
Response to Reviewer 1

The study assesses the predictability of severe storms over Europe in the
most impor- tant season winter using the ECMWF ensemble forecasts. The
authors concentrate on 25 events in the period 1995 to 2015 applying different
metrics finding that these high impact events are predicted with skill up to 4
days. They also find skill for the area covered by these extreme events up to 10
days which may provide early warn- ing opportunities. Still, the limited sample
of only 25 storms shows strong inter-case variability. The small sample is a
clear drawback of this study as it limits the reliabil- ity of the deduced skills
and the author tend to overemphasize the results. Still the manuscript is nicely
written and well structured. It certainly contains new findings, which are fruitful
for how to identify predictive skill for extreme events, so I certainly see that the
manuscript is suitable for NHESS, if my minor to major comments are treated
seriously.

We thank the reviewer for his/her comments on the manuscript.
We will address all the comments below. In particular, we will clarify that we

explore the physical characteristics of some outliers that exhibit a particularly
high or low predictability and avoid any suggestion of a systematic link between
dynamics and predictability among the sample of storms. We will also detail
and discuss the representation of wind gusts in the ensemble reforecast and in
the reanalysis datasets. We hope that these revisions will better support the
results of the paper.

Comments
P1,L9: Please change to ‘potential for an early warning’.
We prefer to change to “potential for early warnings”.
P2,L1-7: You may add the study of Stucki et al. (2014, Nat. Hazards Earth

Syst. Sci.) here.
We will cite the Stucki et al. (2014) paper in the selection of storms, as

stated below.
P2,L29: Please change ‘manuscript’ to ‘study’.
We prefer to change “manuscript” to “paper”.
P3,L15-16: As wind gusts are an impor- tant metric used in this study, you

need to explain how this is derived in the reforecasts and how these gusts compare
to observations.

In both the ensemble reforecast and ERA-Interim, the wind gusts are com-
puted from the wind speed on the lowest model level and a turbulent component
based on a similarity relation between the variability of the surface wind and the
friction velocity. In the ensemble reforecast, which uses a more recent model ver-
sion, the computation of wind gusts includes an additional component based on
the low-level wind shear in convective situations. This additional component is
expected to contribute to the strongest wind gusts when convection is embedded
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in the cold front. The resolution of the ensemble reforecast and ERA-Interim
is known not to be sufficient to capture the strongest gusts due to mesoscale
structures such as sting jets and to steep topography. However, as the focus
here is on synoptic-scale aspects of winter storms, these limitations are likely
rather unimportant. The comparison with ensemble forecasts remains fair, be-
cause their horizontal resolution is not sufficient to capture the strongest gusts
either, and because the verification of wind gusts is based on values relative to
the model climate rather than on absolute values.

We will add a paragraph in Section 2.1 to detail and discuss the representa-
tion of gusts in the model data.

P3,L24-25: How do the selected European wind storms compare to the storm
cata- logue provided by Stucki et al. (2014, Nat. Hazards Earth Syst. Sci.).

We will discuss the focus of the selection of storms on the United Kingdom
due to a fixed threshold for wind gusts above 25 m s−1, which is less often
exceeded over continental Europe. We will further mention the Stucki et al.
(2014) paper as another catalogue based on alternative criteria for the specific
region of Switzerland.

P4,L13: It would be nice to include the publication by Raible et al. (2008)
who were the first to inter-compare cyclone tracking methods.

The publication by Raible et al. (2008) will be included.
P4,L16: Please change to ‘Neu et al. (2013) emphasized. . .’
We will implement the suggested change.
P5,L11: It remains unclear which level is used for the wind – is it 10-m wind?

Another question is whether the authors use wind gusts as vmax or sustained
wind. If the authors use wind gusts they need to include a discussion on the
parametrization used.

As stated above, we will add a paragraph in Section 2.1 to detail the repre-
sentation of gusts in the model data.

P5,L17-18: This could also a problem of the wind gust parameterization
and not just a problem of the spin-up of the model. Stucki et al. (2016, Tel-
lus) showed this how different gust parameterizations work over complex terrain
showing strong changes from one to another parameterization.

We will cite Stucki et al. (2016) in the discussion of Section 2.1 about the
representation of gusts over complex terrain. However, the problem seems to
be different here, as it occurs in the first 6-h output of the reforecast only and
not during the subsequent outputs. This suggests that the problem is due to
the model spin-up when the higher-resolution reforecast is initialized from the
lower-resolution reanalysis. We will clarify this in the manuscript.

P6, bottom line: This is why it is so important to say something about the
gust param- eterization and why the authors shall be encouraged to compare their
result to direct observations also on areas with complex terrain.

As stated above, we will add a paragraph in Section 2.1 to detail the repre-
sentation of gusts in the model data.

P7,L27-29: If I understand the results correctly you only have two cases
so such a strong statement that poor predictability is linked to process of extra
tropical transition and convective dynamics cannot be derived, so the authors
need to weak this state- ment and elsewhere in the manuscript.

We will clarify that the case of ex-Lili emphasizes the poor predictability of
the position during extratropical transition due to the difficulty at representing
convective dynamics but that it is unique among the selected storms and that
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other cases that exhibit strong biases formed over very different regions, as e.g.
Patrick over the southeastern United States and Jennifer (1996) over the eastern
North Atlantic.

P8,L34: It seems to be a bit awkward that the authors argue a high storm to
storm dependency as in the rest of the paper they use all the cases to get some
robust conclusion about predictability of severe storms which implies averaging
over as much cases as possible, also the dependency to the threshold is expected
as it is a matter of statistics that there is dependency to thresholds.

We agree that the results depend on the exact thresholds but we believe that
a limit of 2–4 days is realistic for the large majority of storms with a reasonable
definition of a useful forecast of the actual storm for an operational forecaster.
We will omit the storm-to-storm variability here, which is not necessary at this
point of the discussion, and further revise and clarify the choice of thresholds.

P10,L32-33: Change to ‘ further suggested to maximize . . . optimal thresh-
old is used to predict gusts’

We will change to “further suggested to maximize the Heidke Skill Score to
define the optimal threshold”.

P11,L5: From Figure 9 I think that the hit rate decrease but the false alarm
rate in- crease, correct?

This is indeed confusing. We will clarify that this is due to a different balance
between hit rate and false alarm rate.

P11-12, section 4.3: Well single storms are always special so I do not see
why there is a need for this section.

The purpose of this section is double. Firstly, it illustrates how the verifica-
tion of forecasts can be biased by focusing on observed events only. Secondly,
it explores possible links between the predictability of the storms and their
physical characteristics.

We will clarify the separation between the characteristics of some outliers
and the absence of a systematic link dynamics and predictability. We will further
extend the discussion of the results and include a comparison with findings of
previous studies.

P12,L16-26: Please shorten this part – it is a summary and not a conclusion.
We will shorten this part as suggested.
P13,L8: Please cite the earlier studies and change ‘should’ to ‘shall’.
We will implement the suggested change and cite the earlier studies.
P13,L20: I think the cases to case variability is expected.
Again, we will clarify the separation between the characteristics of some out-

liers and the absence of a systematic link between dynamics and predictability.
We will further discuss the limitation for the verification of extreme events and
compare alternative methods.

P13,L21: The conclusion on low predictability for storms of tropical origin
only relys on 2 cases so weaken this statement here.

We will clarify that the link with extratropical transition concerns a unique
case in the dataset.

References: Please get rid of the numerous errors in the reference list – this
is annoy- ing!

There appears to be a problem with the URL of several references. We will
therefore omit the URL whenever the DOI is available.

Figs. 5, 6, 7 and 10 needs to have increase axis labels as e.g. Fig. 8 has.
We will increase the axis label in those figures as suggested.
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Response to Reviewer 2

The manuscript investigates the forecast skill of extreme storms (often called
wind- storms) in the ECMWF 20-year reforecasts. The ECMWF 20-year refore-
casts are found to be skillful and ensemble spread well calibrated up to lead times
of 3-5 days. After this the skill drops; storms are found to move too slowly and
do not capture the intensity of observed events as measure by a Storm Severity
Index. No systematic links between storm properties (size, intensity, etc..) and
forecast skill is found. Some skill beyond 3-5 days is found using EFI and SOT
indices, suggesting some utility for windstorm warnings at these lead times.

The paper will be of interest to weather forecasting community as it contains
some new and interesting results. In general, the paper is clear in its approach
and figures are clear. I have a couple of specific comments on the paper (below)
which should be addressed. I’d consider these major revisions, although I don’t
think it would take much to address these comments. Subsequently, I’d recom-
mend the paper for publication provided these comments are fully addressed.

We thank the reviewer for his/her comments on the manuscript.
We will address all the comments below. In particular, we will refer more

to the results of earlier studies and emphasize the novelty of ours. We will also
clarify the limitations of using the ensemble average for the track and intensity
of the storms. We will finally discuss the representation of wind gusts in the
ensemble reforecast and in the reanalysis datasets. We hope that these revisions
will better support the results of the paper.

Specific Comments
1. Novelty of the study: The paper seems incremental in terms of progressing

this area of science, since a lot of what is said in this paper was covered by
Froude et al (2007). It would be helpful in terms of highlighting the novelty
of this particular study if a) the Froude et al 2007 paper is discussed in the
introduction and b) that the novelty of this paper is discussed in the conclusions.

There a two major differences between this paper and that of Froude: (1)
Froude investigated extratropical cyclones in general, while this paper focuses
on severe storms, which requires a much longer dataset to cover enough events;
(2) Froude investigated the track and intensity only, while this paper uses two
additional methods for the early warning and for the impact of storms, which
both require forecasts of wind gusts.

We will clarify these two points by adding a paragraph in the introduction to
discuss the papers of Froude and Pirret – using the same approach but applied
to severe storms – and by explicitly stating the novelty of the paper i.e. the
combination of three different methods and the use of a long homogeneous
dataset. We will additionally compare our results with those of these and other
previous papers in the conclusions to emphasize the novelty of this paper.

2. Page 8. Lines 19 to 33 and figure 6. Figure 6 is very useful as it gives
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another sense of the utility of the reforecasts. However, I don’t agree with some
of the statements here about the validity or not using an ensemble mean. The
statements seem rather confused to me. For example, we could say that for
your MSLP analysis in figure 3 we shall choose a threshold error of 10hPa to
indicate a useful forecast, and therefore we shouldn’t compute an ensemble mean
for when the bias in the ensemble mean went above this. You’d agree that this
would sound like a strange and arbitrary thing to do, but this is effectively what
you’re arguing in this piece of text. This strange argument should be removed.
Furthermore, I find it difficult to see how your results make the results of Froude
et al 2007 invalid (line 19) as they looked at a different dataset. Could you be
clearer here what you mean?

The use of the ensemble average is limited by two factors when the lead
time increases: (1) the identification of the storms becomes ambiguous and (2)
the number of members containing storms decreases. Both factors may bias the
average towards tracks that are close to the analysis and thus overestimate the
actual skill of the ensemble forecast. Thus an alternative metric is given as the
number of members forecasting the “actual” storm. This obviously depends on
how the “actual” storm is defined, but reasonable values suggest that the storms
are predicted by almost all members (with high certainty) until day 2–4.

We will first clarify the limitations of the ensemble average due to the two
factors mentioned above and then better justify the chosen thresholds with the
alternative metric. However, we agree that the 2–4 day limit does not strictly
restrict the range of utility of the ensemble average, as it depends on the exact
threshold used, and will therefore remove this argument.

3. Page 12. Line 9 and Figure 7a and 7b. ”The predicted SSI is thus
divided by a factor of 2 for ease of comparison unless stated otherwise” Have
you done this for the plots in Figure 7? If so then you will need to redo the
plots without this adjustment and revise the text. There’s no justification for
dividing one dataset by an arbitrary number to make it more comparable to the
other. Furthermore, why are the SSI much larger in the reforecasts compared
to ERA-I? Further down the page you say (Line 22), ”ERA-Interim may also
contribute to the cases of overestimation by underestimating the actual SSI due
to its limitation at representing the mesoscale structure of some storms.” You
will need to provide some evidence of this statement (e.g. a reference). How
much is ERA-I underestimating the true SSI? If ERA-I is very wrong, why
are you using it as your main evaluation dataset? You’ll need to address these
questions.

The SSI is systematically overestimated by a factor of 2 in the reforecast
compared to ERA-Interim, not only for the selected storms but for intense and
extreme events in general, as illustrated by the 95th and 99th percentiles of the
whole reforecast dataset in Figure 7 (dotted and dashed curves). The overesti-
mation is due to a longer tail of the distribution of wind gusts in the reforecast
compared to ERA-Interim, which impacts the SSI although it is calibrated with
a local climatological percentile (Equation 1). The overestimation must be ac-
counted for when investigating the SSI of the selected storms; one means of
doing this is by calibration of the reforecast by a factor of 2, as would likely be
done in an operational context to correct a systematic bias.

However, we agree that the calibration might be confusing here. We will
therefore present the results without calibration for the SSI of the storms. In-
stead, we will state that the overestimation until day 3 could be corrected,
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because it is systematic in the whole dataset, while the underestimation at
longer lead times is specific to the storms and thus indicates a poor predictabil-
ity. Finally, we will add a paragraph in the methods Section to discuss the
representation of wind gusts in ERA-Interim and the reforecast datasets.

Technical Comments
Page 1 Line 5. “. . .storms are correctly predicted. . .” correctly would

mean without any bias. Perhaps “well predicted” or “predicted with only small
forecast errors” would be a better expression.

We will reword to “well predicted” as suggested.
Line 9. “However, a large variability is” should be “However, large variabil-

ity is. . .”
We will correct this.
Line 10. “and does not appear. . .”. What is it that does not appear? Do

you mean the “. . .and the predictability of storms does not appear. . .”?
We will reword to “large variability is found between the individual storms

and the predictability does not appear...”.
Line 21 “. . .and of their forecast in numerical weather prediction sys-

tems.” Perhaps could be better expressed as “. . .and of the ability of numerical
weather prediction systems to forecast them.” In addition, I don’t disagree with
the sentence but references need to be added.

We will clarify to “and on the ability of numerical weather prediction systems
to forecast them, as detailed below”.

Page 2 Line 24-Line 28 and Figure 1. The sentences and the reference to
Figure 1 do not belong in the introduction. They should be moved to the methods
section.

We will move the references to Figure 1 to the methods section as suggested.
Page 4 Line 6. “In a second step, the mimima of MSLP are connected

between subsequent model outputs every 6 h to form tracks, if their displacement
velocity remains consistent in time.” This second half of the sentence doesn’t
really make sense. Could you split the sentence and make clear what “their
displacement velocity remains consistent in time” means?

