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Abstract.

New insights into the synoptic-scale predictability of 25 severe European winter storms of the 1995–2015 period are obtained

using the homogeneous ensemble reforecast dataset from the European Centre for Medium-Range Weather Forecasts. The

predictability of the storms is assessed with different metrics including (a) the track and intensity to investigate the storms’

dynamics and (b) the Storm Severity Index to estimate the impact of the associated wind gusts. The storms are well predicted5

by the whole ensemble up to 2–4 days ahead. At longer lead times, the number of members predicting the observed storms

decreases and the ensemble average is not clearly defined for the track and intensity. The Extreme Forecast Index and Shift of

Tails are therefore computed from the deviation of the ensemble from the model climate. Based on these indices, the model

has some skill in forecasting the area covered by extreme wind gusts up to 10 days, which indicates a clear potential for early

warnings. However, large variability is found between the individual storms and the poor predictability of outliers appears10

related to their physical characteristics such as explosive intensification or small size. Longer datasets with more cases would

be needed to further substantiate these points.

1 Introduction

One of the most important natural hazards over Europe arises from winter storms associated with low-pressure systems from

the North Atlantic, also referred to as cyclonic windstorms (Lamb and Frydendahl, 1991). These storms are therefore the focus15

of various fields of research involving the weather and climate communities but also the windpower and reinsurance industries.

At longer time scales, a crucial question lies in the trends in frequency and intensity of winter storms in the current and future

climate. This question is disputed due to little agreement between climate models and between identification methods (see

Feser et al., 2015, for a review). However, the intensity of storms is not necessarily related to their impact and storm losses are

better estimated from the strength of winds or wind gusts exceeding a certain threshold (Klawa and Ulbrich, 2003). Numerous20

studies are therefore dedicated to the estimation of the footprint of strong winds and gusts associated with winter storms as

well as their return periods (Della-Marta et al., 2009; Hofherr and Kunz, 2010; Donat et al., 2011; Haas and Pinto, 2012;

Seregina et al., 2014). These studies often require a combination of dynamical and statistical models to adequately represent

the footprints.
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At shorter time scales, most studies concentrate on the detailed investigation of case studies of severe storms and on the

ability of numerical weather prediction systems to forecast them. Although the general lifecycle of extratropical cyclones has

been known for almost one century, the intensification of storms and the generation of strong winds involve physical processes

of different scales that are still not fully understood (Hewson and Neu, 2015). Recent advances have resulted from the attention

drawn by devastating storms. The damaging winds over southeast England during the “Great Storm” of October 1987, which5

were observed at the tip of the cloud head bounding the bent-back front, now form the archetypal example of a phenomenon

known as the sting jet (Browning, 2004). The destructions caused by storm Lothar over central Europe in December 1999

revealed the importance of diabatic processes in a way similar to a diabatic Rossby wave for the rapid intensification of

the storm over the North Atlantic (Wernli et al., 2002). The severe wind gusts observed during the passage of storm Kyrill in

January 2007 over central Europe finally emphasized the role of convection embedded in the cold front including the formation10

of cold-season derechoes (Fink et al., 2009; Gatzen et al., 2011).

These historical storms were poorly forecast when they occurred and thus captured an even larger attention in the weather

research community, which resulted in a prolific scientific literature on specific storms. In particular, Buizza and Hollingsworth

(2002) early recognized the potential of the ensemble prediction system of the European Centre for Medium-Range Weather

Forecasts (ECMWF) to predict the storms Anatol, Lothar and Martin in December 1999. They showed that ensemble forecasts15

offer a more consistent picture between different initialisation times than deterministic forecasts and additionally provide early

indications of the chance of an intense storm. Lalaurette (2003) further showed that the extremeness of the ensemble as a

whole, measured by its deviation from the model climate, allows identifying areas of unusually strong winds up to 120 h lead

time in the case of Lothar, although failing in the case of Martin. Petroliagis and Pinson (2014) and Boisserie et al. (2016)

recently extended this methodology to longer periods with, respectively, operational and retrospective forecasts. While they20

found constrasting results from case to case, the authors confirmed the potential of ensemble forecasts for the early warning of

severe European storms.

A more statistical approach was proposed by Froude et al. (2007a, b), who identified storms as objects with a tracking

algorithm and systematically compared their position and intensity between forecasts and analyses. They investigated the

predictability of a large number of extratropical cyclones in both deterministic and ensemble forecasts and found a slow bias25

in the track forecasts. For this large sample ranging from shallow to deep cyclones, they further found large errors in the

intensity forecasts but constrasting biases that depend on the region and on the model. Pirret et al. (2017) recently applied this

tracking approach to severe European storms in operational ECMWF ensemble forecasts and found a negative bias in intensity

in addition to the slow bias in track. They further investigated the relative contribution of diabatic and baroclinic processes

to the intensification of the storms. Although they succeeded in showing a significant correlation between the track and the30

dynamics of the storms, they struggled to find an impact on predictability. Their results were, however, limited by the use of

operational forecasts, whose skill improves with updates in the model version and with increases in the horizontal resolution

in particular.

Building on these previous studies, the predictability of severe European winter storms is systematically investigated here

for a 20-year period in an ensemble prediction system by taking advantage of the recently available ECMWF retrospective35
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forecasts (reforecasts; Hagedorn et al., 2008, 2012). While reforecasts are originally designed for calibrating the operational

forecasts, which result in a significant improvement in forecast skill, they also represent a homogeneous dataset that is ideal

for comparing historical events (Hamill et al., 2006, 2013). The predictability of severe storms is thus not restricted to single

case studies here but encompasses a number of events that allow a statistical analysis. Situations with less severe or no storms

are also included to check whether the results are biased by the focus on extreme events. Furthermore, three methods are5

combined here to assess the predictability of the storms. In addition to the track and intensity and to the unusually strong winds

investigated by other authors, a third, novel approach is added for the impact of the storms measured by their gust footprint.

To the best of the authors’ knowledge, the impact of severe winter storms has been extensively studied in the climatological

community but its predictability has not been documented in the peer-reviewed literature.

The paper is organized as follows. Section 2 describes the reforecast and reanalysis model data and the selection of severe10

storms, as well as the three different methods used to assess the predictability of the storms in these data. Section 3 presents

the results obtained for general storm characteristics and using either the ensemble average and spread or individual ensemble

members. Section 4 discusses the skill for early warning on the 5–10 day timescale using either selected storms or the whole

dataset. Section 5 finally gives the conclusions of the study.

2 Data and methods15

2.1 Model data

This study extensively makes use of the ensemble reforecast from the ECMWF (Hagedorn et al., 2008, 2012). The ensemble

reforecast is based on the current version of the operational model but with a lighter configuration to reduce computing time. It

is initialised from the ECMWF Retrospective Analysis (ERA)-Interim (Dee et al., 2011) and ensemble members are obtained

from initial perturbations computed with singular vectors. In contrast to the operational model, stochastic perturbations of20

physical processes are not applied to the ensemble members. Since mid-May 2015, the ensemble reforecast contains 10 per-

turbed members in addition to a control member and it is run twice a week – every Monday and Thursday at 00 UTC – for the

current date in the past 20 years. Until mid-March 2016, when the model resolution was upgraded, the horizontal grid spacing

was approximately 30 km for the first 10 days and was then coarser at longer lead times until 46 days. All 10-day ensemble

reforecasts computed between mid-October 2015 and mid-March 2016 are used here, which represents a homogeneous dataset25

of nearly 10,000 individual reforecasts for the winter seasons 1995/96 to 2014/15.

The reforecasts are verified against ERA-Interim reanalyses, which are available since 1979 and are computed with a hori-

zontal grid spacing of approximately 80 km, corresponding to a 2006 version of the operational model (Dee et al., 2011). The

verification is based on the 6-hourly Mean-Sea-Level Pressure (MSLP) for the track and intensity of the storms and on the

daily maximum wind gusts for the other metrics. The wind gusts are available in the ERA-Interim dataset from short-range30

reforecasts initialized from the reanalyses at 00 and 12 UTC. They are computed from the wind speed on the lowest model level

and a turbulent component based on a similarity relation between the variability of the surface wind and the friction velocity

(Panofsky et al., 1977). In the ensemble reforecast, which uses a more recent model version, the computation of wind gusts
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includes an additional component based on the low-level wind shear in convective situations (Bechtold and Bidlot, 2009). This

additional component is expected to contribute to the strongest wind gusts when convection is embedded in the cold front.

