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Abstract. Snow avalanches are destructive natural hazards in mountain regions that continue to claim lives, and cause 10 

infrastructural damage and traffic detours. Given that avalanches often occur in remote and poorly-accessible steep terrain, 

their detection and mapping is extensive and time consuming. Nonetheless, systematic avalanche detection over large areas 

could help to generate more complete and up-to-date inventories (cadastres) necessary for validating avalanche forecasting 

and hazard mapping. In this study, we have focused on automatically detecting avalanches and classifying them into release 

zones, tracks, and runout zones based on 0.25-m near-infrared (NIR) ADS80-SH92 aerial imagery using an object-based 15 

image analysis (OBIA) approach. Our algorithm takes into account the brightness, the normalised difference vegetation 

index (NDVI), and the normalised difference water index (NDWI) and its standard deviation (SDNDWI) in order to 

distinguish avalanches from other land-surface elements. Using normalised parameters allows readily applying this method 

across large areas. We trained the method by analysing the properties of snow avalanches at three 4-km² areas near Davos, 

Switzerland. We compared the results with manually-mapped avalanche polygons, and obtained a user’s accuracy of >0.9 20 

and a Cohen’s kappa of 0.79 – 0.85. Testing the method for a larger area of 226.3 km², we estimated producer’s and user’s 

accuracies of 0.61 and 0.78, respectively, with a Cohen’s kappa of 0.67. Detected avalanches that overlapped with reference 

data by >80% occurred randomly throughout the testing area, showing that our method avoids overfitting. Our method 

shows potential in large-scale avalanche mapping, although further investigations into other regions are desirable to verify 

the stability of our selected thresholds and the transferability of the method. 25 

1 Introduction 

Snow avalanches are frequent and destructive mountain hazards, particularly during the winter and spring months. They are 

fast mass movements controlled by weather conditions, snowpack, and the topography of the terrain (Schweizer et al., 2003; 

Castebrunet et al., 2012). Avalanches can cause loss of lives, disrupt infrastructure, and affect buildings (Bründl et al., 2004; 

McClung and Schaerer, 2006; Eckerstorfer and Malnes, 2015).  30 

Nat. Hazards Earth Syst. Sci. Discuss., doi:10.5194/nhess-2017-120, 2017
Manuscript under review for journal Nat. Hazards Earth Syst. Sci.
Discussion started: 10 April 2017
c© Author(s) 2017. CC-BY 3.0 License.



2 

 

Despite numerous efforts aimed at reducing the risk posed by avalanches, most fatalities in Europe occur during sporting 

activities, caused by avalanches triggered by the victims themselves (Techel et al., 2015). Past research indicates that poor 

decision-making and forecasting are the main causes of deadly avalanche accidents (Techel et al., 2015; McClung, 2016). 

Techel et al. (2015) stated that most destructive events occur on days when the snow avalanche risk is very critical and the 

snowpack layer is weak. In total, 4,750 people lost their lives in the European Alps between 1970 and 2015 (Techel et al., 5 

2016); in the past two decades, avalanches in the Swiss Alps alone have killed 461 people (Fig. 1). Most fatal accidents have 

occurred in the cantons of Valais and Grison, which are the two largest in Switzerland and contain some of the highest areas 

in the Swiss Alps. Since 1946, avalanches in Switzerland have had the highest share of victims (37%) in comparison to other 

natural hazards, including lightning (16%), floods (12%), windstorms (10%), rockfalls (8%), and landslides (7%; Badoux et 

al., 2016). 10 

Avalanches killed a total of 36 people in Switzerland in the fatal winter of 1998/99 (Fig. 1). Between 27 January and 25 

February, 17 people died in villages and on roads, and material losses surpassed 600 million Swiss Francs. This catastrophic 

winter spurred an initiative aimed at improving avalanche safety and reducing concomitant losses (Wilhelm et al., 1999; 

Bründl et al., 2004). This initiative included establishing an information system for exchanging data between the WSL 

Institute for Snow and Avalanche Research SLF and local authorities; the development of hazard maps showing zones with 15 

high avalanche susceptibility (Bründl et al., 2004); and an increase in the artificial release of avalanches to decrease hazard 

levels. In this context, the need for documenting avalanches also increased, to allow for learning from past accidents. 