We will clarify to “the mimima of MSLP are connected between subsequent
model outputs every 6 h, using a predicted velocity based on both the previous
displacement and the steering by the environmental flow”.

Line 8. “filtered to exclude storms with a weak Laplacian” Can you specify
the threshold is?

We will specify “below 0.8 hPa (◦ great circle)−2”.
Page 5 Line 24. Do you include SSI values over ocean in your European spa-

tial average? If so this doesn’t seem like a good idea – does it make a difference
if you use land-only values of SSI?

Indeed, SSI values are also included over adjacent ocean areas. This is to
avoid large sensitivities to the predicted position of storms that track close to
the coasts. In additon, although the impact of storms is expected over land
mostly, including the ocean partially accounts for storm surges, which represent
the main impact of some severe storms (e.g. Xynthia).

We will clarify this in the text.
Line 31 “resoved” should be “resolved”
We will correct this.
Page 7 Line 14 and line 24. “Dispersion” often has a very technical meaning.

I think here what you mean is “variability”. There are other examples of this in
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the manuscript that should be changed for readability.
We will replace “dispersion” by “variability” as suggested.
Page 8. Line 14. Rephrase “The motion of cyclones was also too slow in

the forecast but their MSLP was too deep.” As something like “The motion of
cyclones was too slow in the forecasts. In addition, but the forecasted MSLP was
too deep.”

We will substiantially rewrite the paragraph to clarify the interpretation of
the results.

Page 9 Line 4. ”...on a specific day but anywhere over central...” would be
better expressed as ”...on a specific day over central...”

We will change this as suggested.
Line 7 to 8. ”...the predicted distribution of SSI is overestimated overall.”

I don’t know what this means - what is the predicted distribution, is it the re-
forecasts? If so state this explicitly. Also state explicitly what the predicted
distribution is overestimated relative to.

We will rephrase to “although the SSI is scaled locally with separate model
climates, it is systematically overestimated in the reforecast compared to ERA-
Interim”

Line 12. Can you add some detail to explain how you select events for the
99th percentile of SSI?

We will precise “the 99th percentile of SSI values in the whole reforecast
dataset”.

Line 26. “Early Warning”. This terms means something very different in
different contexts. In some contexts, early warning only means 1-2 day lead
time. I’d suggest being specific here in terms of timescale and call this section
”Potential for Early Warnings on 5-10 day timescales”.

We will rename the section as suggested.
Page 10. Line 3-10. The description of Brier Skill Score should really be in

the methods section.
We will move the Brier Skill Score to the methods section as suggested.
Page 11 Line 1. ”This value is taken for consistency with the SSI.” Can you

say explicitly what this means?
We will explain that “The 98th percentile represents the strength at which

gusts become damaging in the SSI (Equation 1)”.
Line 19. ”...the optimal thresholds need to be levelled up and...” What do

you mean by levelled up? Do you mean increased?
Yes, we will change this.
Page 12 Line 2. Should be ”...which was noted...”
We will change this as suggested.
Line 27 ”The ensemble average is unbiased until day 3 to predict the position

and minimum MSLP of the storms on the day of maximum intensity.”, would
be better expressed as, ”The ensemble average has small biases until day 3 in
terms of predicting the position and minimum MSLP of the storms on the day
of maximum intensity.”

We will change this as suggested.
Line 30. Should be ”...ensemble members captures the actual storm...”
We will correct this as suggested.
Line 30. ”This bias is accompanied by an increase in ensemble spread by

a similar magnitude, which suggests that the ensemble is calibrated, but only
a minority of ensemble members still captures the actual storm at lead times
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beyond 3–5 days. This questions the relevance of using the ensemble average
at longer lead times. This differs from a classical situation of averaging the
ensemble members to smooth the unresolved scales, as the variables of interests
are objects here rather than continuous fields” This appears to be a different
argument than from earlier, where arbitrary thresholds were used to determine
whether the ensemble contained the storm or not. Can you comment on this?

We will clarify that there exists a limit of validity of the ensemble average
for the track of the storms, because they are identified as objects, which are not
always clearly defined. This contrast with the metrics based on the strength
of wind gusts, which are defined even in the absence of storm. We will further
revise the paragraph based on the modifications in Section 3.2.

Page 13 Line 17. ”The EFI and SOT indices confirm the skill of the refore-
cast at predicting the area covered by strong wind gusts until day 10 for storms
as for the whole dataset.” You argued a few paragraphs ago that few of the en-
semble members actually predicted storm beyond 3-5 days lead time. If that’s
the case, how can there be skill at the lead times of up to a week? This needs to
be explained in the conclusions.

We will clarify that the EFI and SOT, which emphasize the most extreme
members, show a skill for predicting strong gusts until 9–10 days, while an ac-
curate prediction of the position and intensity, which are based on the ensemble
average, is limited to the first 2–4 days. We will further add a figure to clarify
and summarize the results.

Line 29. ”The predictability of the severe storms investigated here may not
be linked to common factors but rather be due to characteristics of the individual
storms.” You’ve just argued in the previous paragraph that you don’t have enough
data to make this statement! So how can this statement also be true?

We agree that this statement is not justified and will clarify the limitation
of the data for predicting extreme events.

Figures Table 1 “Some particularly high or low values are emphasized in
bold.” This is a con- fusing thing to do – either remove the bold numbers or
decide on a sensible reason for using bold numbers.

We will specify that “The values corresponding to the deepest, most severe
and smallest storms cited in the text are emphasized in bold”.

Figure 3 and Figure 4. Font used in legends is too small and needs to be
substantially larger to be readable.

We will increase the font size in legends as suggested.
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Revisiting the synoptic-scale predictability of severe European
winter storms using ECMWF ensemble reforecasts
Florian Pantillon, Peter Knippertz, and Ulrich Corsmeier
Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany

Correspondence to: Florian Pantillon (florian.pantillon@kit.edu)

Abstract.

New insights into the synoptic-scale predictability of 25 severe European winter storms of the 1995–2015 period are obtained

using the homogeneous ensemble reforecast dataset from the European Centre for Medium-Range Weather Forecasts. The

predictability of the storms is assessed with different metrics including
::
(a) the track and intensity to investigate the storms’

dynamics and
::
(b)

:
the Storm Severity Index to estimate the impact of the associated wind gusts. The storms are correctly

::::
well5

predicted by the ensemble reforecasts
:::::
whole

::::::::
ensemble up to 2–4 days aheadonly, which restricts the use of ensemble average

and spread to short lead times. At longer lead times, the
::::::
number

::
of

::::::::
members

:::::::::
predicting

:::
the

::::::::
observed

::::::
storms

::::::::
decreases

::::
and

::
the

:::::::::
ensemble

:::::::
average

::
is

:::
not

::::::
clearly

:::::::
defined

:::
for

:::
the

:::::
track

:::
and

::::::::
intensity.

::::
The

:
Extreme Forecast Index and Shift of Tails are

:::::::
therefore

:
computed from the deviation of the ensemble reforecasts from the model climate. Based on these indices, the model

has some skill in forecasting the area covered by extreme wind gusts up to 10 days, which indicates
:
a clear potential for the10

early warning of storms
::::
early

::::::::
warnings. However, a large variability is found between the predictability of individual storms

and does not appear to be related to the storms’ characteristics . This may be due to the limited sample of 25 cases, but also

suggests that each severe storm has its own dynamics and sources of forecast uncertainty.
::
the

::::
poor

::::::::::::
predictability

::
of

:::::::
outliers

::::::
appears

::::::
related

::
to

::::
their

:::::::
physical

::::::::::::
characteristics

::::
such

:::
as

::::::::
explosive

:::::::::::
intensification

::
or
:::::
small

::::
size.

:::::::
Longer

::::::
datasets

::::
with

:::::
more

:::::
cases

:::::
would

::
be

:::::::
needed

::
to

::::::
further

:::::::::
substantiate

:::::
these

::::::
points.15

1 Introduction

One of the most important natural hazards over Europe arises from winter storms associated with low-pressure systems from the

North Atlantic, also referred to as cyclonic windstorms (e.g. Roberts et al., 2014)
::::::::::::::::::::::::
(Lamb and Frydendahl, 1991) . These storms

are therefore the focus of various fields of research involving the weather and climate communities but also the windpower and

reinsurance industries. At longer time scales, numerous studies are dedicated to the estimation of the footprint and return period20

of winter storms and often require a combination of dynamical and statistical models (Della-Marta et al., 2009; Hofherr and Kunz, 2010; Donat et al., 2011; Haas and Pinto, 2012; Seregina et al., 2014) .

A crucial but disputed
:
a
::::::
crucial

:
question lies in the trends in frequency and intensity of winter storms in the current and

future climate, which still differ
:
.
::::
This

::::::::
question

::
is

:::::::
disputed

::::
due

::
to
:::::

little
:::::::::
agreement

:
between climate models and between

identification methods (see Feser et al., 2015, for a review).
::::::::
However,

:::
the

::::::::
intensity

::
of

::::::
storms

::
is
::::

not
:::::::::
necessarily

::::::
related

:::
to

::::
their

::::::
impact

:::
and

::::::
storm

:::::
losses

:::
are

::::::
better

::::::::
estimated

:::::
from

:::
the

:::::::
strength

::
of
::::::

winds
::
or

:::::
wind

:::::
gusts

:::::::::
exceeding

:
a
:::::::

certain
::::::::
threshold25
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:::::::::::::::::::::::
(Klawa and Ulbrich, 2003) .

::::::::
Numerous

:::::::
studies

:::
are

::::::::
therefore

::::::::
dedicated

::
to

:::
the

:::::::::
estimation

::
of

:::
the

::::::::
footprint

::
of

::::::
strong

:::::
winds

::::
and

::::
gusts

:::::::::
associated

::::
with

:::::
winter

::::::
storms

::
as

::::
well

::
as

::::
their

:::::
return

::::::
periods

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Della-Marta et al., 2009; Hofherr and Kunz, 2010; Donat et al., 2011; Haas and Pinto, 2012; Seregina et al., 2014) .

:::::
These

::::::
studies

::::
often

:::::::
require

:
a
::::::::::
combination

:::
of

::::::::
dynamical

::::
and

::::::::
statistical

::::::
models

::
to

:::::::::
adequately

::::::::
represent

:::
the

:::::::::
footprints.

At shorter time scales, most studies concentrate on the detailed investigation of case studies of severe storms and of their

forecast in
::
on

:::
the

:::::
ability

:::
of numerical weather prediction systems .5

::
to

::::::
forecast

:::::
them.

:
Although the general lifecycle of extratropical cyclones has been described

::::::
known for almost one century,

the intensification of the storms and the generation of strong winds – responsible for most of the damages created by the

storms – involve physical processes of different scales that are still not fully understood
:::::::::::::::::::::
(Hewson and Neu, 2015) . Recent

advances have resulted from the attention drawn by devastating storms. The damaging winds over southeast England during

the “Great Storm” of October 1987, which were observed at the tip of the cloud head bounding the bent-back front, now form10

the archetypal example of a phenomenon known as the sting jet (Browning, 2004). The destructions caused by storm Lothar

over central Europe in December 1999 revealed the importance of diabatic processes in a way similar to a diabatic Rossby

wave for the rapid intensification of the storm over the North Atlantic (Wernli et al., 2002). The severe wind gusts observed

during the passage of storm Kyrill in January 2007 over central Europe finally emphasized the role of the convection embedded

in the cold front and including the formation of cold-season derechoes (Fink et al., 2009; Gatzen et al., 2011).15

These historical storms were poorly forecast when they occurred and thus captured an even larger attention in the weather

research community, which resulted in a prolific scientific literature on specific storms. In particular, Buizza and Hollingsworth

(2002) early recognized the potential of the ensemble prediction system of the European Centre for Medium-Range Weather

Forecasts (ECMWF) to forecast
::::::
predict

:
the storms Anatol, Lothar and Martin in December 1999. They showed that the

ensemble forecast offers
:::::::
ensemble

::::::::
forecasts

::::
offer a more consistent picture between different initialisations than the deterministic20

forecast and additionally provides
::::::::::
initialisation

::::
times

::::
than

:::::::::::
deterministic

::::::::
forecasts

:::
and

::::::::::
additionally

:::::::
provide early indications of

the chance of an intense storm. Lalaurette (2003) further showed that the extremeness of the ensemble forecast
::
as

::
a

:::::
whole,

measured by its deviation from the model climate, allows to identify
:::::::::
identifying areas of unusually strong winds up to 120

h lead time in the case of Lothar, although it fails
:::::
failing

:
in the case of Martin. Petroliagis and Pinson (2014) and Boisserie

et al. (2016) recently extended this methodology to longer periods witheither operational or ,
:::::::::::
respectively,

:::::::::
operational

:::
and

:
ret-25

rospective forecasts. While they found constrasting results from case to case, the authors confirmed the potential of ensemble

forecasts for the early warning of severe European storms.

Following
:
A

:::::
more

::::::::
statistical

::::::::
approach

::::
was

::::::::
proposed

:::
by

::::::::::::::::::::
Froude et al. (2007a, b) ,

::::
who

::::::::
identified

::::::
storms

:::
as

::::::
objects

::::
with

::
a

:::::::
tracking

::::::::
algorithm

:::
and

::::::::::::
systematically

::::::::
compared

:::::
their

:::::::
position

:::
and

:::::::
intensity

:::::::
between

::::::::
forecasts

:::
and

::::::::
analyses.

:::::
They

::::::::::
investigated

::
the

::::::::::::
predictability

::
of

:
a
:::::

large
:::::::
number

::
of

:::::::::::
extratropical

:::::::
cyclones

:::
in

::::
both

:::::::::::
deterministic

:::
and

::::::::
ensemble

::::::::
forecasts

::::
and

:::::
found

:
a
:::::
slow30

:::
bias

::
in

:::
the

:::::
track

::::::::
forecasts.

:::
For

::::
this

::::
large

::::::
sample

:::::::
ranging

:::::
from

::::::
shallow

::
to
:::::
deep

::::::::
cyclones,

::::
they

::::::
further

:::::
found

::::
large

::::::
errors

::
in

:::
the

:::::::
intensity

::::::::
forecasts

:::
but

::::::::::
constrasting

:::::
biases

::::
that

::::::
depend

::
on

:::
the

::::::
region

:::
and

:::
on

:::
the

::::::
model.

::::::::::::::::::::::
Pirret et al. (2017) recently

::::::
applied

::::
this

:::::::
tracking

:::::::
approach

::
to
::::::
severe

::::::::
European

::::::
storms

::
in

:::::::::
operational

::::::::
ECMWF

::::::::
ensemble

::::::::
forecasts

:::
and

:::::
found

::
a

:::::::
negative

:::
bias

::
in
::::::::
intensity

::
in

:::::::
addition

::
to

:::
the

::::
slow

::::
bias

:::
in

:::::
track.

