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Abstract1

Drought due to the shortage of agricultural water damaged throughout the Korean Peninsula in 2014-2

2015. In order to effectively mitigate these drought damages, improvement and development of 3

drought indices suitable to Korea should be prioritized to monitor the drought conditions accurately. 4

This study proposes the new hydrological drought index, Korean Surface Water Supply Index 5

(KSWSI), which overcomes some of the limitations in the calculation procedure of modified SWSI6

applied in Korea and conducts the probabilistic drought forecasts using KSWSI. In this study, all 7

hydrometeorological variables in the Geum River basin were investigated and appropriate four to six 8

variables were selected as drought components in KSWSI for each sub-basin. And whereby only the 9

normal distributions are applied to all drought components, probability distributions applicable for 10

each drought component in KSWSI were estimated. As a result of verifying KSWSI results using 11

observed hydrometeorological data, the accuracy of KSWSI showed better drought phenomenon in 12

drought events than MSWSI. The monthly probabilistic drought forecasts were also calculated based 13

on ensemble technique using KSWSI. In 2006 and 2014 drought events, the accuracy of the drought 14

forecasts using KSWSI were higher in both Average Hit Scores (AHS) and Half Brier Scores (HBS) 15

than those using MSWSI, demonstrating that KSWSI is able to enhance the accuracy of drought 16

forecasts. The influence of expanding hydrometeorological variables and selecting appropriate 17

probability distributions for each drought component of KSWSI were also analyzed. It is confirmed 18

that the accuracy of KSWSI results may be affected by the choice of hydrometerological variables, 19

the station data obtained, the length of used data for each station, and the probability distributions 20

selected. Furthermore, the uncertainty quantification of KSWSI calculation procedure was also carried 21

out using the Maximum Entropy (ME) theory. Estimating appropriate probability distributions for 22

each drought component in the flood season is very crucial because ME values (=1.053 on average) 23

and standard deviations of KSWSI (=0.843 on average) are very huge, implying that large uncertainty 24

occurs in the flood season.25
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1. INTRODUCTION1

From 2014 to 2015, a great deal of economic damage has occurred because of the shortage of 2

agricultural water due to drought throughout the Korean Peninsula, especially in the northern part of 3

Gyeonggi-do. Droughts have dramatic impacts on the socio-economic state and their occurrence is 4

becoming more frequent. Drought management is difficult not only because of the seasonal 5

characteristics (which means that more than 60% of the annual average rainfalls occur in the summer 6

season), but also because of the dry flood season in the Korean Peninsula. The water shortage stresses 7

the small agricultural and municipal water reservoirs, making it difficult to manage water resources 8

plans and policies (Choi, 2002). In order to effectively mitigate these drought damages, continual 9

improvement of drought indices should be prioritized to monitor the drought conditions accurately. 10

However drought indices cannot practically simulate the actual droughts because the drought occurs 11

due to various meteorological and hydrological conditions and circumstances. The various drought 12

indices used in Korea have some problems as follows: determining the hydrological and13

meteorological factors to be utilized, determining whether the improved or developed drought indices14

can be extended and applied in all regions, and determining how to set thresholds to distinguish 15

among the stages of the drought indices. These considerations make it difficult to accurately monitor 16

and forecast actual droughts.17

In hydrological drought assessments, the effects of hydrological variables on drought such as 18

streamflow, soil water, and groundwater are physically delayed compared to meteorological variables 19

such as precipitation and evapotranspiration, so that these characteristics can be reflected in the 20

hydrological drought index. Recently, various hydrological drought indices have been developed and 21

improved. Shukla and Wood (2008) developed the Standardized Runoff Index (SRI) using 22

hydrological variables and contrast results of a SRI with that of a Standardized Precipitation Index 23

(SPI) during drought events in a snowmelt region. Karamouz et al. (2009) developed an integrated 24

index, the Hybrid Drought Index (HDI), which was combined with the well-known SPI, Water 25

Surface Supply Index (SWSI), and Palmer Drought Severity Index (PDSI) and applied to the 26

Gavkhooni/Zayandeh-rud basin in the central part of Iran. Karamouz et al. concluded that the results 27
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of the HDI show its significant value for drought prediction. Dogan et al. (2012) compared and 1

analyzed six different drought indices to droughts in Kenya, and concluded that the Effective Drought 2

Index (EDI) was consistent with other drought indices for various time-steps and was preferable for 3

monitoring long-term droughts in arid/semi-arid regions. Ahn and Kim (2010) developed the Water 4

Ability Index (WAI) based on the amount of water available in a basin, which could replace the SWSI 5

as a hydrological drought index in Korea. Park et al. (2011) then proposed the Water Availability 6

Drought Index (WADI) to improve the shortcomings of previous domestic hydrological indices which 7

did not reflect water supply and water intake or reservoir and dam facilities. 8

Drought forecast should also be performed in preparing for drought and creating proactive 9

drought policies and preparedness plans. White et al. (2004) utilized the optimized Canonical 10

Correlation Analysis (CCA) to forecast principal components of summer precipitation anomalies to 11

predict the duration of drought over eastern and central Australia. Belayneh and Admowski (2013) 12

proposed the use of three machine learning techniques, Artificial Neural Network (ANN), Support 13

Vector Regression (SVR), and coupled WAvelet-ANNs (WA-ANN), to forecast short-term drought 14

for short lead times with SPI in the Awaash river basin of Ethiopia. The results revealed that the WA-15

ANN model was the most accurate for forecasting SPI3 and SPI6 values over lead times of one and 16

three months. Son and Bae (2015) reviewed the availability of the Ensemble Streamflow Prediction 17

(ESP) technique for hydrological drought forecasting and showed that it is effective for a 1-2 months 18

outlook in Korea. However, studies of domestic drought forecast are only at the beginning stage, and 19

projected meteorological data is necessary for drought forecast. However, it is difficult to utilize the 20

data due to the uncertainty of the future projected meteorological data and the limitation of data 21

acquisition and connection.22

Therefore, this study proposes the new and improved hydrological drought index for the accurate 23

monitoring and conducts the methodology to forecast monthly droughts for the Korean Peninsula as 24

follows: Firstly, this study analyzes the limitations of the existing hydrological drought index, Surface 25

Water Supply Index (SWSI), which was applied in the Korean Peninsula and improves and applies 26

the drought index called the Korean Surface Water Supply Index (KSWSI). Secondly, the monthly 27
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droughts are forecasted using the improved drought index. The probabilistic monthly drought 1

forecasts are conducted based on the ensemble technique to capture the inherent monthly forecasting 2

uncertainty. Lastly, the effect of the selection of drought components and their probability 3

distributions is analyzed and a method is proposed to quantify their uncertainties.4

5

2. Improvement of hydrological drought index: Korean Surface Water Supply Index6

The Surface Water Supply Index (SWSI) (Shafer and Dezman, 1982) was selected as the well-7

known hydrological drought index. SWSI is advantageous as it can flexibly utilize various 8

hydrometeorological variables depending on the basins. SWSI is based on probability distributions of 9

monthly time series of individual component indices and is calculated using four hydrometeorological 10

variables as drought components: snowpack, precipitation, streamflow, and reservoir storage. It is also 11

an appropriate drought indicator in snow-dominated regions. The drought classification of SWSI is 12

divided into seven categories (extremely dry (-4.2 to -3.0; 7th category), moderately dry (-2.9 to -2.0; 13

6th category), slightly dry (-1.9 to -1.0; 5th category), near average (-0.9 to 1.0; 4th category), slightly 14

wet (1.1 to 2.0; 3rd category), moderately wet (2.1 to 3.0; 2nd category), and extremely wet (3.1 to 4.2; 15

1st category)) and is similar to the typical categories of the Palmer Drought Severity Index (PDSI). 16