This initiative showed clearly that regional-scale mapping of avalanches and identifying potential release zones is not only 

desirable, but also essential for producing avalanche cadastre maps to be used for quality-checking hazard mapping and 

forecasting (Bühler et al., 2015). To date, experts (Bühler et al., 2009) map most avalanches manually, focussing mainly on 20 

geographic coordinates, but rarely on any detailed information about their extent or area. Moreover, avalanche inventories 

are biased toward damaging events or those reported from accessible terrain. Hence, avalanches remain notoriously 

underreported over larger regions. To more broadly collect information concerning avalanches, non-expert observers in 

Switzerland are now able to report sightings via an app (http://www.slf.ch/lawinenbulletin/rueckmeldung/index_EN), where 

they can enter the location and date of their observation. Optical remote sensing data, both airborne and satellite, offer 25 

coverage that is more systematic, and are therefore increasingly used to track avalanches. Satellite images allow the 

collection of a picture for the same area with a time interval equal to one satellite orbit around the Earth. Airborne images 

can be acquired even more often, although in the winter season it is not preferable to continue the campaign due to financial 

aspects, because such images, which represent mostly only snow, are not convenient for any purposes other than the 

assessment of the risk of snow avalanches. 30 

Automatic methods for detecting snow avalanches are still in the developing stage (Eckerstorfer et al., 2016), and different 

kinds of data, such as optical and radar images, and classification approaches are used to verify their suitability to track 

avalanche events. This motivated us to verify the usability of near infrared (NIR) aerial images and their calculated 

derivatives, in mapping avalanches over a large area in Switzerland, as well as verifying the topographic conditions of their 
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occurrence. We have proposed an automatic OBIA-based method for detecting avalanche runout zones, as well as their 

tracks and release areas. We tested whether normalised indices of water and vegetation derived from aerial ADS80-SH92 

images are suitable in this regard, and introduced a simple method for roughly distinguishing these zones, because 

knowledge concerning potential release zones critically aids in hazard assessments and runout models. Our motivation was 

to develop an algorithm widely applicable to mountain regions, as relying on image spectral properties alone (Lato et al., 5 

2012) may limit such portability, because objects may have a similar brightness to that of snow.  

Most avalanches start on slopes with a median inclination of 39° (Schweizer and Jamieson, 2001), hence on slopes most 

difficult for skiing. We distinguish two types of avalanche: loose avalanches start from a point and gradually increase in size 

as they move downslope, whereas slab avalanches involve the detachment of large planar packs of snow (Fig. 2; Schweizer 

et al., 2003; Bagli and Schweizer, 2009). Path length defines whether an avalanche is small (10 – 100 m), medium (100 – 10 

1,000 m), or large (>1,000 m; Eckerstorfer et al., 2016). Most large avalanches, such as that shown in Figure 2, are slab 

avalanches because to bring down a large amount of snow, planar snow detachment is necessary; however, new smaller 

loose snow avalanches may occur and overlap with the previous one, thus complicating their detection in the field. In terms 

of avalanche deposit area, we distinguish between large deposits (>2,000 m²), small deposits (100 – 2,000 m²), and very 

small deposits (< 100 m²; Bühler et al., 2009). Every avalanche has a release zone – a part where the avalanche is triggered, a 15 

track, a part where the snow is transported down the slope – and a runout, or deposition, zone (Fig. 2). 

