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Abstract. Rain-triggered lahars are a significant secondary hydrological and geomorphic hazard at volcanoes 11 

where unconsolidated pyroclastic material produced by explosive eruptions is exposed to intense rainfall, often 12 

occurring for years to decades after the initial eruptive activity. Previous studies have shown that secondary lahar 13 

initiation is a function of rainfall parameters, source material characteristics and time since eruptive activity. In 14 

this study, probabilistic rain-triggered lahar forecasting models are developed using the lahar occurrence and 15 

rainfall record of the Belham River Valley at Soufrière Hills Volcano, Montserrat collected between April 2010 16 

and April 2012. In addition to the use of peak rainfall intensity as a base forecasting parameter, considerations for 17 

the effects of rainfall seasonality and catchment evolution upon the initiation of rain-triggered lahars and the 18 

predictability of lahar generation are also incorporated into these models. Lahar probability increases with peak 19 

one-hour rainfall intensity throughout the two-year dataset, and is higher under given rainfall conditions in year 20 

one than year two. The probability of lahars is also enhanced during the wet season, when large-scale synoptic 21 

weather systems (including tropical cyclones) are more common and antecedent rainfall and thus levels of deposit 22 

saturation are typically increased. The incorporation of antecedent conditions and catchment evolution into 23 

logistic regression-based rain-triggered lahar probability estimation models is shown to enhance model 24 

performance and displays the potential for successful real-time prediction of lahars, even in areas featuring 25 

strongly seasonal climates and temporal catchment recovery.  26 

1 Introduction 27 

Lahars are rapidly flowing mixtures of rock debris and water (other than normal streamflow) from a volcano and 28 

represent a significant hazard due to their energetic nature and mobility (Smith and Fritz, 1989). Globally, 17% 29 

of historical volcano-related fatalities have occurred due to lahars (Auker et al., 2013); with decadal-scale hazards 30 

being created by some large eruptions (Major et al., 2000). Secondary, post-eruption lahars are dominantly the 31 

result of rainfall on unconsolidated pyroclastic deposits, which are typically remobilised by rilling due to 32 

Hortonian overland flow (Segerstrom, 1950; Waldron, 1967), undercutting and lateral bank collapse and headward 33 

erosion (Pierson, 1992); or by shallow landsliding of saturated tephra layers above basal décollement surfaces 34 

(Iverson, 2000; Manville et al., 2000).  35 

At present, rain-triggered lahar hazard identification is predominantly based on observations as well as ground-36 

based flow detection systems such as Acoustic Flow Monitors (AFMs) or trip-wires at locations where such 37 
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resources are available (e.g. Marcial et al., 1996; Lavigne et al., 2000). Previous studies featuring post-lahar 38 

analysis of flow observations and rainfall records at a range of volcanoes have displayed a power-law relationship 39 

indicating that lahar initiation occurs along a continuum from short duration, high intensity rainfall events to long 40 

duration, low-intensity events (e.g. Rodolfo and Arguden, 1991; Capra et al., 2010; Jones et al., 2015). Enhancing 41 

the use of local telemetered rainfall gauge networks within lahar hazard monitoring and assessment has the 42 

potential to increase the number of available mitigation tools whilst avoiding the lag-time between flow initiation 43 

and flow detection inherent in ground-based detection and observation. Globally, such pre-emptive prediction and 44 

forecasting of rain-triggered lahars based on telemetered rainfall data is lacking, although initial application of 45 

real-time rainfall data for lahar prediction has demonstrated increased lahar warning times compared with ground-46 

based flow detection (Jones et al., 2015).  47 

The initiation of rain-triggered lahars is dependent on the characteristics of rainfall, pyroclastic deposits and 48 

topography, indicating that both the climatic regime of lahar-prone regions and the hydrogeomorphic response of 49 

drainage basins to eruptive activity are important considerations in rain-triggered lahar research (Pierson and 50 

