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Referee no.1 (Dr Hantz) 
 
In the “Interactive comment” published on the online procedure on Jun 14, 2017, Dr Hantz points out 
the following observation: 
 
R1: The epistemic error due to missed recorded events is analyzed, but THE ALEATORIC 
ERROR DUE TO THE STOCHASTIC NATURE OF THE POISSON PROCESS IS IGNORED 
although it may be bigger than the epistemic one. For example…So a confidence interval 
should be determined for the Poisson parameter. In conclusion, the paper should be 
completed with a section analyzing the aleatoric error due to the stochastic nature of the 
Poisson process. 
 
AUTH: The observation is perfectly true. This aspect has been addressed in the new section 3.2. 
 
 
Anonymous referee no.2 
 
In the “interactive comment” published on the online procedure on Jun 17, 2017, anonymous referee 
no.2 points out few observations: 
 
AR2: …The readability and rigour of this contribution would highly benefit from a closer link 
to its predecessor publication especially to the presented data sets of Buisson and Becco 
dell’Aquila. As exercised out in RC1, bringing the content of the previously shown data into 
the here presented framework, both shows the applicability as well as helps in understanding 
the proposed formalism. 
AUTH: I perfectly agree with the observation of the anonymous referee. The manuscript has been 
revised accordingly. A reference to the datasets reported in the parent paper (i.e., De Biagi et al., 
2017) has been added. The examples are reported at lines 78-82 and in Table 1. 
 
AR2: Here is to note, that the absence of the aleatoric error in the review of the frequency law 
reliability is indeed a major concern as pointed out already in RC1. 
AUTH: Please refer to the response to Referee no.1. A novel section (3.2) has been added in the 
revised version of the manuscript. 
 
AR2: The abstract should conclude in a more precise way showing the link to engineering 
practice. 
AUTH: The manuscript has been modified accordingly. 
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Abstract. De Biagi et al. (2017) have proposed a procedure for building a fallen block volume-frequency law for rockfall

phenomenon. The input data are got both from the recording of rockfall events and from the survey of fallen block volumes.

The epistemic and aleatoric uncertainties present in the approach affect the value of the parameters of the law. It is shown how

to quantify the errors due to missed events, to an observation period of finite duration, and to limited set of measured blocks.

At the end, the procedure outputs corrective parameters for computing a design volume for rockfall analysis and engineering5

calculations.

1 Introduction

In a recent paper, De Biagi et al. (2017) have proposed a novel approach for defining a block volume-frequency law to be used

in rockfall hazard quantification and in the design of rockfall protection structures. Given a “representative area” where the

rockfall phenomenon occurs, the method considers the temporal occurrences of the falling block events separately from the10

deposit volumes distribution. The input data for implementing the procedure are got from observation and measurements. The

present paper deals with the effects of epistemic uncertainties on the value of volumes predicted through the frequency law

described in De Biagi et al. (2017). As summarized by Straub and Schubert (2008), the epistemic uncertainties are related to

our incomplete knowledge of the process, often because of limited data. Referring to the aforementioned law, the uncertainty

derives from limited number of recorded events and of surveyed blocks. In the following, the main steps required for deriving15

the block volume-frequency law are proposed.

1. Surveying: a the catalogue of rockfall events, C�, i.e., a catalogue containing the size of the falling blocks and the

corresponding temporal information (date), and a list of fallen block measured volumes, F�, that may have fallen down

at any time are drawn up. Both C� and F� must relate to the same representative area, i.e., the portion of deposit beyond

a defined line, say the foot of the slope, where the hazard is computed.20

2. Threshold volume and reduced datasets: the catalogue of the events C� contains all the recorded events gathered in

a time window of temporal length, t�. Since there is the possibility that small events have not been always recorded, a

threshold volume, Vt, defined as the minimum size of a fallen block that has always been observed and recorded (after its

occurrence), is established. Entries related to volumes smaller than Vt are removed from C� and F�. These new datasets
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are denoted as reduced catalogue, C, and reduced list, F , having a number of entries equal to n and N , respectively. The

temporal length t� is increased to consider that the observations begun with the occurrence of an event, i.e., t= t�+ t�

2n .

