot), whereas due to the sparse of data pairs, values of dependence in the area of lower and higher quantiles appear to be 

quite unstable (i.e., with abrupt fluctuations). 

Table 2. Dependencies between surge and wave values for observations (obs_com) and hindcasts (hind_com) in common 15 

interval and hindcasts over the total period (hind_tot). POT thresholds are shown in parentheses. 

obs_com hind_com hind_tot 

0.5850 (98.2%) 0.5840 (98.3%) 0.5629 (98.0%) 

Similar (in harmony) strong values of  between surge and wave were found for all three configurations (obs_com, hind_com 

and hind_tot) in zero-lag mode as shown in Table 2. Similar results (for all three configurations) were also found when the 

same data pairs were considered for running chiplot of R (as shown in Fig. 1 of the Statistical Supplement). Slightly lower (but 

still in harmony among them) values were found for max12 case (in zero-lag mode). 20 
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Fig. 7. Scatterplots of storm surge against significant wave height in obs_com (upper panel) and hind_com (lower panel) for 

the common time interval of 1,114 days. 5 
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Fig. 8. Statistical dependence () of storm surge (HvH) and significant wave height (LiG) max24 values in common 

obs_com & hind_com (1,114 days) and total hind_tot (12,753 days) mode. 

The importance and implications of such high values of dependence can be demonstrated with an example as the one presented 5 

in Sect. 7 of the Statistical Supplement by considering the total hindcast (hind_tot) series for surge (HvH) and wave (LiG). 

 

It should be pointed out that the real (correct) statistical dependence is estimated by utilising the formula of Eq. 4 in the 

Statistical Supplement over a long set of real data (observations) of storm surge coming from a tide gauge and real data of 

wave height coming from a close by wave buoy. The tide gauge and wave buoy have to be relatively close for obvious reasons. 10 

Usually the tide gauge is in the vicinity of the port while the wave buoy is suited some kilometres offshore in front of the port. 

 

Besides observations (that are limited in time length) hindcasts can be used as in our case. It should be also evident by now 

that even if hindcasts might be missing the exact magnitude of the extremes mainly due to the limited (model) resolution the 

most important issue here is their ability to resolve and estimate the correct value of both correlation and dependence as it is 15 

estimated over real data (observations). 
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In the case of the RIEN of the Rhine River, the high level of agreement between the dependence estimated utilising (surge and 

wave) observations and the one utilising (surge and wave) hindcasts, points to the direction that hindcasts are capable of 

resolving both the correct type and strength of dependence between the source variables. 

 5 

Overall, considering the complexity of all physical drivers behind such dependencies that are focused intentionally on the 

upper percentiles where extremes reside, hindcasts of storm and wave seem to perform quite well in their ability to simulate 

observations and to resolve correctly the type and strength of both correlation and statistical dependence. 

4.3 Correlations and dependencies for southern coastal areas 

A necessary split of results had to be made for a better and easier visualisation due to the relatively large amount of RIEN 10 

points to fit in one single Table. This split also revealed the distinct differences between southern and northern coastal European 

areas. Details of both correlations and dependencies found over southern RIEN points are presented analytically in Table 4 

(based on Matlab routines) and Table 6 (based mainly on R routines) of the Technical Supplement. For the analysis of results, 

the ensemble mean value of  (by averaging mat_chi, chiplot and taildep values) is taken as a reference value. The different 

categories of correlation and dependence used later in the text refers to the categorisation adapted by Defra TR1 Report (2005), 15 

shown also in Fig. 9. 

 

In Table 4 (Technical Supplement), correlation (corr) and dependence (chi) values for both max12 and max24 intervals are 

presented together with critical threshold (thrs), significance (sig) and 95% confidence level (lower & upper) max24 values. 

Referring to correlation values, a large amount of variability is evident in both max12 and max24 modes. In max12 mode, low 20 

(0.05   < 0.12), or even negative correlations were found over most coastal areas with the exception of Adriatic Sea RIENs 

and the RIEN of Aven River (belonging to a higher category), whereas moderate (0.12   < 0.38) values of dependence 

(max12) were estimated for most of those RIEN points. Such differences do not come as a surprise since dependence is 

focusing selectively on the upper (extreme) percentiles and not on the full range of data pairs, meaning that surge and wave 

may have a considerable statistical dependence capable of modulating joint return period even if correlation in some cases is 25 

remarkably low (Drouet Mari and Kotz, 2004). Higher correlations were found in max24 mode compared to max12, although 

low (close to zero) and even negative values were estimated locally over the Balearic Sea, Alboran Sea, North & West Iberian 

and Black Sea.  

 

Referring to dependence, with the exception of Foix RIEN point (belonging to the low category), the rest of the “comb” 30 

dependencies (last column of Table 6 of the Technical Supplement) fall into the moderate category (0.12   < 0.38). Besides 

dependence (chi), chibar values were estimated. Significance values, lower and upper confidence interval values of  were 
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calculated also. In Table 6 (Technical Supplement), a set of R values is shown based on chiplot (extRemes module) and taildep 

(evd module) routines. Relatively small differences were found in estimations of dependence based on Matlab and R routines. 

Such differences may be attributed to the methodology for selecting critical percentile thresholds and how to identify and 

confine POT extremes in every case but nevertheless, in almost all cases both Matlab and R routine estimations were found to 

belong in the same category. In addition, except for Foix RIEN both taildep & chiplot estimations of dependence fall well 5 

inside the confidence (95%) intervals estimated by mat_chi routines. 

 

Extensive lag tests were made for both correlation and dependence revealing that the maximum strength of almost any 

compound surge-wave event tends to take place during the same max24 or max12 period (zero-lag mode). Exceptions were 

found for Rhone, Ebro and Danube RIENs with one-day (2 half-day interval in max12 case) lag interval revealing that surge 10 

values were (slightly) higher correlated / dependent with wave values of the previous day. Further, the agreement of 

dependence values (among Matlab and R routines) became more pronounced, as the signal (value of dependence) got stronger. 

The ensemble mean (comb) value of  is used hereafter for defining the category of dependence (max24) in all relevant text 

and maps. 

4.4 Correlations and dependencies for northern coastal areas 15 

In Table 5 (Technical Supplement), correlation (corr) and dependence (chi) values for both max12 and max24 intervals are 

presented together with chibar, critical threshold (thrs), significance (sig) and values of 95% confidence levels (max24). 

Distinctly higher values were found from those over southern areas for both max12 and max24 cases. All values were achieved 

in zero lag mode (with the exception of Thames and Goeta RIENs reaching their highest values with one-day lag. 

 20 

Apart from Thames RIEN (having negative correlation), all max12 correlations fall in the moderate category and above (corr 

≥ 0.12) with the top maximum value (0.59) of Bethune (RIEN) belonging to the strong category (0.54  corr < 0.70). Even 

higher correlation values were found in max24 mode with almost all values falling in the “well” category and above (corr ≥ 

0.38). Correlations belonging to the “strong” category were estimated for a considerable number of RIENs over Irish Sea, 

English Channel, North Sea and Baltic Sea. 25 

 

Contrary to findings over southern areas, smaller differences between correlation and dependence values were found over the 

northern areas for both max12 and max24 cases. Significantly high values of dependence belonging to the “well” category and 

above ( ≥ 0.38) between surge and wave were found over the Irish Sea, English Channel, North Sea, Norwegian Sea and 

Baltic Sea in zero-lag mode (except for Goeta RIEN with one day lag time). Besides Bethune RIEN in the English Channel, 30 

having a strong dependence (0.65) in max24 mode, strong dependencies were also found for Rhine (0.54) and Weser (0.55) 

RIENs. Such findings suggest that over the south coasts of the North Sea, when a surge extreme event is anticipated, 

probabilities are quite high for an extreme wave event to take place at the same time (as a compound event). 
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As in Table 6 (Technical Supplement), a set of dependence values for northern coastal areas based on R routines is shown in 

Table 7 (Technical Supplement). Once more, small differences were detected in estimations of statistical dependence between 

Matlab and R routines but in almost all cases both Matlab and R routine estimations were found to fall in the same category. 

