
 

 

Dear Editor of NHESS 

 

Thank you for your help in obtaining two reviews of our Brief Communication: 

Drought Likelihood for East Africa. 

The drought in East Africa has caused severe problems for millions of people, and including 

high numbers of deaths. Although there are plots of climate model projections of rainfall 

changes in the IPCC report, these are not specific to East Africa. Instead what we are trying 

to achieve in this short manuscript is a straightforward “show and tell” of future model 

projections of rainfall for this region, and for specific period August, September and October.  

 

The research community needs to obtain a full meteorological understanding of what 

happened in year 2016, and then apply this knowledge to assess its occurrence in future 

projections by climate models. We hope a set of standard comprehensive climate research 

papers on African drought will appear over the years ahead. Our brief communication may 

act to encourage this, along with highlighting the need to refine future estimates of change.   

 

We recognize our reviews are poor, and especially from Reviewer 2. We have, though, 

responded in full to all requests. This includes making all methods transparent, and in 

particular providing uncertainty bounds on (a) rainfall datasets and (b) bias correction 

methodology to scale climate model to measurement records. We believe our paper now 

provides a preliminary but robust assessment of Africa drought risk. 

 

We hope that your journal will consider our responses, and in light of these that there might 

still be the possibility of publishing our analysis as a Brief Communications in NHESS. Our 

responses are described below. Adjusted manuscript text is repeated in red font. We believe 

we have satisfied all formatting requirements. 

 

Thank you for all the help so far. 

With kind regards, 

 

Hui Yang (and on behalf of Chris Huntingford).  



Response to the reviewers  

 

To Reviewer #1:  

Reviewer #1 General Comments: 

We thank Reviewer #1 for their help and time spent on this paper. Our responses are below, 

and revised text in the paper repeated in red font. 

 

METHOD: The method is rather experimental and not well documented or explained. 

Even within the tight limits of this manuscript type, there would be plenty of room to explain 

the method and if it can indeed explain what is going on. 

[Response 1.1] We accept there is a need for a more complete description of the calculation 

methods used, which we have now done. The main change is that in the revised manuscript 

we now write: “A bias correction with two post-processing steps is applied to the GCM 

precipitation estimates. We first calculate modelled and ERA-based mean ASO rainfall 

estimates over the east Africa during the period 1979-2015. The GCM precipitation estimates, 

both past and future, are corrected by a GCM-specific mean correction factor, which is a ratio 

of the climatological mean of each GCM to that of the ERA-interim reanalysis product. 

Second, we then adjust the climatological standard deviation (STD) of GCM precipitation 

estimates by multiplying the ratio of the climatological STD of each GCM to that of the 

ERA-interim data. The adjustment of spread of rainfall distribution is an important additional 

procedure to further constrain GCM estimates (Sippel et al., 2016; Jeon et al., 2016; Angelil 

et al., 2017). Together this ensures all GCMs have the ERA-based mean and STD for period 

1979-2015.” (Page: 1, Lines: 28-31 and Page: 2, Lines: 1-4) 

 

FIGURES: The figures are readable and do not have to be re-done. However, from the 

figures, rather than focusing on the very small changes for the current level of precipitation, 

it would be worthwhile focusing on the clear change in the overall distribution, showing a 

significant increase in inter-annual variability, which is strongly linked to socio-economic 

indicators (see e.g. Brown & Lall, 2006). 

[Response 1.2] We now added a new figure (i.e. Figure 3), which places an emphasis on 

GCM-specific changes in mean and standard deviation of ASO rainfall (See Response 1.17, 

where Figure 3 is shown). We also cite your suggested reference – thank you for alerting us 

to this paper. We quantify throughout variability by standard deviation (STD), recognizing 

that any auto-correlation means that strictly speaking, is not its inter-annual variability. We 



clarify this in the modified revised manuscript. 

 

REFERENCES: It is very surprising that no climate study is cited that looks at the impact of 

climate change on East African rainfall instead of just impact studies. Also, the impact of 

external forcings such as ENSO is not mentioned, although for East Africa that might be a 

major factor for the strong (and increasing) inter-annual variability. 

[Response 1.3] We thank the reviewer for this comment, and in the meantime have identified 

references that we should have used in the initial submission. Using key reference, we now 

note the potential driving factors of the East African rainfall deficits, and in particular the 

impact of ENSO. Please see our paper amendments, as follows: “Improving GCM projections 

also could involve on-going constraining of model components. For rainfall of east Africa 

predictions in particular, this will link to accurate forward projections of oceanic variability. 

Strong teleconnections are known to exist between El Niño Southern Oscillation (ENSO) and 

East African rainfall (Segele et al., 2009; Gissila et al., 2004), and with longer-term 

fluctuations in Pacific SSTs increasing/decreasing rainfall (Funk et al., 2014; Liebmann et al., 

2014).” (Page: 3, Lines: 19-23) 

 

LANGUAGE: The English should be improved. 

[Response 1.4] We have polished the language in large parts of manuscript, and in addition 

the technical details are given in a more precise way. We hope the new paper version has a 

level of clarity as to be useful to a relatively broad audience. 

 

CONCLUSION: The conclusion offers a smorgasbord of other studies, and does not help the 

reader understand what the present study is able to contribute to the current research. 

Instead, it suggests that other methods may be more worthwhile exploring. It will have to be 

made much more clear what the benefit of this study is in order for it to be published. 

Page 2, Lines 2 – 7: this conclusion has to be improved. Some sentences suggest other 

approaches may be better suited to study this problem, while some bring up topics that should 

have been covered in the introduction. What is the conclusion from your own method? 

[Response] We make clearer our contribution, which is to find we cannot yet make accurate 

projections of change, as this depends on GCM, any bias-correction method used, and the 

observation product used in such bias removal. Although this is a slightly negative find (i.e. 

answer is inclusive), we believe this is still important to have placed in the literature. We are 

targeting “Brief Communication” format, so the issues brought up are not expanded in full, 



but we would be grateful to mention in the context of our analysis. 

The many issues raised are dealt with throughout the concluding paragraphs, and 

although it takes up space in our response, we list this in full as: “Our analysis reveals that 

current understanding of how future climate change will impact on East Africa ASO drought 

risk remains uncertain. This is based on a relatively simple assessment of 37 climate models, 

each given equal weight but after being corrected by observation-based rainfall products. We 

find the sources of uncertainty in drought prediction include: 1) the choice of bias correction 

methodology; 2) the choice of observational product used to correct bias in GCMs; and 3) the 

choice of GCMs used. Currently, for many geographical regions, GCM estimates of rainfall 

changes varies substantially across models (Knutti and Sedláček, 2013). Multi-model 

analyses such as ours consider uncertainty associated with different model parameterisation 

or scheme describing rainfall features. However, to give more definitive answers, the climate 

research community may need to be confident enough to rank climate models based on 

performance to refine future projections (Knutti et al., 2017). Improving GCM projections 

also could involve on-going constraining of model components. For rainfall of east Africa 

predictions in particular, this will link to accurate forward projections of oceanic variability. 

Strong teleconnections are known to exist between El Niño Southern Oscillation (ENSO) and 

East African rainfall (Segele et al., 2009; Gissila et al., 2004), and with longer-term 

fluctuations in Pacific SSTs increasing/decreasing rainfall (Funk et al., 2014; Liebmann et al., 

2014). Larger ensembles of simulations by each model is also important, and especially when 

analysing the probability of extreme events. This enables a more complete sampling of 

probability distributions, describing more fully the internal variability of the climate system 

imposed over general climate change. In addition, some GCMs estimate an increase in future 

variability of east African ASO rainfall, and better knowledge of the magnitude of this is 

important. Research shows any variability increases as well as mean changes has strong 

impacts on society (Brown and Lall, 2006). Furthermore, food and water availability in East 

Africa has multiple socio-economic drivers, alongside climatic influences (Little et al., 2001; 

Adhikari et al., 2015). Although here we have focused on climate model projections of the 

future, more holistic approaches will combine climate and crop impact modelling. The hope 

is that climate model predictions for east Africa will move towards a consensus on expected 

changes, helping then better protection and disaster preparedness against future famine.” 

(Page: 3, Lines: 12-33) 

 

 



Reviewer #1 Detailed Comments: 

Page 1, Line 10: “merging” could be explained better 

[Response 1.5] We have clarified this in the manuscript: “After bias correction to match 

contemporary rainfall mean, GCMs project small decreases in probability of drought of same 

severity for East Africa by the end of 21st century. However, further adjusting the variance of 

GCMs to match ERA-interim data, probability of drought increases slightly.” (Page: 1, Lines: 

9-11) 

 

Page 1, Line 11: GCM is the acronym for “General Circulation Model” 

[Response 1.6] Corrected. 

