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Abstract. The East Africa drought in antumn of year 2016 caused malnutrition, illness and death. Close to 16 million people 

across Somalia, Ethiopia and Kenya needed food, water and medical assistance. Many factors influence drought stress and 

response. However, inevitably it is asked: are elevated greenhouse gas concentrations altering extreme rainfall deficit 

frequency? We investigate this with General Circulation Model (GCMs). After GCM bias correction to match the 

climatological mean of the CHIRPS data-based rainfall product, climate models project small decreases in probability of 10 

drought with the same (or worse) severity as 2016 ASO East African event. This is by the end of 21st century compared to the 

probabilities for present-day. However, when further adjusting the climatological variability of GCMs to also match CHIRPS 

data, by additionally bias-correcting for variance, then the probability of drought occurrence will increase slightly over the 

same period. 

 15 

Historical rainfall estimated by Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS; Funk et al., 2015) 

shows that during August to October (ASO) of 2016, large parts of Somalia, Ethiopia and Kenya (Black rectangle, Fig. 1a) 

had a reduction of 40% or more in rainfall compared to a baseline ASO period 1981-2015. For this region, the spatial average 

of monthly rainfall during ASO of 2016 lies at least one standard deviation below the climatological mean of the other years 

(Fig. 1b). The year of 2016 is the driest year in the past four decades. Other years with rainfall at least one standard deviation 20 

below the climatological mean during 1981-2015 are 1983-1986, 1990 and 1991. We concentrate on East Africa, as this region 

experienced particularly poor harvest and where famine was widely reported during 2016 (noting that many regions outside 

the black rectangle of Fig. 1a also experienced major rainfall deficits in 2016). East Africa is especially vulnerable to the 

impacts of drought (DEC, 2017). The region has long experienced widespread poverty and high levels of food insecurity (Von 

Grebmer et al., 2016).  The high dependence of its population on rain-fed agriculture, sometimes in tandem with political 25 

changes, exacerbate the impacts of droughts (Love, 2009; Masih et al., 2014). 

 

To assess any influence of increasing atmospheric GHG concentrations, we use monthly rainfall data from 37 GCMs 

simulations for the historical period and for a high emission future scenario RCP8.5. These are from the Coupled Model 

Intercomparison Project Phase 5 (CMIP5, Taylor et al., 2012). A summary of the main characteristics of the models are 30 

provided in Table S1. A bias correction with two post-processing steps is applied to the GCM precipitation estimates. We first 
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calculate modelled and CHIRPS-based mean ASO rainfall estimates over the East Africa region (set as within black rectangle, 

Fig. 1a) and during the period 1981-2015. The GCM precipitation mean ASO estimates, both past and future, are corrected for 

each model year by a GCM-specific mean correction factor. This factor is a ratio of the climatological mean of each GCM to 

that of the CHIRPS product as:  
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Here mod , ,el i jx  and , ,corr i jx
 are, respectively, model simulated and mean bias-corrected ASO precipitation data of the ith year 

(i=1,2,…,31) for the jth GCM (j=1,2,…,37). obs  and mod ,el j  are the observed and GCM-specific time-mean (i.e. average 

across indices i) of ASO rainfall estimates during the period 1981-2015. Second, we then adjust the mean-corrected data from 

Eqn. (1), such that they further are corrected to have identical standard deviation (STD)  to the CHIRPS product whilst 

maintaining the bias correction for the mean. This gives bias-corrected estimates 
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where 
,corr jx

(= obs ) is the 31-year average of mean bias-corrected data from Eqn. (1). obs  and ,corr j

  are standard 

deviations of the ASO rainfall estimates during the period 1981-2015 from observations and from the mean bias-corrected 

precipitation data created by Eqn. (1). The adjustment of spread of rainfall distribution to match measurements is an important 

additional procedure to further constrain GCM estimates (Sippel et al., 2016; Jeon et al., 2016; Angelil et al., 2017). Together 15 

Eqn. (1) ensures all GCMs have the CHIRPS-based mean, and with Eqn. (2) also CHIRPS-based STD for period 1981-2015. 

Histograms of bias-corrected mean ASO rainfall are presented in Fig. 1c for mean bias correction, and in Fig. 1d for mean and 

STD bias correction. These are derived from 37 GCMs, and for four 31-year periods (representing pre-industrial, present day, 

and two future periods as marked). All GCMs are considered equally plausible.  

 20 

We estimate the probability, in any year, of mean rainfall being less than 40 mm per month and during August-October period. 

