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Abstract. East Africa autumn drought in 2016 caused malnutrition, illness and death. Close to 16 million people across 

Somalia, Ethiopia and Kenya needed food, water and medical assistance. Many factors influence drought stress and 

response. However, inevitably it is asked: are elevated greenhouse gas concentrations altering extreme rainfall deficit 

frequency? We investigate with General Circulation Model (GCMs). After bias correction to match contemporary rainfall 

mean, GCMs project small decreases in probability of drought of same severity for East Africa by the end of 21st century. 10 

However, further adjusting the variance of GCMs to match ERA-interim data, probability of drought increases slightly. 

 

ECMWF re-analysis data (ERA-interim; Dee et al., 2011) shows that during August to October (ASO) of 2016, large parts of 

Somalia, Ethiopia and Kenya (Black rectangle, Fig. 1a) had a reduction of 30% or more in rainfall compared to a baseline 

ASO period 1979-2015. For this region, the spatial average of monthly rainfall during ASO of 2016 lies at least one standard 15 

deviation below the climatological mean of the other years (Fig. 1b). The year of 2016 is the third driest year in the past four 

decades. Other years with rainfall at least on standard deviation below the climatological mean during 1979-2015 are 1986, 

1990,1991, 1993 and 2010. Year of 2010 also suffered from the severe famine (Dutra et al., 2013). We concentrate on East 

Africa, as this region experienced particularly poor harvest and where famine was widely reported during 2016 (noting that 

regions outside black rectangle of Fig. 1a also experienced major rainfall deficits in 2016). East Africa is especially 20 

vulnerable to the impacts of drought (DEC, 2017). The region has long experienced widespread poverty and high levels of 

food insecurity (Von Grebmer et al., 2016).  The high dependence of its population on rain-fed agriculture, sometimes in 

tandem with political instability, exacerbate the impacts of droughts (Love, 2009; Masih et al., 2014). 

 

To assess any influence of increasing atmospheric GHG concentrations, we use monthly rainfall data from 37 GCMs 25 

simulations for the historical period and for a high emission future scenario RCP8.5. These are from the Coupled Model 

Intercomparison Project Phase 5 (CMIP5, Taylor et al., 2012). A summary of the main characteristics of the models are 

provided in Table S1. A bias correction with two post-processing steps is applied to the GCM precipitation estimates. We 

first calculate modelled and ERA-based mean ASO rainfall estimates over the east Africa during the period 1979-2015. The 

GCM precipitation estimates, both past and future, are corrected by a GCM-specific mean correction factor, which is a ratio 30 

of the climatological mean of each GCM to that of the ERA-interim reanalysis product. Second, we then adjust the 
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climatological standard deviation (STD) of GCM precipitation estimates by multiplying the ratio of the climatological STD 

of each GCM to that of the ERA-interim data. The adjustment of spread of rainfall distribution is an important additional 

procedure to further constrain GCM estimates (Sippel et al., 2016; Jeon et al., 2016; Angelil et al., 2017). Together this 

ensures all GCMs have the ERA-based mean and STD for period 1979-2015. Each GCM is considered equally plausible. 

Bias-corrected mean ASO rainfall are presented in Fig. 1c for mean bias correction, and in Fig. 1d for mean and STD bias 5 

correction. These are derived from 37 GCMs, and for four 31-year periods (pre-industrial, present day, and two future 

periods).  

 

We estimate the probability, in any year, of rainfall being less than 46 mm per month. This threshold is 35% less than the 

climatological ASO mean, and is the ASO mean rainfall level in 2016 (red curve within yellow highlight, Fig. 1b). For the 10 

mean-corrected GCM estimates, we compare (inset, Fig. 1c) modelled period 1861-1891, representative of pre-industrial, 

with present day (period 2001-2031), and find this probability decreases slightly from 3.8% (STD ± 0.5%) to 2.8% (STD ± 

0.5%). The one standard deviations are estimated via bootstrapping with 80% replications from the 37 GCM precipitation 

data and for the 31-year periods. These trends continue, giving probabilities 2.3% (± 0.5%) and 2.1% (± 0.4%) for periods 

2035-2065 and 2070-2100 respectively. For the mean- and variance-corrected GCM estimates (Fig. 1d), we found the 15 

probability of east African drought is smallest at present (0.4% ± 0.2%, period 2001-2031). Such probability would become 

larger in the future, giving probabilities 1.1% (± 0.4%) and 1.2% (± 0.3%) for periods 2035-2065 and 2070-2100 

respectively. Hence we find accounting for model biases in the variance of GCM distributions has the potential to 

significantly alter the predictions of drought events occurrence over the east Africa. 