 

Page 1, Line 11: make sure to distinguish ERAinterim from other ECMWF reanalyses 

[Response 1.7] Done. 

 

Page 1, Line 18: the reader would need at least some justification why there was a famine in 

East Africa and not in other regions, where according to Fig. 1a the rainfall deficiency is 

much worse 

[Response 1.8] The east Africa is especially vulnerable to the impacts of drought because of 

a unique combination of several adverse factors. We now write in paper: “We concentrate on 

East Africa, as this region experienced particularly poor harvest and where famine was 

widely reported during 2016 (noting that regions outside black rectangle of Fig. 1a also 

experienced major rainfall deficits in 2016). East Africa is especially vulnerable to the 

impacts of drought (DEC, 2017). The region has long experienced widespread poverty and 

high levels of food insecurity (Von Grebmer et al., 2016).  The high dependence of its 

population on rain-fed agriculture, sometimes in tandem with political instability, exacerbate 

the impacts of droughts (Love, 2009; Masih et al., 2014).” (Page: 1; Lines: 18-24). 

 

Fig. 1: that does not look like the percentage of average rainfall, as suggested in the figure, 

rather it must be the percentage deviation from the mean rainfall. 

[Response 1.9] Thank you for this. The Figure label now reads “Rainfall for Aug to Oct, 

2016 as a percent change from the average (%)”.    

 

Page 1, Line 18: “this” = this region? 

[Response 1.10] Done. 



Page 1, Line 19: a list of the models would be helpful. Readers like to know which model 

they’re looking at, and if these particular models were picked for a reason. 

[Response 1.11] We list the CMIP5 ESMs that provide monthly precipitation of both 

historical simulations and RCP8.5 projections in this study, resulting in a list of 37 ESMs 

(Table S1). In addition, our new Figure 3 provides GCM-specific information on projections 

(see Response 1.17 for detailed explanations). 

 

Table S1. CMIP5 global circulation models (GCMs) used in this study, and their 

components. 

Model Name Atmospheric Model Land surface Model Oceanic Model Reference 

ACCESS1-0 HadGEM2 r1.1 MOSES MOM4pl 
Bi et al.(2012) 

ACCESS1-3 Similar to GA 1.0 CABLE v1.8 MOM4p 

bcc-csm1-1 BCC_AGCM2.2 BCC_AVIM1.0 MOM4_L40 
Wu et al. (2013) 

bcc-csm1-1-m BCC_AGCM2.2 BCC_AVIM1.0 MOM4_L40 

BNU-ESM CAM3.5 CLM MOM4p1 Ji et al. (2014) 

CanESM2 CanAM4 CLASS2.7 CanOM4 and  CMOC1.2 Arora et al. (2011) 

CCSM4 CAM4 CLM4 POP2 Gent et al. (2011) 

CESM1-BGC CAM4 CLM4 POP2 
Neale et al. (2010) 

CESM1-CAM5 CAM5 CLM4 POP2 

CMCC-CESM ECHAM5 SILVA NEMO 

Scoccimarro et al. (2011) CMCC-CM ECHAM5 SILVA OPA 8.2 

CMCC-CMS ECHAM5 SILVA OPA 8.2 

CNRM-CM5 ARPEGE climate SURPEXv5.1 NEMO3.3 Voldoire et al. (2011) 

CSIRO-Mk3-6-0 AGCMv7.3.8 a soil-canopy scheme GFDL MOM2.2 Rotstayn et al. (2010) 

EC-EARTH IFS H-TESSEL NEMO Hazeleger et al. (2010) 

GFDL-CM3 GFDL-AM3 LM3 MOM Donner et al. (2011) 

GFDL-ESM2G GFDL-AM2.1 LM3 GOLD 
Dunne et al. (2012) 

GFDL-ESM2M GFDL-AM2.1 LM3 MOM4 

GISS-E2-H-CC GISS-E2 GISS-LSM-CC HYCOM 

Schmidt et al. (2014) 
GISS-E2-H GISS-E2 GISS-LSM HYCOM 

GISS-E2-R-CC GISS-E2 GISS-LSM-CC Russell 

GISS-E2-R GISS-E2 GISS-LSM Russell 

HadGEM2-CC HadGAM2 TRIFFID HadGOM2 Collins et al. (2011) 

HadGEM2-ES HadGAM2 TRIFFID HadGOM2 Jones et al. (2011) 

INMCM4 INM INM HadGOM2 Volodin et al. (2010) 

IPSL-CM5A-LR LMDZ5A ORCHIDEE NEMO 

Dufresne et al. (2012) IPSL-CM5A-MR LMDZ5A ORCHIDEE NEMO 

IPSL-CM5B-LR LMDZ5B ORCHIDEE NEMO 

MIROC5 FRCGC-AGCM MATSIRO COCO4.5 

Watanabe et al. (2011) MIROC-ESM FRCGC-AGCM MATSIRO COCO4.5 

MIROC-ESM-CHEM FRCGC-AGCM MATSIRO COCO4.5 

MPI-ESM-LR ECHAM6 JSBACH MPIOM 
Ilyina et al. (2013) 

MPI-ESM-MR ECHAM6 JSBACH MPIOM 

MRI-CGCM3 MRIȬAGCM3 HAL MRI.COM3 Yukimoto et al. (2012) 

NorESM1-ME CAM4-Oslo CLM4 MICOM 
Tjiputra et al. (2013) 

NorESM1-M CAM4-Oslo CLM4 MICOM 



Page 1, Lines 20 – 23: describe the method more clearly.  

Page 1, Line 22: “This is also...”: this sentence is not clear. 

[Response] Yes, the original manuscript version we now see could have been written more 

clearly. We now re-write the method in the revised manuscript as follows, and we think it 

now has ambiguity removed: “A bias correction with two post-processing steps is applied to 

the GCM precipitation estimates. We first calculate modelled and ERA-based mean ASO 

rainfall estimates over the east Africa during the period 1979-2015. The GCM precipitation 

estimates, both past and future, are corrected by a GCM-specific mean correction factor, 

which is a ratio of the climatological mean of each GCM to that of the ERA-interim 

reanalysis product. Second, we then adjust the climatological standard deviation (STD) of 

GCM precipitation estimates by multiplying the ratio of the climatological STD of each 

GCM to that of the ERA-interim data. The adjustment of spread of rainfall distribution is an 

important additional procedure to further constrain GCM estimates (Sippel et al., 2016; Jeon 

et al., 2016; Angelil et al., 2017). Together this ensures all GCMs have the ERA-based mean 

and STD for period 1979-2015.” (Page: 1, Lines: 28-31 and Page: 2, Lines: 1-4) 

 

Page 1, Line 22: precipitation estimates in reanalysis products tend to be comparably poor. It 

will need to be justified why this particular dataset was used and not some other precipitation 

dataset. 

[Response 1.12] This is also noted by reviewer 2, and we answer this in full by now using a 

large ensemble of four additional global precipitation data sets (Table S2). These precipitation 

data sets are interpolated gauge observations only (i.e. PREC/L and CPC), gauge 

observations combined with satellite measurements (i.e. GPCP), or satellite observations (i.e. 

TRMM). This is alongside our original ERA-interim data product. 

 All the rainfall products show the August-to-October (ASO) rainfall in year of 2016 is 

less than the climatological mean of ASO rainfall (Table S2 and an additional Figure below 

which is not in paper). However, when we use all five products to correct climatological 

mean and STD of GCM rainfall estimates, such bias-correction influences strongly future 

projections. We illustrate these differences in a new Figure 2, which has one panel of future 

projections for each rainfall product. We are grateful for this reviewer request, now allowing 

better presentation of uncertainty.  

At lines 21-34 (Page 2) of the paper, we now write: “Given that large uncertainty in 

the observation-based precipitation products has been well reported (Angélil et al., 2016), we 

use four other precipitation estimates (GPCP, PREC/L, CPC and TRMM) to bias-correct 



GCM estimates. In Fig. 2 we reproduce the insets of Fig 1c (no hatching) and Fig 1d 

(hatching) for ERA-Interim, and then for the four other precipitation products. Consistent 

with the conclusions based on the ERA-interim product only, the results from the other 

rainfall products also show that the probability of drought occurrence in the east Africa has 

decreased slightly from pre-industrial to present day, and irrespective of whether variance 

adjustment has occurred (Fig. 2, all blue and black bars, with and without hatching). Future 

projections, though, of drought likelihood do vary across different precipitation products. For 

the mean-corrected GCM estimates, 4 out of 5 rainfall product-corrected GCM projections 

give a slight decrease in drought occurrence likelihoods by the end of 21st century. The 

exception is the TRMM-corrected GCMs, which suggest the drought probability would 

increase slightly by 2070-2100 and relative to the present day. For the mean- and variance-

corrected GCM estimates, relative to the present-day levels the GCM estimates corrected to 

the ERA-interim, GPCP, and TRMM products give an increase in drought occurrence 

probability. However PREC/L- and CPC-corrected GCM estimates suggest the probability of 

drought occurrence will decrease. This divergence is due to the strong differences in the 

climatological mean, standard deviation and year 2016 ASO rainfall levels among the 

different precipitation products (Table S2).”  