::::
They

:::::::
further

::::::::::
investigated

:::
the

::::::
relative

:::::::::::
contribution

::
of

:::::::
diabatic

::::
and

::::::::
baroclinic

:::::::::
processes

::
to

:::
the

::::::::::::
intensification

::
of

:::
the

:::::::
storms.

::::::::
Although

::::
they

:::::::::
succeeded

::
in

:::::::
showing

::
a
:::::::::
significant

:::::::::
correlation

:::::::
between

:::
the

:::::
track

::::
and

:::
the35
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::::::::
dynamics

::
of

:::
the

::::::
storms,

::::
they

::::::::
struggled

:::
to

:::
find

:::
an

::::::
impact

::
on

::::::::::::
predictability.

:::::
Their

::::::
results

:::::
were,

:::::::
however,

:::::::
limited

::
by

:::
the

:::
use

:::
of

:::::::::
operational

::::::::
forecasts,

::::::
whose

::::
skill

::::::::
improves

::::
with

:::::::
updates

::
in

:::
the

:::::
model

:::::::
version

:::
and

::::
with

::::::::
increases

::
in
:::

the
:::::::::

horizontal
:::::::::
resolution

::
in

::::::::
particular.

:

:::::::
Building

::
on

:
these previous studies, the predictability of severe European winter storms is

:::::::::::
systematically

:
investigated here for

a 20-year period in an ensemble prediction system by taking advantage of the recently available ECMWF retrospective forecast5

(reforecast)
:::::::
forecasts

:::::::::::::::::::::::::::::::::::
(reforecasts; Hagedorn et al., 2008, 2012) . While reforecasts are originally designed for calibrating the

operational forecasts, which result in a significant improvement in forecast skill, they also represent a homogeneous dataset that

is ideal for comparing historical events (Hamill et al., 2006, 2013). The predictability of severe storms is thus not restricted to

single case studies here but encompasses a large number of events that allow a statistical analysis. Three metrics are combined

::::::::
Situations

::::
with

::::
less

::::::
severe

::
or

:::
no

::::::
storms

:::
are

::::
also

:::::::
included

:::
to

:::::
check

:::::::
whether

:::
the

::::::
results

:::
are

::::::
biased

:::
by

:::
the

:::::
focus

:::
on

:::::::
extreme10

::::::
events.

:::::::::::
Furthermore,

::::
three

:::::::
methods

:::
are

:::::::::
combined

::::
here to assess the predictability in regard to different properties (Figure 1):

the dynamics are evaluated with the
::
of

:::
the

::::::
storms.

::
In

:::::::
addition

::
to
:::
the

:
track and intensity of the storms and

::
and

::
to
:::
the

:::::::::
unusually

:::::
strong

:::::
winds

::::::::::
investigated

:::
by

:::::
other

::::::
authors,

::
a
:::::
third,

:::::
novel

:::::::
approach

::
is
::::::
added

:::
for

::
the

::::::
impact

:::
of the impact is estimated with the

strength of wind gusts, while the potential for early warnings is computed from the area of predicted gusts that are unusually

strong compared to the model climate. These metrics are further generalized to situations with less severe or no storms to15

ensure that the results are not biased by the focus on extreme events
::::::
storms

::::::::
measured

::
by

::::
their

::::
gust

::::::::
footprint.

:::
To

:::
the

::::
best

::
of

:::
the

:::::::
authors’

:::::::::
knowledge,

:::
the

::::::
impact

:::
of

:::::
severe

::::::
winter

::::::
storms

:::
has

::::
been

::::::::::
extensively

::::::
studied

::
in
:::

the
::::::::::::

climatological
::::::::::

community
:::
but

:::
its

:::::::::::
predictability

:::
has

:::
not

::::
been

::::::::::
documented

::
in
:::
the

::::::::::::
peer-reviewed

::::::::
literature.

The manuscript
::::
paper

:
is organized as follows. Section 2 describes the reforecast and reanalyses

::::::::
reanalysis

:
model data and the

selection of severe storms, as well as the 3 different methods that are
::::
three

:::::::
different

::::::::
methods used to assess the predictability20

of the storms in the
::::
these data. Section 3 presents the results obtained for general storm characteristics and using either the

ensemble average and spread or individual ensemble members. Section 4 discusses the skill for early warning
::
on

:::
the

::::
5–10

::::
day

::::::::
timescale using either selected storms or the whole dataset. Section 5 finally gives the conclusions of the study.

2 Data and methods

2.1 Model data25

This study extensively makes use of the ensemble reforecast from the ECMWF (Hagedorn et al., 2008, 2012). The ensemble

reforecast is based on the current version of the operational model but with a lighter configuration to reduce computing time. It

is initialised from the ERA-Interim reanalysis
:::::::
ECMWF

:::::::::::
Retrospective

::::::::
Analysis

::::::::::::
(ERA)-Interim

:
(Dee et al., 2011) and ensemble

members are obtained from initial perturbations computed with singular vectors. In contrast to the operational model, stochastic

perturbations of physical processes are not applied to the ensemble members. Since mid-May 2015, the ensemble reforecast30

contains 10 perturbed members in addition to a control member and it is run twice a week – every Monday and Thursday

at 00 UTC – for the current date in the past 20 years. Until mid-March 2016, when the model resolution was upgraded, the

horizontal grid spacing was approximately 30 km for the first 10 days and was then coarser at longer lead times until 46 days.
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All 10-day ensemble reforecasts computed between mid-October 2015 and mid-March 2016 are used here, which represents a

homogeneous dataset of nearly 10,000 individual reforecasts for the winter seasons 1995/96 to 2014/15.

The reforecasts are verified against the ECMWF Retrospective Analysis (ERA)-Interim, which is
::::::::::
ERA-Interim

::::::::::
reanalyses,

:::::
which

:::
are

:
available since 1979 and is

:::
are

:
computed with a horizontal grid spacing of approximately 80 km, corresponding

to a pre-2006
::::
2006 version of the operational model (Dee et al., 2011). Variables of interest include the

:::
The

::::::::::
verification

::
is5

:::::
based

::
on

:::
the

::::::::
6-hourly

:
Mean-Sea-Level Pressure (MSLP) output at 00, 06, 12 and 18 UTC and wind gusts output

:::
for

:::
the

::::
track

::::
and

:::::::
intensity

::
of

::::
the

::::::
storms

:::
and

:::
on

:::
the

:::::
daily

::::::::
maximum

:::::
wind

:::::
gusts

:::
for

:::
the

:::::
other

:::::::
metrics.

:::
The

:::::
wind

:::::
gusts

:::
are

::::::::
available

::
in

:::
the

:::::::::::
ERA-Interim

:::::::
dataset from short-range forecasts initialized

::::::::
reforecasts

:::::::::
initialized

:::::
from

:::
the

:::::::::
reanalyses

:
at 00 and 12

UTC. Although it
::::
They

:::
are

:::::::::
computed

::::
from

:::
the

:::::
wind

:::::
speed

::
on

:::
the

::::::
lowest

::::::
model

::::
level

::::
and

:
a
::::::::
turbulent

:::::::::
component

::::::
based

::
on

::
a

::::::::
similarity

::::::
relation

:::::::
between

:::
the

:::::::::
variability

::
of

:::
the

::::::
surface

:::::
wind

:::
and

:::
the

::::::
friction

:::::::
velocity

::::::::::::::::::::
(Panofsky et al., 1977) .

::
In

:::
the

::::::::
ensemble10

::::::::
reforecast,

::::::
which

::::
uses

:
a
:::::

more
::::::
recent

:::::
model

:::::::
version,

:::
the

:::::::::::
computation

::
of

:::::
wind

:::::
gusts

:::::::
includes

::
an

:::::::::
additional

::::::::::
component

:::::
based

::
on

:::
the

::::::::
low-level

:::::
wind

:::::
shear

::
in

:::::::::
convective

::::::::
situations

::::::::::::::::::::::::
(Bechtold and Bidlot, 2009) .

:::::
This

::::::::
additional

::::::::::
component

::
is

::::::::
expected

::
to

::::::::
contribute

::
to

:::
the

::::::::
strongest

::::
wind

:::::
gusts

:::::
when

:::::::::
convection

::
is

::::::::
embedded

:::
in

::
the

::::
cold

:::::
front.

:

::::::::
Although

:::
the

:::::::::::
ERA-Interim

::::::
dataset has been widely used for climatological studies of winter storms, ERA-Interim

:
it has re-

cently been criticized for underestimating the deepening rate of storms and the strength of winds
::::
wind

::::
gusts

:
(Hewson and Neu,15

2015). In particular, the
:::::::
relatively

:
low horizontal resolution of ERA-Interim is not sufficient at representing

::
to

::::::::
represent the

mesoscale structure of the storms. The next generation of ECMWF reanalysis ERA5 may alleviate this limitation thanks to its

::::::::
Capturing

::::
sting

::::
jets

::
for

::::::::
instance,

:::::
which

:::
are

:::::::::
responsible

:::
for

:::::
some

::
of

:::
the

::::
most

::::::::
damaging

:::::
wind

::::
gusts

::::::
within

::::::
storms,

::::::
would

::::::
require

:
a horizontal grid spacing of about 30 km but it is still under development.

:::::
10–20

:::
km

::::::::::::::::::::::
(Hewson and Neu, 2015) .

:::::::::::
Furthermore,

:::
gust

:::::::::::::::
parameterizations

::::::::::::
underestimate

:::
the

:::::::
observed

:::::::
strength

::
of

:::::
wind

::::
gusts

::::
over

::::::::
complex

::::::
terrain,

::::
even

::
at

:::::
much

:::::
higher

:::::::::
resolution20

:::::::::::::::::
(Stucki et al., 2016) . As the focus here is on the synoptic-scale aspects of winter storms,

::::
these

:::::::::
limitations

:::
of ERA-Interim is

used as a reference, while caution is taken for the interpretation of strong winds that could be related to mesoscale structures.

::
are

::::::
likely

:::::
rather

:::::::::::
unimportant.

:::
The

::::::::::
comparison

::::
with

::::::::
ensemble

::::::::
forecasts

:::::::
remains

:::
fair,

:::::::
because

:::::
their

::::::::
horizontal

:::::::::
resolution

::
is

:::
not

:::::::
sufficient

::
to
:::::::
capture

:::
the

:::::::
strongest

:::::
gusts

:::::
either,

:::
and

:::::::
because

:::
the

:::::::::
verification

:::
of

::::
wind

:::::
gusts

:
is
:::::
based

:::
on

:::::
values

::::::
relative

::
to
:::
the

::::::
model

::::::
climate

:::::
rather

::::
than

:::
on

:::::::
absolute

::::::
values.

:::::::
Finally,

:::::::
although

::::
they

::::
rely

::
on

::::::::::::::::
parameterizations,

::::::::
modelled

::::
wind

:::::
gusts

:::
are

::::::::
preferred

::
to25

::::
wind

::::::
speeds,

:::::::
because

::::
they

:::
are

::::::
output

::
as

:::::::::
maximum

:::::
values

::::
over

::
a

:::::
certain

:::::
time

:::::
period

:::::
rather

::::
than

::::::::
6-hourly

:::::::::::
instantaneous

::::::
values

:::
and

::::
thus

:::::
better

::::::
sample

::::::
storms

::::
with

:
a
:::::
large

:::::::::::
displacement

:::::::
velocity.

:

2.2
:::::::
Selection

::
of

:::::::
storms

Significant historical storms are selected to investigate their predictability in the ensemble reforecast. The selection is made

using the “XWS open access catalogue of extreme European windstorms” provided by Roberts et al. (2014), which contains30

the 50 most severe storms for the 1979–2012 period. The catalogue is based on ERA-Interim dynamically downscaled with the

Met Office Unified Model and recalibrated with observations. It is
:::
The

::::::::
majority

::
of

:::
the

:::
50

::::::
storms

::::::
affected

::::
the

:::
UK

:::::
more

::::
than

:::
any

:::::
other

::::::::
European

:::::::
country.

::::
This

::
is

:::
not

:::::::::
surprising,

::::::::::
considering

:::
the

:::::::
location

::
of

:::
the

::::
UK

::
at

:::
the

:::
end

::
of
::::

the
:::::::
Atlantic

:::::
storm

:::::
track.

::::::::
However,

:
it
::::
may

:::
be

::::::::::
exaggerated

::
by

:::
the

::::::::
selection

::
of

::::::
storms

:::::
based

:::
on

::::
wind

:::::
gusts

:::::
above

:
a
:::::
fixed

::::::::
threshold

::
of

::
25

:::
m

:::
s−1,

::::::
which

::
is
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:::
less

:::::
often

::::::::
exceeded

::::
over

:::::::::
continental

::::::
Europe

:::::::::::::::::::
(Roberts et al., 2014) .

::::
The

:::::::
selection

::::
thus

::::::
differs

::::
from

:::::
other

:::::::::
catalogues

:::::
based

:::
on

::::::::
alternative

:::::::
criteria

:::
that

::::
may

::
be

:::::
more

:::::::
relevant

:::
for

::::::
specific

:::::::
regions

::::::::::::::::::::::::::::::::::
(e.g. Stucki et al., 2014, for Switzerland) .

:::
The

::::::::
catalogue

:::
is available online at http://www.europeanwindstorms.org/ and was

:::
has

::::
been

:
updated with two additional

storms for the winter season 2013/14. Following the time period of the ensemble reforecast, the storms that occurred between

mid-October and mid-March from 1995/96 to 2014/15 are selected here. One storm occurring in late March is excluded through5

the restriction to the winter period, expecting that the mid-October to mid-March time span of the reforecast is relevant for

severe storms. The selection results in the 25 storms listed in Table 1. The storm names are those given by the Free University

off
::
of Berlin when available, with alternative names in brackets when relevant. They were completed for a few storms with

respect to the original catalogue of Roberts et al. (2014).

2.3 Storm tracking
:::::::::
Evaluation

::
of

::::::::::::
predictability10

:::::
Three

::::::
metrics

:::
are

:::::::::
combined

::
to

::::::
assess

:::
the

:::::::::::
predictability

:::
of

:::
the

::::::
storms

::::
with

::::::
regard

::
to

::::::::
different

:::::::::
properties:

:::
the

:::::::::
dynamics

:::
are

::::::::
evaluated

::::
with

:::
the

::::
track

::::
and

::::::::
intensity

::
of

:::
the

::::::
storms

::::::
(Figure

::::
1a;

::::::
Section

::::::
2.3.1),

:::
the

::::::
impact

::
is
::::::::
estimated

:::::
with

:::
the

:::::::
footprint

:::
of

::::
wind

:::::
gusts

::::::
(Figure

:::
1b;

::::::
Section

::::::
2.3.1)

:::
and

:::
the

:::::::
potential

:::
for

:::::
early

:::::::
warnings

::
is
:::::::::
computed

::::
from

:::
the

::::
area

::
of

::::::::
predicted

::::
gusts

::::
that

:::
are

:::
well

::::::
above

:::
the

:::::
model

::::::
climate

:::::::
(Figure

:::
1c;

::::::
Section

::::::
2.3.1).