 20 

Given that large uncertainty in the observation-based precipitation products has been well reported (Angélil et al., 2016), we 

use four other precipitation estimates (GPCP, PREC/L, CPC and TRMM) to bias-correct GCM estimates. In Fig. 2 we 

reproduce the insets of Fig 1c (no hatching) and Fig 1d (hatching) for ERA-Interim, and then for the four other precipitation 

products. Consistent with the conclusions based on the ERA-interim product only, the results from the other rainfall products 

also show that the probability of drought occurrence in the east Africa has decreased slightly from pre-industrial to present 25 

day, and irrespective of whether variance adjustment has occurred (Fig. 2, all blue and black bars, with and without 

hatching). Future projections, though, of drought likelihood do vary across different precipitation products. For the mean-

corrected GCM estimates, 4 out of 5 rainfall product-corrected GCM projections give a slight decrease in drought occurrence 

likelihoods by the end of 21st century. The exception is the TRMM-corrected GCMs, which suggest the drought probability 

would increase slightly by 2070-2100 and relative to the present day. For the mean- and variance-corrected GCM estimates, 30 

relative to the present-day levels the GCM estimates corrected to the ERA-interim, GPCP, and TRMM products give an 

increase in drought occurrence probability. However PREC/L- and CPC-corrected GCM estimates suggest the probability of 

drought occurrence will decrease. This divergence is due to the strong differences in the climatological mean, standard 

deviation and year 2016 ASO rainfall levels among the different precipitation products (Table S2).  
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The multi-model ensemble forecast, corrected by the ERA-interim rainfall product and merging the individual forecasts 

with equal weights, shows that the east African mean ASO rainfall for 2070-2100 will increase significantly, compared with 

the present period 2001-2031 (main PDFs, Fig 1c.,d.). It is these general increases that even in conjunction with larger future 

distribution spreads, imply no significant increase of drought occurrence probability (Fig 1c., d.). In Fig. 3, we present for 5 

the individual models, changes in numbers of years of mean ASO rainfall falling below 46 mm per month. We also show 

individual model changes in mean and STD of ASO rainfall, for 31 years 2070-2100 compared to 2001-2031. Fig. 3 shows 

28 out of 37 model estimates for this region become wetter, and most models (i.e. 22 out of 37 models) exhibiting increased 

distribution spreads reflected by raised STDs. Models generally agree on the direction of these changes, but the magnitude of 

changes in GCMs remains uncertain.  10 

 

Our analysis reveals that current understanding of how future climate change will impact on East Africa ASO drought risk 

remains uncertain. This is based on a relatively simple assessment of 37 climate models, each given equal weight but after 

being corrected by observation-based rainfall products. We find the sources of uncertainty in drought prediction include: 1) 

the choice of bias correction methodology; 2) the choice of observational product used to correct bias in GCMs; and 3) the 15 

choice of GCMs used. Currently, for many geographical regions, GCM estimates of rainfall changes varies substantially 

across models (Knutti and Sedláček, 2013). Multi-model analyses such as ours consider uncertainty associated with different 

model parameterisation or scheme describing rainfall features. However, to give more definitive answers, the climate 

research community may need to be confident enough to rank climate models based on performance to refine future 

projections (Knutti et al., 2017). Improving GCM projections also could involve on-going constraining of model 20 

components. For rainfall of east Africa predictions in particular, this will link to accurate forward projections of oceanic 

variability. Strong teleconnections are known to exist between El Niño Southern Oscillation (ENSO) and East African 

rainfall (Segele et al., 2009; Gissila et al., 2004), and with longer-term fluctuations in Pacific SSTs increasing/decreasing 

rainfall (Funk et al., 2014; Liebmann et al., 2014). Larger ensembles of simulations by each model is also important, and 

especially when analysing the probability of extreme events. This enables a more complete sampling of probability 25 

distributions, describing more fully the internal variability of the climate system imposed over general climate change. In 

addition, some GCMs estimate an increase in future variability of east African ASO rainfall, and better knowledge of the 

magnitude of this is important. Research shows any variability increases as well as mean changes has strong impacts on 

society (Brown and Lall, 2006). Furthermore, food and water availability in East Africa has multiple socio-economic drivers, 

alongside climatic influences (Little et al., 2001; Adhikari et al., 2015). Although here we have focused on climate model 30 

projections of the future, more holistic approaches will combine climate and crop impact modelling. The hope is that climate 

model predictions for east Africa will move towards a consensus on expected changes, helping then better protection and 

disaster preparedness against future famine.  