 

Table S2. The mean August-to-October (ASO) rainfall (mm month-1) of year 2016, multi-

year mean (not including 2016) and multi-year standard deviation (STD) over east Africa for 

years 1979 to 2016. The five global precipitation data sets used are listed. Four products of 

ERA-interim, GPCP, PREC/L, CPC and TRMM are available from 1979 to 2016. These four 

precipitation data sets are either interpolated gauge observations only (i.e. PREC/L and CPC), 

gauge observations combined with satellite measurements (i.e. GPCP), or reanalysis data (i.e. 

ERA-interim). The TRMM satellite observations are available from 2001 to 2016. 

ASO rainfall  

(mm month-1) 

ERA-

interim 
GPCP PREC/L CPC TRMM 

2016 46.10 46.56 57.16 35.78 32.05 

Climatological 

mean (1979-2015) 
70.76 62.78 61.68 43.44 60.69* 

Climatological STD 

(1979-2015) 
11.28 10.40 11.48 13.89 11.83* 

* TRMM satellite precipitation data is only available from 2001 to 2016. The climatological ASO 

rainfall averages of the period 2001-2015 is computed.  



 

Additional Figure for response (not in paper). The monthly total rainfall (mm per month) 

over study region (panel Figure 1a; land within black rectangle) for years 1979 to 2016. Year 

2016 is red, other years are individual grey lines, and multi-year average (not including 2016) 

is blue. Blue shading is ± one standard deviation of monthly rainfall across years 1979-2015. 

The drought event (shaded in yellow) is defined as the three consecutive months of ASO 

when rainfall in year 2016 is below blue shading.  

 

 

 

 

 

 

 

 

 

 

 

 



New Figure 2 in the revised manuscript. CMIP5-based histograms of probabilities of mean 

ASO rainfall falling below year 2016-based threshold values. Shown for periods 1861-1891 

(blue), 2001-2031 (black), 2035-2065 (orange) and 2070-2100 (red). Each bar corresponds to 

merged normalized outputs from 37 CMIP5 models forced by historical emissions and 

RCP8.5 future scenario. The bars without horizontal hatching (left) are for the mean-

corrected GCM precipitation estimates. The bars with hatching (right) are for the mean- and 

variance-corrected GCM estimates.  

 

Page 1, Line 24: “31 times 37 numbers”: be more clear 

[Response 1.13] We have improved all the related text to number of models and time-periods 

used. We now write “Bias-corrected mean ASO rainfall are presented in Fig. 1c for mean bias 

correction, and in Fig. 1d for mean and STD bias correction. These are derived from 37 

GCMs, and for four 31-year periods (pre-industrial, present day, and two future periods).” 

(Page: 2, Lines: 5-7) 

 

Page 1, Line 25: month-1 = per month? 

[Response 1.14] Corrected. 

 

Page 1, Line 27/28: is this a significant increase? It seems rather small. 

[Response 1.15] Based on this, and to enable better assessment of whether these changes are 

ERA-interim 

GPCP PREC/L 

CPC TRMM 



significant, we now provide uncertainty bounds on probability of drought for different time 

periods. This allows far better visual comparisons of the changes within Figure 1 and new 

Figure 2. We do this via bootstrapping methods. In particular, the one standard deviations are 

estimated via bootstrapping with 80% replications from the 37 GCM precipitation data and 

for the 31-year periods. 

 

Page 1, Line 28: “stretch in the distribution tail”? Maybe just describe that the mean of the 

distribution shifts to higher rainfall amounts, while the tails flatten.  

Page 1, Line 29: “stretched left-tails”: same here 

[Response 1.16] As can be seen from our revised Figure 1, we no longer fit normal curves, 

and instead rely on direct presentation of the probability density functions of ASO rainfall 

estimates. Hence we have removed the sentences about the changes in the distribution tails in 

the reviewed manuscript. 

 

Page 1, Line 30: “a few models”: which ones? How many? 

Page 1, Line 30: “increased interannual variability”: it would be helpful for the general 

reader to know the seasonal cycle of rainfall in this region. It seems there is a significant 

intermodal variability, and it does not become clear from the manuscript if these models can 

be trusted. 

[Response 1.17] This request has led to new Figure 3 (repeated below), that shows individual 

model responses. Overall ASO mean rainfall levels increase in 28 out of 37 GCMs from the 

present period 2001-2031 to the period 2070-2100. 

In terms of variability, this new figure in the revised manuscript shows changes in 

STDs for each GCM. We found enhanced STDs of 31-year rainfall variations in 22 out of 37 

GCMs. We have taken the issue of whether the STD of models can be trusted by now 

including this in our bias-correction methods. Unlike the previous manuscript version, we 

now compensate for both the model mean and STD discrepancies (Figure 1c versus new 

Figure 1d, and within Figure 2).  

Besides, we write in the text: “We also show individual model changes in mean and 

STD of ASO rainfall, for 31 years 2070-2100 compared to 2001-2031. Fig. 3 shows 28 out of 

37 model estimates for this region become wetter, and most models (i.e. 22 out of 37 models) 

exhibiting increased distribution spreads reflected by raised STDs.” (Page: 3, Lines: 6-9) 

 

 



 

New Figure 3 in the revised manuscript. Changes in drought frequency, multi-year mean 

and standard deviations (STD) of 31 consecutive year rainfall amounts. Difference between 

present period 2001-2031 and period 2070-2100, as estimated by 37 GCMs. GCM estimates 

are corrected by the ERA-interim rainfall product. Changes to frequencies of drought 

occurrence are estimated from the mean bias-corrected GCM estimates (1st row), both mean- 

and variance bias-corrected GCM estimates (2nd row). The colored grids in the 3rd row with 

black borders indicate statistically significant differences in the 31-year rainfall mean 

between these two periods (t-test, with P < 0.05). The percentage changes are calculated as 

[(x2070-2100/x2001-2031)-1]×100%. 

 

Page 2, Line 1: “considers models equally”: but the models are all modified to fit 

ERAinterim, so “equally” is maybe not the right term? 

[Response 1.18] We now modify this sentence, as follow: “This is based on a relatively 

simple assessment of 37 climate models, each given equal weight but after being corrected by 

observation-based rainfall products.” (Page: 3, Lines: 13-14). Please also note, as described 

above, our analysis now include five rainfall products, and so not just ERA-interim.  

 

Figure 1b: is this year significantly different from other years? What about these other years 

when rainfall was low or even lower than this year? Were these also drought years? 

[Response 1.19] The area-weighted spatial average of monthly rainfall from ERA reanalysis 

product over the August to October (ASO) of 2016 lies at least one standard deviation (STD) 

below the climatological mean of the other years (i.e. 1979-2015) (see Figure 1b). 

 There are other five years (1986, 1990, 1991, 1993 and 2010) where the ASO rainfall 

also lies at least one standard deviation below the climatological mean during 1979-2015. 



One year in particular has been studied, that of 2010, and this also caused widespread famine 

and loss of life. We now write: “For this region, the spatial average of monthly rainfall during 

ASO of 2016 lies at least one standard deviation below the climatological mean of the other 

years (Fig. 1b). The year of 2016 is the third driest year in the past four decades. Other years 

with rainfall at least one standard deviation below the climatological mean during 1979-2015 

are 1986, 1990, 1991, 1993 and 2010. Year of 2010 also suffered from the severe famine 

(Dutra et al., 2013).” (Page: 1; Lines: 15-18) 

 

Figure 1c: the PDFs look surprisingly smooth, it would have been nicer to see some 

structure. Or at the very least explain the smoothing that has been used. 

[Response 1.20] Please note we responded rapidly to this, as we accept the smoothness is 

misleading. Please see our earlier response on NHESS website, as to why we reverted to 

presenting directly the pdf of ASO seasonal rainfall, rather than a smoothed fit to these.  