:::::
Either

:::
the

::::::::
ensemble

:::::::
average

::
or

:::
the

::::::::
individual

::::::::
members

:::
are

::::
used

:::
for

:::
the

::::::::::
verification

::
of

:::
the

:::::::::
reforecasts

::
of

:::
the

:::::::
selected

::::::
storms15

:::::
based

::
on

:::::
these

:::::::
metrics.

::::::
When

:::
the

:::::
whole

:::::::::
reforecast

::::::
dataset

::
is
::::::::::

considered,
:::
the

:::::
skill

::
is

::::::::
estimated

::::
with

::::::::::
appropriate

::::::
scores.

:::
In

::::::::
particular,

:::
the

::::
Brier

:::::
Score

:::::::::::::::::::
(Brier, 1950) measures

:::
the

:::::
ability

::
to
::::::
predict

::
if

::
an

:::::
event

:::
will

:::::
occur

::
or

::::
not.

:
It
::::
can

::
be

::::
split

:::
into

:::::::::
reliability,

::::::::
resolution

::::
and

:::::::::
uncertainty

:::::::::::
components

::::::::::::::
(Murphy, 1973) .

::::
The

:::::::::
reliability

:::::::::
component

:::::::::
measures

:::
the

::::::
ability

::
of

:::
the

:::::::
forecast

:::
to

::::::
predict

:::
the

:::::::
observed

:::::::::
frequency

::
of

::::::
events.

::
A
:::::::

perfect
::::::::
reliability

:::
can

:::
be

::::::::
achieved

::::
with

:
a
::::::::::::
climatological

:::::::
forecast

::::
and

::
is

::::
thus

:::
not

:::::::
sufficient

::
to
:::
be

::::::
useful.

::
In

:::::::
contrast,

:::
the

:::::::::
resolution

:::::::::
component

::::::::
measures

:::
the

::::::
ability

::
of

:::
the

:::::::
forecast

::
to

:::::::::
distinguish

:::::::
between

::::::
events20

:::
and

::::::::::
non-events,

:::::
which

::::
can

:::
not

:::
be

:::::::
achieved

::::
with

::
a
::::::::::::
climatological

::::::::
forecast.

:::
The

::::::::::
uncertainty

::::::::::
component

:::::
finally

:::::::::
measures

:::
the

:::::::
sampling

::::::::::
uncertainty

:::::::
inherent

::
to

:::
the

::::::
events.

:::
The

:::::
Brier

:::::
Score

:::
can

::::::
further

:::
be

::::::::
compared

::
to

:
a
::::::::::::
climatological

:::::::
forecast

::
to

::::::
obtain

:::
the

::::
Brier

::::
Skill

:::::
Score

::::::
(BSS),

::::::
which

::
is

::
in

:::
turn

::::
split

::::
into

BSS = 1−Brel −Bres
:::::::::::::::::::

(1)

::::
with

::::::::
reliability

:::
and

:::::::::
resolution

::::::::::
components

::::
Brel:::

and
:::::
Bres :::::::::::::::::::::::::::::

(e.g. Jolliffe and Stephenson, 2012) .
:

25

2.3.1
:::::
Storm

::::::::
tracking

The 25 selected storms are tracked both in ERA-Interim and in the members of the ensemble reforecast, using the algorithm

described by Pinto et al. (2005) and originally developed by Murray and Simmonds (1991). In a first step, maxima are identified

in the Laplacian of MSLP interpolated on a polar stereographic grid then minima in MSLP are looked for in their vicinity. The

Laplacian of MSLP is closely related to the quasi-geostrophic vorticity; thus the algorithm is similar to tracking maxima in30

low-level vorticity. In a second step, the mimima of MSLP are connected between subsequent model outputs every 6 hto

form tracks, if their displacement velocity remains consistent in time
:
,
:::::
using

:
a
::::::::
predicted

:::::::
velocity

:::::
based

:::
on

::::
both

:::
the

::::::::
previous
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:::::::::::
displacement

:::
and

:::
the

:::::::
steering

:::
by

:::
the

:::::::::::
environment. As the focus is on severe storms here, the obtained tracks are filtered to

exclude storms with a weak Laplacian of MSLP
::::
below

:::
0.8

::::
hPa

::
(◦

::::
great

::::::::
circle)−2

:
or with a duration of less than 24 h. However,

the algorithm is applied hemisphere-wide and thus results in a large number of tracks, among which the storms of interest need

to be identified.

Identifying the storms in ERA-Interim is straightforward, because the selection of severe storms is based on the same dataset.5

For each of the 25 storms, the reference time and position of minimum MSLP given by Roberts et al. (2014) are searched for

in the tracks obtained from the algorithm. The closest track is unambiguously identified this way and matches the reference

track, although differences may arise, particularly at the beginning and end. As shown by
::::::::
suggested

::
by

::::::::::::::::::::
Raible et al. (2008) and

:::::::::
generalized

:::
by

:
Neu et al. (2013), such differences are a common issue when comparing storm tracking algorithms, which

usually agree well for the mature phase of deep cyclones but differ during the phases of cyclogenesis and cyclolysis. In10

particular, the algorithm of Pinto et al. (2005) tends to identify the cyclones earlier than others. Neu et al. (2013) emphasize

that there is no best way of tracking storms, because there is no single definition of extratropical cyclones. As the same

algorithm is applied here to both ERA-Interim and the reforecasts, potential biases due to the tracking method would likely

cancel out.

In the reforecast, identifying the storms is less straightforward even at short lead times and quickly becomes ambiguous,15

because the tracks diverge from ERA-Interim when the lead time increases. In earlier studies, Froude et al. (2007a, b) applied

strict criteria in the location, timing and duration of tracks to identify storms in forecasts. While such criteria may be required

for statistical studies, they would reject too many ensemble members for the sample of storms considered here, in particular

at long lead time, and thus would bias the results towards “good” membersonly. Instead, the track closest to ERA-Interim is

identified in each ensemble member without arbitrary criteria, based on the great-circle distance averaged over a 24-h period.20

Two methods are compared for the definition of the 24-h period. In the first method, the period is defined as the first 24-h

overlap between the track in the ensemble member and in ERA-Interim. If the track is not present at the time of initialization, it

is further constrained to start in the ensemble member within 48 h of its first occurrence in ERA-Interim. In the second method,

the period is simply defined as the day of maximum intensity.

The two methods are illustrated for the 7-day reforecast of the storm that hit the British Isles on 28 October 1996 (“u19961028”,25

Table 1). The storm took its origin in Hurricane Lili, which reached Europe after crossing the North Atlantic and undergoing

extratropical transition (Browning et al., 1998). With the first method, the identified tracks start from the same location, be-

cause the storm is present in the reforecast at the time of initialization (Figure 2a). They later diverge and only two of them

reach Europe, whereas the others remain over the central North Atlantic. With the second method in contrast, the identified

tracks all reach Europe, as expected from the identification on the day of maximum intensity (Figure 2b). However, they start30

from different regions spreading from the western to the eastern North Atlantic. In particular, no single track takes its origin

in Hurricane Lili, i.e. the two methods do not show any common track. Although this case of extratropical transition is unique

among the selected storms, it illustrates the difficulty of identifying storms in the reforecast. The most relevant method depends

on the aims of the analysis; the first method focusing on the dynamics of the storm and the second one on its impact. Both

methods are therefore used here.35
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2.4 Storm Severity Index

2.3.1
:::::
Storm

::::::::
Severity

:::::
Index

While the intensity of a storm is commonly measured with its minimum MSLP, its severity mostly depends on the strength of

the wind gusts, which is also controlled by the pressure gradient at the synoptic scale and by additional factors at the mesoscale

and turbulent scale. In particular, insured losses have been shown to scale with the third power of the strongest wind gusts.5

Following Klawa and Ulbrich (2003) and ?
:::
for

::::::::::
observations

::::
and

:::::::::::::::::::::::
Leckebusch et al. (2007) for

::::::
model

::::
data, a Storm Severity

Index (SSI) is therefore defined as

SSI =

(
vmax

v98
− 1

)3

(2)

if vmax > v98 and SSI = 0 otherwise, with vmax the daily maximum wind gust and v98 its local 98th climatological percentile.

The scaling with v98 accounts for the local adaptation to wind gusts, whose impact on infrastructure is weaker in exposed areas10

such as coasts and montains than in the continental flatlands for the same absolute wind speed (Klawa and Ulbrich, 2003). The

climatology of wind gusts is computed separately for ERA-Interim and the reforecast but for the same period of interest
:
,
:::
i.e.

mid-October–mid-March 1995/96–2014/15. The resulting values of v98 are higher in the reforecast, likely due to the higher

model resolution . In particular
::
but

::::::::
possibly

::::
also

:::
due

:::
to

:::::
other

:::::::
changes

::
to

:::
the

::::::::
ECMWF

:::::::
model.

::
In

:::::::
addition, wind gusts are

abnormally high over the topography in the first 6-h output of the reforecast, which suggests a problem with .
:::
As

:::
this

:::::
does

:::
not15

:::::
appear

::
in
::::::::::
subsequent

:::::::
outputs,

:
it
::
is

:::::
likely

::::::
related

::
to

:
the spin-up of the model

::::
when

:::
the

::::::::::::::
higher-resolution

::::::::
reforecast

::
is
:::::::::
initialized

::::
from

:::
the

:::::::::::::
lower-resolution

:::::::::
reanalysis. The first 6 h are

:::
6-h

:::::
output

::
of

:::
the

:::::::::
reforecast

:
is
:
thus omitted for computing both vmax and

v98. Wind gusts are also subject to caution in ERA-Interim but are still preferred to the wind speed (used by ?) , because they

represent maximum values over a certain time period rather than instantaneous values and thus better sample storms with a

large displacement velocity.20

The
::
As

::
an

::::::::
example,

:::
the daily maximum gusts

:::
and

:::
the

:::::::
resulting

:::
SSI

:
in ERA-Interim are shown in Figure 3a and the resulting

SSI in Figure 3b
::
b,

::::::::::
respectively,

:
for storm Lothar on 26 December 1999. The strongest gusts are found over the Bay of Biscay

but the highest SSI is found over southern Germany due to the lower values of the local model climatology. The SSI is

then averaged over central Europe (defined as 40◦N–60◦N and 10◦W–30◦E; corresponds to
:::
the map shown in Figure 3)

to give a single value for the total severity of the storm, which can then be compared with the reforecast. This method is25

equivalent to the area SSI defined by ?
::::::::::::::::::::
Leckebusch et al. (2007) . It is preferred to including the SSI along the track of the

storm only(event SSI in ?) ,
:
,
::
as

::::
e.g.

::
in

:::::::::::::::::::
(Roberts et al., 2014) , because of the ambiguous identification of the tracks in the

reforecast. Among the 25 investigated storms, Lothar exhibits the highest averaged SSI in ERA-Interim, followed by Klaus,

Martin and Kyrill (Table 1). These four storms are responsible for the four highest insurance losses during the period of interest

(Roberts et al., 2014), which suggests that the averaged SSI in ERA-Interim is a relevant measure of the severity of storms.30

Inaccuracies are still expected and attributed to mesoscale features that are not resoved
:::::::
resolved by ERA-Interim and by non-

meteorological factors such as the density of population and the insured capital.
::::::
Finally,

::::::::
although

:::
the

::::::
impact

:::
of

::::::
storms

::
is

:::::::
expected

:::::
from

::::
wind

:::::
gusts

::::
over

::::
land

:::::::
mostly,

:::
the

:::::::
adjacent

:::::
ocean

:::::
areas

:::
are

::::
also

::::::::
included

::
in

:::
the

:::::::::
calculation

:::
of

:::
the

:::
SSI

:::::
here

::
to
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::::
avoid

:::::
large

::::::::::
sensitivities

::
to

:::
the

::::::::
predicted

:::::::
position

::
of

::::::
storms

::::
that

::::
track

:::::
close

::
to

:::
the

::::::
coasts.

::::::::
Including

:::
the

:::::
ocean

::::
also

::::::::
accounts

::
at

::::
least

:::::::
partially

:::
for

:::::
storm

::::::
surges,

:::
the

::::
main

::::::
impact

::
of

:::::
some

::::::
severe

:::::
storms

::::::::::::::::::::::::::::::
(e.g. Xynthia, Ludwig et al., 2014) .

2.4 Extreme Forecast Index and Shift of Tails

2.3.1
:::::::
Extreme

::::::::
Forecast

:::::
Index

::::
and

:::::
Shift

::
of

::::
Tails

Forecasting extreme events is a challenge in numerical weather prediction, because predicted extremes tend to underestimate5

the magnitude of actual events. Lalaurette (2003) therefore introduced the Extreme Forecast Index (EFI), which measures the

extremeness of an ensemble forecast as compared to the model climate rather than to the observed climate. The original for-

mulation of the EFI was revised by Zsótér (2006), who included a weighting function to emphasize the tails of the distribution

and obtained

EFI =
2

π

1∫

0

p−Ff (p)√
p(1− p)

dp (3)10

with Ff (p) the proportion of ensemble members lying below the p quantile of the model climate. The EFI quantifies the

deviation of an ensemble forecast from its climatological distribution with a unitless number between -1 (all members reach

record-breaking low values) and +1 (record-breaking high values).

Zsótér (2006) also introduced the Shift of Tails (SOT) as an additional index that focuses even more on the tail of the

distribution15

SOT (p) =−Qf (p)−Qc(p0)

Qc(p)−Qc(p0)
(4)

with Qf (p) and Qc(p) the p quantiles of the ensemble forecast and of the model climate, respectively. The SOT indicates if a

fraction of the ensemble members predicts an extreme event, even if the rest of the members do not. Following Zsótér (2006), p

is taken as the 90th percentile, i.e. the top two members of the 11-member ensemble reforecast. As in the operational ECMWF

configuration, p0 is taken as the 99th percentile of the model climate, which is smoother than the 100th percentile (maximum)20

used by Zsótér (2006). A positive value of SOT thus means that at least two members predict an extreme event that belongs to

the top percent of the model climate.