4 

 

References 

Adhikari, U., Nejadhashemi, A.P., and Woznicki, S.A., 2015. Climate change and Eastern Africa: A review of impact on 

Major Crops. Food Energy Secur. 4(2), 110-132. 

Angélil, O., Perkins-Kirkpatrick, S., Alexander, L.V., Stone, D., Donat, M.G., Wehner, M., Shiogama, H., Ciavarella, A. and 

Christidis, N., 2016. Comparing regional precipitation and temperature extremes in climate model and reanalysis 5 

products. Weather Clim. Extremes, 13, 35-43. 

Brown, C. and Lall, U., 2006. Water and economic development: The role of variability and a framework for resilience. In 

Natural Resources Forum (Vol. 30, No. 4, pp. 306-317). Blackwell Publishing Ltd. 

DEC, 2017. Disasters Emergency Committee; https://www.dec.org.uk/splash/africa. 

Dee, D.P., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M.A., Balsamo, G., 10 

Bauer, P. and Bechtold, P., 2011. The ERA-Interim reanalysis: configuration and performance of the data 

assimilation system, Q. J. R. Meteorolog. Soc., 137, 553-597. 

Dutra, E., Magnusson, L., Wetterhall, F., Cloke, H.L., Balsamo, G., Boussetta, S. and Pappenberger, F., 2013. The 2010-

2011 drought in the Horn of Africa in ECMWF reanalysis and seasonal forecast products. Int. J. Climatol., 33(7), 

1720-1729. 15 

Funk, C., Hoell, A., Shukla, S., Blade, I., Liebmann, B., Roberts, J.B., Robertson, F.R. and Husak, G., 2014. Predicting East 

African spring droughts using Pacific and Indian Ocean sea surface temperature indices. Hydrol. Earth Syst. Sci., 

18(12), 4965-4978. 

Gissila, T., Black, E., Grimes, D.I.F. and Slingo, J.M., 2004. Seasonal forecasting of the Ethiopian summer rains. Int. J. 

Climatol., 24(11), 1345-1358. 20 

Masih, I., Maskey, S., Mussá, F.E.F. and Trambauer, P., 2014. A review of droughts on the African continent: a geospatial 

and long-term perspective. Hydrol. Earth Syst. Sci., 18(9), 3635. 

Jeon, S., Paciorek, C.J. and Wehner, M.F., 2016. Quantile-based bias correction and uncertainty quantification of extreme 

event attribution statements. Weather Clim. Extremes, 12, 24-32. 

Knutti, R. and Sedláček, J., 2013. Robustness and uncertainties in the new CMIP5 climate model projections. Nat. Clim. 25 

Change, 3(4), 369-373. 

Knutti, R., Sedláček, J., Sanderson, B.M., Lorenz, R., Fischer, E.M. and Eyring, V., 2017. A climate model projection 

weighting scheme accounting for performance and interdependence. Geophys. Res. Lett., 44(4), 1909-1918. 

Little, P.D., Smith, K., Cellarius, B.A., Coppock, D.L. and Barrett, C., 2001. Avoiding disaster: diversification and risk 

management among East African herders. Dev. Change., 32(3), 401-433. 30 

Love, R., 2009. Economic Drivers of Conflict and Cooperation in the Horn of Africa. Chatham House Briefing Paper, 

December. Available at: www. chathamhouse. org/publications/papers/view/109208 (accessed 18 April 2012). 



5 

 

Segele, Z.T., Lamb, P.J. and Leslie, L.M., 2009. Large‐scale atmospheric circulation and global sea surface temperature 

associations with Horn of Africa June–September rainfall. Int. J. Climatol., 29(8), 1075-1100. 

Sippel, S., Otto, F.E.L., Forkel, M., Allen, M.R., Guillod, B.P., Heimann, M., Reichstein, M., Seneviratne, S.I., Thonicke, K. 

and Mahecha, M.D., 2016. A novel bias correction methodology for climate impact simulations. Earth Syst. Dyn., 

7(1), 71-88. 5 

Taylor, K.E., Stouffer, R.J. and Meehl, G.A., 2012. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. 