2 Previous work 

Most previous work devoted to mapping avalanches from optical remote sensing data has focused on delineating runout 

zones. The idea of using object-based image analysis (OBIA) for detecting avalanches has been used in conjunction with 

brightness information from aerial images and local slope data taken from digital elevation models (DEM), and with 20 

numerical modelling (Bühler et al., 2009), whereas others have used only the spectral information of aerial and satellite 

images to detect snow avalanches (Lato et al., 2012). Bühler et al. (2009) proposed an approach for mapping snow-avalanche 

deposits from ADS40 20-cm aerial images, which they resampled to 1 m and then combined with 25-m elevation data. They 

used the numerical simulation tool RAMMS (Rapid Mass Movement Simulation; Christen et al., 2010) to exclude slopes 

>35° from the runout calculation, as they assumed these slopes could not accumulate snow-avalanche debris. They also used 25 

spectral thresholds to exclude snow-free areas. To separate rough avalanche debris from surrounding smooth and 

undisturbed snow, they used the normalised difference angle index (NDAI), evaluated from nadir and backwards NIR bands. 

They computed the NDAI difference between neighbouring pixels with a grey-level co-occurrence matrix (GLCM), which 

represents the distribution of pixel values at a given offset, and found that the thresholding of an entropy measure evaluated 

via the GLCM achieved the best separability of rough and smooth snow. Ski lifts and other objects characterised by a similar 30 

entropy were removed using OBIA. The estimated accuracy of this method in terms of the fraction of correctly-detected 

avalanche deposits was 94%, and the producer’s accuracy was 87%. Lato et al. (2012) applied OBIA for detecting avalanche 

deposits from panchromatic images only. They tested their algorithm with Quick Bird images in Norway, and aerial ADS40 
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images in Switzerland, relying on six variables (i.e. GLCM entropy, GLCM dissimilarity, brightness, contrast, similarity, 

and neighbour distance) in their procedure, in which segments failing to meet the OBIA assumptions were sequentially 

discarded. They started by eliminating dark regions from brightness data before detecting rough snow with edge contrast. 

The similarity filter and density helped to remove isolated pixels and small objects, respectively. Finally, the neighbour 

distance helped to fill gaps inside the extracted snow-avalanche deposits. The user’s and producer’s accuracies of this 5 

classification were both >90%. Both these studies (Bühler et al., 2009; Lato et al., 2012) regarded OBIA as suitable for 

detecting snow-avalanche deposits, because it considers the spatial relation of the analysed segments in addition to their 

spectral properties. 

Larsen et al. (2013) suggested an approach for optical Quick Bird imagery using directional filters evaluated based on image 

texture classification (Varma and Zisserman, 2004) to distinguish avalanches from another objects. They assumed that 10 

avalanches have a texture pattern with a linear structure on the snow that coincides with the local hillslope aspect. Similar to 

other strategies, their classification took into account neighbouring pixels, while parameters such as area, area perimeter 

ratio, aspect direction difference, co-occurrence mean, correlation, and entropy were used to assist in excluding misclassified 

instances. Based on a visual comparison, the authors concluded that their classification was acceptable, allowing the 

detection of many fresh avalanches with a low number of false alarms (Larsen et al., 2013). They pointed out, however, that 15 

some of the detected avalanches were split into parts; they therefore recommended additional processing to re-connect those 

fragments. 

Eckerstorfer and Malnes (2015) manually detected avalanche debris based on its higher backscatter contrast, compared to the 

surrounding undisturbed snow cover, in Radarsat-2 Ultrafine SAR imagery. They assumed that avalanches are tongue-

shaped features with high surface roughness and higher snow density than surrounding terrain. Surface roughness and snow 20 

density were determined from backscatter, which increased in cases of higher surface roughness, and absorption, which 

increased for denser snow, respectively. They found that release zones and tracks were mostly difficult to detect. In a similar 

context, the automatic method of Vickers et al. (2016) evaluates backscatter in 50 x 50 pixel regions of Sentinel-1A images, 