Major, 2014). Regions of high rainfall seasonality are predominantly distributed in the tropics and sub-tropics 51 

either side of the equator (Wang et al., 2010); whilst approximately 46% of active volcanoes are identified as 52 

being located in the humid tropics (Rodolfo and Arguden, 1991). Despite this geographic coincidence and the 53 

importance of climatic rainfall regimes on storm intensities, durations and antecedent conditions (all significant 54 

factors in lahar initiation: Pierson and Major, (2014)), the impact of seasonal rainfall on rain-triggered lahar 55 

initiation has not previously been explicitly considered within the development of rain-triggered lahar hazard 56 

assessment tools. 57 

Following a discrete volcanic eruption, sediment yields in impacted fluvial systems are amongst the highest 58 

recorded globally, but decline exponentially (Major et al., 2000), which is consistent with other examples of 59 

disturbed earth systems (Graf, 1977). Mechanisms include a reduction in available particulate material, vegetation 60 

recovery, fragmentation of runoff-enhancing surface crusts, exposure of more permeable substrates and the 61 

stabilisation of rill networks (Leavesley et al., 1989; Schumm and Rea, 1995; Major et al., 2000; Major and 62 

Yamakoshi, 2005). Conversely, at locations featuring recurrent or persistent volcanic activity, the magnitude of 63 

the lahar hazard remains relatively constant with time due to the regular supply of new material (Thouret et al., 64 

2014). As a result, temporal catchment development is another factor influencing lahar frequency and magnitude 65 

through time, and should also be considered within the development of rain-triggered lahar hazard assessment 66 

tools.  67 

 This study uses probabilistic and diagnostic methods, including binary logistic regression and Receiver Operating 68 

Characteristic (ROC) analysis, to develop real-time rainfall-based lahar forecasting tools which account for the 69 

impacts of seasonal rainfall and catchment recovery on lahar occurrence in the Belham Valley, Montserrat. Such 70 

hazard assessment tools have the potential to be utilised both as a stand-alone tool where ground-based detection 71 

equipment is unavailable, and in conjunction with instrumental monitoring techniques to increase lahar warning 72 

times. 73 

2 Soufrière Hills Volcano, Montserrat 74 

Soufrière Hills Volcano (SHV, Montserrat, Lesser Antilles, 16.72°N, 62.18°W) lies on the northern edge of the 75 

Inter-Tropical Convergence Zone in the eastern Caribbean and has a strongly seasonal climate. Rainfall-producing 76 
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weather systems affecting the island fall into two broad categories; large-scale synoptic (>100 km across) systems 77 

and local mesoscale (<100 km across) systems (Froude, 2015). Both can produce high intensity precipitation, but 78 

large-scale events can potentially be forecast days in advance whereas this timescale reduces to hours for local 79 

weather systems (Barclay et al., 2006). 80 

The andesitic dome-forming eruption of SHV began in July 1995 and has featured several phases of activity 81 

consisting of dome growth, dome collapse and Vulcanian explosions as well as pauses in magma extrusion 82 

(Bonadonna et al., 2002; Komorowski et al., 2010; Stinton et al., 2014). Pyroclastic density currents (PDCs) have 83 

deposited fine-grained ash- and pumice-rich and coarser-grained blocky deposits around the volcano (Cole et al., 84 

2002; Stinton et al., 2014), supplemented by tephra deposits from short-lived Vulcanian explosions and associated 85 

fountain-collapse flows and surges (Komorowski et al., 2010). Prevailing winds often distribute ash from weak 86 

plumes to the West, but larger plumes can also deposit to the North, East and South (Bonadonna et al., 2002). 87 

This intermittent eruptive activity has triggered a complex sedimentological response in drainages surrounding 88 

the volcano since 1995 (Barclay et al., 2006, 2007; Alexander et al., 2010; Froude, 2015). 89 

3 The Belham Catchment 90 

Data from the Belham Valley, Montserrat (Fig. 1) were used to examine the influence of rainfall seasonality and 91 

catchment evolution on the occurrence of rain-triggered lahars between April 2010 and April 2012 (Fig. 2). Lahars 92 

have persisted in the valley since the onset of eruptive activity in 1995 and detailed observations of lahars in the 93 

Belham Valley have indicated that they are dominantly Newtonian and fully turbulent (Barclay et al., 2007; 94 

Alexander et al., 2010; Froude et al., 2017). Lahars have damaged infrastructure, including burying the Belham 95 

Bridge in 1998, resulting in the river bed being used as the primary transportation link between the “Safe Zone” 96 

and the “Daytime Entry Zone” (Barclay et al., 2007; Alexander et al., 2010). 97 

The Belham Catchment had a pre-1995 surface area of c. 13.7 km2, increasing to c. 14.8 km2 early in the eruptive 98 

episode due to capture of a portion of Gage’s fan (Froude, 2015). During eruptive episodes tephra fall and 99 

pyroclastic density current (PDC) deposits accumulate in the upper catchment. The destruction and burial of 100 

vegetation in the Belham Valley reduces the infiltration and interception of precipitation, and in combination with 101 

a reduction in surface roughness enhances run-off and erosion rates and promotes rain-triggered lahar generation 102 