In addition, both taildep & chiplot estimations of dependence fall well inside the confidence (95%) intervals estimated by 5 

mat_chi routines. As in Sect. 4.3, an ensemble mean value of chi contained in the last column of Table 7 (Technical 

Supplement) is considered as a reference value of dependence (max24). 

 

 

Fig. 9. Correlation (corr) and dependence (chi) values valid for max24 interval. 10 
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Results referring to the ensemble (comb) value of  and correlation for max24 cases over all RIEN points are shown in Fig. 9. 

The categorisation applied in this study (shown graphically as an enclosed table in Fig. 9) is similar to the one introduced by 

Defra TR1 Report (2005). 

 5 

Lastly, a full set of lag tests was made for both correlation and dependence. It was found that the maximum strength of almost 

any compound (surge and wave) event tends to take place during the same 24-hour (max24) time or during the same 12-hour 

(max12) period corresponding to zero-lag mode. Exceptions were found for Thames (UK), Goeta Aelv (SE) RIEN points with 

one-day lag (2 half-days in the case of max12). 

4.5 Wind rose diagrams assessing the low-level flow characteristics during critical compound events 10 

Prevailing Wind is the most common wind direction over an area, i.e., the direction of wind with the highest frequency (AMS, 

2017), whereas Dominant Wind is the direction of the strongest wind that might blow from a different direction than the 

prevailing wind, i.e., from a less common direction (Thomas, 2000). The periods most frequently used for the estimation of 

prevailing and dominant winds are the observational day, month, season, and year. Methods for determination vary from a 

simple count of periodic observations to the computation of a wind rose. 15 
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Fig. 10. Statistical “clima” average (upper panel) and Top-80 extreme compound (lower panel) daily maximum wind roses 

for Rhone River RIEN. 

 5 

Extreme compound surge and wave events are unavoidably linked to severe weather conditions. These conditions include very 

strong winds and low atmospheric pressure that is caused mainly by intense storms. Focusing on the low-level circulation, a 

set of wind rose diagrams was compiled for all RIEN points utilising ERAI reanalysis winds spanning over the total period of 

12,753 days. 
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ERAI winds are referring to the four main synoptic hours (00 – 06 – 12 & 18 UTC) of reanalysis. From such 4-term (daily) 

sets the maximum speed was estimated and kept together with its corresponding direction to be used in the wind rose diagrams. 

Wind roses are an information packed plot providing frequencies of wind direction and speed. A wind rose diagram can quickly 

indicate both the prevailing wind referring to the principal or most common wind direction (having the highest percentage of 5 

occurrence) and the dominant wind, indicating the direction of the highest wind speed. Examples of wind roses are given in 

Fig. 10 referring to daily maximum winds for the River Rhone RIEN during 12,753 days that may be taken as “clima” 

conditions (upper panel) and during the Top-80 compound events (lower panel) that may be considered as extreme compound 

mode conditions. 

 10 

From Fig. 10 (upper panel) it is obvious that the clima prevailing (highest frequency) wind is north-northwest (NNW), a local 

type of wind named “Mistral” (www.cs.mcgill.ca/~rwest/wikispeedia/wpcd/wp/w/Wind.htm). The dominant wind (highest 

intensity) also is of a similar type (Mistral) blowing from a northwest (NW) direction. Mistral is a strong northerly wind 

blowing over the Gulf of Lion (GoL) and Rhone Valley. The air is usually dry, bringing bright and clear weather with freezing 

temperatures to the south of France. The Mistral often reaches gale force especially in winter and is capable of raising heavy 15 

sea conditions in a short space of time.  

 

The same type of diagram was produced for the Top-80 compound events (lower panel of Fig. 10) revealing a quite different 

story. The prevailing wind does not belong to the Mistral “family” since it clearly comprises southeast components of another 

local wind named “Marin” (www.cs.mcgill.ca/~rwest/wikispeedia/wpcd/wp/w/Wind.htm). Marin is a strong wind in the area 20 

of GoL blowing from south-easterly directions, and is next in frequency and importance to the Mistral wind. It is generally 

warm, moist and cloudy, with rain and heavy weather, and is associated with depressions (storms) that enter the GoL area from 

the west or south-west after traversing southern France and northern Spain. 

 

The implication of such findings is that although the prevailing and dominant wind in clima mode is of the Mistral type, most 25 

of the Top-80 extremes take place under Marin conditions in a relatively stronger wind environment (compared to Mistral 

conditions). On the other hand, Mistral conditions are also found to be responsible for a considerable percentage of Top-80 

events accompanied by winds of lesser intensity (compared to the Marin ones). Similar detailed wind (clima & Top-80) roses 

were produced for the rest of the RIEN points. Distinct differences between southern and northern coastal areas are once more 

pronounced revealing relatively stronger intensity flow characteristics over the northern areas. 30 

 

Details of clima and Top-80 flow characteristics are contained in Table 3. A possible exploitation of such information referring 

to both prevailing and dominant low-level flow characteristics should be considered significant and kept in mind when such 

extreme events possibly driven by intense storm outbreaks are anticipated over the area of interest (in forecast mode). 
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Not all prevailing and dominant directions contained in Table 3 fall in the perpendicular onshore category. Especially for the 

RIEN points of the south North Sea, wind directions appear to be more SWS instead of more northerly directions and this is 

because combined events had to be de-clustered. This means that a compound event lasting more than one day had to be 

counted as one (1) event even if this event could have lasted for a few days. After this necessary de-clustering all cases of 5 

compound events, are referring to the first day of the event (the first day that both storm surge and wave height found to be 

above a predefined critical threshold). With such an approach, a compound event is considered only once and no other (another) 

event is taken into account for the next three days (even if the same event continues to exist longer than a day). Both prevailing 

and dominant directions are referring to the maximum daily intensity and if we consider the most common case of an 

approaching barometric low (storm) the wind in the beginning is more WSW whereas with the passage of the storm tends to 10 

veer to a more north-western (northern) direction becoming more perpendicular to the coast. 

Table 3. Prevailing and dominant winds in clima and Top-80 extreme compound mode. 

  clima Top-80  clima Top-80 

 RIEN prev domi prev domi  RIEN prev domi prev domi 

1 Po NE ENE ESE NE 17 Owena SSW WSW SSW WSW 

2 Metauro NE NE NE NE 18 Mersey WSW W SW NNW 

3 Vibrata NNE SSE SSE ENE 19 Severn WSW SW SSW SSE 

4 Rhone NNW NW ESE ESE 20 Tamar WSW WSW SSW WSW 

5 Foix S NNW WNW NE 21 Exe SW WSW SSW SW 

6 Ebro NW NW SSW NW 22 Avon SW SW SSW SW 

7 Velez ESE E E E 23 Bethune WSW SW SW SW 

8 Douro NNW NNW SW SW 24 Tyne WSW SSE SW WSW 

9 Tagus NNW NW SW NW 25 Humber SW W NNW W 

10 Sado NNW NW SW S 26 Thames SW W N SSW 

11 Guadiana NNW W SSW SW 27 Schelde WSW WSW W WSW 

12 Sella NE WSW SW WSW 28 Rhine WSW WSW W WSW 

13 Moros SW SSW WSW W 29 Weser WSW WSW WSW WSW 

14 Aven SW WSW SSW WSW 30 Goeta WSW W SW NNW 

15 Blavet SW WSW SSW WSW 31 Orkla SSE WSW WSW WSW 

16 Danube NNW NNE ENE NNE 32 Vantaa SW SSE ENE N 
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Besides wind roses, the critical time period of the Top-80 events was investigated. For instance, in the case of the Rhone River, 

most Marin (east-southeast flow) and Mistral (north-west flow) Top-80 extreme compound events took place during the cold 

period of the year. Such a critical period was confined from October to March containing 91% of all Top-80 compound events.  