Both EFI and SOT are computed here for daily maximum wind gusts. For consistency with the SSI, the model climate is

defined from the period mid-October to mid-March 1995/96–2014/15. This contrasts with the operational ECMWF configura-

tion, where the model climate is defined for each forecast within a one-month window centred around the initialization time.25

As the focus is on winter storms here, a seasonal model climate is preferred to avoid storms to be considered as more or less

extreme depending on when they occur during the season. A longer period is also preferred to improve the representation of

the 99th percentile of the model climate, as the length of the operational configuration has been validated for precipitation

and temperature but not for wind gusts (Zsoter et al., 2015). Finally, as in the operational configuration, the model climate is

computed separately at each lead time to compensate for any drift of the reforecast.30
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Figure 4 illustrates the EFI and SOT for the 6-day reforecast of storm Lothar. High values of EFI spread over a broad region

from the Atlantic Ocean to eastern Europe and exhibit stripes further eastward (Figure 4a). Positive values of SOT also spread

over a similar, broad region but the highest values are more concentrated (Figure 4b). This is due to the stronger emphasis on

the tail of the distribution based on 2 members in SOT rather than on the whole ensemble in EFI. A comparison with ERA-

Interim in Figure 3a indicates a skill of both EFI and SOT in predicting the strong gusts over parts of France, Switzerland and5

Germany. However, it also shows a discrepancy between high EFI or SOT and weaker gusts over other regions. This suggests

a potential for warnings but with possible false alarms, as already noted by Lalaurette (2003). The use of EFI and SOT thus

requires an appropriate balance between hit rate and false alarm rate
::::
rates

:
(Petroliagis and Pinson, 2014; Boisserie et al., 2016).

3 Predictability of storm characteristics

3.1 Position and intensity10

The predictability of the selected storms is first evaluated for the position and intensity obtained from the storm tracking

algorithm. The storms are identified in the reforecast at the time of first occurence and compared with ERA-Interim at the time

of maximum intensity. As the 10-day reforecasts are computed every Monday and Thursday, three lead times are available for

most storms but only two for those which occurred on a Sunday. The average bias and spread are computed for each storm and

lead time with the median and median absolute deviation, respectively, which are preferred to the mean and standard deviation15

to ensure robust statistics despite the small number of ensemble members.

On average over all storms, the predicted MSLP remains close to ERA-Interim until day 4, but exhibits a clear positive bias,

i.e. it underestimates the intensity of storms from day 5 onwards (black curve in Figure 5a). The predicted MSLP also exhibits

a large dispersion
::::::::
variability between the storms, which increases with increasing lead time (symbols in Figure 5a). The most

striking outlier is storm Gero (red triangle), which shows the strongest
:::::
largest

:
positive biases with more than 60 and 40 hPa20

on days 5 and 8, respectively. Gero experienced an explosive cyclogenesis of 40 hPa in 24 h to reach 948 hPa on 11 January

2005, the deepest MSLP of the sample of storms (Table 1). This suggests an impact of the storm intensity on its predictability,

although no systematic link is found in the sample of storms. For instance, the
:::
The

:
second and third deepest storms Oratia

and Stephen
::::
Silke, which also experienced an explosive cyclogenesis, show contrasting positive and negative biases in MSLP

depending on the lead time (green triangle and blue circle in Figure 5a). The
::::::::::
Surprisingly,

:::
the

:
predicted MSLP of Gero also25

exhibits a negative bias on day 1, although this may be due to ERA-Interim underestimating the actual intensity due to its

coarse horizontal resolution.

Concerning the position, the predicted longitude exhibits a negative bias on average, i.e. the storms are too slow in the

reforecast from day 4 onwards (black curve in Figure 5b). A weak positive bias is present in the reforecast of the latitude but

it does not appear to be significant (not shown). Similar to the predicted MSLP, the predicted longitude also exhibits a large30

dispersion
::::::::
variability

:
between the storms, which increases with increasing lead time (symbols in Figure 5b). Storm Gero is

again an outlier with strong negative biases at days 5 and 8 but the strongest biases are shown by ex-Lili
:::
(red

::::::::
triangles)

:::
but

:::
an

::::
even

:::::
larger

::::
bias

:
is
::::::
found at day 7

::
for

::::
Lili (blue square)and Dagmar at day 10 (blue cross). These two storms formed remotely
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from Europe, the former .
::::
This

:::::
storm

:::::::
formed in the tropics (Browning et al., 1998, see also Figure 2)and the latter over the

southeastern United States. This suggests a link between the
:
,
:::::
which

::
is
:::::::::
consistent

::::
with

:::
the

:
poor predictability of the position

and the difficulty at representing convective dynamics , especially during extratropical transition
:::::
during

:::::::::::
extratropical

::::::::
transition

:::
due

::
to

:::
the

:::::::
difficulty

::
to
::::::::
represent

:::::::::
convective

::::::::
dynamics

:
(e.g. Pantillon et al., 2013). However, storm “u19960207” shows a strong

negative bias in longitude at day 7 (green square) though it developed
:::
this

::::
case

::
is

::::::
unique

::::::
among

:::
the

:::::::
selected

:::::::
storms.

:::::
Other5

::::
cases

::::
that

::::::
exhibit

::::::
strong

:::::
biases

:::::::
formed

::::
over

::::
very

:::::::
different

:::::::
regions,

:::
as

:::
e.g.

:::::::
Patrick

::::
over

:::
the

::::::::::
southeastern

:::::::
United

:::::
States

:::::
(blue

::::
cross

::
at

::::
day

:::
10)

:::
and

:::::::
Jennifer

::::::
(1996)

:
over the eastern North Atlantic

:::::
(green

::::::
square

::
at

:::
day

:::
7). This emphasizes that

:::
how

:
single

factors can influence the predictability of specific stormsbut do not necessarily have a systematic impact.

As expected, the spread between the ensemble members increases regularily with the
:::
with

:
increasing lead time on average,

both for the intensity (solid black curve in Figure 5c) and the position (solid black curve in Figure 5d). The spread is consistent10

with the median absolute error (dashed curve), which suggests that the ensemble reforecast is properly calibrated. However, a

large dispersion is again found
::
the

::::::
spread

::::
also

:::::
shows

::
a

::::
large

:::::::::
variability between the storms and the spread does not

::
it

::::
does

:::
not

:::::::::
necessarily match the error for individual storms. The

::
For

::::::::
instance,

:::
the storms with a strong bias mentioned above tend to ex-

hibit a small spread, i. e. their reforecast is overconfident. Inversely, other storms that have a small bias exhibit a large spread,

i.e. their reforecast is overdispersive. For instance,
:
.
::::::::
Inversely,

:
the predicted MSLP of Joachim was very uncertain

:::::
(green15

::::::
crosses

::
at

::::
days

:
7
::::
and

::
10

:::
on

:::::
Figure

:::
5c)

:
due to the sensitivity to the phasing of the storm with a Rossby wave train over the west-

ern North Atlantic (Lamberson et al., 2016, green crosses at days 7 and 10 on Figure 5c)
::::::::::::::::::::
(Lamberson et al., 2016) . The large

uncertainty in the MSLP of Xynthia at day 3 (red plus) may be due to the sensitivity of its intensification to latent heat release

during its unusual track over the subtropical North Atlantic (Ludwig et al., 2014) but this is not consistent with
::::
does

:::
not

:::::
show

::
for

:
longer lead times. This again emphasizes the difficulty at pointing out a systematic link between physical factors and the20

predictability of storms.

3.2 Ensemble average and individual members

These results partly agree with findings of Froude et al. (2007a, b) from a systematic evaluation of the track of extratropical

cyclones in
:::::::
previous

::::::
studies

:::::
using

:
earlier versions of the operational ECMWF ensemble forecast system. The motion of

cyclones was also too slow in the forecast but their MSLP was too deep. Beyond the model version, these differences25

emphasize the dependency on the selection of cyclones. The underestimation of the intensity and speed of storms shown

here may thus not be systematic in the ensemble reforecast but rather be related to the selection of deep cyclones that reach

Europe. Froude et al. (2007b) further
:::::::::::::::::::::
Froude et al. (2007b) also

:::::
found

::
a
::::
slow

::::
bias

:::
in

:
a
:::::::::
systematic

:::::::::
evaluation

:::
of

:::
the

::::
track

:::
of

::::::::::
extratropical

::::::::
cyclones,

:::::
while

:::::::::::::::::::::
Pirret et al. (2017) further

:::::
found

:
a
::::
low

:::
bias

::
in
::::::::
intensity

:::
for

:::::
severe

::::::::
European

::::::
storms.

::::
This

::::::::
suggests

:::
that

:::
the

:::::
speed

::
is

::::::::::::
systematically

:::::::::::::
underestimated

:::
for

::::::::::
extratropical

::::::::
cyclones

::
in

:::::::
general,

:::::
while

:::
the

:::::::
intensity

::
is

:::::::::::::
underestimated

:::
for30

::::
deep

:::::::
cyclones

:::::
only.

:::::::
Despite

:::::
these

::::::
biases,

::::::::::::::::::
Froude et al. (2007b) found a higher skill of the ensemble mean compared to the

control forecast to predict the track and intensity of cyclones . Although not tested here, this
::::
from

:::
day

::
3
::::::::
onwards.

::::
This result

raises the question of the meaningfulness of
:::
limit

:::
of

:::::::
validity

::
of

:
the ensemble mean at lead times beyond a few days, when

::
for

:::
the

:::::
track

::
of

:::
the

::::::
storms,

:::
as the identification of storms becomes ambiguous. In particular,

::::
more

::::::::::
ambiguous

:::
and

:
the number
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of members still containing the storm
:::::::::
containing

:::
the

::::::::
observed

::::::
storms decreases when the lead time increases, which biases

the ensemble mean.
:::::
Both

::::::
factors

::::
may

::::
bias

:::
the

::::::::
ensemble

:::::::
average

:::::::
towards

:::
the

:::::
tracks

::::
that

:::
are

::::::
closer

::
to

:::
the

:::::::
analysis

::::
and

::::
thus

::::::::::
overestimate

:::
its

:::
skill. In the extreme case of ex-Lili for instance,

:::
Lili,

:::
this

::::::
metric

::::
even

:::::::
becomes

:::::::::::
meaningless,

:::::::
because

:
all mem-

bers of the 10-day reforecast valid on the day of maximum intensity have lost track of the storm on the day it reaches Europe,

making this metric meaningless.5

Using the alternative identification method focusing
::
An

:::::::::
alternative

::::::::
measure

::
of

:::::::::::
predictability

::
is
::::::::
proposed

:::
by

::::::::
counting

:::
the

::::::
number

::
of
:::::::::

members
:::
that

:::::::
forecast

:::
the

::::::
actual

:::::
storm

:::::
when

::
it
:::::::
reaches

:::::::
Europe.

::::
The

::::::
closest

:::::
tracks

::::
are

::::::::
identified

:
on the day of

maximum intensity ensures that a storm
::
to

::::::
ensure

:::
that

::
a

::::
track

:
is identified in each member of the ensemble. The predictability

can then be measured by the number of members that match the actual stormwithin certain thresholds in position and intensity.

Using moderate
::::::::
Thresholds

:::
in

:::::::
position

:::
and

::::::::
intensity

:::
are

:::::::::
combined

::
to

::::::
define

:::
the

:::::
actual

::::::
storm,

::::
with

::
a

:::
1:2

::::
ratio

::::::::
between

:::
the10

::::::::
thresholds

::::
that

::::::
roughly

:::::::::::
corresponds

::
to

:::
the

::::
ratio

:::::::
between

:::
the

:::
two

:::::::
median

:::::::
absolute

:::::
errors

::::::
(Figure

:::
5d

:::
and

::
c,
:::::::::::
respectively).

::::::
Using

:::::
rather

:::::::
generous

:
thresholds of 10◦ great circle in distance and 10

::
20 hPa in MSLP bias(Figure 6a), the

:
,
:::::
which

:::::
select

:::::
about

::::
two

::::
third

::
of

:::
the

::::::::::
reforecasts,

::
all

:::
25

:
storms are captured by

:::::
almost

:
all 11 members on the first day of lead time only. This number

::::
until

:::
day

::
4

::::::
(Figure

::::
6a).

:::
The

:::::::::
proportion

:::
of

::::::::
members then decreases and passes below the majority of members beyond day 5.

Albeit arbitrary, the thresholds express reasonable criteria for the definition of the actual storm and roughly correspond to the15

median value of both bias and spread in position and intensity among all storms and lead times.
::::::
beyond

:::
day

:::
8. Using more

restrictive thresholds of 5◦ great circle in distance and 5
::
10

:
hPa in MSLP bias(Figure 6b), the storms are still captured by

:
,

:::::
which

:::::
select

:::::
about

:::
one

:::::
third

::
of

:::
the

:::::::::
reforecasts,

:::
the

::::::
storms

:::
are

::::::::
captured

::
by

::::::
almost all 11 members at day 1 but

::::
until

:::
day

::
2

::::
only

:::
and are missed by the majority of members beyond day 3 already . These

:::::
(Figure

::::
6b).

::::::
Albeit

::::::::
arbitrary,

::::
these

::::::::::::
combinations

::
of

::::::::
thresholds

:::::::
express

:
a
:::::::::
reasonable

:::::
range

::
of

::::::
criteria

:::
for

:
a
::::::
useful

::::::::
definition

::
of

:::
the

:::::
actual

:::::
storm.

::::::
While

:::
the

::::
exact

:::::::
number

::
of

::::::::
members20

:::::::::
forecasting

:::
the

:::::
storm

::::
will

::::::
depend

::
on

:::
the

:::::::
precise

:::::::::
thresholds,

::::
these

:
results suggest that the use of the ensemble mean to predict

storms should be restricted to the first
::::::
storms

:::
are

::::::::
forecasted

:::::
with

::::
high

:::::::
certainty

:::::
until

:::
day

:
2–4days of lead time, although the

exact limit depends on the thresholds and varies from storm to storm.
:::
At

::::::
longer

::::
lead

:::::
times,

:::
the

::::::::
certainty

::::::::
decreases

:::
but

:::::
some

:::::::
members

::::
still

:::::::
forecast

::
the

::::::
storms

:::::::
beyond

:::
one

:::::
week

::
in

:::::::
advance,

::
as

::::
was

::::::
already

:::::::::
mentioned

:::
by

:::::::::::::::::
Froude et al. (2007b) . The use of

single members
::::::
subsets

::
of

:::
the

::::::::
ensemble

:::
for

::::
early

::::::::
warnings

:
is discussed in the next Section

::::::
Section

::
4.25

3.3 Storm impact

The predictability of the selected storms is further evaluated for
::::
with

::::::
respect

::
to

:
the impact of the wind gusts estimated from

the SSI. Only the daily, spatially averaged SSI is evaluated here, without considering geographical information on where the

storm occurred exactly. The reforecast is therefore evaluated for its ability to predict a severe storm on a specific day but

anywhere over central Europe. It is compared to ERA-Interim as a logarithmic difference, because the SSI is highly nonlinear30

(Equation 2) and spans several orders of magnitude between the least and the most severe storms of the selection (Table 1).