 

 

Figure 1 in the revised manuscript. (a) Black rectangle is location of study region 

(14.5°N~1.5°S, 36°E~51°E). Plotted is mean rainfall for 2016 and months August to October 

inclusive (ASO), presented relative changes (as %) to long-term average ASO values (1979-

2015). Values based on ERA-interim reanalysis product. (b) ERA-based monthly total 

b 

c 

d 

a 

Rainfall for Aug to Oct, 2016 as a percent change from the average (%) 



rainfall (mm month-1) over study region (panel a; land within black rectangle) for years 1979 

to 2016. Year 2016 is red, other years are individual grey lines, and multi-year average (not 

including 2016) is blue line. Blue shading is ± one standard deviation of monthly rainfall 

across years 1979-2015. The drought event (shaded in yellow) is defined as the three 

consecutive months of ASO, and when rainfall in year 2016 is below blue shading. (c) 

CMIP5-based PDFs of mean ASO rainfall for periods 1861-1891 (blue), 2001-2031 (black), 

2035-2065 (orange) and 2070-2100 (red). Each curve corresponds to the mean-corrected 

combined outputs from 37 CMIP5 models forced by historical emissions and RCP8.5 future 

scenario. Individual GCM bias correction is based on the ERA-interim reanalysis product. 

Yellow shading is mean ASO rainfall less than 46 mm month-1, which is the ERA-interim 

2016-based threshold (mean of ASO, red curve in panel b). Inset shows probabilities of mean 

rainfall of ASO falling below the threshold for the same modelled periods (colours match 

those of curves). The error bars are the standard deviations (estimated via bootstrapping 80% 

replications from the 37 GCM precipitation data for the 31-year periods). (d) same as (c), but 

based on the mean- and variance-corrected GCM rainfall estimates. 



To Reviewer #2:  

Reviewer #2 General Comments: 

We thank Reviewer #2 for their help and time spent on this paper. Our responses are below, 

and revised text in the paper repeated in red font. 

 

This study by Yang and Huntingford uses a combination of historical data from a single 

reanalysis product (ERA-Interim), combined with models from the CMIP5 suite, to quantify 

changes in drought risk over the East Africa region under a high-warming scenario 

(RCP8.5). The study does not include validation analysis to determine whether the models 

being considered can in fact provide a reasonable representation of the observed climate for 

the region of interest – this is particularly problematic given the long-recognised absence of 

high-quality observational records over these regions. There have also been several other 

studies analysing changes to East African drought in recent years, which the authors have 

failed to acknowledge. Finally, there is little to no treatment of statistical uncertainty 

estimates accompanying the results, which is fundamentally misleading to the reader. 

[Response 2.1] Thank you for these thoughtful and valuable comments on previous version 

of this manuscript. Following those comments and suggestions, we have thoroughly revised 

the manuscript. Main changes in the revised manuscript correspond to the three requests 

above: 

1. Given that the large uncertainty in the observation-based precipitation products has 

been well reported, we have advanced our calculations to include other precipitation 

products (e.g. GPCP, PREC/L, CPC and TRMM). This allows assessment of the 

robustness any conclusions. 

2. We have cited the recent published papers related to the east African drought. 

3. We perform additional analysis, and now apply bootstrapping techniques to provide 

uncertainty bounds on revised diagrams.  

Please see below detailed responses to each specific comment.  

 

Reviewer #2 Specific Comments: 

1) Why was ERA-Interim reanalysis chosen? Has there been any sensitivity analyses using 

other reanalysis products, or comparison with observational rainfall products for common 

time periods? I would like to see some demonstration as to whether the results would vary if 

NCEP2, JRA or 20th Century Reanalysis products were used instead, as well as some 

consideration of actual observational data (such as TRMM, CRU-TS, or individual station-



based records). 

The authors are referred to the following papers for reference: 

- Angelil et al (2016, Weather and Climate Extremes,) 

- Sillmann et al (2013, JGR Atmospheres, doi:10.1002/jgrd.50203) 

[Response 2.2] Based on this request, we now use an ensemble of five global precipitation 

data sets (Table S2). In addition to our original ERA-interim product, we now use four 

additional precipitation data sets. These are interpolated gauge observations only (i.e. 

PREC/L and CPC), gauge observations combined with satellite measurements (i.e. GPCP), or 

satellite observations (i.e. TRMM). 

 Although the uncertainty in rainfall changes over Africa is large, all the rainfall 

products show the August-to-October (ASO) rainfall in year of 2016 is less than the 

climatological mean ASO rainfall to each (Table S2 and an additional Figure below which is 

not in paper). However, when using the different datasets to bias-correct the GCM rainfall 

estimates (their climatological mean and SD), we do find our estimated probabilities of future 

drought are dependent on precipitation product used. We are grateful for the encouragement 

to do this, and it has led to a new Figure 2 in the manuscript (please see below).  

For completeness, below we repeat here the revised part of the manuscript that 

describes the differences found in our results from between using five precipitation products 

to do the bias-correction (and after that follows Table S2, and two Figures mentioned above). 

At lines 21-34 (Page 2) of the paper, we now write: “Given that large uncertainty in the 

observation-based precipitation products has been well reported (Angélil et al., 2016), we use 

four other precipitation estimates (GPCP, PREC/L, CPC and TRMM) to bias-correct GCM 

estimates. In Fig. 2 we reproduce the insets of Fig 1c (no hatching) and Fig 1d (hatching) for 

ERA-Interim, and then for the four other precipitation products. Consistent with the 

conclusions based on the ERA-interim product only, the results from the other rainfall 

products also show that the probability of drought occurrence in the east Africa has decreased 

slightly from pre-industrial to present day, and irrespective of whether variance adjustment 

has occurred (Fig. 2, all blue and black bars, with and without hatching). Future projections, 

though, of drought likelihood do vary across different precipitation products. For the mean-

corrected GCM estimates, 4 out of 5 rainfall product-corrected GCM projections give a slight 

decrease in drought occurrence likelihoods by the end of 21st century. The exception is the 

TRMM-corrected GCMs, which suggest the drought probability would increase slightly by 

2070-2100 and relative to the present day. For the mean- and variance-corrected GCM 

estimates, relative to the present-day levels the GCM estimates corrected to the ERA-interim, 



GPCP, and TRMM products give an increase in drought occurrence probability. However 

PREC/L- and CPC-corrected GCM estimates suggest the probability of drought occurrence 

will decrease. This divergence is due to the strong differences in the climatological mean, 

standard deviation and year 2016 ASO rainfall levels among the different precipitation 

products (Table S2).”  

 

Table S2. The mean August-to-October (ASO) rainfall (mm month-1) of year 2016, multi-

year mean (not including 2016) and multi-year standard deviation (STD) over east Africa for 

years 1979 to 2016. The five global precipitation data sets used are listed. Four products of 

ERA-interim, GPCP, PREC/L, CPC and TRMM are available from 1979 to 2016. These four 

precipitation data sets are either interpolated gauge observations only (i.e. PREC/L and CPC), 

gauge observations combined with satellite measurements (i.e. GPCP), or reanalysis data (i.e. 

ERA-interim). The TRMM satellite observations are available from 2001 to 2016. 

ASO rainfall  

(mm month-1) 

ERA-

interim 
GPCP PREC/L CPC TRMM 

2016 46.10 46.56 57.16 35.78 32.05 

Climatological 

mean (1979-2015) 
70.76 62.78 61.68 43.44 60.69* 

Climatological STD 

(1979-2015) 
11.28 10.40 11.48 13.89 11.83* 

* TRMM satellite precipitation data is only available from 2001 to 2016. The climatological ASO 

rainfall averages of the period 2001-2015 is computed.  

 



 

Additional Figure for response (not in paper). The monthly total rainfall (mm per month) 

over study region (panel Figure 1a; land within black rectangle) for years 1979 to 2016. Year 

2016 is red, other years are individual grey lines, and multi-year average (not including 2016) 

is blue. Blue shading is ± one standard deviation of monthly rainfall across years 1979-2015. 

The drought event (shaded in yellow) is defined as the three consecutive months of ASO 

when rainfall in year 2016 is below blue shading. 

 

 

 



 New Figure 2 in the revised manuscript. CMIP5-based histograms of probabilities of mean 

ASO rainfall falling below year 2016-based threshold values. Shown for periods 1861-1891 

(blue), 2001-2031 (black), 2035-2065 (orange) and 2070-2100 (red). Each bar corresponds to 

merged normalized outputs from 37 CMIP5 models forced by historical emissions and 

RCP8.5 future scenario. The bars without horizontal hatching (left) are for the mean-

corrected GCM precipitation estimates. The bars with hatching (right) are for the mean- and 

variance-corrected GCM estimates.  