Although the ERA-Interim dataset has been widely used for climatological studies of winter storms, it has recently been

criticized for underestimating the deepening rate of storms and the strength of wind gusts (Hewson and Neu, 2015). In particu-

lar, the relatively low horizontal resolution of ERA-Interim is not sufficient to represent the mesoscale structure of the storms.5

Capturing sting jets for instance, which are responsible for some of the most damaging wind gusts within storms, would re-

quire a horizontal grid spacing of 10–20 km (Hewson and Neu, 2015). Furthermore, gust parameterizations underestimate the

observed strength of wind gusts over complex terrain, even at much higher resolution (Stucki et al., 2016). As the focus here is

on the synoptic-scale aspects of winter storms, these limitations of ERA-Interim are likely rather unimportant. The comparison

with ensemble forecasts remains fair, because their horizontal resolution is not sufficient to capture the strongest gusts either,10

and because the verification of wind gusts is based on values relative to the model climate rather than on absolute values.

Finally, although they rely on parameterizations, modelled wind gusts are preferred to wind speeds, because they are output

as maximum values over a certain time period rather than 6-hourly instantaneous values and thus better sample storms with a

large displacement velocity.

2.2 Selection of storms15

Significant historical storms are selected to investigate their predictability in the ensemble reforecast. The selection is made

using the “XWS open access catalogue of extreme European windstorms” provided by Roberts et al. (2014), which contains

the 50 most severe storms for the 1979–2012 period. The catalogue is based on ERA-Interim dynamically downscaled with

the Met Office Unified Model and recalibrated with observations. The majority of the 50 storms affected the UK more than

any other European country. This is not surprising, considering the location of the UK at the end of the Atlantic storm track.20

However, it may be exaggerated by the selection of storms based on wind gusts above a fixed threshold of 25 m s−1, which is

less often exceeded over continental Europe (Roberts et al., 2014). The selection thus differs from other catalogues based on

alternative criteria that may be more relevant for specific regions (e.g. Stucki et al., 2014, for Switzerland).

The catalogue is available online at http://www.europeanwindstorms.org/ and has been updated with two additional storms

for the winter season 2013/14. Following the time period of the ensemble reforecast, the storms that occurred between mid-25

October and mid-March from 1995/96 to 2014/15 are selected here. One storm occurring in late March is excluded through

the restriction to the winter period, expecting that the mid-October to mid-March time span of the reforecast is relevant for

severe storms. The selection results in the 25 storms listed in Table 1. The storm names are those given by the Free University

of Berlin when available, with alternative names in brackets when relevant. They were completed for a few storms with respect

to the original catalogue of Roberts et al. (2014).30

2.3 Evaluation of predictability

Three metrics are combined to assess the predictability of the storms with regard to different properties: the dynamics are

evaluated with the track and intensity of the storms (Figure 1a; Section 2.3.1), the impact is estimated with the footprint of
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wind gusts (Figure 1b; Section 2.3.2) and the potential for early warnings is computed from the area of predicted gusts that are

well above the model climate (Figure 1c; Section 2.3.3).

Either the ensemble average or the individual members are used for the verification of the reforecasts of the selected storms

based on these metrics. When the whole reforecast dataset is considered, the skill is estimated with appropriate scores. In

particular, the Brier Score (Brier, 1950) measures the ability to predict if an event will occur or not. It can be split into reliability,5

resolution and uncertainty components (Murphy, 1973). The reliability component measures the ability of the forecast to predict

the observed frequency of events. A perfect reliability can be achieved with a climatological forecast and is thus not sufficient

to be useful. In contrast, the resolution component measures the ability of the forecast to distinguish between events and non-

events, which can not be achieved with a climatological forecast. The uncertainty component finally measures the sampling

uncertainty inherent to the events. The Brier Score can further be compared to a climatological forecast to obtain the Brier Skill10

Score (BSS), which is in turn split into

BSS = 1−Brel −Bres (1)

with reliability and resolution components Brel and Bres (e.g. Jolliffe and Stephenson, 2012).

2.3.1 Storm tracking

The 25 selected storms are tracked both in ERA-Interim and in the members of the ensemble reforecast, using the algorithm15

described by Pinto et al. (2005) and originally developed by Murray and Simmonds (1991). In a first step, maxima are identified

in the Laplacian of MSLP interpolated on a polar stereographic grid then minima in MSLP are looked for in their vicinity. The

Laplacian of MSLP is closely related to the quasi-geostrophic vorticity; thus the algorithm is similar to tracking maxima in

low-level vorticity. In a second step, the mimima of MSLP are connected between subsequent model outputs every 6 h, using

a predicted velocity based on both the previous displacement and the steering by the environment. As the focus is on severe20

storms here, the obtained tracks are filtered to exclude storms with a weak Laplacian of MSLP below 0.8 hPa (◦ great circle)−2

or with a duration of less than 24 h. However, the algorithm results in a large number of tracks, among which the storms of

interest need to be identified.

Identifying the storms in ERA-Interim is straightforward, because the selection of severe storms is based on the same dataset.

For each of the 25 storms, the reference time and position of minimum MSLP given by Roberts et al. (2014) are searched for in25

the tracks obtained from the algorithm. The closest track is unambiguously identified this way and matches the reference track,

although differences may arise, particularly at the beginning and end. As suggested by Raible et al. (2008) and generalized by

Neu et al. (2013), such differences are a common issue when comparing storm tracking algorithms, which usually agree well

for the mature phase of deep cyclones but differ during the phases of cyclogenesis and cyclolysis. In particular, the algorithm

of Pinto et al. (2005) tends to identify the cyclones earlier than others. Neu et al. (2013) emphasize that there is no best way of30

tracking storms, because there is no single definition of extratropical cyclones. As the same algorithm is applied here to both

ERA-Interim and the reforecasts, potential biases due to the tracking method would likely cancel out.
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In the reforecast, identifying the storms is less straightforward even at short lead times and quickly becomes ambiguous,

because the tracks diverge from ERA-Interim when the lead time increases. In earlier studies, Froude et al. (2007a, b) applied

strict criteria in the location, timing and duration of tracks to identify storms in forecasts. While such criteria may be required

for statistical studies, they would reject too many ensemble members for the sample of storms considered here, in particular at

long lead time, and thus would bias the results towards “good” members. Instead, the track closest to ERA-Interim is identified5

in each ensemble member without arbitrary criteria, based on the great-circle distance averaged over a 24-h period. Two

methods are compared for the definition of the 24-h period. In the first method, the period is defined as the first 24-h overlap

between the track in the ensemble member and in ERA-Interim. If the track is not present at the time of initialization, it is

further constrained to start in the ensemble member within 48 h of its first occurrence in ERA-Interim. In the second method,

the period is simply defined as the day of maximum intensity.10

The two methods are illustrated for the 7-day reforecast of the storm that hit the British Isles on 28 October 1996 (Table 1).

The storm took its origin in Hurricane Lili, which reached Europe after crossing the North Atlantic and undergoing extratropical

transition (Browning et al., 1998). With the first method, the identified tracks start from the same location, because the storm is

present in the reforecast at the time of initialization (Figure 2a). They later diverge and only two of them reach Europe, whereas

the others remain over the central North Atlantic. With the second method in contrast, the identified tracks all reach Europe,15

as expected from the identification on the day of maximum intensity (Figure 2b). However, they start from different regions

spreading from the western to the eastern North Atlantic. In particular, no single track takes its origin in Hurricane Lili, i.e.

the two methods do not show any common track. Although this case of extratropical transition is unique among the selected

storms, it illustrates the difficulty of identifying storms in the reforecast. The most relevant method depends on the aims of the

analysis; the first method focusing on the dynamics of the storm and the second one on its impact. Both methods are therefore20

used here.