(Barclay et al., 2007; Alexander et al., 2010; Froude, 2015). Prior to the onset of eruptive activity, 62% of the 103 

Belham Catchment was densely vegetated with Dry Forest (29%), Mesic Forest (48%) and Wet Forest (13%), 104 

with dry forest subsequently identified as the dominant species found on re-vegetating pyroclastic deposits 105 

(Froude, 2015). Previous studies in the Belham Valley have not identified evidence of hydrophobicity, such as 106 

previously identified at Colima by Capra et al. (2010). Aggradation and sedimentation in the upper catchment 107 

during periods of eruptive activity are counter-balanced during periods of quiescence by channel development 108 

and stabilisation, exposure of more permeable substrates, vegetation recovery and a reduction in available 109 

sediment (Froude, 2015). The data period used here coincides with a lack of substantial eruptive activity at SHV 110 

following the 11th of February 2010 dome collapse at the end of “Phase 5”, which deposited stacked lobes of 111 

pumiceous PDC deposits up to 5.7 km from source in the Belham Valley (Stinton et al., 2014). This period of 112 

eruptive quiescence indicates that this study focuses on a time of channel development and stabilisation within 113 

the upper catchment of the Belham Valley.   114 
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4 Methods 115 

The record used in this study (Fig. 2) comprises 0.1 mm resolution hourly precipitation data recorded at the MVO 116 

Helipad Gauge between February 2010 and February 2011, the St George’s Hill gauge between March 2011 and 117 

May 2011, and the maximum of the St George’s Hill and Windy Hill gauges (Fig. 1) between May 2011 and 118 

February 2012. While a continuous record from rain gauges with a better spatial distribution and density would 119 

be ideal to minimise differences in catch efficiencies and to capture local variations in convective and orographic 120 

rainfall, operating a fully functioning rain gauge network is technically challenging and generally a low priority 121 

during a volcanic crisis. The lahar database (Fig. 2) is compiled from inspection of seismic records and visual 122 

observations and lahars are categorised based on magnitude (small, medium, large). These categories were 123 

assessed using visual inspection of the degree of channel inundation and flow depth (where possible); in addition 124 

to the assessment of the duration and amplitude of seismic signals. Seismic signals of lahars show continuous 125 

readings in the 2-5 Hz and peak at approximately 30 Hz. The highest recorded amplitudes are associated with the 126 

greatest discharges and sediment loads in observed lahars. Lahar signals were cross referenced to visual 127 

observations and carefully excluded from signals associated with primary volcanic activity and other seismic noise 128 

(such as construction vehicles). 129 

Within this study a designated minimum inter-event dry period of six hours is utilised, meaning that in common 130 

with several previous soil erosion studies a dry interval of six hours is needed to define the end of a single rainfall 131 

event (Wischmeier and Smith 1978; Todisco, 2014). Figure 3 shows six examples of rainfall events (or series of 132 

consecutive rainfall events) which resulted in the observation or detection of lahars in the Belham Valley, clearly 133 

displaying the lag time between the recording of rainfall (cumulative- and real-time progression of One Hour Peak 134 

Rainfall Intensity: 1hr PRI) and the observation/detection of lahars. 1hrPRI has been identified as an effective 135 

parameter in lahar initiation threshold assessment during previous analysis (Jones et al., 2015). Division of the 136 

dataset into six-month moving windows, with staggered one-month start dates, facilitates the illustration of the 137 

seasonal variation in both the number of rainfall events exceeding 1hrPRI thresholds and the occurrence (and 138 

estimated magnitude) of lahars (Fig. 4).  139 

This study uses binary logistic regression to develop lahar probability estimation models based on the 1hrPRI of 140 

a rainfall event, whilst also examining the impacts of incorporating considerations for seasonal and temporal 141 

effects within these models. Binary logistic regression is a statistical method that estimates the probability of a 142 

dichotomous outcome (the occurrence or non-occurrence of lahars in this case) using one or more independent 143 

variables (Hosmer Jr et al., 2013). Model performance is assessed using both the model chi-square test and 144 

Receiver Operating Characteristic (ROC) analysis (Fawcett, 2006). ROC analysis (Appendix 1) plots the true 145 

positive rate against the false positive rate as a threshold (estimated lahar probability in this instance) is varied in 146 

order to assess how effectively the parameter discriminates between lahar and non-lahar producing rainfall events. 147 