 

Similarly, the critical period of Top-80 events was calculated for the rest of the RIEN points based on monthly frequencies of 5 

occurrence (Table 4). This critical interval comprised mostly cold months. There were even cases such as for the RIEN of 

Rhine (NL) and Schelde (BE) where all (100%) Top-80 compound events took place during the cold period (September to 

April). During these critical intervals (Table 4) there appears to exist a clear tendency for the northern extreme compound 

events to take place mostly with south-western components of stronger wind intensity (compared to southern events). This 

tendency for both prevailing and dominant winds to be clustered around the south-western quadrant is more pronounced over 10 

the Irish Sea, English Channel, North Sea and Norwegian Sea. 

Table 4. Critical period and percentage of occurrence for Top-80 compound events. 

  Top-80  Top-80 

 RIEN per %  RIEN per % 

1 Po Oct – Mar 91 17 Owena Oct – Mar 93 

2 Metauro Oct – Mar 88 18 Mersey Oct – Mar 96 

3 Vibrata Oct – Mar 91 19 Severn Sep – Apr 91 

4 Rhone Oct – Mar 91 20 Tamar Sep – Apr 94 

5 Foix Sep – Apr 94 21 Exe Sep – Mar 91 

6 Ebro Oct – Apr 88 22 Avon Oct – Mar 93 

7 Velez Oct – May 98 23 Bethune Oct – Mar 93 

8 Douro Oct – Apr 88 24 Tyne Oct – Mar 96 

9 Tagus Oct – Apr 94 25 Humber Oct – Apr 98 

10 Sado Oct – Apr 97 26 Thames Oct – Apr 91 

11 Guadiana Oct – Apr 93 27 Schelde Sep – Apr 100 

12 Sella Sep – Apr 93 28 Rhine Sep – Apr 100 

13 Moros Sep – Apr 94 29 Weser Oct – Apr 97 

14 Aven Sep – Apr 91 30 Goeta Sep – Mar 98 

15 Blavet Sep – Apr 93 31 Orkla Sep – Mar 95 

16 Danube Nov – Apr 91 32 Vantaa Sep – Jun 98 
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The validity of such findings is briefly investigated. For the Irish Sea, extreme surge conditions especially in its eastern side 

are generated by south-westerly to westerly winds as documented by Brown et al. (2010). For the English Channel, this south-

western signature is compatible with the path of (extra-tropical) storms that tend to generate large surges (Henderson and 

Webber, 1977). For the North Sea such south-western preference seems to partly contradict the fact that the largest wave events 

occur in the central North Sea when a low-pressure system is situated over southern Scandinavia (such as the one shown in 5 

Fig. 5) giving rise to a long northerly fetch associated with strong northerly winds. An obvious explanation could be that 

southerly-wind events can also create large wave heights despite their limited fetch, since southerly-wind events are associated 

with the existence of zonal jets (embedded in extratropical cyclones) that intensify rapidly in the left exit region of the jet 

stream as indicated by Bell et al. (2017). Besides this, depths in the southern North Sea are only about 40m on average adding 

to the fact that wind stress is particularly effective in piling up water against the coast in the shallow water as the effect is 10 

inversely proportional to water depth (Wang et al., 2008). 

 

It should be kept in mind that besides the prevailing and dominant wind directions responsible for most compound extremes 

there still exist additional critical directions linked to extremes. For instance in the area of German Bight (southern North Sea), 

northwest wind components (visible in the wind rose for Weser RIEN) have been identified as having a significant link to both 15 

surge and wave extremes (Staneva et al., 2016). 

 

Lastly, for the Norwegian Sea, observations seem to fully support our findings as documented in an earlier work of Gjevik and 

Røed (1976) showing that large storm surges are caused by strong south-westerly winds acting along a large section of the 

Norwegian coasts. 20 

 

Overall, the low-level flow characteristics (prevailing and dominant winds) appear to be first in harmony with the transient 

nature of (extra-tropical) storms and their footprints (storm tracks). This seems to be consistent with similar findings (even if 

they apply for different pair of variables) in Defra TR1 & TR3 Reports and in Svensson and Jones (2002, 2004a, 2004b, 2005) 

documenting that (storm) surge and (river) flow dependence appears to be largely influenced by the storm track of the 25 

depressions although it should be kept in mind that a thorough understanding of all factors leading to such compound events 

is above the scope of this study. 

5 Discussion and conclusions 

The possibility of utilizing statistical dependence methods in coastal flood hazard calculations is investigated, since flood risk 

is rarely a function of just one source variable but usually two or more. Source variables in most cases are not independent as 30 

they may be driven by the same weather event, so their dependence (), which is capable of modulating their joint return 

period, has to be estimated before the calculation of their joint probability. The source variable-pairs presented here, are storm 
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surge and wave height, and their correlation and dependence were assessed over 32 river ending (RIEN) points along European 

coasts. It should be noted that correlation and dependence may differ substantially from one another. This is because correlation 

is estimated over the full range of percentiles whereas dependence is focused on the upper (extreme) percentiles. 

 

In the absence of widespread coincident long-term measurements of surge and wave, a set of ~35-year (12,753 days) hindcasts 5 

was compiled. Storm surge hindcasts were performed by utilising the hydrodynamic model Delft3D-Flow while wave 

hindcasts were generated with ECWAM wave (stand-alone) model. Although in some cases extreme surge and wave hindcast 

levels were underestimated, the overall performance of both surge and wave hindcasts is considered satisfactory. Further, a 

joint validation in “compound mode” was made over the area of Hook van Holland (HvH) taking into account real 

measurements of both tides and waves. Overall, hindcasts for the common period of observations (1,114 days) were found 10 

capable of resolving and estimating both the correct type and strength of correlation and dependence between source variables. 

 

A necessary split of results revealed distinct differences between southern and northern coastal European areas since 

significantly higher values of correlation and dependence were found over northern areas with compound events taking place 

on the same max12 (during half a day) or max24 (daily) interval in a zero-lag mode. Results are presented by means of 15 

analytical tables and maps for each RIEN point and can be used to calculate the joint return period by inserting the value of 

dependence () in a simple formula (Eq. 12 of the Statistical Supplement) containing the individual return periods of source 

variables as documented in Hawkes (2004), Meadowcroft et al. (2004), White (2007) and Australian Rainfall & Runoff Project 

18 (2009), Petroliagkis et al. (2016). Some limitations of Eq. 12 (Statistical Supplement) could be overcome if a more complete 

formula is used such as Eq. 2.15 for instance taken from White’s thesis (2017) but this is beyond the scope of the current study. 20 

 

Overall, significant correlations and dependencies ranging from “well” and above (≥ 0.38) categories were found over the Irish 

Sea, English Channel, south coasts of the North Sea, Norwegian Sea and Baltic Sea in a zero-lag mode. Over these areas, 

dependencies reaching locally up to 0.65 (Bethune RIEN) stress the fact that when the first variable (surge) has an extreme 

value there exists a high probability that the other one (wave) will also produce an extreme level. For the rest of the RIENs 25 

mostly positive moderate (0.12   < 0.38) dependence values were estimated although a considerable number of them had 

correlations that were almost zero or even negative. This does not come as a surprise since even in cases of very low correlation 

there may exist a considerable amount of tail dependence (Drouet Mari and Kotz, 2004). 