subsequently masking out areas with a predicted probability of snow-avalanche occurrence of zero; pixels with a DEM-

derived local slope of >35° were removed from the occurrence of avalanches. From the test pixels, they selected those with a 25 

backscatter difference above a specified threshold. Randomly-selected pairs of pixels gave a total dissimilarity of pixels and 

class representatives for a K-mean clustering with two classes, ‘avalanche’ or ‘not avalanche’. The detection rate (producer’s 

accuracy) of this algorithm was 60%, and the authors highlighted its potential for avalanche monitoring despite masking out 

large amounts of data. Finally, Bühler et al. (2016) tested an unmanned aerial vehicle (UAV) that allows for fast, repeatable, 

flexible, and cost-efficient measurements of snow depths in alpine terrain, possibly generating digital surface models of 30 

homogenous snow surfaces (Bühler et al., 2017). Legal regulations in Switzerland and elsewhere currently limit broad 

coverage of UAV imagery, however. 
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3 Study area and data 

Our study area is centred around Davos, in the Swiss canton of Grisons; the area has alpine relief, with the highest local peak 

at Schwarzhorn (3,146 m a.s.l.; Fig. 3). Many slopes in this area exceed 28° and have dominant northeastern and 

southwestern aspects (Fig. 3). We used 0.25-m resolution NIR aerial images in conjunction with abundant avalanche 

information acquired via a ADS80-SH92 large-format Digital Pushbroom Sensor (Leica Geosystems AG, Heerbrugg, 5 

Switzerland; Bühler et al., 2009) at the end of the 2012/13 winter season. The sensor recorded information with five spectral 

bands: panchromatic, blue, green, red, and NIR (Bühler et al., 2009). We have data for the area for more than five time slices 

starting from the winter of 2007/08 and continuing from 2011/12 to 2015/16. The images we used were taken at the end of 

the winter of 2012/13, where the highest expected snow depths were between 2,000 and 3,000 m a.s.l., and covered ~226 

km². 10 

4 Methods 

We have introduced an automatic method for mapping release zones, tracks, and runout zones of avalanches using NIR 0.25-

m aerial images. We compared the automatic classification with manually-digitised reference data and assessed the accuracy 

of detecting snow avalanches using confusion matrices. Furthermore, we verified the topographical conditions on which 

most mapped avalanches occurred and verified two approaches for visualising the avalanche density. In addition, we 15 

proposed a probability approach to representing release and runout zones of avalanches and the automatic classification of 

snow avalanche parts. 

4.1 Automatic OBIA snow avalanche classification 

We implemented a multi-step OBIA approach for detecting avalanches in eCognition Developer 9.1.1 software (Fig. 4). As 

input for the classification, we used the green, red, and NIR bands, and computed from these the normalised difference 20 

vegetation index (NDVI = ρNIR – ρRed / ρNIR + ρRed; Townshend and Justice, 1986), and the normalised difference water index 

(NDWI = ρGreen – ρNIR / ρGreen + ρNIR; McFeeters, 1996) and its standard deviation in a 5 x 5 kernel (SDNDWI). We derived 

brightness as the mean of the green, red, and NIR bands to classify ‘dark objects’, such as rivers, rocks, and buildings. The 

NDVI helped to classify trees, bushes, and other types of vegetation, whereas the NDWI (SDNDWI) detected snow (rough 

snow; Fig. 4). We stretched computed NDVI and NDWI data into an interval of [0, 255]. 25 

4.1.1 Classifying vegetation, dark objects, and snow 

In our first step, we segmented the data using a chessboard segmentation algorithm in eCognition 9.1.1 software, assigning a 

standalone segment to each single pixel (Fig. 4). We used the pixel values of snow-free areas obtained from NDVI and 

brightness to classify ‘vegetation’ and ‘dark objects’. We classified vegetation as having positive NDVI values 