The mathematical formulation of SWSI is given by:17

18

1 2 3 4
t

50
SWSI

12

snow prec strm resv
t t t tw P w P w P w P+ + + -

=                            (1)19

20

where w1, w2, w3, and w4 are the weights for each dorught component and w1+ w2+ w3+ w4=1, and 21

where t represents the monthly time-step. Pt
i is the non-exceedance probability (in percentage) for 22

component i where the superscripts of snow, prec, strm, and resv represent the snowpack, 23

precipitation, streamflow, and reservoir storage in time t, respectively. In calculating the SWSI, 24

depending on regions, a snowpack component is applied from December to the subsequent May, and 25
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a streamflow component is applied during the remaining periods. Kwon et al. (2006) and Kwon and 1

Kim (2006) then developed a Modified SWSI (called MSWSI) by improving SWSI for the Korean 2

Peninsula. In MSWSI, the snowpack component is replaced by groundwater because the portion of 3

underground water is more important to snowpack in the water resources management in Korea:4

5

1 2 3 4
t

50
MSWSI

12

gw prec strm resv
t t t tw P w P w P w P+ + + -

=                              (2)6

7

where gw represents the groundwater component. The process of MSWSI calculation is as follows:8

9

Step 1: Analysis of available hydrometeorological variables by basins10

Step 2: Selection of available hydrometeorological variables as drought components and 11

collection of observed data 12

Step 3: Calculation of weights for each drought component13

Step 4: Estimation of probability distributions for each drought component14

Step 5: Calculation of MSWSI values using Eq. (2)15

16

However, this process of MSWSI calculation has several limitations. Firstly, only four 17

hydrometeorological variables are used in the previous MSWSI calculation in Steps 1 & 2 and the 18

MSWSI is not able to reflect more various variables. Different hydrometeorological variables actually 19

impact drought events depending on data length, the urban area, and upstream & downstream areas of 20

dams; therefore, the available variables should be widely investigated. Secondly, in Step 4, probability 21

distributions of all hydrometeorological variables were fitted to the only normal distribution in the 22

MSWSI calculation process. Estimating the appropriate probability distribution for each variable23

yields accurate non-exceedance probability values, which can be used to estimate the near actual 24

drought index.25
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Therefore, in this study, an improved MSWSI was developed, called the Korean SWSI (KSWSI), 1

with two improvements. The first improvement involves investigating all available 2

hydrometeorological variables for each sub-basin and selecting the appropriate variables as drought 3

components. The second improvement involves estimating and applying a suitable probability 4

distribution for each selected hydrometeorological variable. The detailed improvements are as 5

described in the following section and Fig. 1 shows the process of the MSWSI calculation and its 6

improvements.7

8

[Fig. 1. Procedure of KSWSI calculation and two improvements proposed by this study]9

10

2.1 Study basin11

This section describes the Geum River basin as the applicable area for improving the drought 12

index and verifying the drought forecast (Fig. 2). The Geum River basin flows north-westerly to about 13

its mid-point, then generally south-westerly for 401km. It consists of 21 sub-basins, and drains into an 14

area of 9,810km2. The Geum River basin has two multi-purpose dams, Daecheong Dam and 15

Yongdam Dam. Daecheong Dam provides municipal and industrial water supply to Daejeon and 16

Chungju, and Yongdam Dam (which is only one-fifth the size of the Daecheong Dam drainage area) 17

supplies water to Jeonju. Analyzing the river flow in the Geum River basin is relatively simple 18

because it has fewer dams and a simpler river system than other basins. The region of the Geum River 19

basin has been affected by considerable drought since 2000 year and has been widely used in previous 20

drought studies in Korea. 21

22

[Fig. 2. Study basin: 14 sub-basins in Geum River basin]23

24

2.2 Selection of available hydrometeorological variables as drought components25

In previous drought studies in Korea, as mentioned, MSWSI results were calculated using only 26

four hydrometeorological variables. MSWSI cannot demonstrate the actual drought accurately 27
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because of limitations of practical data. . The values of the previous MSWSI are also calculated using 1

a finite number of observation stations: precipitation data obtained from six stations, streamflow data 2

obtained from 10 stations, groundwater data obtained from 3 stations, and only dam inflow data for 3

only one dam. 4

In this study, all hydrometeorological data from each sub-basin in the Geum River basin were 5

investigated and classified into 9 types: precipitation data, water level data in dam, meteorological 6

data, national streamflow data, local streamflow levels 1 & 2 data, multi-regional water supply, local 7

water supply, and groundwater (Table 1(a)). The precipitation data, water level data, water discharge 8

data, streamflow data, dam data (included in inflow, release, and storage data), and groundwater data 9

were selected as practical hydrometeorological variables on the basis of ease of data acquisition, data 10

quality control, and data length. These data were then collected from (areal-averaged) precipitation 11

data from 42 stations, streamflow data from 28 stations, groundwater data from 7 stations, and dam 12

data included in inflow, release, and storage data (Table 1(b)). 13

Table 2 shows the final hydrometeorological variables and stations selected as drought 14

components for each sub-basin. The sub-basins were also classified into dam inflow, dam water-level, 15

streamflow, groundwater, precipitation, and water supply-dominant basin depending on the most 16

influential drought component that has the largest monthly-averaged weight for each sub-basin. 17

Doesken et al. (1991) proposed a method that can reflect the relative contribution of drought 18

components to estimate the weights (w1, w2, w3, and w4). The initial weights of each month for each 19

component were calculated as monthly values divided by the annual total of the component. The 20

calculated monthly values of selected components of KSWSI were summed for each month. Then, the 21

twelve monthly sums, calculated using this procedure, were divided by their total sum to find the sum 22

of the final weights as 1. As shown in Fig. 3, a dam component has an important impact, relatively, in 23

sub-basin 3001 located in the upstream of Yongdam dam and sub-basin 3007 were affected by 24

precipitation and streamflow because of similar averaged weights. Especially, the effects of 25

streamflow and precipitation components are varied slightly month by month, with the effect of the 26

precipitation component being greater in the flood season overall. 27
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1

[Table 1. Basic investigation of hydrometerological variables for each sub-basin]2

[Table 2. Selected hydrometerological variables and stations for each sub-basin]3

[Fig. 3. Example of weights of each drought component for each month at sub-basin 3001 and 4

3007]5

6

2.3 Estimation of suitable probability distribution for each drought component7

Drought studies using MSWSI fitted all drought components to the only normal distribution. 8

These MSWSI results could not accurately simulate the actual droughts. In this study, the probability 9

distributions (Generalized Extreme Value (GEV), Gumbel, normal, 2-parameter log-normal, log-10

normal, and 3-parameter log-normal distribution) applicable to each drought component and 11

parameter estimation methods (e.g. maximum likelihood method, probability weighted moment 12

method, and method of moment) are applied and then log-likelihood test is also used for the goodness 13

of fit test. Table 3 shows final selected probability distributions for drought component for each sub-14

basin. 15

16

[Table 3. Selected suitable probability distributions to drought components for each sub-basin]17

18

2.4 Application of KSWSI19

In this study, 2001, 2006, and 2014-year events were used, when the severe drought occurred 20

nationally. In the 2001 event, the average rainfall amounts were as high as 377mm from March to 21

May, which was 20%~30% of the annual rainfall amounts in some regions in Korea. The rainfall 22

amounts from August to October was only 30% of the annual rainfall amounts in the south part of the 23

Korean Peninsula in 2006 and the national reservoir storage ratio was 67% on average (NEMA, 2009). 24

In 2014, a severe drought occurred in northern Korea, where average rainfall amounts were 50%~61% 25
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compared to the normal-year, where the normal-year is the mean of the last 30-year average rainfall 1

(KMA, 2014). 2

3

Comparison of MSWSIs and KSWSIs in sub-basin 30014

The verification of drought indices is practically restricted. In this study, the accuracy of KSWSI 5

was indirectly determined using the tendency of observed hydrometeorological variables. Fig. 4 6

shows the results of the MSWSI and KSWSI for April in 2001, 2006, and 2014 in Geum River basin. 7