The area under the ROC curve (AUC) is a measure of the ability of a tool to distinguish between the two outcomes, 148 

and varies between 0.5 (no predictive ability, i.e. number of true positives equals number of false positives, or no 149 

better than guessing) and 1.0 (perfect predictive ability, i.e. 100% true positives and no false positives). 150 
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5 Results 151 

The six-month window between April and October is identified as the peak wet season in this study, with 1721 152 

mm of recorded rainfall in the 2010 peak wet season (WS1) and 1455 mm in the 2011 peak wet season (WS2). 153 

The 2010/11 peak dry season (DS1) featured approximately 750 mm of rainfall, whilst 1076 mm of rainfall was 154 

recorded in the 2011/12 peak dry season (DS2). Mean WS1 and WS2 1hrPRIs are 5.2 mm hr -1 and 5.0 mm hr-1 155 

respectively, whilst mean dry season 1hrPRIs are 2.2 mm hr-1 (DS1) and 3.3 mm hr-1 (DS2).  156 

There is significant (p <0.01) correlation between recorded rainfall on timescales of 1-168 hours and lahar 157 

occurrence. When lahars are categorised by estimated magnitude, large lahars are strongly correlated with longer-158 

duration (>24 hours) rainfall events, produced by the passage of synoptic weather systems. Between April 2010 159 

and April 2012 large flows were directly attributed to several named tropical cyclones (Fig. 2). In contrast, smaller 160 

lahars display increased correlation with the passage of short-duration (<24 hours) rainfall events, more commonly 161 

associated with mesoscale weather systems.       162 

5.1 Probabilistic rain-triggered lahar analysis 163 

The correlation between recorded peak rainfall intensity and the subsequent occurrence of lahars (Fig. 3) provides 164 

the platform for probabilistic analysis of lahar occurrence based on the 1hrPRI of a rainfall event. Results show 165 

that lahar probability increases with greater 1hrPRI throughout the two-year study period. For example, of the 18 166 

rainfall events which exceeded a 1hrPRI of 25 mm hr-1, 15 were associated with the triggering of lahars, and all 167 

of the rainfall events exceeding a 1hrPRI of 34 mm hr-1 triggered lahars. Additionally, higher lahar probabilities 168 

are observed in year 1 than year 2 for a specified 1hrPRI (Fig. 5), and empirically-derived lahar probabilities for 169 

rainfall events featuring a given minimum 1hrPRI also fluctuate seasonally during the study period (Fig. 6). These 170 

1hrPRI exceedance-based lahar probabilities (Fig. 6) are initially stable during the 6-month windows focused on 171 

WS1 before decreasing during DS1, increasing during WS2 and once again decreasing into DS2. This indicates 172 

that more intense rainfall is required to trigger lahars in the dry season than in the wet season. Throughout the 173 

two-year study period increased 1hrPRI correlates with increased lahar probability, displaying its effectiveness as 174 

a potential first-order lahar forecasting parameter.  175 

In addition to seasonal fluctuations in relative lahar probability, there is an overall decline in relative lahar 176 

probabilities across the two-year study period (Figs. 5 & 6). The relationship between 1hrPRI and lahar occurrence 177 

as well as the combination of seasonal fluctuation and temporal decline in lahar probability displayed in Figure 6 178 

are examined further using binary logistic regression. In this instance the occurrence or non-occurrence of lahars 179 

(of any magnitude) is used as the dichotomous dependent variable and initially the 1hrPRI of a rainfall event is 180 

the singular independent variable. Figure 7 displays logistic regression-based lahar probability estimation models 181 

generated by this single-variable approach using four sub-datasets; Year 1, Year 2, Wet Seasons and Dry Seasons. 182 

Within each of these four models the model chi-square test indicated statistically significant lahar prediction 183 

ability (p <0.01). Figure 7 displays higher estimated lahar probabilities at identical 1hrPRI values for Year 1 184 

relative to Year 2 and Wet Seasons relative to Dry Seasons.      185 

The potential benefit of incorporating considerations for seasonal and temporal effects within lahar forecasting 186 

models was investigated using further binary logistic regression. This approach selected alternate chronological 187 

rainfall events (minimum total rainfall ≥8 mm) from the two-year dataset, creating a model formulation dataset 188 

consisting of 74 rainfall events, of which 25 produced lahars. Lahar forecasting models were created from this 189 
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model formulation dataset using binary logistic regression, and the remaining 73 rainfall events, of which 20 190 