 

An effort for inter-comparing our results with previous studies was made although there were very few relevant journal papers 30 

(to our knowledge) focusing on correlations and dependencies over such a wide range of coastal areas. A relevant study (thesis) 

by Kergadallan (2016) for the coasts of France has documented that the surge wave dependence is medium along the 

Mediterranean coasts whereas dependence values are more important along the English Channel and the Atlantic coasts, which 

seems consistent with our findings. 
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Other relevant references pointed to a series of U.K. Defra / Environmental Agency Institute Reports (2003 [Defra TR0], 2005 

[Defra TR1], 2005 [Defra TR2] & 2005 [Defra TR3]), hereafter referenced as TRx Reports. This set of Reports (TRx) though, 

refer to a different measure of dependence constituting a “special” correlation coefficient ρ, above a chosen threshold (90%). 

Over U.K. coasts, such values of ρ were positive as our set of  values but considerable higher. Such differences could be 

attributed partly to the fact that  values were estimated by considering a quite different (POT) threshold from the one (90%) 5 

used in ρ estimations. It could be also attributed to the different nature (methodology of estimation) between  and ρ, since it 

is clearly mentioned in TR1 Report that different statistical models are underlying  and ρ values that could cause considerable 

distortion when converting from one parameter to the other.  

 

Above all, it appears that such values of ρ (coming from TRx Reports) should not be considered as reliable statistical 10 

dependence () values as they point to overestimated levels. In support of this, we refer to the methodology of estimating 

statistical dependence (u) by Coles (2001) utilising a set of reference data for surge and wave over the Port of Newlyn 

(Cornwell, U.K.). Results taken from Figure 8.11 (Coles, 2001) suggest a dependence value ~0.35 as (u) clearly tends to this 

value for the upper percentiles. This is very close to our estimation for the RIEN of Tamar River (0.34) and significantly 

different from the value found in Table 4.4 of TR1 Report suggesting a value of ρ higher than 0.60. 15 

 

A further investigation into the low-level flow characteristics of extreme compound events was made. First, a set of 10-metre 

wind roses was compiled utilising ERAI wind terms over the total period of 12,753 days. These winds are referring to the four 

main synoptic hours (00 – 06 – 12 & 18 UTC) based on which the daily maximum speed and its corresponding direction were 

defined and used for producing a set of “clima” wind roses for all RIENs. Based on such clima wind roses the estimation of 20 

the prevailing (highest frequency) and dominant (highest intensity) winds was possible. In addition, the 80 most extreme (Top-

80) compound events were defined by applying POT (Peaks-Over-Threshold) methodology and allowing a maximum number 

(~2.3) of compound events on annual basis. A set of wind roses in such extreme mode was assembled revealing distinct 

differences between clima and Top-80 events in many cases (Table 3). For instance, in the case of the River Rhone (RIEN), 

the clima prevailing average conditions were of Mistral (north-western) type whereas the top extremes (Top-80) were mostly 25 

of Marin (south-eastern) type conditions.  

 

The critical period of Top-80 events was also estimated based on monthly frequency values of occurrence. This critical interval 

comprised mostly cold months (Table 4). There were even cases such as for Rhine RIEN (NL) and Schelde RIEN (BE) where 

all (100%) Top-80 compound events took place during the cold period (September to April). 30 

 

Detailed wind roses (Top-80 mode) were produced for the rest of RIEN points using a common wind speed scale. It seems 

that there is a clear tendency for the northern extreme compound events to take place mostly with south-western components 
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of stronger wind intensity (compared to the southern ones) with emphasis during the cold months. This appears mainly to be 

in harmony with the transient nature of winter storms and their storm tracks as already indicated in Svensson and Jones (2004a 

& 2004b) in a similar analysis for surge and discharge compound events around Britain. 

 

Besides the relevant link between transient storm systems and compound events, the morphological and topographical 5 

characteristics of RIEN areas appears to play a significant role in the genesis and evolution of such extremes. For instance, in 

addition to the local circulation systems such as the Mistral and Marin winds in the case of Rhone RIEN, a similar pattern was 

seen with the Bora (north-eastern) and Sirocco (south-eastern) winds providing the main dominant and prevailing 

(respectively) flows during the Top-80 compound events over Po RIEN (North Adriatic Sea). 

 10 

Further, not all prevailing and dominant directions contained in Table 3 fall in the perpendicular onshore category. Especially 

for the RIEN points of the south North Sea, wind directions appear to be more SWS instead of more northerly directions and 

this is because combined events had to be de-clustered. This means that a compound event lasting more than one day had to 

be counted as one (1) event even if this event could have lasted for a few days. After this necessary de-clustering all cases of 

compound events, are referring to the first day of the event. With such an approach, a compound event is considered only once 15 

and no other (another) event is taken into account for the next three days. Both prevailing and dominant directions are referring 

to the maximum daily intensity and if we consider the most common case of an approaching barometric low (storm) the wind 

in the beginning is more WSW whereas with the passage of the storm tends to veer to a more north-western (northern) direction 

becoming more perpendicular to the coast. 

 20 

This work has been a first step of studying and investigating joint probabilities and return periods of compound events in a 

relatively low-resolution environment. Having this in mind, results referring to dependence estimations should be considered 

valid for coastal areas up to a certain distance (a few kilometres) away from the shoreline. Nevertheless, maps and tables can 

be used to get a valuable indication of the possibility for a combined (compound) hazard based on how the source variables 

are related (though statistical dependence) over various coastal areas of Europe. 25 

 

A thorough estimation of the design conditions at the coastal zone would require including more primary and proxy variables 

in a higher resolution environment. For instance, in addition to the significant wave height, the maximum wave height or/and 

the period or/and the direction of waves should be also considered. Another important point here is the effect of seasonal 

circulation and water-mass distribution (currents & tides) besides the prevailing weather system and atmospheric circulation 30 

contained in relevant weather maps. 
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1 Statistical dependence () 

The main concept of the so-called dependence measure  (chi) is related to two or more simultaneously observed variables of 

interest – such as in our case storm surge and wave height – known as observational pairs. If one variable exceeds a certain 

extreme (high-impact) threshold, then the value of  represents the risk that the other variable will also exceed a high-impact 

threshold as explained in Hawkes (2004), Svensson and Jones (2004a & 2004b), Petroliagkis et al. (2016). 5 

 

Following Coles et al. (2000), if all of the extreme observations of two variables exceed a given threshold at the same time, 

this indicates total dependence (  1). If the extreme observations of one variable exceed a given threshold but the second 

variable does not, this indicates total independence (  0). Similarly, if the extreme observations of one variable exceed a 

given threshold but the other variable produces lower observations than would normally be expected, this indicates negative 10 

dependence (  1). In practice, in tidal and estuarine environments, assessing the probability of flooding from the joint 

occurrence of both high storm surge and high wave values is not an easy process, as high surges and waves might be related 

to the same prevailing meteorological conditions (Beersma and Buishand, 2004), thus independence cannot and should not 

always be assumed. For instance, if we assume independence between input variables, this might underestimate considerably 

the likelihood of flooding (estimated by the product of their individual probability) resulting in higher risk for the coastal 15 

community. Similarly, assuming total dependence could be too conservative. Further, as variables reach their extreme values, 

special methodologies of estimating statistical dependence could be utilised as the one documented in Buishand (1984). 

A brief description of this methodology based on Coles et al. (2000) is described below (Sect. 2) while the basic theory behind 

the utilisation of an optimal copula function refers to Nelsen (1998), Joe (1997), Currie (1999), Wahl et al. (2015). 