This threshold is 25% less than the climatological ASO mean, and is the ASO CHIRPS estimate of mean rainfall level in the 

year 2016 drought (red curve within yellow highlight, Fig. 1b). For the mean-corrected GCM estimates, we compare (inset, 

Fig. 1c) modelled period 1861-1891, representative of pre-industrial, with present day (period 2001-2031), and find this 

probability decreases slightly from 11.9% (STD ± 1.1%) to 8.6% (STD ± 1.1%). The one standard deviations are estimated 25 

via bootstrapping with 80% replications from the 37 GCM precipitation data and for the 31-year periods. These trends continue, 

giving probabilities 8.3% (± 0.9%) and 6.9% (± 0.7%) for periods 2035-2065 and 2070-2100 respectively. However, for the 

mean- and variance-corrected GCM estimates (Fig. 1d and inset), we find the probability of east African drought is smallest 
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at present (1.5% ± 0.3%, period 2001-2031). This probability becomes larger in the future, giving values of 2.4% (± 0.6%) 

and 2.6% (± 0.4%) for periods 2035-2065 and 2070-2100 respectively. Hence we find that additionally accounting for model 

biases in the variance, GCM distributions suggest a potential to significantly alter the predictions of drought events occurrence 

over the east Africa, and for higher extreme frequency as the 21st century progresses. 

 5 

Large uncertainty in the observation-based precipitation products has been well reported (Angélil et al., 2016), and so we 

additionally use six other precipitation estimates (CRU-TS, ERA-interim, GPCP, PREC/L, CPC and TRMM) to bias-correct 

GCM estimates. The probability of drought occurrence is based on estimates of ASO rainfall in 2016 for each individual 

dataset (values in Table S2). There are substantial differences between these values. We use each of these extra datasets to 

repeat the bias-ccorection of every GCM by the same algorithm of Eqn. (1) and Eqn. (2), but now with new data-specific μ 10 

and σ values. These μ and σ quantities are given in Table S2. In Fig. 2 (first panel) we reproduce the insets of Fig 1c (no 

hatching) and Fig 1d (hatching) for CHIRPs, and then for the six other precipitation products (next six panels). Consistent with 

the conclusions based on the CHIRPS product only, the results from the other rainfall products also show that the probability 

of drought occurrence in the east Africa has decreased slightly from pre-industrial to present day, and irrespective of whether 

variance adjustment has occurred (Fig. 2, all blue and black bars, with and without hatching). Future projections of drought 15 

likelihood do, however, vary depending on precipitation product used. For the mean-corrected GCM estimates, 6 out of 7 

rainfall product-corrected GCM projections give a slight decrease in drought occurrence likelihoods by the end of 21st century. 

The exception is the TRMM-corrected GCMs, which suggest the drought probability will increase slightly by 2070-2100 and 

relative to the present day. For the likely more appropriate mean- and variance-corrected GCM estimates, then relative to 

present-day levels the GCM estimates corrected to the CHIRPS, ERA-interim, and TRMM products give an increase in future 20 

drought occurrence probability. However GPCP-, PREC/L- and CPC-corrected GCM estimates suggest the probability of 

drought occurrence will slightly decrease. This divergence is due to the strong differences in the climatological mean, standard 

deviation and year 2016 ASO rainfall levels among the different precipitation products (Table S2).  

 

As a sensitivity study, we also perform a bias-correction based on each precipitation product but for the full ensemble of 37 25 

GCM estimates together. That is, we combine all GCM present-day estimates in to one single vector, and calculate single 

overall μ and σ values. All seven precipitation datasets are used to repeat the bias-correction, by similar methods to Eqn. (1) 

and Eqn. (2). This approach implies that the probability of drought occurrence in East Africa has decreased slightly from pre-

industrial to the end of 21st century, regardless of whether variance has been corrected (Fig. S1). However this approach should 

be viewed with caution, as making single bias-corrections for all the GCMs combined neglects model differences, which are 30 

known to be large in precipitation projections (Collins et al., 2013).  

 

Our results are broadly consistent with the recent analysis of Ethiopian drought projections by Philip et al. (2017), who also 

use observations to reduce the model uncertainty in GCM projections. They project future changes in drought by the use of 
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only GCMs which can reproduce well the observed distribution of February to September climatological rainfall. They find 

that under RCP8.5 scenario there is no significant change in the likelihood of 2015 Ethiopian drought event. Although it is in 

many regards logical to exclude models that do not perform well for modelling the contemporary period, our approach is 

possibly more cautious. This is because there always remains a concern that a rejected model may hold important information 

about expected future changes, even if having strong biases in modelling the present day. Nevertheless, as a further sensitivity 5 

study, we also apply the same method as Philip et al. (2017) for our study region. This is with the CHIRPS dataset, and we 

place our findings in Fig. S2. The probability of 2016 ASO drought are based on rainfall projections from three models (i.e. 