2.3.2 Storm Severity Index

While the intensity of a storm is commonly measured with its minimum MSLP, its severity mostly depends on the strength of

the wind gusts, which is also controlled by the pressure gradient at the synoptic scale and by additional factors at the mesoscale

and turbulent scale. In particular, insured losses have been shown to scale with the third power of the strongest wind gusts.25

Following Klawa and Ulbrich (2003) for observations and Leckebusch et al. (2007) for model data, a Storm Severity Index

(SSI) is therefore defined as

SSI =

(
vmax

v98
− 1

)3

(2)

if vmax > v98 and SSI = 0 otherwise, with vmax the daily maximum wind gust and v98 its local 98th climatological percentile.

The scaling with v98 accounts for the local adaptation to wind gusts, whose impact on infrastructure is weaker in exposed areas30

such as coasts and montains than in the continental flatlands for the same absolute wind speed (Klawa and Ulbrich, 2003). The

climatology of wind gusts is computed separately for ERA-Interim and the reforecast but for the same period of interest, i.e.

mid-October–mid-March 1995/96–2014/15. The resulting values of v98 are higher in the reforecast, likely due to the higher
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model resolution but possibly also due to other changes to the ECMWF model. In addition, wind gusts are abnormally high

over topography in the first 6-h output of the reforecast. As this does not appear in subsequent outputs, it is likely related to

the spin-up of the model when the higher-resolution reforecast is initialized from the lower-resolution reanalysis. The first 6-h

output of the reforecast is thus omitted for computing both vmax and v98.

As an example, the daily maximum gusts and the resulting SSI in ERA-Interim are shown in Figure 3a and b, respectively,5

for storm Lothar on 26 December 1999. The strongest gusts are found over the Bay of Biscay but the highest SSI is found

over southern Germany due to the lower values of the local model climatology. The SSI is then averaged over central Europe

(defined as 40◦N–60◦N and 10◦W–30◦E; corresponds to the map shown in Figure 3) to give a single value for the total severity

of the storm, which can then be compared with the reforecast. This method is equivalent to the SSI defined by Leckebusch et al.

(2007). It is preferred to including the SSI along the track of the storm only, as e.g. in (Roberts et al., 2014), because of the10

ambiguous identification of the tracks in the reforecast. Among the 25 investigated storms, Lothar exhibits the highest averaged

SSI in ERA-Interim, followed by Klaus, Martin and Kyrill (Table 1). These four storms are responsible for the four highest

insurance losses during the period of interest (Roberts et al., 2014), which suggests that the averaged SSI in ERA-Interim is

a relevant measure of the severity of storms. Inaccuracies are still expected and attributed to mesoscale features that are not

resolved by ERA-Interim and by non-meteorological factors such as the density of population and the insured capital. Finally,15

although the impact of storms is expected from wind gusts over land mostly, the adjacent ocean areas are also included in the

calculation of the SSI here to avoid large sensitivities to the predicted position of storms that track close to the coasts. Including

the ocean also accounts at least partially for storm surges, the main impact of some severe storms (e.g. Xynthia, Ludwig et al.,

2014).

2.3.3 Extreme Forecast Index and Shift of Tails20

Forecasting extreme events is a challenge in numerical weather prediction, because predicted extremes tend to underestimate

the magnitude of actual events. Lalaurette (2003) therefore introduced the Extreme Forecast Index (EFI), which measures the

extremeness of an ensemble forecast as compared to the model climate rather than to the observed climate. The original for-

mulation of the EFI was revised by Zsótér (2006), who included a weighting function to emphasize the tails of the distribution

and obtained25

EFI =
2

π

1∫
0

p−Ff (p)√
p(1− p)

dp (3)

with Ff (p) the proportion of ensemble members lying below the p quantile of the model climate. The EFI quantifies the

deviation of an ensemble forecast from its climatological distribution with a unitless number between -1 (all members reach

record-breaking low values) and +1 (record-breaking high values).

Zsótér (2006) also introduced the Shift of Tails (SOT) as an additional index that focuses even more on the tail of the30

distribution

SOT (p) =−Qf (p)−Qc(p0)

Qc(p)−Qc(p0)
(4)
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with Qf (p) and Qc(p) the p quantiles of the ensemble forecast and of the model climate, respectively. The SOT indicates if a

fraction of the ensemble members predicts an extreme event, even if the rest of the members do not. Following Zsótér (2006), p

is taken as the 90th percentile, i.e. the top two members of the 11-member ensemble reforecast. As in the operational ECMWF

configuration, p0 is taken as the 99th percentile of the model climate, which is smoother than the 100th percentile (maximum)

used by Zsótér (2006). A positive value of SOT thus means that at least two members predict an extreme event that belongs to5

the top percent of the model climate.

Both EFI and SOT are computed here for daily maximum wind gusts. For consistency with the SSI, the model climate is

defined from the period mid-October to mid-March 1995/96–2014/15. This contrasts with the operational ECMWF configura-

tion, where the model climate is defined for each forecast within a one-month window centred around the initialization time.

As the focus is on winter storms here, a seasonal model climate is preferred to avoid storms to be considered as more or less10

extreme depending on when they occur during the season. A longer period is also preferred to improve the representation of

the 99th percentile of the model climate, as the length of the operational configuration has been validated for precipitation

and temperature but not for wind gusts (Zsoter et al., 2015). Finally, as in the operational configuration, the model climate is

computed separately at each lead time to compensate for any drift of the reforecast.

Figure 4 illustrates the EFI and SOT for the 6-day reforecast of storm Lothar. High values of EFI spread over a broad region15

from the Atlantic Ocean to eastern Europe and exhibit stripes further eastward (Figure 4a). Positive values of SOT also spread

over a similar, broad region but the highest values are more concentrated (Figure 4b). This is due to the stronger emphasis on

the tail of the distribution based on 2 members in SOT rather than on the whole ensemble in EFI. A comparison with ERA-

Interim in Figure 3a indicates a skill of both EFI and SOT in predicting the strong gusts over parts of France, Switzerland and

Germany. However, it also shows a discrepancy between high EFI or SOT and weaker gusts over other regions. This suggests20

a potential for warnings but with possible false alarms, as already noted by Lalaurette (2003). The use of EFI and SOT thus

requires an appropriate balance between hit and false alarm rates (Petroliagis and Pinson, 2014; Boisserie et al., 2016).

3 Predictability of storm characteristics

3.1 Position and intensity

The predictability of the selected storms is first evaluated for the position and intensity obtained from the storm tracking25

algorithm. The storms are identified in the reforecast at the time of first occurence and compared with ERA-Interim at the time

of maximum intensity. As the 10-day reforecasts are computed every Monday and Thursday, three lead times are available for

most storms but only two for those which occurred on a Sunday. The average bias and spread are computed for each storm and

lead time with the median and median absolute deviation, respectively, which are preferred to the mean and standard deviation

to ensure robust statistics despite the small number of ensemble members.30

On average over all storms, the predicted MSLP remains close to ERA-Interim until day 4, but exhibits a clear positive bias,

i.e. it underestimates the intensity of storms from day 5 onwards (black curve in Figure 5a). The predicted MSLP also exhibits

a large variability between the storms, which increases with increasing lead time (symbols in Figure 5a). The most striking
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outlier is storm Gero (red triangle), which shows the largest positive biases with more than 60 and 40 hPa on days 5 and 8,

respectively. Gero experienced an explosive cyclogenesis of 40 hPa in 24 h to reach 948 hPa on 11 January 2005, the deepest

MSLP of the sample of storms (Table 1). The second and third deepest storms Oratia and Silke, which also experienced an

explosive cyclogenesis, show contrasting positive and negative biases in MSLP depending on the lead time (green triangle and

blue circle in Figure 5a). Surprisingly, the predicted MSLP of Gero exhibits a negative bias on day 1, although this may be due5

to ERA-Interim underestimating the actual intensity due to its coarse horizontal resolution.