produced lahars, were retained for the assessment of the performance of the lahar forecasting models. Proxies for 191 

seasonal effects (antecedent rainfall on timescales of 1-90 days) and catchment recovery (long-term cumulative 192 

rainfall and days since significant eruptive activity) were tested in combination with 1hrPRI. The minimum event 193 

rainfall threshold of 8 mm (under which only two lahars occurred during the two-year dataset) was implemented 194 

for logistic regression and subsequent forecasting assessment in order to increase the balance between lahar and 195 

non-lahar outcomes and thus reduce skewed predicted probability. 196 

Three-day antecedent rainfall displayed the biggest influence of the tested antecedent rainfall timescales upon the 197 

effectiveness of lahar forecasts, while total cumulative rainfall since significant eruptive activity (i.e. the end of 198 

Phase 5) best captured temporal catchment development effects. Therefore, the optimal lahar forecasting model 199 

developed from the model formulation dataset utilises 3-day antecedent rainfall and long-term cumulative rainfall 200 

alongside the first-order lahar forecasting parameter of 1hrPRI. A 3-day antecedent period was also used by Capra 201 

et al. (2010) at Colima, whereas a 7-day period was used in Indonesia (Lavigne et al., 2000; Lavigne and Suwa, 202 

2004) where rainfall is higher and evaporation rates lower, and a 24-hour period was used at Mount Yakedake 203 

(Okano et al., 2012). The optimal antecedent rainfall timescale is a function of local climate (Capra et al., 2010) 204 

and the grain-size distribution of the pyroclastic deposits (Rodolfo and Arguden, 1991). 205 

The reverse stepwise logistic regression method (Hosmer Jr et al., 2013), which involves the deletion of variables 206 

whose removal from the model results in a statistically insignificant deterioration of model performance, retained 207 

these three independent variables (1hrPRI, 3-day antecedent rainfall and total cumulative rainfall since significant 208 

eruptive activity). This model composition increased correct classification of rainfall event outcomes in the model 209 

formulation dataset from a null model value of 66% (when all events in the database are predicted to not trigger 210 

lahars) to 80% when using our explanatory variables, with model chi-square tests again indicating significant 211 

prediction ability (p<0.01). Model variables (Xi) and output regression coefficients (βi) are used to construct lahar 212 

probability estimation equations by conversion of the logistic regression logit model (Eq. 1) in terms of 213 

probability.  214 

(1)          𝑙𝑜𝑔𝑖𝑡(𝑝) = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑛𝑋𝑛 215 

Eq. 2 displays the application of this to the multi-variable model, featuring the probability of lahar occurrence (p), 216 

1hrPRI (Ri), three-day antecedent rainfall (A3) and cumulative rainfall since significant eruptive activity (C). 217 

 (2)         𝑝 =
1

1 + 𝑒−(−2.10+0.133𝑅𝑖+0.018𝐴3−0.215𝐶)
 218 

Eq.3 displays the lahar probability estimation model produced by the same dataset using only 1hrPRI as an 219 

independent variable. 220 

(3)          𝑝 =
1

1 + 𝑒−(−2.33+0.133𝑅𝑖)
 221 

    Application of Eqs. 2 & 3 to the 73 rainfall events in the forecasting assessment dataset produced two sets of 222 

model-derived lahar probability estimates. The lahar forecasting performance of the two models was then assessed 223 

relative to the actual outcomes (lahar or no lahar) of the rainfall events using ROC analysis. The multiple-variable 224 

lahar probability estimation model shown in Eq. 2 produced an AUC of 0.83 (p<0.01), whilst the single variable 225 

model shown in Eq. 3 produced an AUC of 0.79 (p<0.01) (Fig. 7B). The AUC produced by Eq. 2 increases to 226 

0.93 if the 8 mm event threshold is removed and the multi-variable model is applied to all 508 rainfall events that 227 

were not used in model formulation (AUC given by Eq. 3 increases to 0.89 for equivalent parameters).   228 
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6 Discussion 229 

Analysis of the Belham Valley lahar occurrence and rainfall record over a two-year period indicates that lahar 230 

probability and magnitude is a function of: (i) temporal catchment evolution towards more stable conditions – 231 

lahars are harder to trigger with time; and (ii) seasonal variations in rainfall – lahars are more common in the wet 232 

season both in terms of frequency and probability relative to 1hrPRI.  233 

The multi-year temporal trend is attributed to a declining supply of easily erodible pyroclastic material in the 234 

upper catchment, coupled with stabilisation of channel networks, vegetation re-growth, and increased infiltration 235 

as identified in several previous studies of lahar-prone regions following eruptive activity (e.g. Leavesley et al., 236 