In 2001, both MSWSI and KSWSI generally showed a similar drought trend; while the MSWSI in the 8

Daecheong Dam had moderate and extreme droughts, the KSWSIs showed near normal and slight 9

droughts. In 2006 and 2014, the KSWSIs showed stronger drought intensities in some sub-basins than 10

the MSWSIs; especially, KSWSIs indicated that droughts in the western sub-basins were more severe. 11

Fig. 5(a) shows the time series for the MSWSIs and the KSWSIs in sub-basin 3001 for the 201412

event. In the MSWSI, slightly severe or severe droughts were simulated to occur continuously; 13

however, KSWSIs were overall above the near normal droughts. Fig. 5(b) shows the time-series of 14

non-dimensional ratios to the normal droughts during in the 2013-2014 years for each 15

hydrometeorological variable such as precipitation, streamflow, and dam inflow. In block A of Fig. 16

5(a) and block A1 of Fig. 5(b), the ratios of precipitation and dam inflow were lower than the normal-17

year in January-February 2014, but inflows and streamflow were abundant due to the increased 18

precipitation (up to 164%) compared to the normal-year from September to December 2013. As these 19

effects continued until early 2014, it is more reasonable to assume that hydrological drought did not 20

occur in sub-basin 3001. In the flood season, the amount of precipitation and dam inflow were lower 21

than the normal-year, but water shortage did not occur due to the abundant precipitations from March 22

to April. In block B of Fig. 5(a) and block B1 of Fig. 5(b), MSWSI showed sub-basin 3001 under 23

drought conditions, but the dam inflow and streamflow increased due to the significantly higher 24

precipitation than normal-year, and KSWSIs showed that sub-basin 3001 was more moderately wet. 25

26

Comparison of MSWSIs and KSWSIs in sub-basin 301427
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Fig. 5(c) shows the time series for the MSWSIs and the KSWSIs in sub-basin 3014 for the 2001 1

event. The MSWSIs were somewhat varied; however, most of them were above the normal drought 2

level and no dry condition occurred, except in July and August. On the other hand, in the KSWSIs, 3

most of the droughts occurred in 2001, and severe drought occurred in early 2001. Fig. 5(d) shows the 4

time-series of the non-dimensional ratios to the normal-year during the 2001-2002 years for each 5

hydrometeorological component such as precipitation, streamflow, and dam inflow. In block C in Fig. 6

5(c) and block C1 in Fig. 5(d), the amount of observed precipitation and streamflow, which were only 7

40%~60% of the normal-year, contributed to the water storage, resulting in severe drought. Therefore, 8

it is more reasonable to conclude that hydrological drought occurred in sub-basin 3014.9

10

As shown in the previous examples, compared to the MSWSIs, the KSWSIs calculated more 11

accurate drought results in the Geum River basin. Therefore, it is confirmed that the KSWSI is more 12

appropriate in hydrological drought monitoring and forecasting.13

14

[Fig. 4. Comparison of MSWSI and KSWSI results in April 2001, 2006, and 2014 drought events]15

[Fig. 5. Verification of KSWSI results in sub-basin 3001 and 3014 in 2001 and 2014 drought events]16

17

3. Monthly Probabilistic Drought Forecasts18

3.1 Application outline19

This study considered 16 historical scenarios (1990~2005) and 24 historical scenarios 20

(1990~2013) with variables of drought components for monthly drought forecast for 2006 and 2014, 21

respectively. For drought forecasting to January 2006, for example, 16 historical scenarios 22

(1990~2000) of precipitation and temperature were inputted into hydrological models to generate 23

streamflows and groundwater level ensembles. For each forecasting period, the hydrological model 24

was executed with the hydrometeorological variables for the preceding 12 months to determine the 25

initial conditions. The historical data of each drought component were then fitted to their proper 26
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probability distribution to make the variable dimensionless. These ensembles finally served as inputs 1

in the calculation of the values of KSWSI with their weights. Fig. 6 shows the procedure of monthly 2

probabilistic drought forecasts.3

In this study, the accuracy of the probabilistic forecast was measured using the Average Hit Score 4

(AHS) and Half Brier Score (HBS) (Wilks, 1995). The AHS scored the probabilities of occurrences of 5

drought forecasts for the drought category by the actual drought, and the ensemble drought forecasts 6

can be considered to be effective if their AHS is higher than the AHS of the naive forecasts. The 7

concept of HBS is similar to the mean square error and is a way to give a high score when ensemble 8

drought forecasts match the actual drought, but gives a penalty for wrong categories. The drought 9

forecast becomes increasingly more accurate as the HBS becomes smaller than the naive forecast. The 10

equations of AHS and HBS are as follows: 11

12

AHS= å
=

N

i

o
if

N 1

1
                                                                  (3)13

HBS= åå
= =

-
J

j

N

i
jiji of

N 1 1

2
,, )(

1
                                                        (4)14

15

where f o is the probability of drought forecast for the category of actual drought, N is the number of 16

drought forecasts, J is the number of drought categories, fi,j is the probability of the ith forecast in the 17

jth category, and oi,j is the actual drought in the jth category. The category of actual drought score is 1 18

at the ith drought forecast and the scores of the remaining categories are zero. 19

20

Calibration of the hydrological model21

In this study, the abcd water balance model was used, which has parameters of a, b, c, and d to 22

determine the streamflow and groundwater. The parameters of the abcd model are estimated with a 23

regional regression for ungauged basins because streamflow is gauged only at Yongdam and 24

Daecheng Dams. The regional regression equation was then formulated using the relationship 25
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between each of the calibrated parameters and the site specific basin characteristics such as basin 1

length, drainage area, basin annual average precipitation, basin annual average potential 2

evapotranspiration, basin average land height, basin average land slope, basin drainage density, basin 3

average temperature, basin monthly maximum precipitation, basin monthly maximum potential 4

evapotranspiration, drainage relief, soil type, and basin total stream length. The calibrated parameters, 5

a, b, c, and d of the abcd model were obtained using gauged stations in nine multipurpose dams in 6

Korea. Table 4 shows the regional regression equations over all of Korea as a result of a step-wise 7

regression technique. Using these equations with basin characteristics of an ungauged basin, a, b, c, 8

and d can be computed and consequently the streamflow of the basin can be computed from the 9

calibrated abcd model. 10

To verify the estimated parameters of the abcd model using the regional regression equations, the 11

abcd model was applied to generate the monthly inflows at Yongdam Dam from 2002 to 2004 (period 12

#1) and from 2010 to 2013 (period #2). The calculated values of the R-Bias, R-RMSE, and R2 during 13

period #1 were -0.06, 35, and 0.92, respectively, and those during period #2 were 0.11, 0.55, and 0.91, 14

respectively, suggesting that the model parameters are accurately estimated.  15

16

[Fig. 6. Example of the procedure of the monthly probabilistic drought forecast]17

[Table 4. Regression equations for the a, b, c, and d parameters]18

19

3.2 Results of monthly drought forecasts 20

Fig. 7 showed the monthly drought forecasts using MSWSI and KSWSI in April and December 21

of 2006 and 2014, respectively. Drought-intensities in the drought forecasts using the KSWSI were 22

stronger than in the MSWSI, and the drought occurred widely throughout the Geum River basin. 23

While the MSWSI-based drought forecasts for April 2006 and 2014 predicted slight and moderate 24

drought in some sub-basins of downstream and near Yongdam Dam, the results of the KSWSI 25

forecasted severe and moderate droughts in most sub-basins of the Geum River basin. Then, in 26