Concerning the position, the predicted longitude exhibits a negative bias on average, i.e. the storms are too slow in the

reforecast from day 4 onwards (black curve in Figure 5b). A weak positive bias is present in the reforecast of the latitude

but it does not appear to be significant (not shown). Similar to the predicted MSLP, the predicted longitude also exhibits a

large variability between the storms, which increases with increasing lead time (symbols in Figure 5b). Storm Gero is again an10

outlier with strong negative biases at days 5 and 8 (red triangles) but an even larger bias is found at day 7 for Lili (blue square).

This storm formed in the tropics (Browning et al., 1998, see also Figure 2), which is consistent with the poor predictability of

the position during extratropical transition due to the difficulty to represent convective dynamics (e.g. Pantillon et al., 2013).

However, this case is unique among the selected storms. Other cases that exhibit strong biases formed over very different

regions, as e.g. Patrick over the southeastern United States (blue cross at day 10) and Jennifer (1996) over the eastern North15

Atlantic (green square at day 7). This emphasizes how single factors can influence the predictability of specific storms.

As expected, the spread between the ensemble members increases with increasing lead time on average, both for the intensity

(solid black curve in Figure 5c) and the position (solid black curve in Figure 5d). The spread is consistent with the median

absolute error (dashed curve), which suggests that the ensemble reforecast is calibrated. However, the spread also shows a large

variability between the storms and it does not necessarily match the error for individual storms. For instance, the storms with20

a strong bias mentioned above tend to exhibit a small spread. Inversely, the predicted MSLP of Joachim was very uncertain

(green crosses at days 7 and 10 on Figure 5c) due to the sensitivity to the phasing of the storm with a Rossby wave train over

the western North Atlantic (Lamberson et al., 2016). The large uncertainty in the MSLP of Xynthia at day 3 (red plus) may

be due to the sensitivity of its intensification to latent heat release during its unusual track over the subtropical North Atlantic

(Ludwig et al., 2014) but this does not show for longer lead times.25

3.2 Ensemble average and individual members

These results agree with findings of previous studies using earlier versions of the operational ECMWF ensemble forecast

system. Froude et al. (2007b) also found a slow bias in a systematic evaluation of the track of extratropical cyclones, while Pirret

et al. (2017) further found a low bias in intensity for severe European storms. This suggests that the speed is systematically

underestimated for extratropical cyclones in general, while the intensity is underestimated for deep cyclones only. Despite these30

biases, Froude et al. (2007b) found a higher skill of the ensemble mean compared to the control forecast to predict the track

and intensity of cyclones from day 3 onwards. This result raises the question of the limit of validity of the ensemble mean for

the track of the storms, as the identification of storms becomes more ambiguous and the number of members containing the

observed storms decreases when the lead time increases. Both factors may bias the ensemble average towards the tracks that
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are closer to the analysis and thus overestimate its skill. In the extreme case of Lili, this metric even becomes meaningless,

because all members of the 10-day reforecast valid on the day of maximum intensity have lost track of the storm on the day it

reaches Europe.

An alternative measure of predictability is proposed by counting the number of members that forecast the actual storm when

it reaches Europe. The closest tracks are identified on the day of maximum intensity to ensure that a track is identified in each5

member of the ensemble. Thresholds in position and intensity are combined to define the actual storm, with a 1:2 ratio between

the thresholds that roughly corresponds to the ratio between the two median absolute errors (Figure 5d and c, respectively).

Using rather generous thresholds of 10◦ great circle in distance and 20 hPa in MSLP bias, which select about two third of

the reforecasts, all 25 storms are captured by almost all 11 members until day 4 (Figure 6a). The proportion of members then

decreases and passes below the majority beyond day 8. Using more restrictive thresholds of 5◦ great circle in distance and 1010

hPa in MSLP bias, which select about one third of the reforecasts, the storms are captured by almost all 11 members until day

2 only and are missed by the majority of members beyond day 3 already (Figure 6b). Albeit arbitrary, these combinations of

thresholds express a reasonable range of criteria for a useful definition of the actual storm. While the exact number of members

forecasting the storm will depend on the precise thresholds, these results suggest that the storms are forecasted with high

certainty until day 2–4. At longer lead times, the certainty decreases but some members still forecast the storms beyond one15

week in advance, as was already mentioned by Froude et al. (2007b). The use of subsets of the ensemble for early warnings is

discussed in Section 4.

3.3 Storm impact

The predictability of the selected storms is further evaluated with respect to the impact of the wind gusts estimated from the

SSI. Only the daily, spatially averaged SSI is evaluated here, without considering geographical information on where the storm20

occurred exactly. The reforecast is therefore evaluated for its ability to predict a severe storm on a specific day over central

Europe. It is compared to ERA-Interim as a logarithmic difference, because the SSI is highly nonlinear (Equation 2) and spans

several orders of magnitude between the least and the most severe storms of the selection (Table 1). As illustrated by the 95th

and 99th percentiles of the model climate, the reforecast systematically overestimates the SSI of intense and extreme events

by a factor of about 2 compared to ERA-Interim (dotted and dashed curves in Figure 7a). This is explained by a longer tail of25

the distribution of wind gusts in the reforecast compared to ERA-Interim, which impacts on the SSI despite the scaling with

separate model climates between the reforecast and ERA-Interim (Equation 2). This systematic overestimation must be taken

into account to evaluate the predictability of the selected storms.

On average over all storms, the reforecast overestimates the SSI until day 3 compared to ERA-Interim, but then drops by one

order of magnitude and underestimates the SSI at longer lead times (solid curve in Figure 7a). In contrast, the overestimation30

of SSI in the whole dataset does not exhibit such a drift with lead time (dotted and dashed curves). The overestimation for the

storms until day 3 could therefore be corrected, as it results from a systematic bias in the dataset, while the drop on day 4 is

specific to the sample of severe storms. The reforecast thus strongly underestimates the severity of the storms beyond day 3. In

addition, the average spread in SSI between ensemble members increases until day 3 only, before it decreases again when the
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average SSI drops (not shown). The reforecast is thus underdispersive at longer lead time. As for the track and intensity, the

predicted SSI shows a large variability between the storms (symbols). For instance, the deep storms Gero and Oratia are again

outliers with strong negative biases at days 5, 8 and 9, respectively, whereas a few other storms even exhibit a positive bias.

These results are confirmed by measuring the number of members that predict at least the SSI of ERA-Interim, which also

drops at day 4 (Figure 7b). Note that this is a rather optimistic estimation, as the predicted SSI is systematically overestimated.5

However, at least one ensemble member on average still predicts the ERA-Interim value of SSI of the storms until day 7, which

suggests a potential for early warnings.

4 Skill for early warnings on the 5–10 day timescale

4.1 Top 5% and 1% SSI events

The results above show that even though the storms are well predicted by the whole ensemble a few days ahead only, they10

are forecast by single members up to one week in advance or even beyond. However, these results are biased by the focus on

the prediction of observed events without considering events that are predicted but not observed. In the following, the skill

of the reforecast is investigated not only for the selected storms but for the whole mid-October–mid-March 1995/96–2014/15

dataset, in order to include days both with and without storms. It is measured with the Brier Skill Score split into reliability

and resolution components (Equation 1).15

The skill of the reforecast is first investigated for intense events defined as the top 5% of the SSI, which contain the 7–8 most

severe storms per winter on average. Percentiles are preferred to absolute values, because of the systematic overestimation of

the reforecast compared to ERA-Interim. The frequency of intense events is then by definition the same (5%) in the reforecast

than in ERA-Interim and thus the reliability component remains close to zero (perfect skill, Figure 8a). The non-zero values

reflect the sampling uncertainty. In contrast, the resolution component increases steadily with lead time to approach one (no20

skill). Therefore, the Brier Skill Score follows – with inversed sign – the evolution of the resolution component and decreases

steadily until it vanishes (no skill) at day 9. The reforecast thus clearly exhibits positive skill, albeit small, at predicting intense

events until day 8.

The skill is less clear for extreme events defined as the top 1% of the SSI. These contain the 30 most severe storms of the

whole dataset and approximately match the 25 selected storms in ERA-Interim. Surprisingly, the reforecast does not show any25

skill at day 1 (Figure 8b). This is linked to a high value of the resolution component (low skill) and may again be due to a

problem with the spin-up of the model. The resolution component then steadily increases with increasing lead time as expected.