1989; Schumm and Rea, 1995; Major et al., 2000; Major and Yamakoshi, 2005). However, direct comparisons 237 

with other lahar-prone settings is not possible as differences in methodologies mean that common metrics such as 238 

sediment yield were not determined. The occurrence of several large rainfall events following Phase 5 of the 239 

eruption (Fig. 2) triggered a number of high-magnitude lahars within the Belham Valley, enhancing temporal 240 

channel development within the catchment and resulting in the widespread erosion and downstream transportation 241 

of pyroclastic material (Froude, 2015). Rapid re-vegetation during periods of eruptive quiescence has also been 242 

identified in the catchment (Froude, 2015), a process which increases infiltration, interception, evapotranspiration 243 

and surface roughness; reducing post-eruption runoff rates (Yamakoshi and Suwa, 2000; Ogawa et al., 2007; 244 

Alexander et al., 2010). Temporal increase in infiltration rates in the Belham Valley is also attributed to the 245 

exposure of more permeable substrates following the erosion of fine-grained surface tephra layers (Froude, 2015), 246 

a factor identified previously in studies of the landscape response to the 1980 eruption of Mt St Helens (Collins 247 

and Dunne, 1986; Leavesley et al., 1989). Collectively these processes would result in increasing lahar initiation 248 

thresholds with time (Van Westen and Daag, 2005).     249 

Probabilistic analysis shows that throughout the two-year dataset utilised in this study, increased 1hrPRI results 250 

in increased lahar occurrence probability. Additionally, an increase in the absolute numbers of lahars and a 251 

reduction in rain-triggered lahar initiation thresholds are identified in the wet seasons. Seasonality in the nature 252 

and frequency of rainfall-generating weather systems controls this pattern. Large lahars are often associated with 253 

the passage of synoptic weather systems, which typically produce long-duration catchment-wide rainfall. This is 254 

demonstrated by the triggering of large lahars by several named storms during the study dataset including 255 

Hurricane Earl in August 2010, Tropical Storm Otto in October 2010 and Tropical Storm Maria in September 256 

2011. Increased rainfall in the wet season also influences antecedent conditions within the catchment, resulting in 257 

reduced infiltration rates due to deposit saturation (Barclay et al., 2007). Increased antecedent rainfall can also 258 

produce runoff-enhancing surface seals (Segerstrom, 1950; Fohrer et al., 1999) and result in increased bulking 259 

efficiency during lahar transit due to high water contents in channel floor deposits (Iverson et al., 2011). These 260 

effects increase the overall probability of lahars in the wet season under given rainfall conditions due to flash-261 

flood type responses to rainfall. The reduced frequency of large lahars in the dry season is attributed to the 262 

occurrence of fewer sustained catchment-wide synoptic weather systems as well as antecedent effects (low 263 

antecedent rainfall inhibits bulking efficiency in the dry season (Fagents and Baloga, 2006; Doyle et al., 2011; 264 

Iverson et al., 2011)). The development of lahar magnitude assessment methods, from the subjective classification 265 

used in this study, towards quantitative initial flow volume estimates has the potential to enhance probabilistic 266 

lahar forecasting by creating probabilistic hazard footprints (Mead et al., 2016). However, such quantitative 267 

assessment methods are highly data intensive relative to those developed in this study, requiring pre- and post-268 
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eruption digital elevation models, location specific rainfall intensity-frequency-duration thresholds and physical 269 

deposit characteristics as input data (Mead et al., 2016). These input data requirements prohibit practical 270 

implementation of fully-quantitative magnitude estimates within probabilistic rain-triggered lahar assessment at 271 

all but the most thoroughly monitored volcanoes.  272 

The incorporation of considerations for temporal catchment development and seasonality of prevalent antecedent 273 

conditions into logistic regression-based lahar probability estimation models increases rain-triggered lahar 274 

forecasting performance. The addition of these considerations modulates purely 1hrPRI-based probability 275 

estimates to account for initial deposit moisture content and the degree of catchment recovery during a period of 276 

eruptive quiescence. ROC analysis indicates an excellent ability to differentiate between lahar and non-lahar 277 