 20 

2 Estimation of statistical dependence () 

For bivariate random variables (X, Y) with identical marginal distributions, the dependence measure () can estimate the 

probability of one variable being extreme provided that the other one is extreme: 

 

χ =  lim
z → z∗

Pr (Y > z | X > z) (1) 

 25 

where z* is the upper limit of the observations of the common marginal distribution. 

 

For obtaining identical marginal distributions, each set of observations is ranked separately and each rank is then divided by 

the total number of observations resulting in a data transformation with Uniform [0, 1] margins. At this point, it is convenient 
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to consider the bivariate cumulative function F(x, y) = Prob( X ≤ x, Y ≤ y ) that describes the dependence between X and Y 

completely. The effect of different marginal distributions can be diminished by assuming the copula function C in the domain 

[0, 1] x [0, 1] such as: 

 

F(x, y) =  C { Fx(x), Fy(y) }      (2) 

 5 

where Fx and Fy can be any marginal distributions. Such utilisation of the copula function has the same effect as if observations 

were ranked separately and divided by the total number of observations.  In addition, the copula C contains the complete 

information about the joint distribution of X and Y and it is invariant to marginal transformation. This means that C is invariant 

to marginal transformation and it can be described as the joint distribution function of X and Y. Further, X and Y are 

transformed to new variables U and V with Uniform [0, 1] margins. It follows that the dependence measure (u) for a given 10 

threshold u can be given by: 

 

χ(u) = 2 −  
ln Pr(U ≤ u, V ≤ u) 

ln P(U ≤ u)
 for 0 ≤ u ≤ 1 (3) 

 

Taken into account the upper limit of the observations (previously defined as z* in Eq. 1), the dependence measure (u) will 

be given by: 15 

                                                    χ =  lim
u → 1

χ(u) (4) 

 

Details of deriving Eq. 3 can be found in Coles et al. (2000). Based on Eq. 3, a set of  values can be evaluated at different 

quantile levels u. The selection of a particular level u corresponds to threshold levels (x*, y*) for the two different data series. 

For applying Eq. 3, the number of appropriate observation-pairs (X, Y) is counted for estimating the numerator and 

denominator terms (Eq. 5 & Eq. 6): 20 

 

P(U ≤ u, V ≤ u) =
Number of (X, Y) such that X ≤ x∗ and Y ≤ y∗ 

Total number of (X, Y)
  

(5) 

 

and 

ln P(U ≤ u) =
1

2
 ln[ 

Number of X ≤  x∗

Total number of X
  .  

Number of Y ≤  y∗

Total number of Y
 ] (6) 

 

In this study, a set of routines (mat_chi) based on Matlab software were coded following Eq. 3 to 6 for estimating . Additional 

modules and routines based on the integrated statistical package R were also used for estimating dependence terms and inter-25 
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comparing various parameters. Emphasis was given on the routine “taildep” of the module “extRemes” (https://cran.r-

project.org/web/packages/extRemes/extRemes.pdf) that is capable of estimating  values when a critical percentile (extreme) 

threshold is considered. Another “powerful” routine capable of providing a variety of dependence graphs and plots (besides 

single estimated values of ) has been the routine “chiplot” of the module “evd” (Extreme Value Distributions) of R 

(https://cran.r-project.org/web/packages/evd/evd.pdf). The routine chiplot is also capable of providing confidence intervals at 5 

any preselected level. 

 

Besides estimating values of , similar routines (mat_chibar) were coded in Matlab following Coles et al. (2000) for calculating 

the “sister” attribute of , namely chibar (̅). Chibar (chi_bar) parameter refers to the statistical dependence of asymptotically 

independent variables whereas chi () refers to the statistical dependence of asymptotically dependent ones. Details on the 10 

estimation of chibar are documented in Coles et al. (2000) whereas examples and how to utilise (̅) can be found in Coles 

(2001). The class of asymptotic dependence appears to be the case in Literature, having reached a consensus that there is 

strong, although not overwhelming, evidence for asymptotic dependence between wave height and surge (Wadsworth et al., 

2017). 

 15 

The concept of asymptotic dependence () is stated with adequate details in Coles et al. (2000). In brief,  is on the scale [0, 

1] with the set (0, 1] corresponding to asymptotic dependence whereas the measure chibar (̅) falls within the range [-1, 1] 

with the set [-1, 1) corresponding to asymptotic independence. That is why the complete pair of  and ̅ is required as a 

summary of extremal dependence: 

-  > 0 & ̅ = 1 reveals asymptotic dependence, in which case the value of  determines a measure of strength of 20 

dependence within the class 

-  = 0 & ̅ < 1 reveals asymptotic independence, in which case the value of ̅ determines the strength of dependence 

within the class. 

 

For estimating both  and ̅  parameters, the general POT (Peaks-Over-Threshold) methodology was followed. Such an 25 

approach (POT) is considered as giving a more accurate estimate of the probability distribution than using the annual maximum 

series (see details in Stedinger et al., 1993). Applying POT as described in detail in Defra TR1 Report (2005), the selection of 

an optimal threshold for the data pairs (~2.3 events per year) was adopted as suggested in Defra TR3 Report (2005). Care was 

taken to force two POT extreme compound events not occurring on consecutive days, but separated by at least three days from 

each other. Emphasis was also given on the stability of  (graph) curves identifying the area that dependence was clearly 30 

converging to a specific value (no abrupt fluctuations). 

 

https://cran.r-project.org/web/packages/extRemes/extRemes.pdf
https://cran.r-project.org/web/packages/extRemes/extRemes.pdf
https://cran.r-project.org/web/packages/evd/evd.pdf
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Relatively small differences among various estimates made by chiplot of evd (R), taildep of extRemes (R) and mat_chi 

(Matlab) were found. This most probably is due to the unavoidable dissimilarities between the criteria being imposed on data 

pairs when applying POT methodology (selection of different critical thresholds). 

 

3 Selection of critical thresholds 5 

For selecting a threshold u (referring to a critical percentile) as required in Eq. 3, it seems appropriate to transform the Uniform 

distribution to an annual maximum non-exceedance probability scale (Defra TR3 Report, 2005). Then the annual maximum 

non-exceedance probability (α) is defined as: 

 

α = Prob (Annual maximum ≤ x)     (7) 10 

 

where x is the magnitude of the source variable. Such non-exceedance probability relates to the return period, Tα, as: 

 

Tα = 1 / (1 - α)      (8) 

 15 

For a transformation from annual maximum to POT series (see details and scope in the previous Sect. 2), we define the “new” 

non-exceedance probability, the so-called p, referring to a rate of λ events per year, relating to the annual maximum of Eq. 7, 

as: 

 

α = exp (−λ (1 − p )) (9) 20 

 

where 1-p is the “new” exceedance probability of the POT series. The term (1 – p) can be estimated graphically (Hazen, 1914) 

leading to Equation 10: 

 

λ (1 − p) = ( Ne / N ) * ( i – 0.5 ) / Ne = ( i − 0.5 ) / N        (10) 25 

 

where i, represents the rank of the independent POT events, Ne is the number of POT events while N represents the number of 

years (see details in Defra TR3 Report, 2005). The independence criterion of two POT events to be separated by at least three 

days (six half-day intervals in the max12 case) was applied for all river ending points. Combining Eq. 9 and Eq. 10, an 

estimation of α is possible as given by Eq. 11: 30 

 

α = exp (-(i - 0.5) / N )    (11) 
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Therefore, going after the magnitude of x in Eq. 7 is equivalent as trying to define the magnitude of the POT element with 

rank i in Eq. 11 for the same maximum non-exceedance annual probability, alpha (α). After the selection of an optimal 

threshold (u) based on alpha (α), the estimation of  is straightforward (Eq. 3). The main idea here is to use  in a relatively 

simple formula that also uses as input the individual return periods TX and TY for estimating the joint return period (TX,Y), like 

the formula described by Eq. 12 following White (2007), Australian Rainfall & Runoff Project 18 (2009). 5 

 

 

Studying Eq. 12 closely it becomes obvious that dependence is capable of substantially modulating the joint return period. For 

details and potential limitations of Eq. 12, see discussions in White (2007), Hawkes (2004), Meadowcroft et al. (2004), 

Australian Rainfall & Runoff Project 18 (2009). In cases of totally dependent variables, Eq. 12 yields the common individual 10 

return period of source variables as an estimation of the joint return period. An example of how to utilise Eq. 12 is given in 

Sect. 4.2 of the main text for the river ending point of Rhine (NL). Further, some limitations of Eq. 12 could be overcome if a 

more complete formula is used such as Eq. 2.15 for instance taken from White’s thesis (2007) but this is above the scope of 

the current study. 