In contrast, the reliability component shows an irregular evolution with lead time and large values reflecting a large sampling

uncertainty. This emphasizes that the dataset is too limited to investigate extreme events, which on average represent 8.2 events

per lead time only. As a result, the Brier Skill Score suggests that the reforecast exhibits some skill in predicting extreme events30

until day 6 but it suffers from the same irregular evolution with lead time.
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4.2 EFI and SOT for gusts above the 98th percentile

The potential for early warnings of strong gusts is further investigated with the EFI and SOT, which are both designed for this

purpose by highlighting the behaviour of the most extreme ensemble members. As noted by Lalaurette (2003) already, the EFI

gives useful warnings of extreme events but also frequent false alarms. Petroliagis and Pinson (2014) therefore suggested the

use of an optimal threshold to balance between hit rate (H) and false alarm rate (F), a higher or lower threshold increasing or5

decreasing both H and F. Boisserie et al. (2016) further suggested to maximize the Heidke Skill Score (HSS Heidke, 1926) to

define the optimal threshold. Following these authors, an optimal threshold is determined to predict gusts that exceed the local

98th climatological percentile in ERA-Interim. The 98th percentile represents the strength at which gusts become damaging

in the SSI (Equation 2). In contrast with the previous studies, however, which focused on specific storms or storm categories,

an optimal threshold is first computed for the whole dataset and only then applied to the selected storms. This ensures that the10

result is not biased by verifying the forecast with extreme events only.

As shown in Figure 9a, the optimal threshold in EFI decreases with lead time, as do the corresponding H and F. In contrast,

the optimal threshold in SOT is stable until day 6 and decreases at longer lead times only (Figure 9b). This reveals a different

balance between H and F for the two indices. A constant threshold is thus only suitable for the SOT and in the early range. For

all other types of warnings, the dependency of the optimal thresholds on lead time should be taken into account. The optimal15

thresholds display seasonal and regional variability (not shown), which could also be included to improve warnings. For the

sake of simplicity, however, they are not considered here.

Although the optimal threshold exhibits a different evolution with lead time between the two indices, the corresponding HSS

is very similar, with a slightly higher value for the EFI. The skill decreases steadily with increasing lead time but remains pos-

itive until day 10, the longest lead time investigated here. The decrease tightly follows H, while F slowly increases but remains20

small due to the rarity of events by definition of the local 98th climatological percentile. Note that F, which is conditioned by

the events that are not observed, should not be confused with the false alarm ratio (FAR), which is conditioned by the events

that are not forecast. These results demonstrate the actual potential of both EFI and SOT for early warnings of strong gusts. If

the local 99th climatological percentile is preferred to define extreme events, as in early studies, the optimal thresholds need to

be increased and the resulting skill becomes lower but it also remains positive until day 10 (not shown).25

4.3 EFI and SOT for the 25 severe storms

The optimal thresholds described above are applied to the EFI and SOT for the selected severe storms in the reforecast. The

HSS is again used as a trade-off between H and F. It is computed for the prediction of gusts over the central European domain

on the day of maximum intensity of each storm. As for the whole dataset, the EFI (Figure 10a) and the SOT (Figure 10b) exhibit

a similar HSS on average, which lies around 0.8 during the first two days (high skill) and then decreases with increasing lead30

time until vanishing at day 10 (no skill). In particular, before day 10, the HSS is higher for the storms (solid curves) than for

the whole dataset (dashed curves). It is related to higher H for the storms, which enhance the skill despite higher F (not shown).
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This does not necessarily mean that the reforecast is more skillful at predicting the presence than the absence of storms but

rather emphasizes how focusing on observed events can bias the verification.

Beyond these average properties, the reforecasts of the storms exhibit contrasting skill from case to case. The variability

between the storms quickly increases with increasing lead time and the HSS of some storms approaches zero or becomes

negative from day 6 onwards (symbols on Figure 10). A poor skill is found in both EFI and SOT for storms Lili at day 75

(blue square) and Gero at day 8 (red triangle) in association with a low H, as well as for storm Joachim at day 7 (green cross)

in association with a high F. This is consistent with the large biases in MSLP and longitude and the large spread in MSLP,

respectively, found for these storms (Figure 5). Other storms contrast between poor skill in EFI and good skill in SOT, as Yuma

at day 4 (pink square in Figure 10), which was noted for its difficult forecast as it occurred (Young and Grahame, 1999), and

Xynthia at day 6 (red plus). The higher skill in these cases could be due to the higher H of the SOT compared to the EFI, as10

suggested by Boisserie et al. (2016), although no difference is found here on average in the whole sample.

Interestingly, storms Yuma, Lili, Gero and Xynthia mentioned above for their poor skill in EFI have the smallest area of

strong gusts of the whole dataset (Table 1). Similarly, a better performance for Anatol than for the relatively smaller storms

Lothar and Martin was previously noted by Buizza and Hollingsworth (2002) in the operational ECMWF ensemble forecast.

However, neither this better performance or differences between the predictability of specific storms found by other authors15

using the EFI (Lalaurette, 2003; Petroliagis and Pinson, 2014; Boisserie et al., 2016) are confirmed here. This suggests a

sensitivity to the ensemble prediction system and to the type and region of the reference data used for their validation, which

vary from study to study.

Finally, storm Xynthia exhibits a surprisingly high skill at day 10 in both EFI and SOT thanks to a high H. This constitutes an

outlier compared to all other storms, which show no skill at that lead time. However, none of the ensemble members predicts the20

observed development of Xynthia over the subtropical North Atlantic (Ludwig et al., 2014). Instead, several members predict

a storm forming over the central North Atlantic but reaching the Iberian Peninsula on the same day as Xynthia. Although

this successful reforecast could be due to chance rather than to the actual skill of the model, it illustrates how predicting

individual storms becomes ambiguous at long range but suggests a potential for predicting an environment favorable to storm

development.25

5 Conclusions

The synoptic-scale predictability of 25 severe historical winter storms over central Europe is revisited by taking advantage of

the ECMWF ensemble retrospective forecast (reforecast), which offers a homogeneous dataset over 20 years with a state-of-

the-art ensemble prediction system. The predictability of the storms is investigated with three different metrics for their track

and intensity (Figure 1a), the strength of wind gusts (Figure 1b) and the area covered by strong gusts (Figure 1c). The metrics30

are combined to assess the reforecast against the ECMWF reanalysis ERA-Interim.

For lead times until 3–4 days, the ensemble average has small biases in terms of predicting the position and minimum MSLP

of the storms on the day of maximum intensity. At longer lead times, it systematically underestimates the speed of motion
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and the depth of the storms. Previous studies also found a slow bias in the track forecasts of extratropical cyclones in general

(Froude et al., 2007b) and a negative bias in the intensity forecasts of severe storms only (Pirret et al., 2017). This suggests

that the underestimation of the speed of motion is systematic but that of the depth is specific to deep cyclones. The ensemble

average further underestimates the SSI of the storms by at least one order of magnitude beyond day 3. Along with the biases

with increasing lead time, the identification of storms becomes ambiguous and the number of members containing the observed5

storms decreases, which questions the limit of validity of the ensemble mean for the track of the storms. This limit is due to the

identification of storms as objects, which are not always clearly defined, in contrast to the metrics based on the strength of wind

gusts, which are defined even in the absence of a storm. The predictability is further measured by the number of members that

forecast the observed storm – within combined thresholds in position and intensity – on the day it reaches Europe. Although

the result depends on the exact thresholds, reasonable values show that the storms are well forecasted until day 2–4 only. These10

results suggest that relevant predictions of storm properties are restricted to the first few days of the forecast.

A different methodology is therefore required for lead times longer than the 2–4 days horizon. The position, intensity and

severity of the storms are captured by some members beyond one week in advance, which suggests potential for early warning.