 

2) Why is there no broader consideration of the suitability of the climate models used, beyond 

a bias correction based on climatological mean precipitation? This approach to bias 

correction has been widely considered inadequate in the context of analysing precipitation 

extremes, and especially so for within an attribution context. For example, if the width of the 

distribution of precipitation is unrealistically narrow, than even a ‘realistic’ shift in the mean 

of the distribution would result in an overestimation of the increased likelihood of future low-

precipitation extremes. 

The authors are referred to the following papers for reference: 

-Sippel et al (2016, Earth System Dynamics, doi:10.5194/esd-7-71-2016) 

-Jeon et al (2016, Weather and Climate Extremes) 

-Angelil et al (2017, Journal of Climate, https://doi.org/10.1175/JCLI-D-16-0077.1) 

[Response 2.3] We have performed new analysis in response to this request. In particular, we 

now additionally bias-correct and ensure the standard deviation of GCMs equals the standard 

deviation in the observational data products. This has led us to re-calculate the likelihoods of 

ERA-interim 

GPCP PREC/L 

CPC TRMM 



east African drought, and a new panel in Figure 1 (Figure 1d in the revised manuscript). We 

are grateful for this request to address distribution width issue - our results suggest the choice 

of bias correction methodology (i.e. with/without additional STD bias-correction) is a major 

source of uncertainty in drought likelihood projection. 

Then state here we now use those reference, and repeat the sentences here: “Second, 

we then adjust the climatological standard deviation (STD) of GCM precipitation estimates 

by multiplying the ratio of the climatological STD of each GCM to that of the ERA-interim 

data. The adjustment of spread of rainfall distribution is an important additional procedure to 

further constrain GCM estimates (Sippel et al., 2016; Jeon et al., 2016; Angelil et al., 2017).” 

(Page: 1; Line: 31 and Page: 2, Lines: 1-3) 

 

3) Moreover, the authors fail to consider the many other contributions beyond low 

precipitation which can contribute to a severe drought. In this context, an exploration of more 

robust drought metrics would be helpful. 

[Response 2.4] Thank you for this comment. We respectfully request that we don’t expand 

our paper to alternative drought metrics, in part as some involve socio-economic and 

governance implications which would take beyond the remit of a Brief Communications. 

This, hopefully, will be a component of full size climate - socio-economic studies in over the 

years ahead. 

However, we do want to change the manuscript to acknowledge this issue. In 

particular, other African regions also suffered from rainfall deficits in 2016, and yet there 

were fewer media reports of famine. This supports, therefore, that drought-induced famine 

has more aspects than simply low rainfall. For this reason, we want to stress this point, and by 

guiding readers to observe the low rainfall also recorded beyond East Africa, and as show in 

Figure 1. We have now amended the manuscript to say: “We concentrate on East Africa, as 

this region experienced particularly poor harvest and where famine was widely reported 

during 2016 (noting that regions outside black rectangle of Fig. 1a also experienced major 

rainfall deficits in 2016). East Africa is especially vulnerable to the impacts of drought (DEC, 

2017). The region has long experienced widespread poverty and high levels of food 

insecurity (Von Grebmer et al., 2016).  The high dependence of its population on rain-fed 

agriculture, sometimes in tandem with political instability, exacerbate the impacts of droughts 

(Love, 2009; Masih et al., 2014).” (Page: 1; Lines: 18-24) 

  

4) The absence of uncertainty estimates in Figure 1c is troubling. Most attribution studies 



provide, at the very least, bootstrapping estimates of uncertainty. I suspect that if error bars 

did accompany the probability changes in the inset panel, the changes for 2001-2031 and 

2035-2065 would be statistically insignificant relative to 1861-1891. Further, it is not clear 

as to whether the future probabilities of witnessing less than 46mm month-1 have been 

calculated using raw model data, or the excessively-smoothed PDF constructions. 

[Response 2.5] We have address all issues raised. We now calculate the bootstrapping 

estimates of uncertainty and add the uncertainty bounds on to the insets of Figure 1c, 1d and 

also on new Figure 2. The one standard deviations are estimated via bootstrapping with 80% 

replications from the 37 GCM precipitation data and for the 31-year periods. As the reviewer 

predicted, these uncertainty bounds do overlap, allowing a visual interpretation that changes 

may not be detectable.  

We accept the reviewers’ questioning of appropriateness of smoothing in our original 

panel 1c, and this revealed a factual error. In the revised manuscript, we now simply show 

bias-corrected GCM projections as a probability density function. These revised a plot 

(Figures 1c and 1d) – please see below.  

 

 

Figure 1 in the revised manuscript. (a) Black rectangle is location of study region 

(14.5°N~1.5°S, 36°E~51°E). Plotted is mean rainfall for 2016 and months August to October 

inclusive (ASO), presented relative changes (as %) to long-term average ASO values (1979-

b 

c 

d 

a 

Rainfall for Aug to Oct, 2016 as a percent change from the average (%) 



2015). Values based on ERA-interim reanalysis product. (b) ERA-based monthly total 

rainfall (mm month-1) over study region (panel a; land within black rectangle) for years 1979 

to 2016. Year 2016 is red, other years are individual grey lines, and multi-year average (not 

including 2016) is blue line. Blue shading is ± one standard deviation of monthly rainfall 

across years 1979-2015. The drought event (shaded in yellow) is defined as the three 

consecutive months of ASO, and when rainfall in year 2016 is below blue shading. (c) 

CMIP5-based PDFs of mean ASO rainfall for periods 1861-1891 (blue), 2001-2031 (black), 

2035-2065 (orange) and 2070-2100 (red). Each curve corresponds to the mean-corrected 

combined outputs from 37 CMIP5 models forced by historical emissions and RCP8.5 future 

scenario. Individual GCM bias correction is based on the ERA-interim reanalysis product. 

Yellow shading is mean ASO rainfall less than 46 mm month-1, which is the ERA-interim 

2016-based threshold (mean of ASO, red curve in panel b). Inset shows probabilities of mean 

rainfall of ASO falling below the threshold for the same modelled periods (colours match 

those of curves). The error bars are the standard deviations (estimated via bootstrapping 80% 

replications from the 37 GCM precipitation data for the 31-year periods). (d) same as (c), but 

based on the mean- and variance-corrected GCM rainfall estimates. 

 

5) The use of 1861-1891 is a misleading representation of ‘pre-industrial’ as it includes the 

influences of the Krakatoa volcanic eruption, and associated cooling effects. I strongly 

recommend changing the baseline period, perhaps to 1861-1880 in accordance with the 

IPCC’s definition. 

[Response 2.6] We have checked this. We are keen to keep each period containing 31 years, 

so all statistics are comparable between timeframes analyzed. We check probability for two 

31 year segments of (i) 1861-1891 and (ii) split period 1861-1881 and 1890-1899. We find 

for ASO East Africa rainfall, there is no difference in probabilities, and so we request keeping 

the pre-industrial representative years as in the original paper version.  

 

Reviewer #2 Technical Comments: 

P1, L5: East Africa, not East African. 

[Response 2.7] Corrected. 

 

P1, L10: It’s not really an analysis ‘merging’ ERA-Interim data with CMIP5 data. Instead 

you are using ERA-Interim as a basis for bias-correcting the model data. 

[Response 2.8] We thank the reviewer pointing it out. We now have clarified this and revised 



this sentence in the manuscript: “After bias correction to match contemporary rainfall mean, 

GCMs project small decreases in probability of drought of same severity for East Africa by 

the end of 21st century. However, further adjusting the variance of GCMs to match ERA-

interim data, probability of drought increases slightly.” (Page: 1, Lines: 9-11) 

 

P1, L14: ‘… shows that during August to October’? 

[Response 2.9] Corrected. 

 

P1, L20: RCP8.5 is not designed as a ‘business-as-usual’ scenario. It is in fact an 

acceleration of the present-day rates of increase in radiative forcing. The closest to ‘business-

as-usual’ would be RCP6.0. I suggest the authors modify this particular phrase. 

[Response 2.10] To avoid confusion, the phrase of “business-as-usual scenario” is modified 

to “high emission future scenario”. 

 

P1, L20-L23: This is poorly phrased. So you are bias-correcting based on climatological 

mean precipitation for ERA-Interim? 