Soc., 93(4), 485-498. 

Von Grebmer, K., Bernstein, J., Nabarro, D., Prasai, N., Amin, S., Yohannes, Y., Sonntag, A., Patterson, F., Towey, O. and 

Thompson, J., 2016. 2016 Global hunger index: Getting to zero hunger. Intl Food Policy Res Inst. 

Yang, W., Seager, R., Cane, M.A. and Lyon, B., 2014. The East African long rains in observations and models. . J. Clim., 10 

27(19), 7185-7202. 

Acknowledgements 

HY gratefully acknowledges funding from the China Scholarship Council, and CH acknowledges the NERC CEH Science 

Budget. The authors acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which 

is responsible for CMIP, and we thank the climate modelling groups for producing and making available their model output. 15 

We also acknowledge the re-analysis products of the European Centre for Medium-Range Weather Forecasts. 



6 

 

 

 

Figure 1: (a) Black rectangle is location of study region (14.5°N~1.5°S, 36°E~51°E). Plotted is mean rainfall for 2016 and months August 

to October inclusive (ASO), presented relative changes (as %) to long-term average ASO values (1979-2015). Values based on ERA-

interim reanalysis product. (b) ERA-based monthly total rainfall (mm month-1) over study region (panel a; land within black rectangle) for 5 
years 1979 to 2016. Year 2016 is red, other years are individual grey lines, and multi-year average (not including 2016) is blue line. Blue 

shading is ± one standard deviation of monthly rainfall across years 1979-2015. The drought event (shaded in yellow) is defined as the 

three consecutive months of ASO, and when rainfall in year 2016 is below blue shading. (c) CMIP5-based PDFs of mean ASO rainfall for 

periods 1861-1891 (blue), 2001-2031 (black), 2035-2065 (orange) and 2070-2100 (red). Each curve corresponds to the mean-corrected 

combined outputs from 37 CMIP5 models forced by historical emissions and RCP8.5 future scenario. Individual GCM bias correction is 10 
based on the ERA-interim reanalysis product. Yellow shading is mean ASO rainfall less than 46 mm month-1, which is the ERA-interim 

2016-based threshold (mean of ASO, red curve in panel b). Inset shows probabilities of mean rainfall of ASO falling below the threshold 

for the same modelled periods (colours match those of curves). The error bars are the standard deviations (estimated via bootstrapping 

80% replications from the 37 GCM precipitation data for the 31-year periods). (d) same as (c), but based on the mean- and variance-

corrected GCM rainfall estimates.  15 

 

 

b 

c 
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a 

Rainfall for Aug to Oct, 2016 as a percent change from the average (%) 
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Figure 2: CMIP5-based histograms of probabilities of mean ASO rainfall falling below year 2016-based threshold values. Shown for 

periods 1861-1891 (blue), 2001-2031 (black), 2035-2065 (orange) and 2070-2100 (red). Each bar corresponds to merged normalized 

outputs from 37 CMIP5 models forced by historical emissions and RCP8.5 future scenario. The bars without horizontal hatching (left) are 

for the mean-corrected GCM precipitation estimates. The bars with hatching (right) are for the mean- and variance-corrected GCM 

estimates.  5 
 

 

 

Figure 3: Changes in drought frequency, multi-year mean and standard deviations (STD) of 31 consecutive year rainfall amounts. 

Difference between present period 2001-2031 and period 2070-2100, as estimated by 37 GCMs. GCM estimates are corrected by the 10 
ERA-interim rainfall product. Changes to frequencies of drought occurrence are estimated from the mean bias-corrected GCM estimates 

(1st row), both mean- and variance bias-corrected GCM estimates (2nd row). The colored grids in the 3rd row with black borders indicate 

statistically significant differences in the 31-year rainfall mean between these two periods (t-test, with P < 0.05). The percentage changes 

are calculated as [(x2070-2100/x2001-2031)-1]×100%.  
  15 

ERA-interim 

GPCP PREC/L 

CPC TRMM 
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 Supplementary Information 

 

Table S1. CMIP5 global circulation models (GCMs) used in this study, and their components.  
Model Name Atmospheric Model Land surface Model Oceanic Model Reference 

ACCESS1-0 HadGEM2 r1.1 MOSES MOM4pl 
Bi et al.(2012) 