The whole distribution of the ensemble shall thus be used by shifting the focus from the average to individual members for the

prediction of extreme events (Buizza and Hollingsworth, 2002; Lalaurette, 2003; Petroliagis and Pinson, 2014; Boisserie et al.,15

2016). The danger with this approach, however, is to verify the predictions with regard to their ability to forecast observed

events without accounting for events that are forecast but not not observed. The predictability is therefore investigated here in

the whole dataset of 20 winter seasons including both stormy and non-stormy days. Using the EFI and SOT indices, which

highlight the most extreme ensemble members, the reforecast shows skill in predicting the area covered by strong gusts until

day 9–10. It is also skillful until day 8 to predict the occurence of intense events defined as the top 5% of the SSI (spanning on20

average 7–8 days per winter). However, for extreme events defined as the top 1% of the SSI (approximately corresponding to

the 25 selected storms), no meaningful results can be obtained due to the large sampling uncertainty. Despite this limitation for

the most extreme events, the results confirm the skill for early warnings of storms beyond one week ahead.

These results are summarized in Figure 11 from long to short forecast lead times separated in three phases. A first phase

of early warning starts 8–10 days before a storm occurs. At this point, a few members may already predict the storm, which25

gives indications of the possibility of a severe event based on the SSI, as well as hints for the area that might be covered by

strong gusts given by the EFI and SOT. In a second phase, the number of members predicting the storm increases but biases

are present in the speed of motion and in the intensity measured as the MSLP of the storm, which are both systematically

underestimated. The severity of the storm measured by the SSI is also underestimated by one or more orders of magnitude. The

certainty then increases until the third phase of accurate forecast, starting 2–4 days before the storm occurs. Most members30

predict the storm and without systematic bias at this point, which allows a calibrated forecast for the position and intensity of

the storm and a realistic estimate of its severity. These three phases in the expected skill of an ensemble prediction system may

serve as a reference to forecast severe European winter storms in an operational context.

Among the sample of 25 severe storms, some outliers exhibit a particularly low predictability. These are storms involving an

explosive cyclogenesis or extending over a small area, as well as a storm undergoing extratropical transition. Unfortunately, the35
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sample is too small and the number of forecasts per storm is too limited for any robust statistics. The NOAA ensemble reforecast

could help to identify systematic links between the dynamics and predictability of storms, as it covers a longer period and offers

a daily initialization (Hamill et al., 2013). However, this dataset appears not to perform as well as its ECMWF counterpart for

predicting wind over central Europe (Dabernig et al., 2015). The operational ECMWF ensemble forecast is initialised twice a

day and contains 50 members but Pirret et al. (2017) struggled to find a relation between the predictability and the intensity,5

track or physical processes of storms, because of the steady increase in skill with more recent model versions. This illustrates

the difficulty to systematically investigate the predictability of severe storms, even with an extended dataset such as the 20-year

reforecast used here.

More case studies are thus needed to better understand the predictability of specific storm features at different scales. At

larger scale, the focus of the predictability could be shifted from the storms to the conditions that favour their development10

(e.g. Pinto et al., 2014). This could be particularly relevant at long lead times, when the identification of storms becomes

ambiguous among the ensemble members. At smaller scale, the use of available high-resolution model data should help to

better understand the structure of the storms. For instance, the next generation of ECMWF reanalysis ERA5, which is currently

in production, will reach a horizontal grid spacing of about 30 km and improve the representation of synoptic-scale features.

Regional models are required to represent mesoscale features such as sting jets or convection embedded in the cold front,15

while the accurate representation of wind gusts stays beyond the resolution of operational models and relies on large-eddy

simulations or observations at the turbulent scale. Alternatively, dynamical and statistical downscaling can be combined to

obtain skillful forecasts at the local level, as demonstrated by Pardowitz et al. (2016) for storm losses, who further took

both meteorological and damage model uncertainties into account. These different approaches should be considered to allow

advances in the predictability of severe European winter storms.20
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Gatzen, C., Púčik, T., and Ryva, D.: Two cold-season derechoes in Europe, Atmospheric Research, 100, 740–748,

doi:10.1016/j.atmosres.2010.11.015, 2011.35

Haas, R. and Pinto, J. G.: A combined statistical and dynamical approach for downscaling large-scale footprints of European windstorms,

Geophys. Res. Lett., 39, n/a–n/a, doi:10.1029/2012GL054014, 2012.

16

http://dx.doi.org/10.1175/WAF-D-15-0027.1
http://dx.doi.org/10.1175/1520-0493(1950)078%3C0001:VOFEIT%3E2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(1950)078%3C0001:VOFEIT%3E2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(1950)078%3C0001:VOFEIT%3E2.0.CO;2
http://dx.doi.org/10.1256/qj.02.143
http://dx.doi.org/10.1002/qj.49712455108
http://dx.doi.org/10.1017/S1350482702003031
http://dx.doi.org/10.1175/WAF-D-15-0095.1
http://dx.doi.org/10.1002/qj.828
http://dx.doi.org/10.1002/joc.1794
http://dx.doi.org/10.5194/nhess-11-2821-2011
http://dx.doi.org/10.5194/nhess-11-2821-2011
http://dx.doi.org/10.5194/nhess-11-2821-2011
http://dx.doi.org/10.1002/qj.2364
http://dx.doi.org/10.5194/nhess-9-405-2009
http://dx.doi.org/10.5194/nhess-9-405-2009
http://dx.doi.org/10.5194/nhess-9-405-2009
http://dx.doi.org/10.1175/MWR3274.1
http://dx.doi.org/10.1175/MWR3422.1
http://dx.doi.org/10.1016/j.atmosres.2010.11.015
http://dx.doi.org/10.1029/2012GL054014


Hagedorn, R., Hamill, T. M., Whitaker, J. S., Hagedorn, R., Hamill, T. M., and Whitaker, J. S.: Probabilistic Forecast Calibra-

tion Using ECMWF and GFS Ensemble Reforecasts. Part I: Two-Meter Temperatures, Mon. Weather Rev., 136, 2608–2619,

doi:10.1175/2007MWR2410.1, 2008.

Hagedorn, R., Buizza, R., Hamill, T. M., Leutbecher, M., and Palmer, T. N.: Comparing TIGGE multimodel forecasts with reforecast-

calibrated ECMWF ensemble forecasts, Q. J. R. Meteorol. Soc., 138, 1814–1827, doi:10.1002/qj.1895, 2012.5

Hamill, T. M., Whitaker, J. S., Mullen, S. L., Hamill, T. M., Whitaker, J. S., and Mullen, S. L.: Reforecasts: An Important Dataset for

Improving Weather Predictions, Bull. Am. Meteorol. Soc., 87, 33–46, doi:10.1175/BAMS-87-1-33, 2006.

Hamill, T. M., Bates, G. T., Whitaker, J. S., Murray, D. R., Fiorino, M., Galarneau, T. J., Zhu, Y., and Lapenta, W.: NOAA’s Second-

Generation Global Medium-Range Ensemble Reforecast Dataset, Bull. Am. Meteorol. Soc., 94, 1553–1565, doi:10.1175/BAMS-D-12-

00014.1, 2013.10

Heidke, P.: Berechnung des Erfolges und der Güte der Windstärkevorhersagen im Sturmwarnungsdienst, Geografiska Annaler, 8, 301–349,

doi:10.2307/519729, 1926.

Hewson, T. D. and Neu, U.: Cyclones, windstorms and the IMILAST project, Tellus, Ser. A Dyn. Meteorol. Oceanogr., 6, 1–33,

doi:10.3402/tellusa.v67.27128, 2015.

Hofherr, T. and Kunz, M.: Extreme wind climatology of winter storms in Germany, Climate Research, 41, 105–123, doi:10.3354/cr00844,15

2010.

Jolliffe, I. T. and Stephenson, D. B.: Forecast verification : a practitioner’s guide in atmospheric science, Wiley-Blackwell, 2012.

Klawa, M. and Ulbrich, U.: A model for the estimation of storm losses and the identification of severe winter storms in Germany, Nat.

Hazards Earth Syst. Sci., 3, 725–732, 2003.

Lalaurette, F.: Early detection of abnormal weather conditions using a probabilistic extreme forecast index, Q. J. R. Meteorol. Soc., 129,20

3037–3057, doi:10.1256/qj.02.152, 2003.