December 2006 and 2014, drought forecasts of MSWSI were similar to those of KSWSI; especially, 27
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in December 2014, drought forecasts by KSWSI showed severe droughts in some sub-basins of 1

downstream and near Yongdam Dam. Table 5 shows the occurrence probabilities of droughts for each 2

sub-basin by drought forecast using MSWSI and KSWSI for April and December 2014. From the 3

drought forecasts using KSWSI, the probabilities of severe droughts in both April and December 2014 4

were over 70%, showing droughts were highly likely to occur.5

The drought forecasts were compared to the corresponding observed event for a verification 6

period of 12 months in 2006 and 2014. As shown in Table 6(a), the AHS of the 2006 and 2014 events 7

are 0.201 and 0.200, respectively, which are higher than that of the naive forecast (=0.174). Especially, 8

the AHSs of drought forecasts using KSWSI are 0.249 and 0.325 for 2006 and 2014, respectively, 9

which is more accurate than the drought forecast using MSWSI. The overall accuracy of the drought 10

forecasts was better in the dry season (October to the following May) than in the flood season (from 11

July to September), and the accuracy of drought forecasts using KSWSI was improved from 0.219 to 12

0.397 by AHS. As shown in Table 6(b), while the accuracy of drought forecasts using MSWSI is 13

0.848 in 2006, which is smaller than that of the naive forecast (=0.857) for 2006 and 2014, the 14

accuracy of MSWSI in 2014 (=0.865) was low. The accuracy of drought forecasts using KSWSI was 15

confirmed to be superior to that of the MSWSI because HBSs of KSWSI are 0.824 and 0.795 in 2006 16

and 2014, respectively. The actual drought and occurrence ranges of drought forecasts using MSWSI 17

and KSWSI were compared. Fig. 8(a) shows the monthly actual droughts (black dots) and occurrence 18

ranges of drought forecast ensembles (between the first and third quartiles of the box-plot) from 19

January to December 2014 at sub-basin 3001. The actual droughts exist in the range of the drought 20

forecast ensembles, implying that the drought forecasts consider the extent of the actual drought and 21

as the range of drought forecast ensembles narrows, including the occurrence of actual drought, the 22

accuracy of drought forecasts increases. While the ranges of drought forecasts using MSWSI include 23

several actual droughts, the actual droughts are out of ranges of drought forecasts using KSWSI. As 24

shown in Figs. 8(b) at sub-basin 3007, the drought forecasts with MSWSI are effective because most25

categories (block A: extremely drought) of drought forecast ensembles include actual droughts. 26

Especially, the right-side box-plots have narrow ranges in the drought forecasts, implying that the 27
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ensemble ranges of KSWSI drought forecasts are very concentrated in the category of ‘extremely dry’ 1

and the actual droughts also occur in the same category, so that the accuracy of the drought forecasts 2

using KSWSI is superior to MSWSI. Fig. 8(c) at sub-basin 3014 shows a similar tendency to that of 3

sub-basin 3007, confirming the high accuracy of the drought forecast using KSWSI. While actual 4

droughts were more severe than the drought forecasts using MSWSI, KSWSI drought forecasts 5

demonstrate the ‘extremely dry’, including most of actual droughts. 6

7

[Fig. 7. Comparison of the drought forecasts using MSWSI and KSWSI on April and December in 8

2006 and 2014 drought events]9

[Table 5. Comparison of the most probable drought categories and their correspoding probabilities for 10

each sub-basin in April and December on 2014 drought event]11

[Table 6. The accuracy of MSWSI and KSWSI forecasts]12

[Fig. 8. Comparison of drought forecast ranges for each month at sub-basin 3001, 3007, and 3014 in 13

2014 drought event]14

15

4. Uncertainty Analysis16

4.1 Maximum entropy principle17

Shannon (1948) first introduced the use of entropy as a method to estimate uncertainty 18

quantitatively if the information context is obtained from probability distributions of a given set of 19

information. If probabilities of occurrences of a certain set of information are large, the amount of 20

information is small, and if their probabilities are small, the amount of information becomes large. If 21

X is defined as a random variable with probability p, and I(X) is the information context of X, entropy 22

H(X) is given as follows:23

24

åå ==-= )]([)()()(ln)()( XIEXIxpxpxpXH XXX                            (5)25

26
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Maximum Entropy (ME) based on Shannon’s entropy theory (1948) was proposed by Jaynes 1

(1957). When a certain set of information is given, based on the information, maximum entropy 2

theory provides the probability density function which maximizes the entropy. If a given set of 3

information is the minimum value a and maximum value b, the distribution maximizing the entropy is 4

a uniform distribution on [a, b], and the corresponding entropy H(X) (i.e. maximum entropy) is given 5

as (Gay and Estrada, 2010):6

7

ò ò --=
--

-=-=
b

a

b

a
XX abdx

abab
dxxfxfXH )ln(

1
ln

1
)(ln)()(                          (6)8

9

4.2 Occurrence of uncertainty 10

In steps 1, 2, and 4 in KSWSI calculation process described in Chapter 2, the researcher's 11

experience and subjective judgment are involved. For example, the researchers can select several12

hydrometeorological variables as drought components and fit the probability distributions to the 13

selected drought components. This means that each researcher has a different choice of variables and 14

distributions because of different experience and criteria. Therefore the final KSWSIs can differ 15

according to the researcher's subjective judgment; this likely results in uncertainty about the drought 16

monitoring and forecasts. The subjective judgments of the researchers for each stage of KSWSI 17

calculation are as follows.18

19

• Step 1&2: Analysis and selection of hydrometeorological variables for each basin20

(a) selection of available hydrometeorological variables as drought components21

(b) data quality verification of selected drought components22

(c) selection of observation stations to acquire hydrometeorological data as drought 23

components 24

25
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As mentioned above, in this study, the precipitation data, water level data, discharge data, 1

streamflow data, dam data (included in inflow, release, and storage data), and groundwater data were 2

selected as hydrometeorological components that can be practically applied as KSWSI drought 3

components. Table 7 shows that, for MSWSI, observed data in only one station was used for each 4

drought component (K-water, 2005); however, averaged data were used from several stations in 5

KSWSI calculation. Especially, in the case of precipitation, areal-averaged data using the Thiessen 6

method was used rather than point data. Secondly, only the data of Daecheong Dam was reflected in 7

MSWSI, because the data length of Yongdam Dam was insufficient at the time of drought researches8

using MSWSI. This study used the observation data of dams as follows: (1) for applying dam data, the 9

sub-basins in Geum River basin were divided into those that were affected by Yongdam Dam and 10

those affected by Daecheong Dam; (2) sub-basins around dams were also divided into upstream and 11

downstream sub-basins, and the observation data of dam inflow and storage in the upstream and dam 12

release in downstream were then applied to KSWSI calculation, respectively. Finally, while MSWSI 13

calculation only reflected four drought components, KSWSI reflected a maximum of six drought14

components and the number of observation stations used to obtain meteorological data in all drought 15

components was increased.16

17

• Step 4: Estimation of probability distributions for each drought component18

  (a) estimation of probability distributions for each drought component19

  (b) selection of proper probability distributions for each drought component20

21

In Chapter 2, the precipitation component was fitted to the Gumbel and GEV distributions, the 22

normal and Gumbel distributions for streamflow, 2-parameter log-normal and Gumbel distributions23

for dam data (inflow, release, and storage), and the 3-parameter log-normal distribution for 24

groundwater. Since the drought components which are applied for each sub-basin differ and several 25

probability distributions can be applied in the even same sub-basin, KSWSI results can differ 26



19

depending on the probability distributions selected. In this study, we determined how the results could 1

be changed by calculating KSWSIs by applying all the probability distributions (including the normal 2

distribution) that are shown to be appropriate.3

4

[Table 7. Comparison of hydrometeorological variables for each sub-basin in drought researches 5

using MSWSI and KSWSI]6

7

4.3 Application 8

In this section, the influence of researcher's subjective judgment on KSWSI calculation and its 9

corresponding uncertainty are analyzed.10

11

Analysis of the influence of expanding hydrometeorological components as drought components12