(corresponding to >127 in the stretched range), and dark objects as those with a brightness of <4,000 (Fig. 4). Because pixels 30 
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on the border of vegetation and dark objects have mixed values, we assigned them to a separate ‘buffer’ class by 

reclassifying every pixel that shared a border with either ‘vegetation’ or ‘dark objects’ (existence of ‘vegetation’ or existence 

of ‘dark objects’; Fig. 4), and then excluded this ‘buffer’ class from further analysis. We merged all segments classified as 

‘vegetation’ and ‘dark objects’ and assigned all segment areas <6.25 m² (<100 pixels; Fig. 4) as being too small to buffer or 

divert an avalanche, and included these segments as potential areas where a snow avalanche could occur. All the size 5 

thresholds used in our OBIA workflow were set to the resolution of the data that were used and the size of the analysed 

avalanches. Similarly, we classified pixels with a positive NDWI (>127 for stretched data) as snow and pixels with an 

additional roughness contrast (SDNDWI >1) as ‘rough snow’, representing avalanches. 

4.1.2 Removing small objects that do not represent avalanches 

We then merged all snow pixels and reclassified ‘rough snow’ segments <12.5 m² (< 200 pixels, Fig. 4). We thus included 10 

many pixels as parts of avalanche deposits that had escaped being classified as ‘rough snow’ in the previous step because of 

SDNDWI values that were too low. We applied an assumption concerning the maximum area of segment that can be 

reclassified into the ‘rough snow’ class to avoid the inclusion of large, but smooth, areas inside avalanches. After comparing 

the segment values with their visual representation in an image, we observed that larger smooth areas that are inside the 

avalanche represent small ascents that were omitted by the avalanche, and should therefore not be assigned as a part of an 15 

avalanche. We similarly assumed that the boundary of ‘rough snow’ should be equal to 1 for both ‘snow’ and ‘buffer’ 

classes, which means that the segment lies completely within these two classes; however, this time we combined it with a 

SDNDWI of >=0.75 to include the segment as ‘rough snow’. The thresholding value of the SDNDWI was taken from the data 

histogram by analysing the rapid change in the counts of values on the histogram. We than merged the segments into the 

‘rough snow’ class, with the exception of areas <62.5 m² (area <1,000 pixels; Fig. 4), assuming that they were too small to 20 

represent an avalanche. 

4.1.3 Buffering 

In further steps, we split all segments from the ‘rough snow’ class into smaller pieces, to reduce their artificially-complex 

shapes with bigger and more compact parts connected to neighbours by only a few pixels. In most cases, only some of these 

complex shapes represented an avalanche, whereas the remainder was ‘rougher snow’ due to vegetation effects. To simplify 25 

these shapes into separate parts, we used buffering to reclassify pixels from the ‘rough snow’ class as snow that had less than 

four neighbours classified as ‘rough snow’ (Fig. 4), repeating this step for both the ‘snow’ and ‘rough snow' classes. To 

avoid undue growth of spurious pixels, we narrowed down the process to only pixels adjacent to at least one pixel classified 

as ‘rough snow’ (Fig. 4). 
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4.1.4 Neighbourhood analysis 

At this stage, our classification still contained many misclassified parts of avalanches containing effects of vegetation, soil, 

or rocks. To assign these parts to the ‘rough snow’ class, we first reclassified all pixels from ‘unclassified’, ‘buffer’, 