3. Choice of the probabilistic models: two probabilistic models are chosen. One should be able to describe the temporal oc-

currences of the events of the reduced catalogue; the other the distribution of the surveyed volumes. Under the hypothesis

of Poisson point process, a Poisson distribution, characterized by the parameter �> 0, is considered for the occurrence5

of falling block events. A Pareto distribution is adopted for the latter, as the power laws found in the literature remark. In

De Biagi et al. (2017), a generalized Pareto distribution (GPD), which can be ascribed to a Pareto type II distribution, is

adopted for describing the distribution of the surveyed volumes. The two probabilistic models are merged together. That

is, the following equality holds:

1

�T
= F̄ (v) , (1)10

where, T is the return period, v is a given volume and F̄ is the survival function of the Pareto distribution. The survival

function is the complementary cumulative distribution function: F̄V (v) = 1�FV (v).

4. Evaluation of the parameters of the distribution: the estimate of the parameters can be obtained through maximum like-

lihood methods from the reduced data sets. Referring to the occurrences process, the ratio �̂= n/t, i.e., the annual

frequency of events larger than Vt, is an unbiased estimate of Poisson’s occurrence parameter. Referring to the distribu-15

tion of the volumes, details are provided in Section 2.

2 Pareto type I distribution

For dealing with a reduced number of parameters, a Pareto type I (Pareto I) distribution is adopted for describing the distribution

of the surveyed volumes listed in F . The survival function of Pareto I is

F̄ (v) =

8
><

>:

1 v < µ
⇣

v
µ

⌘�↵
v � µ

, (2)20

where µ is the location parameter and ↵ is the shape parameter, both positive.

As reported in the literature (see, e.g., Arnold (2015) and the references cited herein), various procedures for estimating the

parameters of Pareto I are proposed. In the present analysis, the threshold volume is the estimate of the location parameter, i.e.,

µ̂= Vt. This value is arbitrary and strictly depends on the possibility to observe small falling block events. Referring to the

shape parameter, in Arnold (2015) , the following estimator is proposed:25

↵̂=N

"
NX

i=1

ln

✓
vi
Vt

◆#�1

, (3)
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where vi is the volume of each block measured in the representative area. Hence, the survival function becomes:

F̄ (v) =

8
><

>:

1 v < Vt
⇣

v
Vt

⌘�↵̂
v � Vt

, (4)

Substituting Eqn. (1) into Eqn. (4), the volume v(T ) corresponding to a given return period (larger than 1/�̂) is determined:

v(T ) = Vt

⇣
�̂T

⌘ 1
↵̂
. (5)

3 Reliability of the block volume-frequency law5

One of the key questions that arose in the discussion of “Estimation of the return period of rockfall blocks according to their

size” relates both to the minimum number of observed events and to the minimum number of surveyed blocks needed for

building the curve. In the present section, the reliability of the results obtained though Eqn. (5) is discussed in the light of the

consistency of the catalogue of the events C and of the list of measured blocks F . In the following, the volume of the block

having return period T determined through Eqn. (5), with Pareto parameters vector ⇡, after the observation of n events during10

t time, is denoted as V (T,t,n,⇡).

3.1 Error due missed recorded events

The temporal information is relevant for establishing a link between return period and block volume. In the present section, the

effects of missed events are analyzed. Supposing that p events larger than Vt (p 2 N) have not been observed even if they have

occurred, they would be part of the reduced catalogue C. Since the length of the observation period does not change, the value15

of the estimate of � varies: the corrected value, �c, is

�c =
(2n+1)(n+ p)2

n2 (2n+2p+1)
�̂, (6)

resulting in �c > �̂. Using the notation previously illustrated, this implies V (T,t,n+ p,⇡)> V (T,t,n,⇡). In other words, if it

is supposed that events have not been observed even if they have occurred, the volume at a given return period is underestimated.

The error due to the lack of p observed events is computed in terms of ratio between the value of the volumes corresponding20

to the same return period, T , i.e.,

ET,p =
V (T,t,n+ p,⇡)

V (T,t,n,⇡)
. (7)

Substituting the known terms, the ratio of Eqn. (7) can be rewritten as

ET,p =

"
(2n+1)(n+ p)2

n2 (2n+2p+1)

#1/↵

= Ep. (8)

It can be noted that, as expected, ET,p is greater than one; in addition, ET,p does not depend on the return period of the estimated25

volume, thus, it can be simply named as Ep. Neither the length of the observation period enters in Eqn. (8). For practical use,