Lamb, H. H. and Frydendahl, K.: Historic storms of the North Sea, British Isles and Northwest Europe, Cambridge, England : Cambridge

University Press, 1991.

Lamberson, W. S., Torn, R. D., Bosart, L. F., and Magnusson, L.: Diagnosis of the Source and Evolution of Medium-Range Forecast Errors

for Extratropical Cyclone Joachim, Weather Forecast., 31, 1197–1214, doi:10.1175/WAF-D-16-0026.1, 2016.25

Leckebusch, G. C., Ulbrich, U., Fröhlich, L., and Pinto, J. G.: Property loss potentials for European midlatitude storms in a changing climate,

Geophys. Res. Lett., 34, doi:10.1029/2006GL027663, 2007.

Ludwig, P., Pinto, J. G., Reyers, M., and Gray, S. L.: The role of anomalous SST and surface fluxes over the southeastern North Atlantic in

the explosive development of windstorm Xynthia, Q. J. R. Meteorol. Soc., 140, 1729–1741, doi:10.1002/qj.2253, 2014.

Murphy, A. H.: A New Vector Partition of the Probability Score, J. Appl. Meteorol., 12, 595–600, doi:10.1175/1520-30

0450(1973)012<0595:ANVPOT>2.0.CO;2, 1973.

Murray, R. and Simmonds, I.: A numerical scheme for tracking cyclone centres from digital data. Part I: development and operation of the

scheme, Aust. Met. Mag., 39, 155–166, http://www.bom.gov.au/amm/docs/1991/murray1.pdf, 1991.

Neu, U., Akperov, M. G., Bellenbaum, N., Benestad, R., Blender, R., Caballero, R., Cocozza, A., Dacre, H. F., Feng, Y., Fraedrich, K.,

Grieger, J., Gulev, S., Hanley, J., Hewson, T., Inatsu, M., Keay, K., Kew, S. F., Kindem, I., Leckebusch, G. C., Liberato, M. L. R., Lionello,35

P., Mokhov, I. I., Pinto, J. G., Raible, C. C., Reale, M., Rudeva, I., Schuster, M., Simmonds, I., Sinclair, M., Sprenger, M., Tilinina, N. D.,

Trigo, I. F., Ulbrich, S., Ulbrich, U., Wang, X. L., and Wernli, H.: IMILAST: A Community Effort to Intercompare Extratropical Cyclone

Detection and Tracking Algorithms, Bull. Am. Meteorol. Soc., 94, 529–547, doi:10.1175/BAMS-D-11-00154.1, 2013.

17

http://dx.doi.org/10.1175/2007MWR2410.1
http://dx.doi.org/10.1002/qj.1895
http://dx.doi.org/10.1175/BAMS-87-1-33
http://dx.doi.org/10.1175/BAMS-D-12-00014.1
http://dx.doi.org/10.1175/BAMS-D-12-00014.1
http://dx.doi.org/10.1175/BAMS-D-12-00014.1
http://dx.doi.org/10.2307/519729
http://dx.doi.org/10.3402/tellusa.v67.27128
http://dx.doi.org/10.3354/cr00844
http://dx.doi.org/10.1256/qj.02.152
http://dx.doi.org/10.1175/WAF-D-16-0026.1
http://dx.doi.org/10.1029/2006GL027663
http://dx.doi.org/10.1002/qj.2253
http://dx.doi.org/10.1175/1520-0450(1973)012%3C0595:ANVPOT%3E2.0.CO;2
http://dx.doi.org/10.1175/1520-0450(1973)012%3C0595:ANVPOT%3E2.0.CO;2
http://dx.doi.org/10.1175/1520-0450(1973)012%3C0595:ANVPOT%3E2.0.CO;2
http://www.bom.gov.au/amm/docs/1991/murray1.pdf
http://dx.doi.org/10.1175/BAMS-D-11-00154.1


Panofsky, H. a., Tennekes, H., Lenschow, D. H., and Wyngaard, J. C.: The characteristics of turbulent velocity components in the surface

layer under convective conditions, Boundary-Layer Meteorol., 11, 355–361, doi:10.1007/BF02186086, 1977.

Pantillon, F., Chaboureau, J.-P., Lac, C., and Mascart, P.: On the role of a Rossby wave train during the extratropical transition of hurricane

Helene (2006), Q. J. R. Meteorol. Soc., 139, 370–386, doi:10.1002/qj.1974, 2013.

Pardowitz, T., Osinski, R., Kruschke, T., and Ulbrich, U.: An analysis of uncertainties and skill in forecasts of winter storm losses, Nat.5

Hazards Earth Syst. Sci., 16, 2391–2402, doi:10.5194/nhess-16-2391-2016, 2016.

Petroliagis, T. I. and Pinson, P.: Early warnings of extreme winds using the ECMWF Extreme Forecast Index, Meteorol. Appl., 21, 171–185,

doi:10.1002/met.1339, 2014.

Pinto, J. G., Spangehl, T., Ulbrich, U., and Speth, P.: Sensitivities of a cyclone detection and tracking algorithm: individual tracks and

climatology, Meteorol. Zeitschrift, 14, 823–838, doi:10.1127/0941-2948/2005/0068, 2005.10

Pinto, J. G., Gómara, I., Masato, G., Dacre, H. F., Woollings, T., and Caballero, R.: Large-scale dynamics associated with clustering of

extratropical cyclones affecting Western Europe, J. Geophys. Res. Atmos., pp. 704–719, doi:10.1002/2014JD022305.Received, 2014.

Pirret, J. S. R., Knippertz, P., and Trzeciak, T. M.: Drivers for the deepening of severe European windstorms and their impacts on forecast

quality, Q. J. R. Meteorol. Soc., 143, 309–320, doi:10.1002/qj.2923, 2017.

Raible, C. C., Della-Marta, P. M., Schwierz, C., Wernli, H., Blender, R., Raible, C. C., Della-Marta, P. M., Schwierz, C., Wernli, H., and15

Blender, R.: Northern Hemisphere Extratropical Cyclones: A Comparison of Detection and Tracking Methods and Different Reanalyses,

Mon. Weather Rev., 136, 880–897, doi:10.1175/2007MWR2143.1, 2008.

Roberts, J. F., Champion, A. J., Dawkins, L. C., Hodges, K. I., Shaffrey, L. C., Stephenson, D. B., Stringer, M. A., Thornton, H. E., and

Youngman, B. D.: The XWS open access catalogue of extreme European windstorms from 1979 to 2012, Nat. Hazards Earth Syst. Sci.,

14, 2487–2501, doi:10.5194/nhess-14-2487-2014, 2014.20

Seregina, L. S., Haas, R., Born, K., and Pinto, J. G.: Development of a wind gust model to estimate gust speeds and their return periods,

Tellus A, 66, doi:10.3402/tellusa.v66.22905, 2014.

Stucki, P., Brönnimann, S., Martius, O., Welker, C., Imhof, M., von Wattenwyl, N., and Philipp, N.: A catalog of high-impact windstorms in

Switzerland since 1859, Nat. Hazards Earth Syst. Sci., 14, 2867–2882, doi:10.5194/nhess-14-2867-2014, 2014.

Stucki, P., Dierer, S., Welker, C., Gómez-Navarro, J. J., Raible, C. C., Martius, O., and Brönnimann, S.: Evaluation of downscaled wind25

speeds and parameterised gusts for recent and historical windstorms in Switzerland, Tellus A Dyn. Meteorol. Oceanogr., 68, 31 820,

doi:10.3402/tellusa.v68.31820, 2016.

Wernli, H., Dirren, S., Liniger, M. A., and Zillig, M.: Dynamical aspects of the life cycle of the winter storm ’Lothar’ (24–26 December

1999), Q. J. R. Meteorol. Soc., 128, 405–429, doi:10.1256/003590002321042036, 2002.

Young, M. V. and Grahame, N. S.: Forecasting the Christmas Eve storm 1997, Weather, 54, 382–391, doi:10.1002/j.1477-30

8696.1999.tb03999.x, 1999.