[Response 2.11] Yes, we bias correction on climatological mean precipitation. In light of 

your comment 2.3 above, we also bias-correct on variance. We now re-write the method in 

the revised manuscript, which we hope removes previous ambiguities. We write: “A bias 

correction with two post-processing steps is applied to the GCM precipitation estimates. We 

first calculate modelled and ERA-based mean ASO rainfall estimates over the east Africa 

during the period 1979-2015. The GCM precipitation estimates, both past and future, are 

corrected by a GCM-specific mean correction factor, which is a ratio of the climatological 

mean of each GCM to that of the ERA-interim reanalysis product. Second, we then adjust the 

climatological standard deviation (STD) of GCM precipitation estimates by multiplying the 

ratio of the climatological STD of each GCM to that of the ERA-interim data. The adjustment 

of spread of rainfall distribution is an important additional procedure to further constrain 

GCM estimates (Sippel et al., 2016; Jeon et al., 2016; Angelil et al., 2017). Together this 

ensures all GCMs have the ERA-based mean and STD for period 1979-2015.” (Page: 1, 

Lines: 28-31 and Page 2: 1-4) 

 

P1, L27-28: I suspect a change from 5.6 to 5.8% is not statistically significant in any way, 

and repeating these calculations with even just two or three models removed could lead to a 

completely different answer. What is the range in answers of this probabilistic increase for 



each individual model? 

[Response 2.12] Following your helpful suggestion, we have answered this in two ways. 

First, in response to your comment 2.5 above, we now undertake bootstrapping to 

provide estimates of uncertainty (Figure 1c, d; new Figure 2). These uncertainty bounds place 

in a much better context GCMs estimates of changes in the probability of drought occurrence 

in east Africa. 

 Second, we also calculate the changes in probabilities of drought estimated from each 

of individual GCMs between period 2001-2031 and period 2070-2100. This creates a new 

Figure 3 (please see below). For the mean-corrected GCM estimates, the changes in 

probabilities of drought range from -19.4% (-6 times per 31 years) to +12.9% (+4 times per 

31 years). For the mean- and variance-corrected GCM estimates, drought probabilities 

changes range from -3.2% (-1 times per 31 years) to 12.9% (+4 times per 31 years). These 

values are made clear from Figure 3. 

 We appreciate being asked to present understanding at the individual GCM scale. This 

demonstrates that the choice of GCMs used is a major source of uncertainty of future drought 

risk analysis. Figure 3 also highlights the relatively small number of years in simulations for 

understanding changes in extreme events. Ideally, there would be a large ensemble of 

simulations by each model to refine the probability of extreme events, enabling a more 

complete sampling of probability distributions. Based on this, we now write in the concluding 

paragraph: “We find the sources of uncertainty in drought prediction include: 1) the choice of 

bias correction methodology; 2) the choice of observational product used to correct bias in 

GCMs; and 3) the choice of GCMs used.” (Page: 3; Lines: 14-16) and “For rainfall of east 

Africa predictions in particular, this will link to accurate forward projections of oceanic 

variability. Strong teleconnections are known to exist between El Niño Southern Oscillation 

(ENSO) and East African rainfall (Segele et al., 2009; Gissila et al., 2004), and with longer-

term fluctuations in Pacific SSTs increasing/decreasing rainfall (Funk et al., 2014; Liebmann 

et al., 2014). Larger ensembles of simulations by each model is also important, and especially 

when analysing the probability of extreme events. This enables a more complete sampling of 

probability distributions, describing more fully the internal variability of the climate system 

imposed over general climate change.” (Page: 3; Lines: 21-26) 



 

New Figure 3 in the revised manuscript. Changes in drought frequency, multi-year mean 

and standard deviations (STD) of 31 consecutive year rainfall amounts. Difference between 

present period 2001-2031 and period 2070-2100, as estimated by 37 GCMs. GCM estimates 

are corrected by the ERA-interim rainfall product. Changes to frequencies of drought 

occurrence are estimated from the mean bias-corrected GCM estimates (1st row), both mean- 

and variance bias-corrected GCM estimates (2nd row). The colored grids in the 3rd row with 

black borders indicate statistically significant differences in the 31-year rainfall mean 

between these two periods (t-test, with P < 0.05). The percentage changes are calculated as 

[(x2070-2100/x2001-2031)-1]×100%. 

 

P1, L29: ‘stretched left-tails’ is a poor description, and I suggest changing this. 

[Response 2.13] We now have removed the sentences about the changes in the distribution 

tails in the reviewed manuscript. This is due to Review Comment 2.5. 

 

P2, L2-7: This is a very poor concluding paragraph. You do not summarize the key results of 

the study, but instead offer reasons why significance testing is needed (reliability of different 

models), before highlighting all of the reasons why monthly-mean precipitation deficits may 

in fact be a poor proxy for drought impacts over East Africa. 

[Response 2.14] We have completely re-written the concluding paragraph, and mainly in 

light of comments from both Reviewer 1 and Reviewer 2. The main difference in paper 

versions, is that the requested changes have placed all results in a more complete uncertainty 

analysis framework. We summarize these main results, noting future predictions of drought 

likelihood depend on the GCMs used, any bias correction algorithm, and the choice of 

observation product used to correct bias. Although this is a slightly negative find (i.e. answer 

is inclusive), we believe this is still important to have placed in the literature. 



 Based on Review 1 comment 1.3 above, we mention the importance of accurate 

representation of oceanic drivers, via teleconnections, to East Africa rainfall. In terms of 

drought proxy, we use the literature better in our discussion, to re-iterate that there are other 

factors (e.g. social drivers) of importance in terms of ability to deal with low rainfall totals.   

Although it takes up space in our response, we list this in full as: “Our analysis 

reveals that current understanding of how future climate change will impact on East Africa 

ASO drought risk remains uncertain. This is based on a relatively simple assessment of 37 

climate models, each given equal weight but after being corrected by observation-based 

rainfall products. We find the sources of uncertainty in drought prediction include: 1) the 

choice of bias correction methodology; 2) the choice of observational product used to correct 

bias in GCMs; and 3) the choice of GCMs used. Currently, for many geographical regions, 

GCM estimates of rainfall changes varies substantially across models (Knutti and Sedláček, 

2013). Multi-model analyses such as ours consider uncertainty associated with different 

model parameterisation or scheme describing rainfall features. However, to give more 

definitive answers, the climate research community may need to be confident enough to rank 

climate models based on performance to refine future projections (Knutti et al., 2017). 

Improving GCM projections also could involve on-going constraining of model components. 

For rainfall of east Africa predictions in particular, this will link to accurate forward 

projections of oceanic variability. Strong teleconnections are known to exist between El Niño 

Southern Oscillation (ENSO) and East African rainfall (Segele et al., 2009; Gissila et al., 

2004), and with longer-term fluctuations in Pacific SSTs increasing/decreasing rainfall (Funk 

et al., 2014; Liebmann et al., 2014). Larger ensembles of simulations by each model is also 

important, and especially when analysing the probability of extreme events. This enables a 

more complete sampling of probability distributions, describing more fully the internal 

variability of the climate system imposed over general climate change. In addition, some 

GCMs estimate an increase in future variability of east African ASO rainfall, and better 

knowledge of the magnitude of this is important. Research shows any variability increases as 

well as mean changes has strong impacts on society (Brown and Lall, 2006). Furthermore, 

food and water availability in East Africa has multiple socio-economic drivers, alongside 

climatic influences (Little et al., 2001; Adhikari et al., 2015). Although here we have focused 

on climate model projections of the future, more holistic approaches will combine climate 

and crop impact modelling. The hope is that climate model predictions for east Africa will 

move towards a consensus on expected changes, helping then better protection and disaster 

preparedness against future famine.” (Page: 3, Lines: 12-33) 
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Abstract. The on-going effects of severeEast Africa autumn drought in East Africa are causing high levels of 2016 caused 

malnutrition, hunger, illness and death. Close to 16 million people across Somalia, Ethiopia and Kenya needneeded food, water 

and medical assistance (DEC, 2017).. Many factors influence drought stress and ability to respond.response. However, 

inevitably it is asked: are elevated atmospheric greenhouse gas (GHG) concentrations altering the likelihood of extreme rainfall 

deficits?deficit frequency? We find small increases investigate with General Circulation Model (GCMs). After bias correction 10 

to match contemporary rainfall mean, GCMs project small decreases in probability of thisdrought of same severity for East 

African, based on merging the observation-based reanalysis datasetAfrica by the European Centre for Medium-Range Weather 

Forecasts (ECMWF) (Dee et al., 2011) with Global Climate Models (GCMs) in the CMIP5 database (Taylor et al., 2012).end 

of 21st century. However, further adjusting the variance of GCMs to match ERA-interim data, probability of drought increases 

slightly. 15 

 