Finally, although the SSI is scaled locally with separate model climates between the reforecast
::
As

:::::::::
illustrated

::
by

:::
the

::::
95th

:
and

ERA-Interim, the predicted distribution of SSI is overestimated overall. The overestimation is strongest for the low quantiles

of the distribution then decreases to
::::
99th

:::::::::
percentiles

::
of

:::
the

::::::
model

:::::::
climate,

::
the

:::::::::
reforecast

::::::::::::
systematically

:::::::::::
overestimates

:::
the

::::
SSI
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::
of

::::::
intense

:::
and

:::::::
extreme

::::::
events

:::
by a factor of about 2 in the higher quantiles. The predicted SSI is thus divided by a factor of

2 for ease of comparison unless stated otherwise.
::::::::
compared

::
to
:::::::::::
ERA-Interim

:::::::
(dotted

:::
and

::::::
dashed

::::::
curves

::
in

::::::
Figure

::::
7a).

::::
This

::
is

::::::::
explained

::
by

::
a
:::::
longer

::::
tail

::
of

:::
the

::::::::::
distribution

::
of

::::
wind

:::::
gusts

::
in

:::
the

:::::::::
reforecast

::::::::
compared

::
to

::::::::::::
ERA-Interim,

:::::
which

:::::::
impacts

:::
on

:::
the

:::
SSI

::::::
despite

:::
the

:::::::
scaling

::::
with

:::::::
separate

:::::
model

::::::::
climates

:::::::
between

:::
the

:::::::::
reforecast

:::
and

:::::::::::
ERA-Interim

:::::::::
(Equation

::
2).

:::::
This

:::::::::
systematic

::::::::::::
overestimation

::::
must

:::
be

::::
taken

::::
into

:::::::
account

::
to

:::::::
evaluate

:::
the

:::::::::::
predictability

::
of

:::
the

:::::::
selected

::::::
storms.

:
5

On average over all storms, the reforecast is close to ERA-Interim
:::::::::::
overestimates

:::
the

:::
SSI until day 3

::::::::
compared

::
to

:::::::::::
ERA-Interim,

but then drops by one order of magnitude and thus strongly underestimates the SSI at longer lead times (solid curve in Figure

7a). This drop is specific to the sample of severe storms and is not due to a systematic drift in the reforecast, which is illustrated

by the 99th percentile of predicted SSI remaining almost constant
:
In

::::::::
contrast,

:::
the

::::::::::::
overestimation

:::
of

:::
SSI

::
in

:::
the

::::::
whole

::::::
dataset

::::
does

:::
not

::::::
exhibit

::::
such

:
a
::::
drift

:
with lead time (dashed curve).

:::::
dotted

:::
and

::::::
dashed

:::::::
curves).

::::
The

::::::::::::
overestimation

:::
for

:::
the

::::::
storms

::::
until10

:::
day

:
3
:::::
could

::::::::
therefore

:::
be

::::::::
corrected,

::
as

::
it

::::::
results

::::
from

:
a
:::::::::
systematic

::::
bias

::
in

:::
the

:::::::
dataset,

:::::
while

:::
the

::::
drop

::
on

::::
day

:
4
::
is

:::::::
specific

::
to

:::
the

::::::
sample

::
of

:::::
severe

:::::::
storms.

:::
The

:::::::::
reforecast

::::
thus

:::::::
strongly

::::::::::::
underestimates

:::
the

:::::::
severity

::
of

:::
the

::::::
storms

:::::::
beyond

:::
day

::
3. In addition, the

average spread in SSI between ensemble members increases until day 3 only, before it decreases again when the average SSI

drops (not shown). The reforecast is thus underdispersive at longer lead time. As for the MSLP, however,
::::
track

::::
and

::::::::
intensity,

the predicted SSI shows a large dispersion
::::::::
variability

:
between the storms (symbols). For instance, the deep storms Gero and15

Oratia are again outliers with strong negative biases at days 5, 8 and 9, respectively, whereas a few other storms even exhibit a

positive bias.

These results are confirmed by measuring the number of members that predict at least the SSI of ERA-Interim, which also

drop
:::::
drops at day 4 (Figure 7b). Note that this is a rather pessimistic

::::::::
optimistic

:
estimation, as the predicted SSI is divided

by a factor of 2. Before the drop at day 4, the number of members is further separated into two groups with either a large20

majority or a small minority capturing the storms. This suggests that the reforecast systematically over- or underestimates the

severity of individual storms. ERA-Interim may also contribute to the cases of overestimation by underestimating the actual SSI

due to its limitation at representing the mesoscale structure of some storms. Beyond day 3, the reforecasts show a systematic

underestimation of the SSI for almost all storms.
:::::::::::
systematically

::::::::::::
overestimated.

:
However, at least one ensemble member on

average still predicts the
::::::::::
ERA-Interim

:::::
value

::
of
:

SSI of the storms until day 7, which suggests a potential for early warning25

based on individual members
::::::::
warnings.

4 Skill for early warnings
::
on

:::
the

::::
5–10

::::
day

::::::::
timescale

4.1 Intense
:::
Top

::::
5% and extreme

:::
1%

::::
SSI events

The results above show that even though the use of the ensemble average is restricted to the first 3 days of lead time, single

members are able to predict the storms
:::::
storms

::::
are

::::
well

::::::::
predicted

:::
by

:::
the

:::::
whole

:::::::::
ensemble

:
a
::::

few
::::
days

::::::
ahead

::::
only,

:::::
they

:::
are30

::::::
forecast

:::
by

:::::
single

::::::::
members

:
up to one week in advance or even beyond, as was already mentioned by Froude et al. (2007b) .

However, these results are biased by the focus on the prediction of observed events (hits) without considering events that are

predicted but not observed(false alarms). In the following, the skill of the reforecast is investigated not only for the selected
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storms but for the whole mid-October–mid-March 1995/96–2014/15 dataset, in order to include days both with and without

storms. It is computed
::::::::
measured

:
with the Brier Score (Brier, 1950) , which measures the ability of the reforecast to predict if

an event will occur or not.

The Brier Score can be
::::
Skill

::::::
Score split into reliability , resolution and uncertainty components (Murphy, 1973) . The

reliability component measures the ability of the forecast to predict the observed frequency of events. A perfect reliability can5

be achieved with a climatological forecast and is thus not sufficient to be useful. In contrast, the resolution component measures

the ability of the forecast to distinguish between events and non-events, which can not be achieved with a climatological

forecast. The uncertainty component finally measures the sampling uncertainty inherent to the events. The Brier Score is

further compared to a climatological forecast to obtain the Brier Skill Score (BSS), i. e. the actual skill of the reforecast, which

is in turn split as10

BSS = 1−Brel −Bres

into reliability and resolution components Brel and Bres (e.g. Jolliffe and Stephenson, 2012) .
::
and

:::::::::
resolution

:::::::::::
components

::::::::
(Equation

:::
1).

The skill of the reforecast is first investigated for intense events defined as the top 5% of the SSI, which contain the 7–8 most

severe storms per year
:::::
winter

:
on average. Percentiles are preferred to absolute values, because

::
of

:::
the

::::::::
systematic

:::::::::::::
overestimation15

::
of

:::
the

::::::::
reforecast

:::::::::
compared

::
to ERA-Interimand the reforecast exhibit different distributions of SSI. The frequency of intense

events is then by definition the same (5%) in the reforecast than in ERA-Interim and thus the reliability component remains

close to zero (perfect skill, Figure 8a). The non-zero value reflects
:::::
values

:::::
reflect

:
the sampling uncertainty. In contrast, the

resolution component increases regularily
::::::
steadily

:
with lead time to approach 1

:::
one (no skill). Therefore, the Brier Skill Score

follows – with inversed sign – the evolution of the resolution component and decreases regularily
::::::
steadily

:
until it vanishes (no20

skill) at day 9. The reforecast thus clearly exhibits positive skill, albeit small, at predicting intense events until day 8.

The skill is less clear for extreme events defined as the top 1% of the SSI. These contain the 30 most severe storms of the

whole dataset and approximately match the 25 selected storms in ERA-Interim. Surprisingly, the reforecast does not show any

skill at day 1 (Figure 8b). This is linked to a high value of the resolution component (low skill) and may again be due to a

problem with the spin-up of the model. The resolution component then regularily
::::::
steadily

:
increases with increasing lead time25

as expected. In contrast, the reliability component shows an irregular evolution with lead time and large values reflecting a large

sampling uncertainty. This emphasizes that the dataset is too limited to investigate extreme events, which on average represent

8.2 events per lead time only. As a result, the Brier Skill Score suggests that the reforecast exhibits some skill at
:
in

:
predicting

extreme events until day 6 but it suffers from the same irregular evolution with lead time.

4.2
:::
EFI

::::
and

::::
SOT

:::
for

:::::
gusts

:::::
above

:::
the

:::::
98th

:::::::::
percentile30

4.3 Area covered by damaging gusts

The potential for early warnings of strong gusts is further investigated with the EFI and SOT, which are both designed for this

purpose by highlighting the behaviour of the most extreme ensemble members. As noted by Lalaurette (2003) already, the EFI
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gives useful warnings of extreme events but also frequent false alarms. Petroliagis and Pinson (2014) therefore suggested the

use of an optimal threshold to balance between hits and false alarms
:::
hit

:::
rate

::::
(H)

:::
and

:::::
false

:::::
alarm

::::
rate

:::
(F), a higher (lower )

threshold increasing (decreasing ) both the hits and the false alarms
::
or

:::::
lower

::::::::
threshold

:::::::::
increasing

::
or

:::::::::
decreasing

::::
both

::
H

::::
and

:
F.

Boisserie et al. (2016) further suggest
:::::::
suggested

:
to maximize the Heidke Skill Score (Heidke, 1926) as a trade-off between hit

rate and false alarm rate
:::::::::::::::::::
(HSS Heidke, 1926) to

:::::
define

:::
the

:::::::
optimal

::::::::
threshold. Following these authors, an optimal threshold is5

looked for
:::::::::
determined to predict gusts that exceed the local 98th climatological percentile in ERA-Interim. This value is taken

for consistency with the SSI
:::
The

::::
98th

::::::::
percentile

:::::::::
represents

:::
the

:::::::
strength

::
at

:::::
which

:::::
gusts

::::::
become

:::::::::
damaging

::
in

:::
the

:::
SSI

:::::::::
(Equation

::
2). In contrast with the previous studies, however, which focused on specific storms or storm intensities

::::::::
categories, an optimal

threshold is first computed for the whole dataset and only then applied to the selected storms. This ensures that the result is not

biased by verifying the forecast with extreme events only.10

As shown in Figure 9a, the optimal threshold in EFI decreases with lead time, because both hit rate and false alarm rate

decrease with lead time for a given threshold
::
as

::
do

:::
the

::::::::::::
corresponding

:::
H

:::
and

::
F. In contrast, the optimal threshold in SOT is

stable until day 6 and decreases at longer lead times only (Figure 9b). This is due to the increase in false alarm rate with lead

time for a given threshold in this case, which compensates for the decrease in hit rate (not shown)
:::::
reveals

::
a

:::::::
different

:::::::
balance

:::::::
between

::
H

:::
and

::
F

:::
for

:::
the

:::
two

::::::
indices. A constant threshold is thus

::::
only

:
suitable for the SOT and in the early rangeonly. The

:
.15

:::
For

::
all

:::::
other

:::::
types

::
of

::::::::
warnings,

:::
the dependency of the optimal thresholds on the lead time should else be taken into accountfor

warnings. The optimal thresholds further show
::::::
display

:
seasonal and regional variability (not shown), which could also be

included to improve warnings. For the sake of simplicity, however, they are not considered here.

Although the optimal threshold exhibits a different evolution with lead time between the EFI and the SOT
:::
two

::::::
indices, the

corresponding Heidke Skill Score
::::
HSS

:
is very similar, with a slightly higher value for the EFI. It decreases regularily

:::
The20

:::
skill

:::::::::
decreases

::::::
steadily

:
with increasing lead time but remains above zero (no skill)

::::::
positive until day 10, the longest lead time

investigated here. The decrease tightly follows the hit rate, while the false alarm rate
:
H,

:::::
while

::
F
:
slowly increases but remains

small due to the rarity of events by definition of the local 98th climatological percentile. Note that the false alarm rate
:
F, which

is conditioned by the events that are not observed, should not be confused with the false alarm ratio
:::::
(FAR), which is conditioned

by the events that are not forecast. These results demonstrate the actual potential of both EFI and SOT for the early warning25

::::
early

::::::::
warnings

:
of strong gusts. If the local 99th climatological percentile is preferred to defined

:::::
define

:
extreme events, as in

early studies, the optimal thresholds need to be levelled up
:::::::
increased

:
and the resulting skill becomes lower but it also remains

positive until day 10 (not shown).

4.3 Application to
:::
EFI

::::
and

:::::
SOT

:::
for the selected

::
25

::::::
severe

:
storms

The optimal thresholds described above are applied to the EFI and SOT for the selected severe storms in the reforecast. The30

Heidke Skill Score
::::
HSS

:
is again used as a trade-off between hit rate and false alarm rate

::
H

:::
and

::
F. It is computed for the

prediction of gusts over the central European domain on the day of maximum intensity of each storm. As for the whole dataset,

the EFI (Figure 10a) and the SOT (Figure 10b) exhibit similar Heidke Skill Score
:
a
::::::
similar

::::
HSS

:
on average, which lies around

0.8 during the first two days (high skill) and then decreases with increasing lead time until vanishing at day 10 (no skill). In
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particular, before day 10, the Heidke Skill Score
::::
HSS is higher for the storms (solid curves) than for the whole dataset (dashed

curves). It is related to higher hit rates
:
H

:
for the storms, which enhance the skill despite higher false alarm rates

:
F
:
(not shown).

This does not necessarily mean that the reforecast is more skillful at predicting the presence than the absence of storms but

rather emphasizes how focusing on observed events can bias the verification.