 15 

4 Significance 

The values of dependence () corresponding to the 5% significance level were estimated using a permutation method as 

described by Good (1994). As in Defra TR3 Report (2005), 199 permutations of the data were made for each surge-wave pair 

and a new value of  was calculated each time. All 199 values of  were subsequently ranked in descending order and the 5% 

significance level was defined by selecting the 10th largest value representing the 95% point of the null distribution (the 20 

hypothetical distribution occurring if data-pairs were indeed independent). Care was taken to preserve the seasonality since 

permutation of data was performed by randomly reshuffling intact blocks of one year time period. 

 

It should be kept in mind that the significance level of 5% represents the probability of rejecting the null hypothesis when it is 

true. In simple words, it indicates a 5% risk of concluding that a difference exists capable of rejecting the null hypothesis (the 25 

population mean equals to the hypothesized mean) when there is no actual difference. 

 

5 Confidence intervals 

For the estimation of confidence intervals, a well-tested bootstrapping method was applied similar to the permutation method 

already used for estimating significance (for details see Defra TR3 Report, 2005). This bootstrapping resulted in the generation 30 

TXY = √TX ∗ TY / 2     (12) 
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of many new data-sets (resamples). The original sample of observation-pairs was used as the main (reference) distribution 

from which the resamples were chosen randomly. A large number of data sets were generated for calculating  for each of 

these new data sets. This provided a sample of what would occur for a range of situations. Seasonality was kept intact by 

sampling in blocks of one year, rather than using individual observation-pairs. The balanced resampling as documented by 

Fisher (1993) was applied ensuring that each year occurs equally often overall among the total number of bootstrap samples. 5 

In total, 199 bootstrap samples of the data were made for each station-pair and a new  value was calculated each time. The 

199 values were subsequently ranked in descending order and the 10 and 190 largest values were accepted as determining the 

90% confidence interval. 

 

To draw the distinction between significance (previous Sect. 4) and confidence levels it should be noted that a confidence 10 

interval is a range of values that is likely to contain an unknown population parameter (in our case the statistical dependence) 

whereas the significance represents the probability of rejecting the null hypothesis when it is true. It follows that if a random 

sample is drawn many times, a certain percentage of the confidence intervals will contain the population mean. That is the 

reason behind the usage of confidence intervals for bounding the mean or standard deviation. 

 15 

 

6 Selection of critical thresholds resulting in the consideration of top-80 events 

Extreme value analysis can be carried out using two types of data series (Bezak et al., 2014), annual maximums (MA) or flows 

above a certain threshold (POT) for Peak Over Threshold. The POT model used in this study can be composed of the Poisson, 

binomial and negative binomial distributions for modelling the annual number of events above threshold, and of exponential 20 

or generalized Pareto distributions for magnitudes of exceedances. 

Since values of dependence () can be estimated for any lower or upper threshold, initial trials were performed studying the 

behaviour of  over a wide range of thresholds. Findings were similar to those contained in Defra TR3 Report (2005), justifying 

the selection of an optimal threshold for “alpha” (α) equal to 0.1 corresponding to an annual maximum being exceeded in 9 

out of 10 years (see details in Sect. 3). This value (0.1) of alpha was considered for both mat_chi () and mat_chibar (̅) 25 

routines when utilising POT (Peaks-Over-Threshold) methodology resulting in an annual maximum of ~2.3 compound events. 

Such annual threshold of ~2.3 events corresponds to the top 80 (Top-80) compound events taking place during any (POT 

separated) day of the total 12,753 days and it was dictated mainly by two factors: the threshold had to be low enough to allow 

a sufficient number of data points to exceed it for estimating dependence reliably, while being high enough for the data points 

to be regarded as extremes. 30 
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7 Details and examples of the statistical packages used in the study 

In this study, a set of routines (mat_chi) based on Matlab software were coded following Eq. 3 to 6 for estimating . Additional 

modules and routines based on the integrated statistical package R were also used for estimating dependence terms and inter-

comparing various parameters. Emphasis was given on the routine “taildep” of the module “extRemes” (https://cran.r-

project.org/web/packages/extRemes/extRemes.pdf) that is capable of estimating  values when a critical percentile (extreme) 5 

threshold is considered. 

 

Another “powerful” routine capable of providing a variety of dependence graphs and plots (besides single estimated values of 

) has been the routine “chiplot” of the module “evd” (Extreme Value Distributions) of R (https://cran.r-

project.org/web/packages/evd/evd.pdf). The routine chiplot is also capable of providing confidence intervals at any preselected 10 

level. As mentioned above (Sect. 2) relatively small differences among various estimates made by chiplot of evd (R), taildep 

of extRemes (R) and mat_chi (Matlab) were found and this most probably is due to the unavoidable dissimilarities between 

the criteria being imposed on data pairs when applying POT methodology. 

 

Examples of estimated statistical dependence () values between surge (HvH) and wave (LiG) max24 values in obs_com 15 

(upper panel), hind_com (middle panel) and in hind_tot (lower panel) mode by chiplot routine of evd module (R) are given in 

Fig. 1. 

 

 

https://cran.r-project.org/web/packages/extRemes/extRemes.pdf
https://cran.r-project.org/web/packages/extRemes/extRemes.pdf
https://cran.r-project.org/web/packages/evd/evd.pdf
https://cran.r-project.org/web/packages/evd/evd.pdf
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Fig. 1. Estimated  values between surge (HvH) and wave (LiG) max24 values in c (upper panel) & hind_com (middle 

panel) and in hind_tot (lower panel) mode by chiplot routine of evd module (R). 

 

Studying closely Fig. 1 it becomes obvious that considerable high values of dependence are estimated over all three (obs_com, 5 

hind_com & hind_tot) modes. The importance and implications of such high values of dependence can be demonstrated with 

an example by considering the total hindcast (hind_tot) series for surge (HvH) and wave (LiG). Utilising the Matlab function 

“gevfit” an estimation of the return levels having a 100-year return period for surge and wave height variables was made (1.78 

and 6.05 metres respectively). Inserting the common return period value (100-year) together with the estimated  value (0.56) 

in Eq. 12, the Joint Return Period (JRP) of such a compound event (surge ≥ 1.78 metres and significant wave height ≥ 6.05 10 

metres) was estimated at ~179 years. 