ACCESS1-3 Similar to GA 1.0 CABLE v1.8 MOM4p 

bcc-csm1-1 BCC_AGCM2.2 BCC_AVIM1.0 MOM4_L40 
Wu et al. (2012) 

bcc-csm1-1-m BCC_AGCM2.2 BCC_AVIM1.0 MOM4_L40 

BNU-ESM CAM3.5 CLM MOM4p1 Ji et al. (2014) 

CanESM2 CanAM4 CLASS2.7 CanOM4 and  CMOC1.2 Arora et al. (2011) 

CCSM4 CAM4 CLM4 POP2 Gent et al. (2011) 

CESM1-BGC CAM4 CLM4 POP2 
Neale et al. (2010) 

CESM1-CAM5 CAM5 CLM4 POP2 

CMCC-CESM ECHAM5 SILVA NEMO 

Scoccimarro et al. (2011) CMCC-CM ECHAM5 SILVA OPA 8.2 

CMCC-CMS ECHAM5 SILVA OPA 8.2 

CNRM-CM5 ARPEGE climate SURPEXv5.1 NEMO3.3 Voldoire et al. (2011) 

CSIRO-Mk3-6-0 AGCMv7.3.8 a soil-canopy scheme GFDL MOM2.2 Rotstayn et al. (2010) 

EC-EARTH IFS H-TESSEL NEMO Hazeleger et al. (2010) 

GFDL-CM3 GFDL-AM3 LM3 MOM Griffies et al. (2011) 

GFDL-ESM2G GFDL-AM2.1 LM3 GOLD 
Dunne et al. (2012) 

GFDL-ESM2M GFDL-AM2.1 LM3 MOM4 

GISS-E2-H-CC GISS-E2 GISS-LSM-CC HYCOM 

Schmidt et al. (2014) 
GISS-E2-H GISS-E2 GISS-LSM HYCOM 

GISS-E2-R-CC GISS-E2 GISS-LSM-CC Russell 

GISS-E2-R GISS-E2 GISS-LSM Russell 

HadGEM2-CC HadGAM2 TRIFFID HadGOM2 Collins et al. (2011) 

HadGEM2-ES HadGAM2 TRIFFID HadGOM2 Jones et al. (2011) 

INMCM4 INM INM HadGOM2 Volodin et al. (2010) 

IPSL-CM5A-LR LMDZ5A ORCHIDEE NEMO 

Dufresne et al. (2012) IPSL-CM5A-MR LMDZ5A ORCHIDEE NEMO 

IPSL-CM5B-LR LMDZ5B ORCHIDEE NEMO 

MIROC5 FRCGC-AGCM MATSIRO COCO4.5 

Watanabe et al. (2011) MIROC-ESM FRCGC-AGCM MATSIRO COCO4.5 

MIROC-ESM-CHEM FRCGC-AGCM MATSIRO COCO4.5 

MPI-ESM-LR ECHAM6 JSBACH MPIOM 
Ilyina et al. (2013) 

MPI-ESM-MR ECHAM6 JSBACH MPIOM 

MRI-CGCM3 MRIȬAGCM3 HAL MRI.COM3 Yukimoto et al. (2012) 

NorESM1-ME CAM4-Oslo CLM4 MICOM 
Tjiputra et al. (2013) 

NorESM1-M CAM4-Oslo CLM4 MICOM 
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Table S2. The mean August-to-October (ASO) rainfall (mm month-1) of year 2016, multi-year mean (not including 2016) and multi-year 

standard deviation (STD) over east Africa for years 1979 to 2016. The five global precipitation data sets used are listed. Four products of 

ERA-interim, GPCP, PREC/L, CPC and TRMM are available from 1979 to 2016. These four precipitation data sets are either interpolated 

gauge observations only (i.e. PREC/L and CPC), gauge observations combined with satellite measurements (i.e. GPCP), or reanalysis data 5 
(i.e. ERA-interim). The TRMM satellite observations are available from 2001 to 2016. 

 

ASO rainfall  

(mm month-1) 

ERA-

interim 
GPCP PREC/L CPC TRMM 

2016 46.10 46.56 57.16 35.78 32.05 

Climatological mean 

(1979-2015) 
70.76 62.78 61.68 43.44 60.69* 

Climatological STD 

(1979-2015) 
11.28 10.40 11.48 13.89 11.83* 

* TRMM satellite precipitation data is only available from 2001 to 2016. The climatological ASO rainfall averages of the 

period 2001-2015 is computed. 
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