CMCC-CM, GFDL-ESM2G and MPI-ESM-MR). They are the only models that match the climatology from CHIRPS product 

when using a KS test, and at a significance level of 0.1. The results are generally consistent with the both mean- and variance-

corrected GCM results of Fig. 1d. That is, they indicate that the probability of drought occurrence in the East Africa may 10 

increase slightly from present towards the end of 21st century. 

 

The multi-model ensemble forecast, corrected by the CHIRPS rainfall product and merging the individual forecasts with equal 

weights, shows that the east African mean ASO rainfall for 2070-2100 will increase significantly, compared with the present 

period 2001-2031 (Fig. 1d). It is these general increases that even in conjunction with larger future distribution spreads, imply 15 

no massive increase of drought occurrence probability (insets, Fig. 1c, d). However in Fig. 3, we present for the individual 

models as well. Shown are changes in numbers of years of mean ASO rainfall falling below 40 mm per month. This is for the 

individual GCMs bias corrected against present-day mean ASO rainfall only (top row), or additionally against STD (second 

row). Both rows illustrate some individual GCMs project quite substantial changes. We also show individual model percentage 

changes in mean (third row) and STD (bottom row) of ASO rainfall, for 31 years 2070-2100 compared to 2001-2031. Fig. 3 20 

shows 28 out of 37 model estimates for this region become wetter on average, and most models (i.e. 22 out of 37 models) 

exhibit increased distribution spreads reflected by raised STDs. Hence many models generally agree on the direction of these 

changes, but even then, the magnitude of changes in GCMs remains uncertain.  

 

Our analysis reveals that current understanding of how future climate change will impact on East Africa ASO drought risk 25 

remains uncertain. This is based on a relatively simple assessment of 37 climate models, each given equal weight but after 

being corrected by observation-based rainfall products. We find strong sources of uncertainty in drought prediction include: 1) 

the choice of bias correction methodology; 2) the choice of observational product used to correct bias in GCMs; and 3) the 

choice of GCMs used. Currently, for many geographical regions, GCM estimates of rainfall changes varies substantially across 

models (Knutti and Sedláček, 2013). Multi-model analyses such as ours therefore illustrate uncertainty associated with 30 

different model parameterisation or scheme describing rainfall features. However, to give more definitive answers, the climate 

research community may need to be confident enough to rank climate models based on performance to refine future projections 

(Knutti et al., 2017). Improving GCM projections will most likely need on-going constraining of many model components. 

For rainfall of east Africa predictions in particular, this needs to link to accurate forward projections of oceanic variability. 



5 

 

Strong teleconnections are known to exist between El Niño Southern Oscillation (ENSO) and East African rainfall (Segele et 

al., 2009; Gissila et al., 2004; Gleixner et al., 2016), and with longer-term fluctuations in Pacific SSTs, either increasing or 

decreasing rainfall (Funk et al., 2014; Liebmann et al., 2014; Gleixner et al., 2017). Larger ensembles of simulations by each 

model is also important, and especially when analysing the probability of extreme events. This enables a more complete 

sampling of probability distributions, describing more fully the internal variability of the climate system imposed over general 5 

climate changes. Some GCMs estimate an increase in future variability of east African ASO rainfall, and better knowledge of 

the magnitude of this is important. Signficantly raised variability may cause a higher frequency of droughts, even if background 

trends are for higher mean rainfall levels. Other researchers also illustrate that any variability increases as well as mean changes 

have strong impacts on society (Brown and Lall, 2006). Furthermore, food and water availability in East Africa has multiple 

socio-economic drivers, alongside climatic influences (Little et al., 2001; Adhikari et al., 2015). Although here we have focused 10 

on climate model projections of the future, more holistic approaches will combine climate and crop impact modelling. The 

hope is that climate model predictions for east Africa will move towards a consensus on expected changes, helping then better 

protection and disaster preparedness against future famine.  
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Figure 1: (a) Black rectangle is location of study region (14.5°N~1.5°S, 36°E~51°E). Plotted is mean rainfall for 2016 and months August 

to October inclusive (ASO), presented as relative change (as %) to the long-term average ASO values (1981-2015). Values based on CHIRPS 5 
precipitation product. (b) CHIRPS-based monthly total rainfall (mm month-1) over study region (panel a; land within black rectangle) for 

years 1981 to 2016. Year 2016 is red, other years are individual grey lines, and multi-year average (not including 2016) is blue line. Blue 

shading is ± one standard deviation of monthly rainfall across years 1981-2015. The drought event of 2016 is defined as the three consecutive 