In order to investigate the influence of the selection of hydrometeorological variables, KSWSI13

results for 2001 and 2006 drought events were calculated using the drought components selected in 14

Table 2. Similar to drought researches using MSWSI (K-water, 2005), the probability distributions of 15

all drought components were assumed to be normal distributions. In Table 8, the results of both 16

MSWSI and KSWSI showed drought as a whole in all of the sub-basins. Especially, the identical 17

MSWSI results were calculated from the same drought components from sub-basin 3001 to 3004, 18

whereas KSWSI results showed slightly different drought values and categories. In the 2006 drought 19

event, while MSWSI indicated that the water resources of the entire Geum River system were very 20

low, resulting in drought. KSWSI demonstrated the contrary results, where drought was avoided due 21

to the abundant water resources.22

23

(1) Comparison of MSWSIs and KSWSIs in sub-basin 300124

Fig. 9(a) shows the time series for MSWSI and KSWSI in sub-basin 3001 for the 2006 drought 25

event. In both MSWSI and KSWSI, drought occurred in the beginning of 2006, whereas the drought 26
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was somewhat resolved as the flood season passed. However, the drought-intensity calculated by 1

KSWSI is stronger than that by MSWSI. Fig. 9(b) shows the time-series of non-dimensional ratios to 2

the normal-year for the 2005-2006 years for precipitation, streamflow, and dam inflow. In block A of 3

Fig. 9(a) and block A1 of Fig. 9(b), the amount of precipitation and dam inflows were lower than the 4

normal-year from January to April 2005, and streamflow was almost the same as normal-year. In 5

block B of Fig 9(a) and block B1 of Fig. 9(b) in July 2006, the dam inflow and streamflow both 6

increased due to very large precipitation compared to the normal-year, and since August, the dam 7

inflow also decreased because precipitation was very low. For the observed hydrometeorological data 8

for March, June, and August 2006, while the amount of streamflow is maintained, it is more 9

reasonable that hydrological droughts occurred because of the low precipitation and dam inflow. 10

11

(2) Comparison of MSWSIs and KSWSIs in sub-basin 301012

Fig. 9(c) shows the time series for MSWSI and KSWSI in sub-basin 3010 for the 2006 drought 13

event. While MSWSI results show no drought in early 2006 except severe droughts in the flood 14

season, KSWSI results are included in below the category of ‘near normal’, except for July, and 15

indicated that water shortage occurred for the entire period. In block C of Fig 9(c) and block C1 of Fig. 16

9(d), MSWSI results indicated that water resources were abundant, but some water shortages did 17

actually occur, and the accuracy of KSWSI results is considered to be superior to that of MSWSI 18

because precipitation is very influential in this season. In block D of Fig. 9(c) and block D1 of Fig. 19

9(d), in July 2006, a large amount of precipitation occurred compared to the normal-year, so the 20

amount of both dam release and streamflow was increased and the water shortage was then resolved. 21

After August, the amounts of both dam release and streamflow decreased. MSWSI results showed22

severe drought in July when the amount of precipitation, streamflow, and dam release were larger 23

than normal-year, but KSWSI results indicated that the drought was resolved. In 2006, the streamflow 24

and dam release were smaller than normal-year and their variation was not significant. Reflecting the 25

water resources, KSWSI showed that droughts were resolved due to the occurrence of precipitation, 26

but water shortages had generally occurred.27
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As shown in the previous results, the KSWSI may affect whether or not the actual droughts are1

accurately simulated by KSWSI calculation depending on the hydrometerological variables as the 2

drought components, which station data are obtained, and the length of used data for each station, 3

respectively.4

5

Analysis of the influence of the probability distribution selection for each drought component6

Table 9 shows applicable probability distributions to each drought component. In the application 7

process, the maximum number of scenarios for probability distributions applicable to each sub-basin8

is 36 (= 3 probability distributions for precipitation × 2 for river flow × 3 for dam data × 2 for 9

groundwater), and the ranges of KSWSI results are indicated using the maximum and minimum 10

values among these combinations in Fig. 10.11

Fig. 10(a) represents the maximum and minimum time series of KSWSI results showed a similar 12

tendency in the 2006 drought event, but the maximum series of KSWSI kept the distance by two to 13

three categories from the minimum. The maximum time series of KSWSI was located above the 14

category ‘near normal’, which means droughts did not occur, whereas the minimum values of 15

KSWSIs showed droughts due to water shortage except for July. The KSWSI using only normal 16

distribution are similar to the averages of the maximum and minimum time series of KSWSI. In the 17

2014 drought event shown Fig. 10(b), the maximum of KSWSI are also above the category ‘near 18

normal’, which means the water resources are abundant in 2014; however, the minimum of KSWSI 19

shows continuous severe drought, similar to time series of KSWSI using only the normal distribution. 20

In sub-basin 3008 shown Fig. 10(c), the maximum and minimum time series of KSWSI showed 21

similar trends in the 2006 drought event, and the maximum time series of KSWSI had a distance by 2 22

to 4 categories to the minimum. Furthermore, the maximum of KSWSI did not show water shortages, 23

and the minimum showed droughts in March, August, and September. In Fig. 10(d) for the 2014 24

drought event, while the maximum time series of KSWSI was almost similar to the minimum from25
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January to May, the maximum and minimum of KSWSI significantly kept a difference in the flood 1

season.2

The scenario ranges of KSWSI generally varied according to the selection of probability3

distributions, and their results of droughts significantly differed depending on the probability 4

distributions selected for each drought component. Therefore, it was confirmed that the selection of 5

the probability distributions could affect the accuracy of results of the KSWSI calculation.6

7

[Table 8. Comparison of MSWSI and KSWSI results in July for each sub-basin]8

[Fig. 9. Verification of MSWSI and KSWSI results in sub-basins 3001 and 3010: (a) & (b) at 3001 9

and (c) & (d) at 3010]10

[Table 9. Applicable probability distributions for each drought component at each sub-basin]11

[Fig. 10. Comparison of the maximum and minimum time series of KSWSI at sub-basin 3001 and 12

2008 in 2006 and 2014 drought events: (a) & (b) at 3001 & 3008, respectively, in 2006 and (c) & (d) 13

at 3001 & 3008, respectively, in 2014]14

15

4.4 Quantification and analysis of uncertainty16

In this section, KSWSI results calculated by selected drought components and their 17

corresponding probability distributions in Section 4.3 are inputted into the formula (Eq. (6)) of ME to 18

estimate and analyze uncertainty of KSWSI results shown in Table 10 and Fig. 11. Of the ME values 19

for each sub-basin in Table 10(a), the ME value (=1.002) in sub-basin 3001 is the largest and the 20

minimum ME is 0.521 in sub-basin 3006 in the 2001 drought event. In 2006 and 2014 drought event, 21

at sub-basins 3002 and 3001, uncertainty has a large scale, ME values of 1.120 and 1.503, 22

respectively, whereas the smallest ME values of 0.578 and 0.363, respectively, at sub-basin 3012. 23

Especially, even though the ME values of each sub-basin slightly differ, ME values showed a similar 24

tendency in the same sub-basin despite different drought events. This tendency is more evident in the 25

comparison of the number of ME values for each drought event, drought component, and number of 26

selected drought components for each sub-basin. In other words, the ME values of the sub-basins with 27
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many drought components are large, and sub-basins with few drought components, have relatively 1

small ME values. The different drought components for each sub-basin include the data of dam inflow, 2

dam release, groundwater, and data of precipitation and streamflow components, and were used in all 3

sub-basins. Because the data of different observation stations was used for each sub-basin, it could not 4

be determined whether the difference of ME values for each sub-basin was more influenced by dam 5

and groundwater components than by precipitation and streamflow. From the above results, it can be 6

deduced that the increased number of drought components does not necessarily improve the accuracy 7

of the KSWSIs calculation to the actual droughts. In other words, the large values of MEs imply that 8

the results of KSWS have large uncertainty. Therefore, only drought components that can represent 9

the hydrometeorological characteristic of each sub-basin should be selected and applied. 10