3



11.11.21.31.41.51.61.71.81.92

Error due to missed events, Ep

α̂ = 1.05

α̂ = 1.10

α̂ = 1.25

α̂ = 1.50

α̂ = 2.00

1 10 100

no. of events in the reduced catalogue, n

p = 1

p = 2

p = 5

p = 10

↵̂

n

p

E

Figure 1. Design graph for the estimation of the error due to missed events, Ep, as a function of the number of events n in the reduced

catalogue, C, the expected number of missed events, p, and Pareto type I distribution shape parameter, ↵̂.

a design chart, which can be used in various ways depending on the required data, is proposed in Figure 1. As reported in the

sketch of the plot, if the expected number of missed events p and the shape parameter ↵̂ of Pareto I are known, the error Ep is

derived from the number of events in the reduced catalogue, n or, viceversa, given a value of the error, the consistency of the

reduced catalogue, i.e., the number of events, can be determined.

3.2 Error due to the stochastic nature of the occurrence process5

The events of the reduced catalogue C within the temporal range t are considered to be a realization of a Poisson point process.

The error due to the aleatoric nature of the process is detailed in this section. Pn,t (⇡) denotes the probability that, given an

average annual frequency equal to ⇡, n events are observed during the period t, i.e,

Pn,t (⇡) =
(⇡t)n

n!
e�⇡t. (9)

In De Biagi et al. (2017), the temporal parameter is �̂= n/t, value at which the Eqn. (9) is maximized. However, �̂ is an10

estimate of the parameter, which not necessarily coincides with the true value. Figure 2.A plots the value of Pn,t against ⇡ for

different catalogues with equal �̂= 0.2. The area underlined by each curve is equal to t�1. Figure 2.B plots the normalized

curves Qn,t (⇡) = tPn,t (⇡), i.e., the curves having unit underlying area.

For design purposes, given n and t, the value �i, corresponding to a given i-percentile of the curve Qn,t (⇡) can be used

instead of �̂. For example, considering the 90-percentile, the value of �90 to be considered is the one for which the following15
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Figure 2. In A: Plot of Pn,t against ⇡; in B: plot of the normalized function, Qn,t against ⇡. The legend relates to both axes.
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Figure 3. Value of �90 as a function of the duration of the observation window, t, or the number of events, n, and the estimated Poisson

occurrence parameter �̂.

equalities chain subsists

�90Z

0

Qn,t (⇡)d⇡ = 1� �(n+1,�90t)

�(n+1)
= 0.90, (10)

where �(•) is the Gamma function and �(•,�) is the upper incomplete Gamma function. In other words, if n events are

observed during the period t, there is 90% probability that the true annual frequency parameter is lower that �90. Figure 3 plots

the value of �90 as a function of the duration of the observation window and the estimated �̂. It is seen that �90 tends to �̂ as5

much as the duration of the observation window increases.

Accounting the effects of the variability of the estimate of the frequency parameter has direct consequences on the value

of the computed volume, Eqn. (5). The effects on the generated volume can be computed in terms of ratio D90 between the
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Figure 4. Empirical distribution of ` and the corresponding U . The example refers to ↵̂= 1.50, N = 50, �T = 10.

volume obtained with �90 and the reference one (i.e., with �̂),

D90 =
Vt (�90T )

1
↵̂

Vt

⇣
�̂T

⌘ 1
↵̂

=

✓
�90

�̂

◆ 1
↵̂

. (11)

3.3 Error due to a reduced number of measured blocks

In this section, the error related to the consistency of the list of block volumes surveyed in the representative area is determined5

and discussed. As already discussed in De Biagi et al. (2017), the choice of Vt depends on the precision of the historical

records performed in the representative area. On the contrary, the value of the estimate of the shape parameter, ↵̂, depends on

the consistency of the reduced list F .

As proved by Malik (1970), the estimate ↵̂ follows a Gamma distribution, or equivalently, 2↵N/↵̂⇠ �2
2N�2, where ↵

represents the real value of Pareto I shape parameter, while ↵̂ is its estimate. Asymptotic normality is proved since the inverse10

of a chi-square distribution is very close to a normal distribution.