months of ASO (yellow shading), and noting rainfall in that year is below blue shading in those years. (c) CMIP5-based PDFs (binned to 5 

mm month-1 intervals) of mean ASO rainfall for periods 1861-1891 (blue), 2001-2031 (black), 2035-2065 (orange) and 2070-2100 (red). 10 
Each curve corresponds to combined estimates from 37 CMIP5 GCMs, with each GCM forced by historical emissions and RCP8.5 future 

scenario. Individual GCM mean bias-correction is based on the CHIRPS precipitation product. Yellow shading is mean ASO rainfall less 

than 40 mm month-1, which is the CHIRPS 2016-based threshold (mean of ASO, red curve in panel b). Inset shows probabilities of mean 

rainfall of ASO falling below the threshold for the same modelled periods (colours match those of curves and legend). The error bars are 

two standard deviations (estimated via bootstrapping 80% replications from the 37 GCM precipitation data for the 31-year periods). (d) same 15 
as (c), but based on the mean- and variance-corrected GCM rainfall estimates.  
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Figure 2: CMIP5 GCM-based histograms of probabilities of mean ASO rainfall falling below year 2016-based threshold values. This is for 

different time periods and for different observation-based precipitation product of CHIRPS, CRU-TS, ERA-interim, GPCP, PREC/L, CPC 

and TRMM. Shown for years 1861-1891 (blue), 2001-2031 (black), 2035-2065 (orange) and 2070-2100 (red), and using GCMs simulations 

corresponding to historical and RCP8.5 estimates. Individual GCM projections are bias-corrected by the (panel-specific) precipitation 5 
product. This data is combined to give single overall probabilities across the 37 GCMs sampled. The histogram bars without horizontal 

hatching (left) are for the mean-corrected GCM precipitation estimates. The bars with hatching (right) are for the mean- and variance-

corrected GCM estimates. The error bars are two standard deviations (estimated via bootstrapping 80% replications from the 37 GCM 

precipitation data for the 31-year periods). Data in the CHIRPS panels repeats that of the insets of Figs 1c,d. 
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Figure 3: Rows 1 and 2 are changes in drought frequency (times per 31 years ; top colourbar), for two method of bias removal (mean-

corrected only marked as “μ” and mean and standard deviation corrected as “μ, σ”). This is for each of 37 GCMs as labelled, and 5 
comparing the difference between the present period of 2001-2031 and period 2070-2100. GCM bias-correction and 2016 ASO rainfall 

threshold are from the CHIRPS rainfall product. Rows 3 and 4 show the GCM-based changes in multi-year mean and STD of ASO rainfall 

respectively, and between the same periods as top rows (bottom colourbar). Black borders indicate statistically significant differences in 

the 31-year rainfall mean between these two periods (row 3, t-test, with P < 0.05) and significant difference in STD of GCM projecitons 

(row 4, F-test, with P < 0.05). Light grey borders in row 3 and row 4 indicate statistically significant difference at 5%-10% significance 10 
level (0.05 ≤ P < 0.1). Values in the 3rd and 4th rows are the percentage changes in 31-year mean and STD of rainfall as 

 , ,

,2070 2100, ,2001 2031, 1 100%corr j corr jx x   

 
  
  

and  , ,
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 , respectively. Here 

overbar is time-averaging over period of interest. 
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 Supplementary Information 

 

Table S1. CMIP5 global circulation models (GCMs) used in this study, and their components.  

 
Model Name Atmospheric Model Land surface Model Oceanic Model Reference 

ACCESS1-0 HadGEM2 r1.1 MOSES MOM4pl 
Bi et al.(2012) 

ACCESS1-3 Similar to GA 1.0 CABLE v1.8 MOM4p 

bcc-csm1-1 BCC_AGCM2.2 BCC_AVIM1.0 MOM4_L40 
Wu et al. (2012) 

bcc-csm1-1-m BCC_AGCM2.2 BCC_AVIM1.0 MOM4_L40 

BNU-ESM CAM3.5 CLM MOM4p1 Ji et al. (2014) 

CanESM2 CanAM4 CLASS2.7 CanOM4 and  CMOC1.2 Arora et al. (2011) 

CCSM4 CAM4 CLM4 POP2 Gent et al. (2011) 

CESM1-BGC CAM4 CLM4 POP2 
Neale et al. (2010) 

CESM1-CAM5 CAM5 CLM4 POP2 

CMCC-CESM ECHAM5 SILVA NEMO 

Scoccimarro et al. (2011) CMCC-CM ECHAM5 SILVA OPA 8.2 

CMCC-CMS ECHAM5 SILVA OPA 8.2 

CNRM-CM5 ARPEGE climate SURPEXv5.1 NEMO3.3 Voldoire et al. (2011) 