ECMWF re-analysis data (ERA-interim; Dee et al., 2011) shows that during August to October (ASO) of 2016, large parts of 

Somalia, Ethiopia and Kenya (Black rectangle, Fig. 1a) had a reduction of 30% or more in rainfall compared to a baseline 

ASO period 1979-2015. For this region, the spatial average of monthly rainfall during ASO of 2016 lies at least one standard 

deviation below the climatological mean of the other years (Fig. 1b). During these months, other parts of Africa also 20 

experienced severe rainfall deficits. We concentrate on East Africa, as this experienced poor harvest and where famine is 

widely reported. The year of 2016 is the third driest year in the past four decades. Other years with rainfall at least on standard 

deviation below the climatological mean during 1979-2015 are 1986, 1990,1991, 1993 and 2010. Year of 2010 also suffered 

from the severe famine (Dutra et al., 2013). We concentrate on East Africa, as this region experienced particularly poor harvest 

and where famine was widely reported during 2016 (noting that regions outside black rectangle of Fig. 1a also experienced 25 

major rainfall deficits in 2016). East Africa is especially vulnerable to the impacts of drought (DEC, 2017). The region has 

long experienced widespread poverty and high levels of food insecurity (Von Grebmer et al., 2016).  The high dependence of 

its population on rain-fed agriculture, sometimes in tandem with political instability, exacerbate the impacts of droughts (Love, 

2009; Masih et al., 2014). 

 30 
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To assess any influence of increasing atmospheric GHG concentrations, we use monthly rainfall data from 37 GCMs 

simulations for the historical period and for a high emission future “business-as-usual” RCP8.5 scenario. RCP8.5. These are 

from the Coupled Model Intercomparison Project Phase 5 (CMIP5, Taylor et al., 2012). A summary of the main characteristics 

of the models are provided in Table S1. A bias correction with two post-processing steps is applied to the GCM precipitation 

estimates. We multiplyfirst calculate modelled and ERA-based mean ASO rainfall estimates over the east Africa during the 5 

period 1979-2015. The GCM precipitation estimates, both past and future, withare corrected by a GCM-specific value such 

that mean correction factor, which is a ratio of the climatological mean of each GCM during the period 1979-2015 equals to 

that of the ERA-interim reanalysis product. Second, we then adjust the climatological standard deviation (STD) of GCM 

precipitation estimates by multiplying the ratio of the climatological STD of each GCM to that of the ECMWF reanalysis. 

This is also for the spatial average over our study region (Fig. 1a).ERA-interim data. The adjustment of spread of rainfall 10 

distribution is an important additional procedure to further constrain GCM estimates (Sippel et al., 2016; Jeon et al., 2016; 

Angelil et al., 2017). Together this ensures all GCMs have the ERA-based mean and STD for period 1979-2015. Each GCM 

is considered equally plausible. Considering different Bias-corrected mean ASO rainfall are presented in Fig. 1c for mean bias 

correction, and in Fig. 1d for mean and STD bias correction. These are derived from 37 GCMs, and for four 31-year periods, 

Probability Density Functions (PDFs) of mean ASO rainfall (e.g. 31 times 37 numbers) are constructed. (pre-industrial, present 15 

day, and two future periods).  

Our PDFs enable estimation of  

We estimate the probability, in any year, of rainfall being less than 46 mm month-1 (shaded, Fig. 1c), which is per month. This 

threshold is 35% less than the climatological ASO mean, and is the ASO mean rainfall level in 2016 (red curve within yellow 

highlight, Fig. 1b). We compareFor the mean-corrected GCM estimates, we compare (inset, Fig. 1c) modelled period 1861-20 

1891, representative of pre-industrial, with present day (period 2001-2031), and find this probability increasesdecreases 

slightly from 5.3% to 5.6% (inset, Fig. 1c). This is caused by a stretch in the distribution tail, as overall rainfall increases.3.8% 

(STD ± 0.5%) to 2.8% (STD ± 0.5%). The one standard deviations are estimated via bootstrapping with 80% replications from 

the 37 GCM precipitation data and for the 31-year periods. These trends continue, giving probabilities 62.3% (± 0.5%) and 

72.1% (± 0.4%%) for periods 2035-2065 and 2070-2100 respectively. The stretched left-tails are caused by a few models that 25 

estimate this region becomes drier, and some modelsFor the mean- and variance-corrected GCM estimates (Fig. 1d), we found 

the probability of east African drought is smallest at present (0.4% ± 0.2%, period 2001-2031). Such probability would become 

larger in the future, giving probabilities 1.1% (± 0.4%) and 1.2% (± 0.3%) for periods 2035-2065 and 2070-2100 respectively. 

Hence we find accounting for model biases in the variance of GCM distributions has the potential to significantly alter the 

predictions of drought events occurrence over the east Africa. 30 

 

Given that large uncertainty in the observation-based precipitation products has been well reported (Angélil et al., 2016), we 

use four other precipitation estimates (GPCP, PREC/L, CPC and TRMM) to bias-correct GCM estimates. In Fig. 2 we 

reproduce the insets of Fig 1c (no hatching) and Fig 1d (hatching) for ERA-Interim, and then for the four other precipitation 
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products. Consistent with the conclusions based on the ERA-interim product only, the results from the other rainfall products 

also show that the probability of drought occurrence in the east Africa has decreased slightly from pre-industrial to present 

day, and irrespective of whether variance adjustment has occurred (Fig. 2, all blue and black bars, with and without hatching). 

Future projections, though, of drought likelihood do vary across different precipitation products. For the mean-corrected GCM 

estimates, 4 out of 5 rainfall product-corrected GCM projections give a slight decrease in drought occurrence likelihoods by 5 

the end of 21st century. The exception is the TRMM-corrected GCMs, which suggest the drought probability would increase 

slightly by 2070-2100 and relative to the present day. For the mean- and variance-corrected GCM estimates, relative to the 

present-day levels the GCM estimates corrected to the ERA-interim, GPCP, and TRMM products give an increase in drought 

occurrence probability. However PREC/L- and CPC-corrected GCM estimates suggest the probability of drought occurrence 

will decrease. This divergence is due to the strong differences in the climatological mean, standard deviation and year 2016 10 

ASO rainfall levels among the different precipitation products (Table S2).  

 

The multi-model ensemble forecast, corrected by the ERA-interim rainfall product and merging the individual forecasts 

with equal weights, shows that the east African mean ASO rainfall for 2070-2100 will increase significantly, compared with 

the present period 2001-2031 (main PDFs, Fig 1c.,d.). It is these general increases that even in conjunction with larger future 15 

distribution spreads, imply no significant increase of drought occurrence probability (Fig 1c., d.). In Fig. 3, we present for the 

individual models, changes in numbers of years of mean ASO rainfall falling below 46 mm per month. We also show individual 

model changes in mean and STD of ASO rainfall, for 31 years 2070-2100 compared to 2001-2031. Fig. 3 shows 28 out of 37 

model estimates for this region become wetter, and most models (i.e. 22 out of 37 models) exhibiting increased interannual 

variability.distribution spreads reflected by raised STDs. Models generally agree on the direction of these changes, but the 20 

magnitude of changes in GCMs remains uncertain.  

 

Our simple analysis that considers models equally, suggestsreveals that current understanding of how future climate change 

will impact on East Africa ASO drought risk is increasing, although general rainfall levels are rising. Theremains uncertain. 

This is based on a relatively simple assessment of 37 climate models, each given equal weight but after being corrected by 25 

observation-based rainfall products. We find the sources of uncertainty in drought prediction include: 1) the choice of bias 

correction methodology; 2) the choice of observational product used to correct bias in GCMs; and 3) the choice of GCMs used. 

Currently, for many geographical regions, GCM estimates of rainfall changes varies substantially across models (Knutti and 

Sedláček, 2013). Multi-model analyses such as ours consider uncertainty associated with different model parameterisation or 

scheme describing rainfall features. However, to give more definitive answers, the climate research community may need to 30 

be confident enough to rank climate models based on performance to refine future projections (Knutti et al., 2017). Which 

models are most accurate for East Africa?2017). Improving GCM projections also could involve on-going constraining of 

model components. For rainfall of east Africa predictions in particular, this will link to accurate forward projections of oceanic 

variability. Strong teleconnections are known to exist between El Niño Southern Oscillation (ENSO) and East African rainfall 
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(Segele et al., 2009; Gissila et al., 2004), and with longer-term fluctuations in Pacific SSTs increasing/decreasing rainfall (Funk 

et al., 2014; Liebmann et al., 2014). Larger ensembles of simulations by each model is also important, and especially when 

analysing the probability of extreme events. This enables a more complete sampling of probability distributions, describing 

more fully the internal variability of the climate system imposed over general climate change. In addition, some GCMs estimate 

an increase in future variability of east African ASO rainfall, and better knowledge of the magnitude of this is important. 5 

Research shows any variability increases as well as mean changes has strong impacts on society (Brown and Lall, 2006). 