outcomes (AUC = 0.83) when only larger rainfall events resulting in ≥8 mm of total rainfall are considered, and 278 

this ability improves even further (AUC = 0.93) when the 8 mm threshold is removed. The readily available model 279 

inputs of 1hrPRI, three-day antecedent rainfall and cumulative rainfall since significant eruptive activity can be 280 

easily assimilated into functional real-time lahar probability estimation models and produces real benefits. Rainfall 281 

gauge networks in volcanic areas are seldom designed with the intention of optimising their usefulness for 282 

detection and characterisation of rain-triggered lahar initiation: the 1hrPRI used in this study is based on the 283 

minimum temporal resolution of the data recorded. Previous studies have shown the utility of 10-minute (Arguden 284 

and Rodolfo, 1990; Tungol and Regalado, 1996; Lavigne et al., 2000; Lavigne and Suwa, 2004; Okano et al., 285 

2012; Jones et al., 2015), 30-minute (Tungol and Regalado, 1996; Lavigne et al., 2000; Jones et al., 2015) and 60 286 

minute (Lavigne et al., 2000; Lavigne and Suwa, 2004; Jones et al., 2015) rainfall data. Lahar forecasting using 287 

real-time telemetered rainfall data and these techniques has the potential to effectively predict secondary lahars 288 

and increase lahar warning times, even in areas where AFMs, proximal seismometers and trip wires are 289 

unavailable. Used in conjunction with ground-based detectors in instrumented catchments lahar warning times 290 

can be doubled (Jones et al., 2015). 291 

Further research to expand the length of the current two-year study period would develop the understanding of 292 

the catchment recovery-driven temporal trends in lahar occurrence identified within this study. Likewise, the 293 

application of these techniques to additional volcanoes would facilitate both the further examination of the 294 

performance of the lahar forecasting models and the investigation of other important parameters contributing to 295 

the frequency and magnitude of rain-triggered lahar initiation.    296 

7 Conclusions 297 

This study demonstrates the development and enhancement of logistic regression-based rain-triggered lahar 298 

probability estimation models for real-time lahar forecasting using the lahar occurrence and rainfall record of the 299 

Belham Valley, Montserrat between April 2010 and April 2012. The incorporation of both antecedent rainfall and 300 

considerations for temporal catchment development into such models alongside the first-order lahar forecasting 301 

parameter of peak rainfall intensity is shown to improve lahar forecasting performance. Rainfall seasonality and 302 

catchment recovery are identified as important factors in the severity of the rain-triggered lahar hazard at Soufrière 303 

Hills Volcano, Montserrat, and by extension similar volcanoes worldwide. Seasonal influences increase both the 304 

absolute number of lahars and the probability of lahar occurrence under pre-defined rainfall conditions during the 305 

wet season due to antecedent effects. Lahar probability is also shown to decline with time under given antecedent 306 

and peak rainfall intensity conditions as a product of catchment evolution. Our results demonstrate the potential 307 
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for successful real-time prediction of secondary lahars using readily available input data, even in areas featuring 308 

strongly seasonal climates and periods of eruptive quiescence. 309 
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Figure Captions 317 

Figure 1: Location map of Montserrat and Soufrière Hills Volcano. 318 

Figure 2: Timeline illustrating hourly rainfall data (above) and rain-triggered lahar activity (below) in the Belham 319 
Valley, Montserrat between April 2010 and April 2012 (with minor gaps (stippled ornament) due to equipment failure). 320 
S, M, and L on the vertical axis represent Small, Medium and Large lahars respectively, see text for details. 321 

Figure 3: Timelines displaying examples of lahar triggering rainfall in the Belham Valley, Monserrat between April 322 
2010 and April 2012. Alongside the timing of lahar observation and/or detection, the cumulative recorded rainfall (mm) 323 
and One Hour Peak Rainfall Intensity (1hrPRI – mm hr-1) of the rainfall events are displayed.  324 

Figure 4: Illustration of the seasonal fluctuations in lahar occurrence displayed using 6-month data windows with 1-325 
month staggered start dates. Vertical bars indicate the number of lahar events, categorised by magnitude, in each 6-326 
month period. Background contours display the number of rainfall events exceeding specified One Hour Peak Rainfall 327 
Intensity (1hrPRI) thresholds, in each 6-month period. 328 

Figure 5: Lahar probability, classified by magnitude, as categorised One Hour Peak Rainfall Intensity (1hrPRI) 329 
increases. (a) April 2010-April 2012 (b) April 2010-April 2011 (c) April 2011-April 2012.  330 