In the monthly MEs for each drought event in Table 10(b), the ME values (1.215 and 1.379) in July 11

are the maximum and the minimum ME at 0.562 and 0.650 in January in the 2001 and 2006 drought 12

events, respectively. In 2014 drought event, the seasonal ME value was the largest at 1.053 in the 13

flood season. Furthermore, in all drought events, although ME values decreased in the dry season, 14

they increased in the flood season as shown in Fig 11(b). To determine the reasons for this result, the 15

standard deviations of KSWSI results according to the selected probability distributions in Section 2.416

are also shown in Fig. 11(b). The trend of standard deviations of KSWSI results was similar to the 17

monthly ME values for each drought event, which decreased in the dry season and increased in the 18

flood season. The large standard deviations of KSWSI results mean that the variation of calculated 19

KSWSI results depending on the selection of probability distributions is large, which affects the 20

uncertainty of KSWSI results. In other words, applying the appropriate probability distributions to21

selected drought components in the flood season is very crucial because ME values and standard 22

deviations of KSWSI are very large, implying that huge uncertainty occurs in the flood season.23

24

25

[Table 10. Maximum entropy results for each sub-basin and month in each drought event]26

[Fig. 11. Comparison of the maximum entropy results between sub-basins and months for each 27
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drought event]1

2

5. Conclusion3

This study proposed the new hydrological drought index, KSWSI, which overcomes some of the 4

limitations in the calculation of MSWSI applied in the Korean Peninsula. The monthly probabilistic 5

drought forecasts based on ensemble technique were also conducted using KSWSI. The summary of6

the study is as follows. Firstly, all hydrometeorological variables in the Geum River basin were 7

investigated and then classified into nine types. Based on these results, appropriate variables were 8

selected as drought components for each sub-basin. It was confirmed that the effect of precipitation 9

component is greater in the flood season. Secondly, to overcome the limitation of MSWSI, whereby 10

only the normal distributions are applied to all drought components, probability distributions suitable 11

for each drought component were estimated. As a result of verifying the accuracy of KSWSI results12

using historical observed hydrometeorological data, the results of KSWSI showed better drought 13

phenomenon in drought events. Thirdly, in this study, the monthly probabilistic drought forecasts 14

were calculated based on ensemble technique using KSWSI. The drought forecasts using both 15

MSWSI and KSWSI were more accurate than the naïve forecasts. In addition, in 2006 and 201416

drought events, both AHS and HBS of the drought forecasts using KSWSI were higher than those 17

using MSWSI, demonstrating that KSWSI is able to enhance the accuracy of drought forecasts. 18

Finally, the influence of expanding hydrometeorological variables as drought components in KSWSI19

was analyzed and applicable probability distributions for each drought component were selected. It is 20

confirmed that the accuracy of KSWSI results may be affected by the choice of hydrometerological 21

variables used as drought components, the station data obtained, the length of used data for each 22

station, and the probability distributions selected for each drought component. Furthermore, the 23

uncertainty quantification of KSWSI calculation procedure was also carried out. The large ME values24

and standard deviations of KSWSI results in the flood season cause uncertainties, implying that the 25

selection of the appropriate probability distributions for selected drought components in the flood 26

season is very important.27
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In order to monitor accurate droughts and manage water resources to mitigate droughts, in future 1

research, analysis will be needed not only of the spatially segmented sub-basin divisions, but also the 2

municipal district units in the administrative districts. This is because it is very crucial to distinguish 3

between the waterworks and the dam beneficiation regions and, for these regions, the dams should be 4

assessed individually by using the dam water supply capacity index. Further studies should also be 5

conducted on the practical use of meteorological forecasting data to improve the accuracy of drought 6

forecasts.7

8
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Table 1. Basic investigartion of hydrometerological variables for each sub-basin1

2

(a) Investigation of available hydrometerological variables3

Basin
No.

Sub-basin name
Pcp.

station
WL

station
W

station
NS

LS 
level 1

LS
level 2

WWS LWS GW

3001
Yongdam

dam
O O O X O O O O O

3002
Downstream

of Yongdam dam
X O X X O O X X O

3003
Muju

Namdaecheon
O O X X O O X O O

3004 Youngdongcheon O O O X O O X O O

3005 Chogang O O O X O O X O O

3006
Upstream of

Daecheong dam
O O X O O O X O O

3007 Bocheongcheon O O O O O O X O O

3008 Daecheong dam O O X O X O O O O

3009 Gapcheon O O O O O O X O O

3010
Downstream of
Daecheong dam

O O X O X O X O O

3011 Mihocheon O O O O O O O O O

3012
Geum river

Gongju
O O O O O O O O O

3013 Nonsancheon O O X O O O X O O

3014
Geum river
estuary bank

O O X O O O O O O

* Pcp: Precipitation; WL: Water Level, W: Weather; NS: National Stream; WWS; Wide Water 4
Supply; LWS; Local Water Supply; GW: GroundWater5

6

(b) Analysis and collection of hydrometerological variables7

Components Stations Data length Description

Precipitation
KMA: 9, 

MOLIT: 24, 
K-water: 8

Maximum: 1966-2015

․Data quality & length

․Priority to KMA

․Areal average with Thiessen method

Water level &
streamflow

87 Maximum: 1990-2015 ․Data quality & length

Dam
Yongdam, 
Daecheong

Yongdam: 2001-2015
Daecheong: 1981-2015

․Total nine dams located

․non-available 6 dams in KRC

Groundwater 7 Maximum: 1998-2015
․Used in GIMS

․Data quality & length
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Table 2. Selected hydrometerological variables and stations for each sub-basin1

Basin
No.

Subbasin
classification

Hydrometeorological variables

Precipitation Streamflow Dam Groundwater

3001 Dam inflow
Jangsu, Daebul,
Buksang, Jinan

Donghyang, 
Chunchun

Inflow & water-level
in Yongdam dam

Jangsu-Jangsu

3002
Dam 

water-level
Muju(KW) Anchun

Release discharge in 
Yongdam dam

3003
Precipitation,
Streamflow

Muju(KW), 
Buksang, Muju(M)

Sulchun, Jangbaek

3004
Precipitation,
Streamflow

Geumsan(K), 
Geumsan(KW), 

Youngdong
Sutong, Hotan

Geumsan-Geumsan,
Geumsan-Boksu

3005
Precipitation,
Streamflow

Chupoongryung, 
Hwanggan, Buhang2

Songchun, Simchun

3006
Precipitation,
Streamflow

Iwon Okchun

3007
Precipitation,
Streamflow

Boeun(K), 
Boeun(KW), 
Neungwol

Gidaegyo, 
Chungsung

3008 Dam inflow Gunbuk, Annae
Okgakgyo, 

Daechung dam, 
Hyundo

Inflow & water-level
in Daechung dam

3009
Dam 

water-level
Daecheon Bangdong, Sindae

Daejeon-
Moonpyung,

Daejeon-Taepyung

3010
Precipitation,
Streamflow

Bugang Bugang, Maepo
Release discharge in 

Daechung dam

3011
Precipitation,
Groundwater

Cheongju, Chunan, 
Gaduk, Sunghwan, 

Byungcheon, 
Jeungpyung, 

Jinchun, Oryu

Chungju, Hapgang, 
Mihogyo

Chungwon-Gaduk,
Jinchun-Jinchun

3012
Precipitation,
Streamflow

Buyeo, Chungyang, 
Jungsan, Banpo, 

Bokryong, Gongju, 
Hongsan, Jungan

Guryong, Gyuam

3013
Precipitation,
Streamflow

Yeonsan, Jangsun, 
Ganggyung

Hangwol, Nonsan

3014
Precipitation,
Streamflow

Gunsan, Hamyeol, 
Ganggyung

Ippo, Okpo

* KW: K-water; K: KMA; M: MLIT2

3
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Table 3. Selected suitable probability distributions to drought components for each sub-basin1

Basin
No.