Beyond these average properties, the reforecasts of the storms exhibit contrasting skill from case to case. The dispersion5

::::::::
variability

:
between the storms quickly increases with increasing lead time and the Heidke Skill Score

::::
HSS of some storms

approaches zero or becomes negative from day 6 onwards (symbols on Figure 10). A poor skill is found in both EFI and SOT

for storms Lili at day 7
::::
(blue

:::::::
square) and Gero at day 8

:::
(red

::::::::
triangle) in association with a low hit rate

::
H, as well as for storm

Joachim at day 7
:::::
(green

::::::
cross) in association with a high false alarm rate

:
F. This is consistent with the large biases in MSLP

and longitude and the large spread in MSLP, respectively, found for these storms
::::::
(Figure

::
5). Other storms contrast between10

poor skill in EFI and good skill in SOT, as Yuma at day 4
::::
(pink

::::::
square

::
in

:::::
Figure

::::
10), which was remarked

:::::
noted for its difficult

forecast as it occurred (Young and Grahame, 1999), and Xynthia at day 6.
:
6
::::
(red

:::::
plus). The higher skill

:
in

:::::
these

::::
cases

:
could be

due to the high hit rate
:::::
higher

::
H of the SOT compared to the EFI, as suggested by Boisserie et al. (2016). However, ,

::::::::
although

no difference is found here on average in the whole sample.

Storm Yumahas the lowest
:::::::::::
Interestingly,

::::::
storms

:::::
Yuma,

::::
Lili,

:::::
Gero

:::
and

:::::::
Xynthia

:::::::::
mentioned

::::::
above

:::
for

::::
their

::::
poor

::::
skill

::
in

::::
EFI15

::::
have

:::
the

:::::::
smallest

:
area of strong gusts of the whole dataset , followed by Lili, Gero and Xynthia (Table 1), which suggest a

link between storm size and predictability
:
.
::::::::
Similarly,

::
a
:::::
better

:::::::::::
performance

:::
for

::::::
Anatol

::::
than

:::
for

:::
the

::::::::
relatively

:::::::
smaller

::::::
storms

:::::
Lothar

::::
and

::::::
Martin

::::
was

:::::::::
previously

:::::
noted

::
by

::::::::::::::::::::::::::::::
Buizza and Hollingsworth (2002) in

:::
the

:::::::::
operational

::::::::
ECMWF

::::::::
ensemble

:::::::
forecast.

However, such a link is not systematic, as shown by storm Xaver, which exhibits almost no skill at day 6 in both EFI and

SOT though one of the largest area of the dataset.
:::::
neither

::::
this

:::::
better

::::::::::
performance

:::
or

:::::::::
differences

:::::::
between

:::
the

:::::::::::
predictability

:::
of20

::::::
specific

::::::
storms

:::::
found

::
by

:::::
other

::::::
authors

:::::
using

:::
the

:::
EFI

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Lalaurette, 2003; Petroliagis and Pinson, 2014; Boisserie et al., 2016) are

::::::::
confirmed

:::::
here.

::::
This

:::::::
suggests

:
a
:::::::::
sensitivity

::
to

:::
the

::::::::
ensemble

:::::::::
prediction

::::::
system

::::
and

::
to

:::
the

::::
type

:::
and

::::::
region

::
of

:::
the

::::::::
reference

::::
data

::::
used

::
for

:::::
their

:::::::::
validation,

:::::
which

::::
vary

::::
from

:::::
study

::
to

:::::
study.

:

Finally, storm Xynthia exhibits a surprisingly high skill at day 10 in both EFI and SOT thanks to a high hit rate
:
H. This

constitutes an outlier compared to all other storms, which show no skill at that lead time. However, none of the ensemble25

members predicts the actual
:::::::
observed

:
development of Xynthia over the subtropical North Atlantic (Ludwig et al., 2014).

Instead, several members predict a storm forming over the central North Atlantic but reaching the Iberian Peninsula on the

same day as Xynthia. Although this successful reforecast could be due to chance rather than to the actual skill of the model,

it illustrates how predicting individual storms becomes ambiguous at long range but suggests a potential for predicting an

environment favorable to storm development.30

5 Conclusions

The synoptic-scale predictability of 25 severe historical winter storms over central Europe is revisited by taking advantage of

the ECMWF ensemble retrospective forecast (reforecast), which offers a homogeneous dataset over 20 years with a state-of-
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the-art ensemble prediction system. The winter 2015/16 model version is used here and contains 11 ensemble members with

a horizontal grid spacing of 30 km up to 10 days lead time that are computed twice weekly for the mid-October–mid-March

1995/96–2014/15 period. The predictability of the storms is investigated with different metrics to include their dynamics,

severity and spatial extension. A storm tracking algorithm delivers the position and intensity of the storms
::::
three

::::::::
different

::::::
metrics

:::
for

::::
their

:::::
track

::::
and

:::::::
intensity

:
(Figure 1a), which are identified in the reforecast either at the time of first occurence5

or at the time of maximum intensity. The Storm Severity Index (SSI) estimates the actual impact of the storms (
:::
the

:::::::
strength

::
of

::::
wind

:::::
gusts

:
(Figure 1b) using the strength of wind gusts exceeding the local 98th climatological percentile. The Extreme

Forecast Index (EFI) and Shift of Tails (SOT) finally predict
:::
and

:
the area covered by strong gusts (Figure 1c)by measuring

the deviation of the ensemble forecast from the model climate. The metrics are combined to assess the reforecast against the

ECMWF retrospective analysis (reanalysis )
::::::::
reanalysis ERA-Interim.10

The ensemble average is unbiased until day 3 to predict
:::
For

::::
lead

:::::
times

::::
until

:::
3–4

:::::
days,

:::
the

::::::::
ensemble

::::::
average

::::
has

::::
small

::::::
biases

::
in

:::::
terms

::
of

::::::::
predicting

:
the position and minimum MSLP of the storms on the day of maximum intensity. At longer lead times,

however, it systematically underestimates the speed of motion and the depth of the storms. This bias is accompanied by an

increase in ensemble spread by a similar magnitude, which suggests that the ensemble is calibrated, but only a minority of

ensemble members still captures the actual storm at lead times beyond 3–5 days. This questions the relevance of using the15

ensemble average at longer lead times. This differs from a classical situation of averaging the ensemble members to smooth

the unresolved scales, as the variables of interests are objects here rather than continuous fields
:::::::
Previous

::::::
studies

::::
also

:::::
found

::
a

::::
slow

::::
bias

::
in

:::
the

::::
track

::::::::
forecasts

::
of

:::::::::::
extratropical

::::::::
cyclones

::
in

::::::
general

::::::::::::::::::::::
(Froude et al., 2007b) and

:
a
:::::::
negative

::::
bias

::
in

:::
the

::::::::
intensity

:::::::
forecasts

::
of

::::::
severe

:::::
storms

::::
only

:::::::::::::::::
(Pirret et al., 2017) .

::::
This

:::::::
suggests

::::
that

:::
the

:::::::::::::
underestimation

::
of

:::
the

:::::
speed

::
of

::::::
motion

::
is

:::::::::
systematic

:::
but

:::
that

::
of

:::
the

:::::
depth

::
is
:::::::

specific
::
to

:::::
deep

:::::::
cyclones. The ensemble average further underestimates the SSI of the storms at lead20

times longer than 3 days and the relative error reaches several orders of magnitude. The ensemble spread drops by orders of

magnitude, which shows that the SSI of the storms is systematically underestimated. In contrast, there is no general drift in

the reforecast, where severe events are present up to 10 days. Similarly, the biases
::
by

::
at

::::
least

:::
one

:::::
order

::
of

:::::::::
magnitude

:::::::
beyond

:::
day

::
3.

::::::
Along

::::
with

:::
the

::::::
biases

::::
with

:::::::::
increasing

::::
lead

::::
time,

:::
the

::::::::::::
identification

::
of

::::::
storms

::::::::
becomes

:::::::::
ambiguous

::::
and

:::
the

::::::
number

:::
of

:::::::
members

:::::::::
containing

:::
the

::::::::
observed

::::::
storms

:::::::::
decreases,

:::::
which

::::::::
questions

::::
the

::::
limit

::
of

:::::::
validity

::
of

:::
the

::::::::
ensemble

:::::
mean

:::
for

:::
the

:::::
track25

::
of

:::
the

::::::
storms.

::::
This

:::::
limit

::
is

:::
due

::
to

:::
the

:::::::::::
identification

:::
of

::::::
storms

::
as

:::::::
objects,

:::::
which

:::
are

:::
not

::::::
always

::::::
clearly

:::::::
defined,

:::
in

:::::::
contrast

::
to

::
the

:::::::
metrics

:::::
based

::
on

:::
the

:::::::
strength

:::
of

::::
wind

:::::
gusts,

::::::
which

:::
are

::::::
defined

::::
even

::
in

:::
the

:::::::
absence

::
of

::
a

:::::
storm.

::::
The

:::::::::::
predictability

::
is

::::::
further

::::::::
measured

::
by

:::
the

:::::::
number

::
of

::::::::
members

::::
that

::::::
forecast

:::
the

::::::::
observed

:::::
storm

::
–
::::::
within

::::::::
combined

:::::::::
thresholds in position and intensity

may not be systematic but rather be due to the focus on intense storms that reach Europe
:
–

::
on

:::
the

::::
day

::
it
:::::::
reaches

:::::::
Europe.

::::::::
Although

:::
the

:::::
result

:::::::
depends

::
on

:::
the

:::::
exact

:::::::::
thresholds,

:::::::::
reasonable

::::::
values

::::
show

::::
that

:::
the

::::::
storms

:::
are

::::
well

:::::::::
forecasted

::::
until

:::
day

::::
2–430

::::
only. These results suggest that relevant predictions of storm properties are restricted to the first 2–4 days of lead time. This

suggestion is supported by the ambiguousness at identifying the storms at longer lead times in the reforecast
:::
few

::::
days

:::
of

:::
the

::::::
forecast.

A different methodology is therefore required at
:::
for lead times longer than the 2–4 days horizon. Although they are missed

by the ensemble average, the
:::
The

:
position, intensity and severity of the storms are captured by some members up to

:::::
beyond

:
one35
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week in advanceor even beyond. As suggested by earlier studies, the ,
::::::
which

:::::::
suggests

::::::::
potential

::
for

:::::
early

::::::::
warning.

:::
The

:
whole

distribution of the ensemble should
:::
shall

:
thus be used by shifting the focus from the average and spread to individual members

for the prediction of extreme events
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Buizza and Hollingsworth, 2002; Lalaurette, 2003; Petroliagis and Pinson, 2014; Boisserie et al., 2016) .

The danger with this approach, however, is to verify the predictions with regard to observed events only, i.e. by concentrating

on the hit rate
::::
their

:::::
ability

::
to
:::::::
forecast

::::::::
observed

::::::
events without accounting for the false alarms

:::::
events

::::
that

:::
are

::::::
forecast

::::
but

:::
not5

:::
not

:::::::
observed. The predictability is therefore investigated here in the whole dataset of 20 winter seasons including both stormy

and non-stormy days. Tracking is not used, because it can be applied to cyclones only and becomes ambiguous at long lead

times. For
:::::
Using

:::
the

:::
EFI

::::
and

::::
SOT

:::::::
indices,

:::::
which

::::::::
highlight

:::
the

:::::
most

:::::::
extreme

::::::::
ensemble

:::::::::
members,

:::
the

::::::::
reforecast

::::::
shows

::::
skill

::
in

::::::::
predicting

:::
the

::::
area

:::::::
covered

:::
by

:::::
strong

:::::
gusts

::::
until

:::
day

:::::
9–10.

::
It
::
is
::::
also

::::::
skillful

::::
until

::::
day

:
8
::
to
:::::::

predict
:::
the

::::::::
occurence

::
of
:

intense

events defined as the top 5% of the SSI , which span
::::::::
(spanning

:
on average 7–8 days per winter, the reforecast exhibits a10

positive Brier Skill Score that regularily decreases until vanishing at day 9. For
:
).
:::::::::

However,
:::
for extreme events defined as the

top 1% of the SSI , which approximately correspond
::::::::::::
(approximately

::::::::::::
corresponding

:
to the 25 historical storms, the reforecast

appears to exhibit a similar skill but suffers from a
:::::::
selected

:::::::
storms),

::
no

::::::::::
meaningful

::::::
results

:::
can

:::
be

:::::::
obtained

::::
due

::
to

:::
the

:
large

sampling uncertaintyat longer lead time. The EFI and SOT indices .
:::::::
Despite

::::
this

::::::::
limitation

:::
for

:::
the

::::
most

::::::::
extreme

::::::
events,

:::
the

:::::
results

:
confirm the skill of the reforecast at predicting the area

::
for

:::::
early

::::::::
warnings

::
of

::::::
storms

::::::
beyond

::::
one

::::
week

::::::
ahead.15

:::::
These

::::::
results

::
are

:::::::::::
summarized

::
in

::::::
Figure

::
11

:::::
from

::::
long

::
to

::::
short

:::::::
forecast

::::
lead

:::::
times

::::::::
separated

::
in

::::
three

:::::::
phases.

::
A

:::
first

::::::
phase

::
of

::::
early

:::::::
warning

:::::
starts

::::
8–10

::::
days

::::::
before

:
a
:::::
storm

::::::
occurs.

:::
At

:::
this

:::::
point,

::
a
:::
few

::::::::
members

::::
may

::::::
already

::::::
predict

:::
the

::::::
storm,

:::::
which

:::::
gives

:::::::::
indications

::
of

:::
the

:::::::::
possibility

::
of

::
a

:::::
severe

:::::
event

:::::
based

:::
on

:::
the

::::
SSI,

::
as

::::
well

::
as

:::::
hints

:::
for

:::
the

:::
area

::::
that

:::::
might

:::
be covered by strong

wind gusts until day 10 for storms as for the whole dataset. These results highlight the potential for early warnings of storms

but also
::::
gusts

:::::
given

::
by

:::
the

::::
EFI

:::
and

:::::
SOT.

::
In

:
a
::::::
second

::::::
phase,

:::
the

:::::::
number

::
of

::::::::
members

::::::::
predicting

:::
the

:::::
storm

::::::::
increases

:::
but

::::::
biases20

::
are

:::::::
present

::
in

:::
the

::::::
speed

::
of

::::::
motion

::::
and

::
in

:::
the

::::::::
intensity

::::::::
measured

::
as

::::
the

:::::
MSLP

:::
of

:::
the

::::::
storm,

:::::
which

:::
are

:::::
both

::::::::::::
systematically

:::::::::::::
underestimated.

:::
The

:::::::
severity

::
of

:::
the

:::::
storm

::::::::
measured

::
by

:::
the

::::
SSI

:
is
::::
also

:::::::::::::
underestimated

::
by

::::
one

::
or

::::
more

::::::
orders

::
of

:::::::::
magnitude.

::::
The

:::::::
certainty

::::
then

::::::::
increases

::::
until

:::
the

:::::
third

:::::
phase

::
of

::::::::
accurate

:::::::
forecast,

:::::::
starting

:::
2–4

:::::
days

:::::
before

:::
the

::::::
storm

::::::
occurs.