 

Such a value (~179 years) is significantly different from the value of 10,000 years representing the estimated JRP assuming 

that surge and wave variables were totally independent. In a case like this (of independent events), the dependence would have 

been equal to zero and the JRP would be given by the product of their individual probabilities (Blank, 1982). 15 
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1 Details of RIEN (RIver ENding) point positions 

The current statistical (dependence) analysis is focused over 32 river ending points that have been selected to cover a variety 

of riverine and estuary areas along European coasts. The sea areas used in the study refer to the Mediterranean Sea (central 

and north Adriatic Sea, Balearic Sea, Alboran Sea and Gulf of Lion), West Iberian, North Iberian, Bay of Biscay, Irish Sea, 

Bristol Channel, English Channel, North Sea, Norwegian Sea, Baltic Sea and Black Sea. A map showing the position of RIEN 5 

(RIver ENding) points used in the study is shown in Fig. 1 of the main text. Additional details can be found in Table 1 (current 

Technical Supplement) containing the exact location (lat, lon) of all RIEN points 

Table 1. Positions (lat, lon) of 32 RIEN points used in the study. Names refer to river ending areas. 

 RIEN lat lon  RIEN lat lon 

1 Po Della Pila 44.96 12.49 17 Muir Eireann 52.65 -6.22 

2 Madonna Del Ponte  43.83 13.05 18 Wallasey 53.44 -3.04 

3 Martinsicuro 42.84 13.93 19 Severn Bridge 51.61 -2.65 

4 Aries 43.34 4.84 20 Fort Picklecombe 50.34 -4.17 

5 El Foix 41.20 1.67 21 Exmouth 50.62 -3.42 

6 Illa de Buda 40.71 0.89 22 Christchurch District 50.72 -1.74 

7 Rio De Velez 36.72 -4.11 23 Dieppe 49.91 1.09 

8 Matosinhos 41.18 -8.71 24 South Tynesid 55.01 -1.43 

9 Carcavelos 38.69 -9.26 25 Spurm Point 53.57 0.11 

10 Setubal 38.53 -8.89 26 Sheerness 51.45 0.74 

11 San Bruno 37.18 -7.39 27 Western Scheldt 51.43 3.55 

12 Punta Del Arenal 43.47 -5.07 28 Rockanje 51.87 4.01 

13 Concarneau 47.86 -3.92 29 Wurster Arm 53.65 8.14 

14 Riviere De Belon 47.81 -3.72 30 Kattegat 57.77 11.76 

15 Larmor-Plage 47.71 -3.38 31 Trondheimsfjord 63.32 9.82 

16 Musura Bay 45.22 29.73 32 Vanhankaupunginselka 60.24 24.99 

 

 10 
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2 Capability of hindcasts to identify and resolve compound events of surge and wave. 

As already mentioned long-period water level data coinciding with wave observations directly or very close to the exact sites 

of interest (RIEN points) were not available with the exception of the Rhine River (RIEN). For this RIEN, concurrent (close-

by) observations with no gaps of sea level, astronomical tide, storm surge, and wave height from a close-by wave buoy were 

available for a period of about 3 years (1,114 days). 5 

 

In Table 2, extreme storm surge (above 98.5% percentile) values for both observations and hindcasts for HvH tide gauge 

station over the common time interval of 1,114 days are shown. Same way extreme significant wave height (above 98.5% 

percentile) values for both observations and hindcasts for LiG wave buoy station over the common time interval are contained 

in Table 3. 10 

 

Table 2. Extreme storm surge (above 98.5% percentile) values for observations (>0.95m) and hindcasts (>0.89m) for HvH 

tide gauge station over the common time interval of 1,114 days. Compound events of surge and wave (i.e., both surge & 

wave above critical threshold) are marked by orange shade.  

# Date Observations hindcasts 

1 12 Nov 2010 1.38 1.10 

2 4 Feb 2011 1.20 1.00 

3 27 Nov 2011 1.25 1.04 

4 28 Nov 2011 0.98 0.93 

5 3 Dec 2011 1.08 1.03 

6 7 Dec 2011 1.10 0.95 

7 9 Dec 2011 1.45 1.23 

8 29 Dec 2011 1.23 1.03 

9 3 Jan 2012 1.07 0.47 

10 4 Jan 2012 1.46 1.16 

11 5 Jan 2012 1.66 1.59 

12 6 Jan 2012 1.37 1.57 

13 21 Jan 2012 1.09 1.02 

14 22 Jan 2012 1.00 1.07 

15 30 Jan 2013 1.07 0.73 

16 10 Sep 2013 0.96 0.59 

 15 



55 

 

 

Compound events of surge and wave are marked by orange shade (in both Table 2 & 3) based on joint observations of storm 

surge and significant wave height. It becomes obvious that hindcasts were able to resolve all seven (7) compound events that 

took place during the common time period of 1,114 days. 

 5 

Table 3. Extreme wave height (above 98.5% percentile) values for observations (> 4.07m) and hindcasts (>3.38m) for LiG 

wave buoy station over the common time interval of 1,114 days. Compound events of surge and wave (i.e., both surge & 

wave above critical threshold) are marked by orange shade. 

# Date Observations hindcasts 

1 12 Nov 2010 4.79 3.99 

2 14 Jul 2011 4.61 3.34 

3 7 Oct 2011 4.34 3.34 

4 7 Dec 2011 5.06 4.83 

5 8 Dec 2011 4.49 3.87 

6 9 Dec 2011 4.17 3.53 

7 24 Dec 2011 4.37 3.27 

8 29 Dec 2011 4.18 3.46 

9 30 Dec 2011 4.66 3.84 

10 4 Jan 2012 4.31 4.02 

11 5 Jan 2012 5.14 4.79 

12 6 Jan 2012 4.55 4.90 

13 20 Jan 2012 4.15 2.81 

14 31 Aug 2012 4.11 3.24 

15 24 Sep 2012 4.61 3.43 

16 25 Nov 2012 4.36 4.09 

    

 

An extra investigation based on extreme values of observations (during the common time interval of 1,114 days) exceeding a 10 

variety of percentile values (for the RIEN of Rhine River) showed that both storm surge and their corresponding wave height 

hindcasts were able to capture almost all of the 24-hour extremes on the same (correct) day but with a weaker intensity (i.e., 

with a correct footprint of lesser intensity). 
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3 Analytical values of correlation and statistical dependence based on Matlab routines. 

A necessary split of results had to be made for a better and easier visualisation due to the relatively large amount of RIEN 

points to fit in one single Table. This split also revealed the distinct differences between southern and northern coastal European 

areas. Details of both correlations and dependencies found over southern and northern RIEN points are presented analytically 5 

in Table 4 and Table 5 based on Matlab routines. Correlation (corr) and dependence (chi) values for both max12 and max24 

intervals are presented together with critical threshold (thrs), significance (sig) and 95% confidence level (lower & upper) 

max24 values. Referring to correlation values, a large amount of variability is evident in both max12 and max24 modes 

 

Table 4. Correlation and statistical dependence values for storm surge and significant wave heights over Mediterranean 10 

(ADR: Adriatic Sea – GOL: Gulf of Lion – BAL: Balearic Sea – ALB: Alboran Sea), West and North Iberian coasts (WIB & 

NIB), Bay of Biscay (BOB) and Black Sea (BLK) based on Matlab routines. 