‘vegetation’, and ‘dark objects’ with brightness >3,000 and NDVI <140 into a new ‘temp’ class (Fig. 4). After merging the 

segments into the ‘temp’ class, we reclassified all segments bordering ‘rough snow’ <0.01 into ‘unclassified’ and discarded 5 

these from the analysis. For the remaining segments, after returning to chessboard segmentation to allow us to once again 

operate on single pixels, we reclassified all pixels from the ‘temp’ class sharing a border with ‘rough snow’ with at least two 

pixels (Fig. 4) iteratively. Because every pixel had only four neighbours, the assumption concerning two pixel neighbours 

stopped the infinite loop after only a few repetitions. To allow the inclusion of additional pixels, we therefore decreased the 

threshold on the relative border to >=0.25 and performed the process twice more to allow more segments that were sharing 10 

the boundary with at least one ‘rough snow’ segment to be included in the ‘rough snow’ class. We did not run this process 

iteratively, because it would have reclassified all pixels assigned as ‘temp’, and our aim was to increase only compact ‘rough 

snow’ areas. Next, we once more applied an infinite loop regarding the relative border to ‘rough snow’of >=0.5, to increase 

previously-detected snow avalanches. These steps were crucial in closing areas inside the snow avalanches that due to the 

values of brightness and NDVI, were not assigned in the previous steps to the ‘rough snow’ class. 15 

4.1.5 Adding small gaps inside avalanches 

Finally, we focused on filling gaps inside the detected snow avalanches. We reclassified and merged gaps into avalanches by 

verifying their geometrical relation to ‘rough snow’. After checking the layer statistics for every segment, we built an 

assumption that if a segment was completely within the ‘rough snow’ and its area was <1,000 pixels (62.5 m²), it was to be 

automatically reclassified into ‘rough snow’ (relative border to ‘rough snow’ = 1 and area <1,000 pixels; Fig. 4). Segments 20 

with >1,000 pixels reclassified into ‘rough snow’ were expected to fulfil additional rules concerning their roughness, 

brightness, occurrence of snow, and vegetation, because they may have represented a convex-upward form that could stay 

intact during the avalanche occurrence. Only segments with a high snow roughness that did not represented vegetation and 

were not too dark were added to the ‘rough snow’ class (relative border to ‘rough snow’ = 1, SDNDWI >0.7, NDWI >127, 

NDVI <140, and brightness >2,500; Fig. 4). We exported all extracted snow avalanches into polygon shapefiles and 25 

compared these visually and quantitatively with manually-mapped reference data. The visual interpretation was important 

for verifying the distribution of errors and the completeness of classified avalanches. 

4.2 Generating reference data 

We created reference data by manually digitising avalanches from the images in ArcMap 10.3 software at scales between 

1:800 and 1:1,500, depending on the complexity of the mapped avalanche. Manually digitising each area affected by the 30 

avalanche was necessary because avalanches occur only during the winter season when snow cover occurs, making them 
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temporal events; the marks of their existence disappear when the snow cover melts, and therefore no complete reference data 

are available. Avalanches that were overlapping or bordering others were counted as one. This means that polygons 

representing an avalanche in fact covered several smaller avalanches that had occurred in succession; in most cases, it was 

impossible to assess their relative sequence (Fig. 3). We mapped a total of 2,200 avalanche polygons for the data acquired in 

the winter of 2012/13, obtaining 13.6 km² of avalanche terrain or 6% of the study area. The reference data, as well as 5 

automatically-extracted avalanche polygons, are available online (https://uni-

potsdam.maps.arcgis.com/apps/Cascade/index.html?appid=3b5ac4491b59480c8c6016139f285e88). We used the reference 

data to estimate several classification accuracy metrics, including Type I, Type II, and total errors (Sithole and Vosselman, 

2004), overall, user’s, and producer’s accuracies (Congalton, 1991), Cohen’s kappa (Cohen, 1960), and F-Score. Finally, we 

arbitrarily selected three 4-km² training sites (Fig. 3) for our OBIA algorithm, and reported these eight performance metrics 10 

for a larger 226.3 km² test area. 