Considering the estimate of the shape parameter as a variate `⇠ �2
2N�2

↵̂
2N , fixing the values of n, t and T , a distribution

of volumes is expected. For example, given ↵̂= 1.50, N = 50, �̂T = 10 and Vt = 0.5, the volume computed through Eqn. (5)

is 2.32 m3. A sample of 1⇥ 106 values of ` were generated through a Monte-Carlo technique: left-hand side plot of Figure 4

shows the probability density of ` and the right-hand side axes plot the probability density of the volumes computed using15

the generated `. The ratio between the 90-percentile volume (3.36 m3) and the reference value (2.32 m3) is denoted as U90 =

3.36/2.32 = 1.45.

The error due to the consistency of the reduced list F is evaluated in term of ratio U between the generated volumes (e.g.,

with the `) and the reference value determined using the estimate ↵̂. In detail,

U =
V (T,t,n,⇡⇤)

V (T,t,n, ⇡̂)
=

Vt (�T )
1/`

Vt (�T )
1/↵̂

, (12)20
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Figure 5. Design graph for the estimation of the volume multiplier (90-percentile) accounting for the number N of measured blocks in the

reduced list, F⇤, and the term �̂T , and Pareto type I distribution shape parameter, ↵̂.

where, ⇡⇤ is the parameters vector containing the generated `, while ↵̂ is included in ⇡̂. The previous reduces to

U = (�T )
1
`�

1
↵̂ . (13)

The value of U related, say, to 90-percentile can be relevant for design purposes. Because of the reciprocity of the terms

composing the exponent of Eqn. (13), this corresponds to 10-percentile of the distribution of `, i.e.,

U90 = (�T )
1

`10
� 1

↵̂ (14)5

where

`10 = �2
2N�2,0.1

↵̂

2N
(15)

As for the previous case, for practical use, a design chart is proposed in Figure 5. As reported in the sketch of the plot, once

the estimate ↵̂ is computed given N measured blocks, the error corresponding to 90-percentile can be determined for different

�̂T values.10

4 Conclusions

The quality of the survey and the precision in recording rockfall events occurring in a study area play a relevant role in

computing the volumes that would probably fall by a certain period. This information is of primary importance for the design
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Table 1. Error calculations for Buisson and Becco dell’Aquila at T = 50 years, supposing p= 1

Buisson Becco dell’Aquila

n 5 3

t 25.3 yrs 22.17 yrs

�̂ 0.1976 yrs�1 0.1353 yrs�1

↵̂ 0.4101 0.9788

v (50yrs) 40 m3 30 m3

`10 0.4173 0.7863

�90 0.3366 0.3013

E1 1.4314 1.39

U90 3.7847 1.61

D90 3.0695 2.27

Vk (50yrs) 665 m3 665 m3

of protection devices, for the implementation of reliability differentiation in structural engineering, for computing the risk in a

certain area. From Figure 1 it emerges that, given a number of missed events p, the error Ep increases as much as the estimate of

Pareto I shape parameter ↵ reduces. In general, supposing that 20% of the events has not been recorded, 10 events are sufficient

to keep E20% < 1.20. Referring to the amount of measured volumes for estimating ↵, the value largely depends on the return

period of the expected volume, rather than to the estimate ↵̂. For example, having N = 100 and ↵̂= 1.50, the U90 ranges from5

1.05 to 1.70 as �̂T varies from 2 to 100. For small return periods, the consistency of the reduced list F can somehow be limited.

Keeping U90 below 1.20 for a large range of �̂T would imply having a reduced list containing a thousand of records.

Anyway, for design purposes, for a given catalogue of events (even limited) and a list of blocks, once the required return

period T is determined, the volume Vk of the 90-percentile block, taking into account also the potential errors due to p missed

events, can be determined as10

Vk (T ) = Ep U90D90


Vt

⇣
�̂T

⌘ 1
↵̂

�
. (16)

Despite a complete error analysis for Pareto Type II is needed, referring to the examples of Buisson and Becco dell’Aquila

of De Biagi et al. (2017), the error components at a return period T = 50 years, with a number of missed events p= 1, are

evaluated. From Figures 4 and 5 of De Biagi et al. (2017), the volumes v (50 yrs) are approximatively 40 m3 and 30 m3,

respectively. The calculations are reported in Table 1. It clearly appears that a high number of observations and surveyed15

blocks is fundamental for keeping the errors low.

Acknowledgements I kindly thank Dr Nava for the discussion on the distribution of the estimates and the two referees for their

fruitful comments.
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