Figure 6: Seasonal and temporal effects on lahar probability. Contour graph of empirically-derived lahar probability 331 
relative to the exceedance of One Hour Peak Rainfall Intensity (1hrPRI) thresholds in 6-month moving data windows 332 
with 1-month staggered start dates. White numbers and dashed lines show temporal trends. Following the empirically-333 
derived 4 mm hr-1 PRI contour, there is a 20% probability of a lahar if this threshold is exceeded at ① (6-month start 334 
date of 13/10/2010). This probability increases to 38% at ② (13/04/2011); and declines to 18% at ③ (13/10/2011). 335 
Alternatively, reading horizontally across the graph for a lahar probability of 38% the associated PRI threshold 336 
increases from 4 mm hr-1 at ② (13/04/2011) to approximately 15 mm hr-1 at ④ (13/10/2011).  337 

Figure 7: Assessment of binary logistic regression-based lahar probability estimation models in the Belham Valley, 338 
Montserrat. (a)  Illustration of four binary logistic regression-based lahar probability estimation models created from 339 
Year 1, Year 2, Wet Season and Dry Season data. (b) ROC curves assessing the lahar forecasting performance of an 340 
exclusively One Hour Peak Rainfall Intensity (1hrPRI)-centric logistic regression-based lahar probability estimation 341 
model and a multi-variable (1hrPRI, antecedent rainfall and long-term cumulative rainfall) model. 342 
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Appendix I 470 

 471 

Receiver Operating Characteristic (ROC) analysis is a statistical technique that is used to illustrate the diagnostic 472 

ability of a binary classifier system (i.e. a system that subdivides the elements of a given dataset into two groups, 473 

for example the presence or absence of a disease, a pass or a fail in a test etc.). The method was first developed 474 

by electrical and radar engineers during World War II, and has since been used in psychology, medicine, 475 

meteorology, and forecasting of natural hazards. 476 

A graphical plot, or Receiver Operating Characteristics curve (ROC curve) is often used to illustrate the effect of 477 

varying the value of the classifying parameter (for example the number of cancer cells per microlitre of blood or 478 

the pass mark in the previous example). The ROC curve is generated by plotting the true positive rate (TPR) 479 

against the false positive rate (FPR) as the value of the classifying, or threshold parameter, is changed. There are 480 

four possible outcomes from a binary classifier (Table A1): (i) correct prediction of an event that really did occur 481 

= true positive; (ii) incorrect prediction of an event that did not occur = false positive; (iii) predicting no event 482 

when an event does happen = false negative; and (iv) correct prediction that no event occurs and no event really 483 

does occur = true negative. 484 

Imagine a situation where there are 200 patients undergoing a medical test, where alpha is some diagnostic 485 

threshold for having a medical condition. At a given value of alpha, the contingency table could resemble Table 486 

A2. 487 

Here, the TPR is the number of true positives divided by the total number of predicted positives (both true and 488 

false), or 70/(70+30) = 0.70 489 

The FPR is the number of false positives divided by the total number of predicted negatives (both true and false), 490 

or 28/(28+72) = 0.28 491 

Thus, for this value of alpha, the corresponding point would plot at (0.63, 0.28) on Figure A1 (the white square). 492 

By systematically varying the value of the threshold parameter alpha, a whole series of 2x2 contingency tables 493 

would be generated, producing an array of points in ROC space and hence a curve (the dashed line).  494 

A 100% rate of prediction (all true positives) would plot at (0, 1) on Figure A1 (the grey circle), whereas a 50% 495 

accurate rate of prediction (i.e. guessing the outcome of a coin toss) would plot at (0.5, 0.5). Random guesses thus 496 

plot along a diagonal line: points above the line represent predictions better than random, points below the line 497 

predictions worse than random. 498 

  499 
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Appendix I: Table Captions 500 

Table A1: 2x2 contingency table showing the possible outcomes of a binary classifier system. 501 

Table A2: 2x2 contingency table for 200 patients undergoing a medical test for the presence or absence of 502 

a condition. 503 

 504 

Appendix I: Figure Captions 505 

Fig. A1: ROC space and plots of the prediction examples discussed in the text. 506 
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Table A1 508 

  509 

Total population Event happens Event does not happen 

Predict it happens True positive False positive 

Predict it does not happen False negative True negative 
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Table A2 510 

  511 
 Has condition Has no condition 

Predict has condition  70 30 

Predict has no condition 28 72 
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