CSIRO-Mk3-6-0 AGCMv7.3.8 a soil-canopy scheme GFDL MOM2.2 Rotstayn et al. (2010) 

EC-EARTH IFS H-TESSEL NEMO Hazeleger et al. (2010) 

GFDL-CM3 GFDL-AM3 LM3 MOM Griffies et al. (2011) 

GFDL-ESM2G GFDL-AM2.1 LM3 GOLD 
Dunne et al. (2012) 

GFDL-ESM2M GFDL-AM2.1 LM3 MOM4 

GISS-E2-H-CC GISS-E2 GISS-LSM-CC HYCOM 

Schmidt et al. (2014) 
GISS-E2-H GISS-E2 GISS-LSM HYCOM 

GISS-E2-R-CC GISS-E2 GISS-LSM-CC Russell 

GISS-E2-R GISS-E2 GISS-LSM Russell 

HadGEM2-CC HadGAM2 TRIFFID HadGOM2 Collins et al. (2011) 

HadGEM2-ES HadGAM2 TRIFFID HadGOM2 Jones et al. (2011) 

INMCM4 INM INM HadGOM2 Volodin et al. (2010) 

IPSL-CM5A-LR LMDZ5A ORCHIDEE NEMO 

Dufresne et al. (2012) IPSL-CM5A-MR LMDZ5A ORCHIDEE NEMO 

IPSL-CM5B-LR LMDZ5B ORCHIDEE NEMO 

MIROC5 FRCGC-AGCM MATSIRO COCO4.5 

Watanabe et al. (2011) MIROC-ESM FRCGC-AGCM MATSIRO COCO4.5 

MIROC-ESM-CHEM FRCGC-AGCM MATSIRO COCO4.5 

MPI-ESM-LR ECHAM6 JSBACH MPIOM 
Ilyina et al. (2013) 

MPI-ESM-MR ECHAM6 JSBACH MPIOM 

MRI-CGCM3 MRIȬAGCM3 HAL MRI.COM3 Yukimoto et al. (2012) 

NorESM1-ME CAM4-Oslo CLM4 MICOM 
Tjiputra et al. (2013) 

NorESM1-M CAM4-Oslo CLM4 MICOM 
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Table S2. The mean August-to-October (ASO) rainfall (mm month-1) of year 2016, multi-year mean (not including 2016) and multi-year 

standard deviation (STD, not including 2016) over east Africa for years 1981 to 2015. The seven global precipitation data sets used are listed. 

Six products of CHIRPS, CRU-TS, ERA-interim, GPCP, PREC/L, CPC and TRMM are available from 1981 to 2016. These six precipitation 

data sets are either interpolated gauge observations only (i.e. CHIRPS, CRU-TS, PREC/L and CPC), gauge observations combined with 5 
satellite measurements (i.e. GPCP), or reanalysis data (i.e. ERA-interim). The TRMM satellite observations are available from 2001 to 2016. 

 

ASO rainfall 

(mm month-1) 

CHIRP

S 

CRU-

TS 

ERA-

interim 
GPCP PREC/L CPC TRMM 

2016 39.97 45.93 46.10 46.56 57.16 35.78 32.05 

Climatological 

mean, μ  

(1981-2015) 

53.05 55.49 70.81 62.94 62.01 44.59 60.69* 

Climatological 

STD, σ 

(1981-2015) 

7.09 10.20 11.55 10.68 11.72 13.33 11.83* 

* TRMM satellite precipitation data is only available from 2001 to 2016. The climatological ASO rainfall averages of the 

period 2001-2015 is computed. 

 10 
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Figure S1: Same as Figure 2, but 37 GCM estimates are combined into single multi-model ensemble, and then this ensemble is bias-corrected 

only once by using each precipitation product.   
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Figure S2: Following the method in Philip et al. (2017), CMIP5-based PDFs of mean ASO rainfall for periods 1861-1891 (blue), 2001-2031 

(black), 2035-2065 (orange) and 2070-2100 (red). Each curve corresponds to the modelled outputs from 3 CMIP5 models (CMCC-CM, 

GFDL-ESM2G and MPI-ESM-MR) forced by historical emissions and RCP8.5 future scenario. GCM selection is based on the CHIRPS 

precipitation product. Yellow shading is mean ASO rainfall less than 40 mm month-1, which is the CHIRPS 2016-based threshold (mean of 5 

ASO). Inset shows probabilities of mean rainfall of ASO falling below the threshold for the same modelled periods (colours match those of 

curves).   
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