Zsótér, E.: Recent developments in extreme weather forecasting, ECMWF Newsletter, 107, 8–17, http://old.ecmwf.int/publications/

newsletters/pdf/107.pdf, 2006.

Zsoter, E., Pappenberger, F., and Richardson, D.: Sensitivity of model climate to sampling configurations and the impact on the Extreme

Forecast Index, Meteorol. Appl., 22, 236–247, doi:10.1002/met.1447, 2015.35

18

http://dx.doi.org/10.1007/BF02186086
http://dx.doi.org/10.1002/qj.1974
http://dx.doi.org/10.5194/nhess-16-2391-2016
http://dx.doi.org/10.1002/met.1339
http://dx.doi.org/10.1127/0941-2948/2005/0068
http://dx.doi.org/10.1002/2014JD022305.Received
http://dx.doi.org/10.1002/qj.2923
http://dx.doi.org/10.1175/2007MWR2143.1
http://dx.doi.org/10.5194/nhess-14-2487-2014
http://dx.doi.org/10.3402/tellusa.v66.22905
http://dx.doi.org/10.5194/nhess-14-2867-2014
http://dx.doi.org/10.3402/tellusa.v68.31820
http://dx.doi.org/10.1256/003590002321042036
http://dx.doi.org/10.1002/j.1477-8696.1999.tb03999.x
http://dx.doi.org/10.1002/j.1477-8696.1999.tb03999.x
http://dx.doi.org/10.1002/j.1477-8696.1999.tb03999.x
http://old.ecmwf.int/publications/newsletters/pdf/107.pdf
http://old.ecmwf.int/publications/newsletters/pdf/107.pdf
http://old.ecmwf.int/publications/newsletters/pdf/107.pdf
http://dx.doi.org/10.1002/met.1447


(a)	Track	and	intensity (b)	Strength	of	gusts (c)	Area	covered	by	gusts

Figure 1. Schematic depiction of the three metrics used to evaluate the predictability of storms: based on the track and intensity of the storms

(a), based on the strength of wind gusts (b) and based on the area covered by unusually strong gusts (c). See text for details.

Analysis
Control
Perturbed

Analysis
Control
Perturbed

(a) Identification during first common occurence (b) Identification during maximum intensity

Figure 2. Example of the identified tracks of ex-hurricane Lili in the 6-day ensemble reforecast initialized on 22 October 1996 closest to

ERA-Interim during the 24-h period of first common occurrence on 22 October (a) and of maximum intensity in ERA-Interim on 28 October

(b).
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(b)

(b) Storm Severity Index

(a)

Figure 3. Example of the daily maximum wind gusts (a) and daily Storm Severity Index (b) for storm Lothar in ERA-Interim on 26 December

1999.

(a) (b)

Figure 4. Example of the Extreme Forecast Index (a) and Shift of Tails (b) of daily maximum wind gusts for storm Lothar in the 6-day

ensemble reforecast initialized on 21 December 1999 and valid on 26 December.
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Figure 5. Position and intensity of the storms in the ensemble reforecast as identified at the time of first occurrence and compared on the day

of maximum intensity: difference between the ensemble median and ERA-Interim (a, b) and median absolute deviation of the ensemble (c,

d) in MSLP (a, c) and longitude (b, d). The symbols represent the storms as given in Table 1 and the solid black curve shows the median of

the storms per lead time, while the dashed black curve in (c, d) further shows the median absolute error of the storms per lead time.
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Figure 6. Position and intensity of the storms in the ensemble reforecast as identified and compared on the day of maximum intensity:

number of ensemble members predicting the storm within 10 hPa and 10◦ great circle (a) or 5 hPa and 5◦ great circle (b) as compared to

ERA-Interim in minimum MSLP and position, respectively. The symbols represent the storms as given in Table 1 and the black curve shows

the median of the storms per lead time.
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(a) Ensemble median (b) SSI larger than ERA-Interim
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Figure 7. Severity of the storms in the ensemble reforecast on the day of maximum intensity: logarithmic difference of SSI between the

ensemble median and ERA-Interim (a) and number of members reaching the SSI of ERA-Interim (b). The symbols represent the storms as

given in Table 1 and the solid black curve shows the median of the storms per lead time. The dotted and dashed black curves in (a) further

show the logarithmic difference of the 95th and 99th percentiles of SSI, respectively, in the model climates of the reforecast and ERA-Interim.

(a) Intense events (b) Extreme events

Figure 8. Brier Skill Score as a function of lead time for the SSI exceeding the 95th (a) and 99th percentiles of the model climatology (b).

The Brier Skill Score is decomposed into resolution and reliability components (see Equation 1).
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Figure 9. Optimal threshold and corresponding hit rate (H), false alarm rate (F) and Heidke Skill Score (HSS) for the Extreme Forecast Index

(EFI; a) and the Shift of Tails (SOT; b) to predict gusts exceeding the local 98th percentile in ERA-Interim.
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(a) Extreme Forecast Index (b) Shift of Tails

Figure 10. Heidke Skill Score (HSS) for predicting gusts exceeding the local 98th climatological percentile of ERA-Interim using the

Extreme Forecast Index (EFI; a) and the Shift Of Tails (SOT; b). The symbols represent the storms as given in Table 1 and the black curve

shows the median of the storms per lead time, while the dashed curves illustrate the whole dataset for reference as in Figure 9.
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Phase	3:	accurate	forecast
Most	members	predict	storm
• Calibrated	ensemble
• Realistic	estimate	of	severity

Phase	2:	increase	in	certainty
More	members	predict	storm
• Speed	and	depth	underestimated
• Severity	largely	underestimated

Phase	1:	early	warning
Few	members	predict	storm
• Indications	of	severe	event
• Hints	for	area	of	strong	gusts

2-4	days	ahead8-10	days	ahead Storm	occurs

Figure 11. Summary of the expected skill of an ensemble prediction system for the forecast of severe European winter storms, from long to

short forecast lead times separated in three phases. The schematic refers to the three methods depicted in Figure 1.
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Table 1. Chronological list of the 25 investigated storms with their characteristics in ERA-Interim on the day of maximum intensity: minimum

Mean Sea Level Pressure (MSLP), Storm Severity Index (SSI) and area of central Europe covered by gusts exceeding the local 98th percentile.

The values corresponding to the deepest, most severe and smallest storms cited in the text are emphasized in bold.

Symbol Name Date MSLP (hPa) SSI (×10−3) Area (%)

� Jennifer (1996) 07 Feb 1996 976 3.0 11.1

� Lili 28 Oct 1996 970 0.40 7.3

� Romy 06 Nov 1996 960 0.48 20.8

� Yuma 24 Dec 1997 974 0.35 5.8

� Fanny 04 Jan 1998 966 2.0 16.6

© Xylia 28 Oct 1998 966 0.64 28.3

© Silke (Stephen) 26 Dec 1998 950 2.4 21.0

© Anatol 03 Dec 1999 956 5.1 28.7

© Lothar 26 Dec 1999 976 15 23.7

© Martin 27 Dec 1999 969 9.7 20.5

4 Oratia (Tora) 30 Oct 2000 949 2.8 24.8

4 Jennifer (2002) 28 Jan 2002 956 1.7 28.1

4 Jeanett 27 Oct 2002 975 3.8 26.1

4 Erwin (Gudrun) 08 Jan 2005 961 6.4 33.0

4 Gero 11 Jan 2005 948 1.9 7.9

+ Kyrill 18 Jan 2007 963 6.7 35.5

+ Emma 01 Mar 2008 960 2.4 34.7

+ Klaus 24 Jan 2009 966 13 12.8

+ Quinten 09 Feb 2009 976 0.59 9.2

+ Xynthia 27 Feb 2010 968 2.7 8.7

× Joachim 16 Dec 2011 966 3.5 31.0

× Patrick (Dagmar) 26 Dec 2011 965 0.35 10.1

× Ulli 03 Jan 2012 955 1.6 27.7

× Christian (St Jude) 28 Oct 2013 969 0.91 18.7

× Xaver 05 Dec 2013 962 2.3 34.9
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