Drought components

Precipitation Streamflow Dam Groundwater

3001 Gumbel Gumbel 2-Log-Normal 3-Log-Normal

3002 Gumbel Normal 2-Log-Normal

3003 Gumbel Normal

3004 Gumbel Gumbel 3-Log-Normal

3005 Gumbel Gumbel

3006 Gumbel Gumbel

3007 Gumbel Gumbel

3008 Gumbel Gumbel 2-Log-Normal

3009 Gumbel Normal 3-Log-Normal

3010 Gumbel Gumbel 2-Log-Normal

3011 Gumbel Gumbel 3-Log-Normal

3012 Gumbel Gumbel

3013 Gumbel Gumbel

3014 Gumbel Gumbel

2

3

4

5

6
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Table 4. Regression equations for the a, b, c, and d parameters1

Regression equations

a

= 0.1472 - 0.6002×(basin average temperature) + 0.01236×(basin annual average potential 

evapotranspiration) - 0.0602×(basin drainage density)

b

= -895.3440 + 1.0696×(basin annual average potential evapotranspiration) + 256.8310 × 

(basin drainage density) + 1.3901×(basin monthly maximum precipitation) + 

0.0789×(basin total stream length)

c

= -0.3893 + 0.9773×(basin average temperature) + 0.0196× (basin annual average potential 

evapotranspiration) - 0.10182×(basin drainage density) - 0.0006×(basin monthly maximum 

precipitation)

d

= -3.7841 + 0.0128×(basin annual average potential evapotranspiration) + 0.0427×(basin 

annual average precipitation) + 0.3206×(basin drainage density)

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18
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Table 5. Comparison of the most probable drought categories and their corresponding probabilities for 1

each sub-basin in April and December on 2014 drought event2

Basin
No.

Using MSWSI Using KSWSI

April 2014 December 2014 April 2014 December 2014

Category Probability Category Probability Category Probability Category Probability

3001 4 41.9 3 32.3 7 32.3 4 48.4

3002 4 48.4 7 22.6 4 35.5 7 29.0

3003 6 32.3 6 32.3 7 38.7 6 41.9

3004 4 64.5 3 38.7 5 51.6 4 51.6

3005 6 25.8 4 29.0 7 77.4 7 77.4

3006 4 32.3 6 32.3 7 77.4 7 77.4

3007 6 25.8 4 25.8 7 77.4 7 77.4

3008 4 67.7 4 71.0 5 35.5 6 35.5

3009 4 54.8 3 45.2 4 54.8 3 51.6

3010 4 74.2 4 64.5 7 38.7 5 29.0

3011 4 51.6 3 32.3 5 51.6 4 54.8

3012 6 29.0 4 25.8 7 77.4 7 77.4

3013 6 32.3 7 41.9 7 77.4 7 77.4

3014 5 32.3 7 25.8 7 77.4 7 77.4
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Table 6. The accuracy of MSWSI and KSWSI forecasts1

2

(a) Average Hit Score 3

Month
MSWSI KSWSI

Season
MSWSI KSWSI

2006 2014 2006 2014 2006 2014 2006 2014

1 0.230 0.212 0.348 0.491

Spring 0.197 0.235 0.195 0.314
2 0.273 0.260 0.342 0.507

3 0.093 0.240 0.354 0.182

4 0.258 0.309 0.096 0.369

Summer 0.168 0.184 0.213 0.354

5 0.239 0.157 0.134 0.392

6 0.224 0.242 0.177 0.332

7 0.099 0.129 0.075 0.459

Autumn 0.214 0.167 0.248 0.176

8 0.180 0.182 0.388 0.272

9 0.199 0.141 0.360 0.237

10 0.252 0.210 0.286 0.104

Winter 0.225 0.214 0.340 0.455

11 0.193 0.152 0.099 0.187

12 0.171 0.171 0.329 0.366

Average 0.201 0.2 0.249 0.325
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(b) Half Brier Score1

Month
MSWSI KSWSI

Season
MSWSI KSWSI

2006 2014 2006 2014 2006 2014 2006 2014

1 0.851 0.840 0.694 0.494

Spring 0.844 0.805 0.963 0.801
2 0.730 0.761 0.627 0.442

3 1.059 0.805 0.665 1.081

4 0.724 0.680 1.133 0.693

Summer 0.889 0.872 0.918 0.754

5 0.748 0.931 1.090 0.630

6 0.768 0.755 0.961 0.780

7 1.023 0.977 1.180 0.554

Autumn 0.833 0.944 0.772 1.079

8 0.878 0.885 0.613 0.929

9 0.853 0.969 0.638 0.937

10 0.789 0.899 0.792 1.232

Winter 0.824 0.837 0.645 0.545

11 0.857 0.962 0.886 1.067

12 0.891 0.910 0.613 0.698

Average 0.848 0.865 0.824 0.795
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Table 7. Comparison of hydrometeorological variables for each sub-basin in drought researches using 1

MSWSI and KSWSI2

Basin No. MSWSI research KSWSI research
Subbasin

classification

3001 D_DF., SF(1 OB), Pcp(1 OB)
Y_DF & Y_DWL, SF(2 OBs),

Pcp(4 OBs), GW(1 OB)
Upstream 

of dam

3002 D_DF, SF(1 OB), Pcp(1 OB) Y_DRD, SF(2 OBs), Pcp(4 OBs) Downstream 
of dam

3003 D_DF, SF(1 OB), Pcp(1 OB) SF(2 OBs), Pcp(3 OBs) Precipitation,
Streamflow

3004 D_DF, SF(1 OB), Pcp(1 OB)
SF(3 OBs), Pcp(2 OBs), 

GW(2 OBs)
Precipitation,
Streamflow

3005 D_DF, SF(1 OB), Pcp(1 OB) SF(2 OBs), Pcp(3 OBs) Precipitation,
Streamflow

3006 D_DF, SF(1 OB), Pcp(1 OB) SF(1 OB), Pcp(1 OB) Precipitation,
Streamflow

3007 D_DF, SF(1 OB), Pcp(1 OB) SF(2 OBs), Pcp(3 OBs) Precipitation,
Streamflow

3008 D_DF, Pcp(1 OB)
D_DF & D_DWL, SF(3 OBs), 

Pcp(2 OBs)
Upstream 

of dam

3009 SF(1 OB), Pcp(1 OB), GW(1 OB)
SF(2 OBs), Pcp(1 OB), 

GW(2 OBs)
Downstream 

of dam

3010 Pcp(1 OB) D_DRD, SF(2 OBs), Pcp(1 OB) Precipitation,
Streamflow

3011 SF(1 OB), Pcp(1 OB), GW(1 OB)
SF(3 OBs), Pcp(8 OBs), 

GW(2 OBs)
Precipitation,
Groundwater

3012 SF(1 OB), Pcp(1 OB) SF(2 OBs), Pcp(8 OBs) Precipitation,
Streamflow

3013 Pcp(1 OB) SF(2 OBs), Pcp(3 OBs) Precipitation,
Streamflow

3014 Pcp(1 OB) SF(2 OBs), Pcp(3 OBs) Precipitation,
Streamflow

* Y_: Yongdam dam, D_: Daecheong dam, DF: Dam Inflow, DWL: Dam WaterLevel, DRD: Dam 3

Release Discharge, Pcp: Precipitation, SF: StreamFlow, WL: WaterLevel, GW: GroundWater, OB: 4