Furthermore, under global warming, raised evaporation may offset rainfall gains, affecting crop photosynthesis (Adhikari et 

al., 2015). Foodfood and water availability in East Africa has multiple socio-economic drivers, alongside climatic influences 

(Little et al., 2001). Any2001; Adhikari et al., 2015). Although here we have focused on climate model projections of the 

future, more holistic approach, includingapproaches will combine climate and crop impact modelling, will hopefully create 10 

better protections. The hope is that climate model predictions for east Africa will move towards a consensus on expected 

changes, helping then better protection and disaster preparedness against future famine.  
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Figure 1: (a) Black rectangle is location of study region (14.5°N~1.5°S, 36°E~51°E). Plotted is mean rainfall fromfor 2016 and months 

August to October inclusive (ASO), presented relative changes (as %) to long-term average ASO values (1979-2015) and). Values based on 

ERA-Interiminterim reanalysis product. (b) ERA-based monthly total rainfall (mm month-1) over study region (panel a; land within black 

rectangle) for years 1979 to 2016. Year 2016 is red, other years are individual grey lines, and multi-year average (not including 2016) is blue 5 
line. Blue shading is ± one standard deviation of monthly rainfall across years 1979-2015. The drought event (shaded in yellow) is defined 

as the three consecutive months of ASO, and when rainfall in year 2016 is below blue shading. (c) CMIP5-based PDFs of mean ASO rainfall 

for periods 1861-1891 (blue), 2001-2031 (black), 2035-2065 (orange) and 2070-2100 (red). Each curve corresponds to merged normalisedthe 

mean-corrected combined outputs from 37 CMIP5 models forced by historical emissions and RCP8.5 future scenario. Individual GCM bias 

correction is based on the ERA-interim reanalysis product. Yellow shading is mean ASO rainfall less than 46 mm month-1, which is the 10 
ERA-interim 2016-based threshold (mean of ASO, red curve in panel b). Inset shows probabilities of mean rainfall of ASO falling below 

the threshold for the same modelled periods (colours match those of curves). The error bars are the standard deviations (estimated via 

bootstrapping 80% replications from the 37 GCM precipitation data for the 31-year periods). (d) same as (c), but based on the mean- and 

variance-corrected GCM rainfall estimates.  

 15 

 

Figure 2: CMIP5-based histograms of probabilities of mean ASO rainfall falling below year 2016-based threshold values. Shown for periods 

1861-1891 (blue), 2001-2031 (black), 2035-2065 (orange) and 2070-2100 (red). Each bar corresponds to merged normalized outputs from 

37 CMIP5 models forced by historical emissions and RCP8.5 future scenario. The bars without horizontal hatching (left) are for the mean-

corrected GCM precipitation estimates. The bars with hatching (right) are for the mean- and variance-corrected GCM estimates.  20 
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Figure 3: Changes in drought frequency, multi-year mean and standard deviations (STD) of 31 consecutive year rainfall amounts. 

Difference between present period 2001-2031 and period 2070-2100, as estimated by 37 GCMs. GCM estimates are corrected by the 

ERA-interim rainfall product. Changes to frequencies of drought occurrence are estimated from the mean bias-corrected GCM estimates 

(1st row), both mean- and variance bias-corrected GCM estimates (2nd row). The colored grids in the 3rd row with black borders indicate 5 
statistically significant differences in the 31-year rainfall mean between these two periods (t-test, with P < 0.05). The percentage changes 

are calculated as [(x2070-2100/x2001-2031)-1]×100%.  
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 Supplementary Information 

 

Table S1. CMIP5 global circulation models (GCMs) used in this study, and their components.  
Model Name Atmospheric Model Land surface Model Oceanic Model Reference 

ACCESS1-0 HadGEM2 r1.1 MOSES MOM4pl 
Bi et al.(2012) 

ACCESS1-3 Similar to GA 1.0 CABLE v1.8 MOM4p 

bcc-csm1-1 BCC_AGCM2.2 BCC_AVIM1.0 MOM4_L40 
Wu et al. (2012) 

bcc-csm1-1-m BCC_AGCM2.2 BCC_AVIM1.0 MOM4_L40 

BNU-ESM CAM3.5 CLM MOM4p1 Ji et al. (2014) 

CanESM2 CanAM4 CLASS2.7 CanOM4 and  CMOC1.2 Arora et al. (2011) 

CCSM4 CAM4 CLM4 POP2 Gent et al. (2011) 

CESM1-BGC CAM4 CLM4 POP2 
Neale et al. (2010) 

CESM1-CAM5 CAM5 CLM4 POP2 

CMCC-CESM ECHAM5 SILVA NEMO 

Scoccimarro et al. (2011) CMCC-CM ECHAM5 SILVA OPA 8.2 

CMCC-CMS ECHAM5 SILVA OPA 8.2 

CNRM-CM5 ARPEGE climate SURPEXv5.1 NEMO3.3 Voldoire et al. (2011) 

CSIRO-Mk3-6-0 AGCMv7.3.8 a soil-canopy scheme GFDL MOM2.2 Rotstayn et al. (2010) 

EC-EARTH IFS H-TESSEL NEMO Hazeleger et al. (2010) 

GFDL-CM3 GFDL-AM3 LM3 MOM Griffies et al. (2011) 

GFDL-ESM2G GFDL-AM2.1 LM3 GOLD 
Dunne et al. (2012) 

GFDL-ESM2M GFDL-AM2.1 LM3 MOM4 

GISS-E2-H-CC GISS-E2 GISS-LSM-CC HYCOM 

Schmidt et al. (2014) 
GISS-E2-H GISS-E2 GISS-LSM HYCOM 

GISS-E2-R-CC GISS-E2 GISS-LSM-CC Russell 

GISS-E2-R GISS-E2 GISS-LSM Russell 

HadGEM2-CC HadGAM2 TRIFFID HadGOM2 Collins et al. (2011) 

HadGEM2-ES HadGAM2 TRIFFID HadGOM2 Jones et al. (2011) 

INMCM4 INM INM HadGOM2 Volodin et al. (2010) 

IPSL-CM5A-LR LMDZ5A ORCHIDEE NEMO 

Dufresne et al. (2012) IPSL-CM5A-MR LMDZ5A ORCHIDEE NEMO 

IPSL-CM5B-LR LMDZ5B ORCHIDEE NEMO 

MIROC5 FRCGC-AGCM MATSIRO COCO4.5 

Watanabe et al. (2011) MIROC-ESM FRCGC-AGCM MATSIRO COCO4.5 

MIROC-ESM-CHEM FRCGC-AGCM MATSIRO COCO4.5 

MPI-ESM-LR ECHAM6 JSBACH MPIOM 
Ilyina et al. (2013) 

MPI-ESM-MR ECHAM6 JSBACH MPIOM 

MRI-CGCM3 MRIȬAGCM3 HAL MRI.COM3 Yukimoto et al. (2012) 

NorESM1-ME CAM4-Oslo CLM4 MICOM 
Tjiputra et al. (2013) 

NorESM1-M CAM4-Oslo CLM4 MICOM 
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Table S2. The mean August-to-October (ASO) rainfall (mm month-1) of year 2016, multi-year mean (not including 2016) and multi-year 

standard deviation (STD) over east Africa for years 1979 to 2016. The five global precipitation data sets used are listed. Four products of 

ERA-interim, GPCP, PREC/L, CPC and TRMM are available from 1979 to 2016. These four precipitation data sets are either interpolated 

gauge observations only (i.e. PREC/L and CPC), gauge observations combined with satellite measurements (i.e. GPCP), or reanalysis data 

(i.e. ERA-interim). The TRMM satellite observations are available from 2001 to 2016. 5 

ASO rainfall  

(mm month-1) 

ERA-

interim 
GPCP PREC/L CPC TRMM 

2016 46.10 46.56 57.16 35.78 32.05 

Climatological mean 

(1979-2015) 
70.76 62.78 61.68 43.44 60.69* 

Climatological STD 

(1979-2015) 
11.28 10.40 11.48 13.89 11.83* 

* TRMM satellite precipitation data is only available from 2001 to 2016. The climatological ASO rainfall averages of the 

period 2001-2015 is computed. 
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