 

   max12 max24 

 RIEN sea corr thrs chi corr thrs chi chibar sig lower upper 

1 Po ADR 0.26 97.4 0.28 0.39 97.1 0.29 0.43 0.02 0.21 0.37 

2 Metauro ADR 0.23 96.8 0.26 0.35 95.7 0.22 0.30 0.05 0.03 0.35 

3 Vibrata ADR 0.23 96.6 0.35 0.37 96.5 0.32 0.36 0.04 0.23 0.37 

4 Rhone GOL 0.08 94.6 0.20 0.13 93.8 0.21 0.17 0.04 0.13 0.30 

5 Foix BAL 0.09 92.2 0.03 0.10 91.2 0.03 0.05 0.03 0.00 0.08 

6 Ebro BAL 0.04 94.7 0.19 0.12 94.5 0.22 0.22 0.03 0.10 0.30 

7 Velez ALB 0.02 93.9 0.19 0.06 93.1 0.11 0.13 0.04 0.05 0.17 

8 Douro WIB -0.18 97.0 0.30 -0.06 95.7 0.30 0.30 0.05 0.11 0.38 

9 Tagus WIB -0.30 94.3 0.05 -0.22 93.7 0.14 0.16 0.03 0.09 0.22 

10 Sado WIB -0.26 94.9 0.10 -0.19 93.9 0.13 0.17 0.03 0.06 0.21 

11 Guadiana WIB -0.04 95.9 0.22 0.03 95.7 0.28 0.29 0.02 0.15 0.36 

12 Sella NIB -0.25 93.2 0.10 -0.17 86.2 0.14 0.07 0.05 0.07 0.19 

13 Moros BOB 0.07 96.2 0.32 0.22 96.2 0.30 0.34 0.03 0.17 0.39 

14 Aven BOB 0.13 97.0 0.34 0.25 96.7 0.35 0.39 0.01 0.23 0.42 

15 Blavet BOB 0.11 96.5 0.33 0.25 96.7 0.34 0.39 0.02 0.22 0.40 

16 Danube BLK -0.01 96.7 0.21 0.09 96.3 0.24 0.35 0.05 0.07 0.38 
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Table 5. As in Table 4 but for Irish Sea (IRS), Bristol Channel (BRC), English Channel (ENC), North Sea (NRS), 

Norwegian Sea (NOS) and Baltic Sea (BAS). Owena stands for Owenavarragh RIEN (IE) while Goeta is Goeta Aelv RIEN 

(ES). 

   max12 max24 

 RIEN sea corr thrs chi corr thrs chi chibar sig lower upper 

17 Owena IRS 0.50 98.4 0.46 0.59 97.9 0.45 0.53 0.05 0.30 0.55 

18 Mersey IRS 0.45 98.2 0.43 0.56 97.4 0.43 0.48 0.03 0.29 0.52 

19 Severn BRC 0.19 96.1 0.29 0.30 94.9 0.30 0.24 0.04 0.22 0.35 

20 Tamar ENC 0.28 97.8 0.35 0.39 96.9 0.35 0.41 0.02 0.24 0.49 

21 Exe ENC 0.31 97.9 0.38 0.41 97.1 0.40 0.43 0.03 0.29 0.54 

22 Avon ENC 0.37 98.1 0.44 0.50 97.9 0.48 0.55 0.04 0.35 0.58 

23 Bethune ENC 0.59 99.1 0.62 0.68 98.8 0.64 0.77 0.02 0.55 0.73 

24 Tyne NRS 0.14 91.7 0.31 0.28 94.5 0.26 0.21 0.05 0.10 0.39 

25 Humber NRS 0.18 97.3 0.35 0.38 96.6 0.35 0.37 0.04 0.20 0.49 

26 Thames NRS -0.10 92.6 0.22 0.06 92.7 0.22 0.11 0.05 0.11 0.31 

27 Schelde NRS 0.31 97.6 0.54 0.54 97.5 0.53 0.50 0.01 0.45 0.61 

28 Rhine NRS 0.52 98.5 0.57 0.67 98.0 0.56 0.57 0.03 0.41 0.64 

29 Weser NRS 0.56 99.0 0.58 0.65 98.5 0.56 0.69 0.02 0.42 0.63 

30 Goeta NRS 0.43 97.2 0.53 0.55 96.8 0.51 0.39 0.05 0.44 0.61 

31 Orkla NOS 0.35 97.6 0.46 0.46 97.0 0.41 0.43 0.03 0.33 0.50 

32 Vantaa BAS 0.30 97.0 0.43 0.44 96.9 0.44 0.42 0.03 0.36 0.50 

 5 
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4 Analytical values of correlation and statistical dependence based mainly on R routines. 

Details of both correlations and dependencies found over southern and northern RIEN points are presented analytically in 

Table 6 and Table 7 based mainly on R routines. 

Table 6. As in Table 4, but based mainly on R (chiplot & taildep) routines. Ensemble mean (comb) values of dependence are 

also shown (last column). 5 

   R MAT ENS 

 RIEN sea lower upper chiplot taildep mat_chi comb 

1 Po ADR 0.13 0.34 0.23 0.27 0.29 0.26 

2 Metauro ADR 0.08 0.26 0.17 0.22 0.22 0.20 

3 Vibrata ADR 0.13 0.32 0.23 0.36 0.32 0.30 

4 Rhone GOL 0.06 0.21 0.14 0.22 0.21 0.19 

5 Foix BAL 0.01 0.13 0.07 0.16 0.03 0.09 

6 Ebro BAL 0.14 0.30 0.22 0.28 0.22 0.24 

7 Velez ALB 0.03 0.18 0.10 0.16 0.11 0.12 

8 Douro WIB 0.17 0.33 0.26 0.31 0.30 0.29 

9 Tagus WIB 0.07 0.21 0.14 0.22 0.14 0.17 

10 Sado WIB 0.08 0.21 0.14 0.21 0.13 0.17 

11 Guadiana WIB 0.19 0.34 0.27 0.32 0.28 0.29 

12 Sella NIB 0.05 0.19 0.12 0.18 0.14 0.15 

13 Moros BOB 0.14 0.32 0.23 0.28 0.30 0.27 

14 Aven BOB 0.18 0.37 0.27 0.31 0.35 0.31 

15 Blavet BOB 0.17 0.36 0.27 0.30 0.34 0.30 

16 Danube BLK 0.13 0.32 0.23 0.26 0.24 0.24 
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Table 7. As in Table 5, but based mainly on R (chiplot & taildep) routines. Ensemble mean (comb) values of dependence are 

also shown (last column). 

   R MAT ENS 

 RIEN sea lower upper chiplot taildep mat_chi comb 

17 Owena IRS 0.26 0.52 0.39 0.40 0.45 0.41 

18 Mersey IRS 0.26 0.48 0.38 0.38 0.43 0.40 

19 Severn BRC 0.16 0.32 0.24 0.30 0.30 0.28 

20 Tamar ENC 0.21 0.41 0.31 0.34 0.35 0.33 

21 Exe ENC 0.25 0.46 0.36 0.38 0.40 0.38 

22 Avon ENC 0.33 0.57 0.45 0.46 0.48 0.46 

23 Bethune ENC 0.49 0.80 0.64 0.66 0.64 0.65 

24 Tyne NRS 0.11 0.27 0.19 0.26 0.26 0.24 

25 Humber NRS 0.20 0.40 0.30 0.33 0.35 0.33 

26 Thames NRS 0.08 0.22 0.15 0.25 0.22 0.21 

27 Schelde NRS 0.36 0.58 0.47 0.48 0.53 0.49 

28 Rhine NRS 0.41 0.64 0.52 0.54 0.56 0.54 

29 Weser NRS 0.40 0.67 0.55 0.54 0.56 0.55 

30 Goeta NRS 0.35 0.53 0.44 0.46 0.51 0.47 

31 Orkla NOS 0.25 0.45 0.35 0.38 0.41 0.38 

32 Vantaa BAS 0.27 0.48 0.37 0.40 0.44 0.40 

         

For the analysis of results, the ensemble mean value of  (by averaging mat_chi, chiplot and taildep values) is taken as a 

reference value (contained in the last column of Table 6 and Table 7). The different categories of correlation and dependence 5 

used in the main text (and in Figure 9) refers to the categorisation adapted by Defra TR1 Report (2005) and TR3 Report (2005). 
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