Observed station5

6

7

8

9



37

Table 8. Comparison of MSWSI and KSWSI results in July for each sub-basin1
2

Basin No.
MSWSI result (category) KSWSI result (category)

2001 2006 2001 2006

3001 -1.95(5) 2.91(2) -0.49(4) 3.48(1)

3002 -1.95(5) 2.91(2) -0.41(4) 0.98(4)

3003 -1.95(5) 2.91(2) -2.08(6) 4.03(1)

3004 -1.95(5) 2.91(2) -1.09(5) 3.68(1)

3005 -2.76(6) 0.739(4) 0.87(4) 3.80(1)

3006 -0.91(4) 2.01(2) -2.46(6) 3.74(1)

3007 -2.66(6) 1.45(3) -3.55(7) 3.50(1)

3008 -2.80(6) 2.69(2) -2.47(6) 3.69(1)

3009 -3.16(7) 1.89(3) -3.21(7) 1.41(3)

3010 -2.49(6) 2.39(2) -2.41(6) 3.36(1)

3011 -2.14(6) 1.65(3) -1.94(5) 3.35(1)

3012 0.53(4) 0.40(4) -1.76(5) 2.51(2)

3013 -1.45(5) 2.70(2) -3.20(7) 3.49(1)

3014 -0.77(4) 2.70(2) -1.92(5) 3.23(1)
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Table 9. Applicable probability distributions for each drought component at each sub-basin1
2

Basin No.
KSWSI components

Precipitation Streamflow (related to) Dam Groundwater

3001
∙Gumbel
∙GEV
∙Normal

∙Gumbel
∙Normal

∙2-Log-Normal
∙Gumbel
∙Normal

∙3-Log-Normal
∙Normal

3002
∙Gumbel
∙GEV
∙Normal

∙Gumbel
∙Normal

∙2-Log-Normal
∙Gumbel
∙Normal

3003
∙Gumbel
∙GEV
∙Normal

∙Gumbel
∙Normal

3004
∙Gumbel
∙GEV
∙Normal

∙Gumbel
∙Normal

∙3-Log-Normal
∙Normal

3005
∙Gumbel
∙GEV
∙Normal

∙Gumbel
∙Normal

3006
∙Gumbel
∙GEV
∙Normal

∙Gumbel
∙Normal

3007
∙Gumbel
∙GEV
∙Normal

∙Gumbel
∙Normal

3008
∙Gumbel
∙GEV
∙Normal

∙Gumbel
∙Normal

∙2-Log-Normal
∙Gumbel
∙Normal

3009
∙Gumbel
∙GEV
∙Normal

∙Gumbel
∙Normal

∙3-Log-Normal
∙Normal

3010
∙Gumbel
∙GEV
∙Normal

∙Gumbel
∙Normal

∙2-Log-Normal
∙Gumbel
∙Normal

3011
∙Gumbel
∙GEV
∙Normal

∙Gumbel
∙Normal

∙3-Log-Normal
∙Normal

3012
∙Gumbel
∙GEV
∙Normal

∙Gumbel
∙Normal

3013
∙Gumbel
∙GEV
∙Normal

∙Gumbel
∙Normal

3014
∙Gumbel
∙GEV
∙Normal

∙Gumbel
∙Normal

3

4
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Table 10. Maximum entropy results for each sub-basin and month in each drought event1

2

(a) For each sub-basin3

Basin No.
Maximum entropy

Average
2001 2006 2014

3001 1.002 1.198 1.503 1.234 

3002 0.985 1.210 1.352 1.182 

3003 0.845 0.785 0.985 0.872 

3004 0.985 1.002 1.052 1.013 

3005 0.789 0.812 1.005 0.869 

3006 0.521 0.651 0.785 0.652 

3007 0.742 0.584 0.712 0.679 

3008 0.854 0.888 0.616 0.786 

3009 0.795 0.875 0.687 0.786 

3010 0.891 0.985 0.871 0.916 

3011 0.841 0.784 0.852 0.826 

3012 0.668 0.578 0.363 0.537 

3013 0.784 0.652 0.514 0.650 

3014 0.781 0.587 0.612 0.660 

4

(b) For each month5

Month
Maximum entropy

Average Season Averaged ME 
2001 2006 2014

1 0.562 0.650 0.541 0.584 

Spring 0.7872 0.701 0.716 0.629 0.682 

3 0.825 0.765 0.882 0.824 

4 0.795 0.827 0.722 0.781 

Summer 1.0535 0.721 0.847 0.697 0.755 

6 0.854 0.785 0.865 0.835 

7 1.215 1.379 1.174 1.256 

Autumn 0.9048 1.125 1.087 0.992 1.068 

9 0.987 1.182 1.077 1.082 

10 1.002 0.843 0.883 0.909 

Winter 0.67611 0.785 0.686 0.695 0.722 

12 0.625 0.889 0.768 0.761 
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Fig. 2. Study basin: 14 sub-basins in Geum River basin2
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1

(a) Sub-basin 30012

3

4

(b) Sub-basin 30075

6

Fig. 3. Example of weights of each drought component for each month at sub-basin 3001 and 30077
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April 2001 April 2006 April 2014

(a) MSWSI results 1

2

April 2001 April 2006 April 2014

(b) KSWSI results 3

4

Fig. 4. Comparison of MSWSI and KSWSI results in April 2001, 2006, and 2014 drought events5
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1

(a) Monthly time series of MSWSI and KSWSI at sub-basin 3001 in 2014 drought event2

3

4

(b) Monthly time series of precipitation, water level, and dam inflow at sub-basin 3001 in 2013-20145
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1

(c) Monthly time series of MSWSI and KSWSI at sub-basin 3014 in 2001 drought event2

3

4

(d) Monthly time series of monthly precipitation and streamflow at sub-basin 3014 in 2000-20015

6

Fig. 5. Verification of KSWSI in sub-basin 3001 and 3014 in 2001 and 2014 drought events: (a) & (b) 7

at 3001 and (c) & (d) at 30148
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Fig. 6. Example of the procedure of the monthly probabilistic drought forecast 2
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Date MSWSI KSWSI

April 

2006

December 

2006

April 

2014

December 

2014

1

Fig. 7. Comparison of the drought forecasts using MSWSI and KSWSI on April and December in 2

2006 and 2014 drought events3
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(a) MSWSI (left) and KSWSI (right) forecasts at 3001

(b) MSWSI (left) and KSWSI (right) forecasts 3007

(c) MSWSI (left) and KSWSI (right) forecasts at 3014

1

Fig. 8. Comparison of drought forecasts ranges for each month at sub-basin 3001, 3007, and 3014 in 2

2014 drought events3
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1

(a) Monthly time series of MSWSI and KSWSI at sub-basin 3001 in 2006 drought event2

3

4

(b) Monthly time series of precipitation, streamflow, and dam inflow at sub-basin 3001 in 2005-20065
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1

(c) Monthly time series of MSWSI and KSWSI at sub-basin 3010 in 2006 drought event2

3

4

(d) Monthly time series of precipitation, streamflow, and dam release at sub-basin 3010 in 2005-20065

6

Fig. 9. Verification of MSWSI and KSWSI results in sub-basins 3001 and 3010 in 2006 drought event: 7

(a) & (b) at 3001 and (c) & (d) at 30108
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(a) Sub-basin 3001 in 2006 (b) Sub-basin 3008 in 2006

(c) Sub-basin 3001 in 2014 (d) Sub-basin 3008 in 2014

Fig. 10. Comparison of the maximum and minimum time series of KSWSI at sub-basin 3001 and 1

3008 in 2006 and 2014 drought events: (a) & (b) at 3001 & 3008, respectively, in 2006 and (c) & (d) 2

at 3001 & 3008, respectively, in 20143
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1

(a) For each sub-basin2

3

(b) For each month4

5

Fig. 11. Comparison of the maximum entropy results between sub-basins and months for each 6

drought event7