:::::
Most

::::::::
members

::::::
predict

:::
the

:::::
storm

:::
and

:::::::
without

:::::::::
systematic

:::
bias

::
at
::::
this

:::::
point,

:::::
which

::::::
allows

::
a

::::::::
calibrated

:::::::
forecast

:::
for

:::
the

:::::::
position

:::
and

::::::::
intensity

::
of

the difficulty at verifying the forecast of extreme events, even with the extended dataset used here.
::::
storm

::::
and

:
a
:::::::
realistic

:::::::
estimate25

::
of

::
its

:::::::
severity.

::::::
These

::::
three

::::::
phases

::
in

:::
the

::::::::
expected

::::
skill

::
of

::
an

:::::::::
ensemble

::::::::
prediction

::::::
system

::::
may

:::::
serve

::
as

::
a
::::::::
reference

::
to

:::::::
forecast

:::::
severe

::::::::
European

::::::
winter

::::::
storms

::
in

::
an

::::::::::
operational

::::::
context.

:

While the metrics agree on average, they exhibit a high case-to-case variability. The predictability is particularly low for a

few
::::::
Among

:::
the

:::::::
sample

::
of

::
25

::::::
severe

::::::
storms,

:::::
some

::::::
outliers

::::::
exhibit

::
a
::::::::::
particularly

:::
low

::::::::::::
predictability.

:::::
These

:::
are storms involving

an explosive cyclogenesis , a tropical origin or
:
or

:::::::::
extending

::::
over a small area. However, no systematic pattern is found among30

the sample of storms and their predictability partly lacks consistency between lead times. A possible explanation lies in the

paucity of data at single lead times and for each storm , as the reforecast is computed twice a week and contains 11 members

only. A more frequent initialisation and a larger amount of members may thus prove better ability at identifying
:
,
::
as

::::
well

::
as

::
a

:::::
storm

:::::::::
undergoing

:::::::::::
extratropical

::::::::
transition.

:::::::::::::
Unfortunately,

:::
the

::::::
sample

::
is

:::
too

:::::
small

:::
and

:::
the

:::::::
number

::
of

::::::::
forecasts

:::
per

:::::
storm

::
is

:::
too

::::::
limited

::
for

::::
any

:::::
robust

::::::::
statistics.

::::
The

::::::
NOAA

::::::::
ensemble

::::::::
reforecast

:::::
could

::::
help

::
to
:::::::
identify

:
systematic links between the dynamics35
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and predictability of storms. The NOAA ensemble reforecast ,
:::

as
::
it

:::::
covers

::
a
::::::
longer

::::::
period

:::
and

:
offers a daily initialization

(Hamill et al., 2013)but
:
.
::::::::
However,

:::
this

:::::::
dataset appears not to perform as well as its ECMWF counterpart for predicting wind

over central Europe (Dabernig et al., 2015). Furthermore, even in the
:::
The operational ECMWF ensemble forecast initialised

every day and containing
:
is

::::::::
initialised

::::::
twice

:
a
::::
day

:::
and

::::::::
contains

:
50 members , ?

:::
but

::::::::::::::::
Pirret et al. (2017) struggled to find a

relation between the predictability and the intensity, track or physical processes of storms.5

The predictability of the severe storms investigated here may not be linked to common factors but rather be due to characteristics

of the individual storms. This suggests a fundamental limitation due to the nature
:
,
:::::::
because

::
of

:::
the

::::::
steady

:::::::
increase

::
in

::::
skill

::::
with

::::
more

:::::
recent

::::::
model

:::::::
versions.

::::
This

::::::::
illustrates

:::
the

::::::::
difficulty

::
to

::::::::::::
systematically

:::::::::
investigate

:::
the

:::::::::::
predictability of severe storms, which

are extreme events and often do not follow standard patterns.
::::
even

::::
with

::
an

::::::::
extended

::::::
dataset

::::
such

::
as

:::
the

::::::
20-year

:::::::::
reforecast

::::
used

::::
here.10

More case studies are thus needed to better understand the predictability of specific storm features at different scales. They

should be eased by the new generation of global and regional reanalyses that become available with a high horizontal resolution

able to better represent the storms. Alternatively
::
At

::::::
larger

:::::
scale, the focus of the predictability could be shifted from the

storms to the large-scale conditions that favour their development (e.g. Pinto et al., 2014), in particular at longer
:
.
::::
This

:::::
could

::
be

::::::::::
particularly

:::::::
relevant

::
at

:::::
long lead times, when the identification of storms is

:::::::
becomes

:
ambiguous among the ensemble15

members.
::
At

::::::
smaller

::::::
scale,

:::
the

:::
use

:::
of

:::::::
available

:::::::::::::
high-resolution

::::::
model

::::
data

::::::
should

:::::
help

::
to

:::::
better

::::::::::
understand

:::
the

::::::::
structure

::
of

:::
the

::::::
storms.

::::
For

:::::::
instance,

:::
the

::::
next

:::::::::
generation

:::
of

::::::::
ECMWF

::::::::
reanalysis

::::::
ERA5,

::::::
which

::
is

::::::::
currently

::
in

::::::::::
production,

:::
will

:::::
reach

::
a

::::::::
horizontal

::::
grid

::::::
spacing

::
of

:::::
about

:::
30

:::
km

:::
and

:::::::
improve

:::
the

::::::::::::
representation

::
of

::::::::::::
synoptic-scale

:::::::
features.

::::::::
Regional

::::::
models

:::
are

:::::::
required

::
to

:::::::
represent

:::::::::
mesoscale

:::::::
features

::::
such

:::
as

::::
sting

:::
jets

:::
or

:::::::::
convection

:::::::::
embedded

::
in

:::
the

::::
cold

:::::
front,

:::::
while

:::
the

:::::::
accurate

::::::::::::
representation

::
of

::::
wind

:::::
gusts

:::::
stays

::::::
beyond

:::
the

:::::::::
resolution

::
of

::::::::::
operational

::::::
models

::::
and

:::::
relies

::
on

::::::::::
large-eddy

::::::::::
simulations

::
or

:::::::::::
observations

::
at

:::
the20

:::::::
turbulent

:::::
scale.

::::::::::::
Alternatively,

:::::::::
dynamical

:::
and

::::::::
statistical

:::::::::::
downscaling

:::
can

:::
be

::::::::
combined

:::
to

:::::
obtain

::::::
skillful

::::::::
forecasts

::
at

:::
the

:::::
local

::::
level,

:::
as

:::::::::::
demonstrated

:::
by

:::::::::::::::::::::
Pardowitz et al. (2016) for

::::::
storm

::::::
losses,

::::
who

::::::
further

::::
took

::::
both

:::::::::::::
meteorological

:::
and

:::::::
damage

::::::
model

::::::::::
uncertainties

::::
into

:::::::
account.

::::::
These

:::::::
different

::::::::::
approaches

::::::
should

::
be

:::::::::
considered

::
to
:::::

allow
::::::::

advances
:::
in

:::
the

:::::::::::
predictability

::
of

::::::
severe

::::::::
European

:::::
winter

:::::::
storms.
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(a)	Track	and	intensity (b)	Strength	of	gusts (c)	Area	covered	by	gusts

Figure 1. Schematic depiction of the three metrics used to evaluate the predictability of storms: based on the track and intensity of the storms

(a), based on the strength of wind gusts (b) and based on the area covered by unusually strong gusts (c). See text for details.

Analysis
Control
Perturbed

Analysis
Control
Perturbed

(a) Identification during first common occurence (b) Identification during maximum intensity

Figure 2. Example of the identified tracks of ex-hurricane Lili in the 6-day ensemble reforecast initialized on 22 October 1996 closest to

ERA-Interim during the 24-h period of first common occurrence on 22 October (a) and of maximum intensity in ERA-Interim on 28 October

(b).
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(b)

(b) Storm Severity Index

(a)

Figure 3. Example of the daily maximum wind gusts (a) and daily Storm Severity Index (b) for storm Lothar in ERA-Interim on 26 December

1999.

(a) (b)

Figure 4. Example of the Extreme Forecast Index (a) and Shift of Tails (b) of daily maximum wind gusts for storm Lothar in the 6-day

ensemble reforecast initialized on 21 December 1999 and valid on 26 December.
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Figure 5. Position and intensity of the storms in the ensemble reforecast as identified at the time of first occurrence and compared on the day

of maximum intensity: difference between the ensemble median and ERA-Interim (a, b) and median absolute deviation of the ensemble (c,

d) in MSLP (a, c) and longitude (b, d). The symbols represent the storms as given in Table 1 and the solid black curve shows the median of

the storms per lead time, while the dashed black curve in (c, d) further shows the median absolute error of the storms per lead time.
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Figure 6. Position and intensity of the storms in the ensemble reforecast as identified and compared on the day of maximum intensity:

number of ensemble members predicting the storm within 10 hPa and 10◦ great circle (a) or 5 hPa and 5◦ great circle (b) as compared to

ERA-Interim in minimum MSLP and position, respectively. The symbols represent the storms as given in Table 1 and the black curve shows

the median of the storms per lead time.
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(a) Ensemble median (b) SSI larger than ERA-Interim
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Figure 7. Severity of the storms in the ensemble reforecast on the day of maximum intensity: ensemble median of SSI as logarithmic

difference with
:
of

:::
SSI

:::::::
between

:::
the

:::::::
ensemble

::::::
median

:::
and ERA-Interim (a) and number of members reaching the SSI of ERA-Interim (b).

The predicted SSI is divided by a factor of 2 for ease of comparison. The symbols represent the storms as given in Table 1 and the solid

black curve shows the median of the storms per lead time, while the
:
.
:::
The

:::::
dotted

:::
and

:
dashed black curve

:::::
curves in (a) further shows

::::
show

the
::::::::
logarithmic

::::::::
difference

::
of

:::
the

:::
95th

::::
and 99th percentile

::::::::
percentiles

:
of SSIcompared between ,

::::::::::
respectively,

::
in

::
the

:::::
model

:::::::
climates

::
of

:::
the

reforecast and ERA-Interim.
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(a) Intense events (b) Extreme events

Figure 8. Brier Skill Score as a function of lead time for the SSI exceeding the 95th (a) and 99th percentiles of the model climatology (b).

The Brier Skill Score is decomposed into resolution and reliability components (see Equation 1).
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Figure 9. Optimal threshold and corresponding hit rate
::
(H), false alarm rate

:::
(F) and Heidke Skill Score

::::
(HSS)

:
for the Extreme Forecast Index

(
:::
EFI; a) and the Shift of Tails (

::::
SOT; b) to predict gusts exceeding the local 98th percentile in ERA-Interim.
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(a) Extreme Forecast Index (b) Shift of Tails

Figure 10. Heidke Skill Score
:::::
(HSS)

:
for predicting gusts exceeding the local 98th climatological percentile of ERA-Interim using the

Extreme Forecast Index (
::::
EFI; a) and the Shift Of Tails (

:::
SOT;

:
b). The symbols represent the storms as given in Table 1 and the black curve

shows the median of the storms per lead time, while the dashed curves illustrate the whole dataset for reference as in Figure 9.
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Phase	3:	accurate	forecast
Most	members	predict	storm
• Calibrated	ensemble
• Realistic	estimate	of	severity

Phase	2:	increase	in	certainty
More	members	predict	storm
• Speed	and	depth	underestimated
• Severity	largely	underestimated

Phase	1:	early	warning
Few	members	predict	storm
• Indications	of	severe	event
• Hints	for	area	of	strong	gusts

2-4	days	ahead8-10	days	ahead Storm	occurs

Figure 11.
:::::::
Summary

::
of

:::
the

:::::::
expected

:::
skill

::
of

::
an

::::::::
ensemble

:::::::
prediction

::::::
system

::
for

:::
the

::::::
forecast

::
of

:::::
severe

:::::::
European

::::::
winter

:::::
storms,

::::
from

::::
long

::
to

::::
short

::::::
forecast

:::
lead

:::::
times

:::::::
separated

::
in

::::
three

:::::
phases.

::::
The

:::::::
schematic

:::::
refers

::
to

::
the

::::
three

:::::::
methods

::::::
depicted

::
in
:::::
Figure

::
1.
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Table 1. Chronological list of the 25 investigated storms with their characteristics in ERA-Interim on the day of maximum intensity: minimum

Mean Sea Level Pressure (MSLP), Storm Severity Index (SSI) and area of central Europe covered by gusts exceeding the local 98th percentile.

Some particularly high or low
:::
The values

::::::::::
corresponding

::
to

::
the

:::::::
deepest,

::::
most

:::::
severe

:::
and

::::::
smallest

:::::
storms

::::
cited

::
in
:::
the

:::
text

:
are emphasized in

bold.

Symbol Name Date MSLP (hPa) SSI (×10−3) Area (%)

� u19960207
::::::
Jennifer

:::::
(1996)

:
07 Feb 1996 976 3.0 11.1

� u19961028 (ex-Lili)
::
Lili

:
28 Oct 1996 970 0.40 7.3

� u19961106
:::::
Romy 06 Nov 1996 960 0.48 20.8

� Yuma 24 Dec 1997 974 0.35 5.8

� Fanny 04 Jan 1998 966 2.0 16.6

© Xylia 28 Oct 1998 966 0.64 28.3

© Stephen
::::
Silke

:::::::
(Stephen)

:
26 Dec 1998 950 2.4 21.0

© Anatol 03 Dec 1999 956 5.1 28.7

© Lothar 26 Dec 1999 976 15 23.7

© Martin 27 Dec 1999 969 9.7 20.5

4 Oratia (Tora) 30 Oct 2000 949 2.8 24.8

4 Jennifer
:::::
(2002) 28 Jan 2002 956 1.7 28.1

4 Jeanette
:::::
Jeanett 27 Oct 2002 975 3.8 26.1

4 Erwin (Gudrun) 08 Jan 2005 961 6.4 33.0

4 Gero 11 Jan 2005 948 1.9 7.9

+ Kyrill 18 Jan 2007 963 6.7 35.5

+ Emma 01 Mar 2008 960 2.4 34.7

+ Klaus 24 Jan 2009 966 13 12.8

+ Quinten 09 Feb 2009 976 0.59 9.2

+ Xynthia 27 Feb 2010 968 2.7 8.7

× Joachim 16 Dec 2011 966 3.5 31.0

× Dagmar (Patrick
:::::
Patrick

::::::
(Dagmar) 26 Dec 2011 965 0.35 10.1

× Ulli 03 Jan 2012 955 1.6 27.7

× Christian (St Jude) 28 Oct 2013 969 0.91 18.7

× Xaver 05 Dec 2013 962 2.3 34.9
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