5 Results 

5.1 Estimated accuracy 

Our algorithm classified 10.7 km² as avalanche debris, which is 78.7% of the total area of the reference data mapped for the 

winter of 2012/13. Overall, 1,648 out of 2,200 avalanches were correctly identified; 1,126 were detected in terms of more 15 

than half their area, and for 615 avalanches this detection rate was >80%. These classified avalanches were spread out evenly 

throughout the study area (Fig. 5). Visual checks of the classification indicated that the runout zones were detected most 

reliably, whereas the release zones were the most problematic. Tracks were detected mostly correctly where small patches of 

vegetation or soil were near or in the avalanche tracks. The highest estimated precision in detecting avalanche boundaries 

was in runout zones adjacent to smooth snow or unvegetated slopes. In some locations, a clear distinction between avalanche 20 

debris and smooth snow was not possible, especially for older deposits or snow drifts. Fresh avalanches were also detected 

with higher accuracy than were older and blurred ones. 

The performance metrics estimated for our training sites were overall and user’s accuracies of >0.9, and a Cohen’s kappa of 

>0.8 (Tab. 1). The accuracy for the testing area yielded lower performance metrics, with a user’s accuracy of 0.78. The 

producer’s accuracy showed that 61% of the total avalanche area in the tested data was correctly identified. The overall Type 25 

II error was very low, indicating that few objects were falsely classified as avalanches, whereas the high Type I error showed 

that many, mostly old, snow avalanches remained undetected. 

 

Table 1: Performance metrics estimated for 4-km² training sites 1 – 3 (see Figures 3 and 5) and for the entire study 

area covering 226.3 km². 30 

 Type I 

error 

Type II 

error 

Total 

error 

Overall 

accuracy 

Producer’s 

accuracy 

User’s 

accuracy 

Cohen’s 

kappa 
F-score 
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Site 1 0.23 0.01 0.05 0.95 0.77 0.91 0.81 0.83 

Site 2 0.23 0.02 0.08 0.92 0.77 0.92 0.79 0.84 

Site 3 0.16 0.02 0.05 0.95 0.84 0.93 0.85 0.88 

Total 0.39 0.01 0.03 0.97 0.61 0.78 0.67 0.69 

 

5.2 Influence of variables used for classification accuracy 

We checked how brightness, NDVI, NDWI, and SDNDWI derivatives evaluated for each classified avalanche affected the 

producer’s accuracy. For each avalanche, we computed the mean for each derivative map using the values of all the pixels 

inside the avalanche. We found that avalanches that were extracted with the highest accuracy were generally also brighter 5 

(Fig. 6); an increase in producer’s accuracy occurred with an increase in the mean brightness of avalanche. A similar, but, 

weaker correlation held for SDNDWI. Neither NDVI nor NDWI had much of an influence on the classification accuracy. In 

addition, we verified if an avalanche’s shape (roundness) and size (area) affected the detection rate. Similarly to NDVI and 

NDWI, however, we did not find any dependence (Fig. 6). 

5.3 Topographic factors favourable for snow avalanches 10 

We further analysed the topographic settings of the mapped avalanches. Most avalanches (1,422 out of 2,200) occurred 

between 1,900 and 2,600 m a.s.l., with a mode of approximately 2,400 m a.s.l., on slopes that were 20 – 40° (Fig. 7). One 

hundred thirty nine out of 193 of the highest-lying avalanches (>2,800 m a.s.l.) were small or very small events, according to 

the nomenclature of Bühler et al. (2009) and occurred in the southern part of our research area. Although the largest 

avalanches occurred below 2,400 m a.s.l., most affected northeastern and the southwestern slopes, thus mimicking the major 15 

aspects of the mountain ranges (Fig. 3). 

5.4 Density of avalanches 

Using the reference data for the winter of 2012/13, we further analysed where most of the avalanches occurred. We 

computed centroid locations for each avalanche polygon, and estimated their spatial density using the Kernel density 

function in ArcGIS 10.3, with both point- and area-weighted inputs in a 2-km radius. We produced two maps because, due to 20 

the occurrence of multiple avalanches, our input centroids did not represent the total number of events. Consequently, a 

point-weighted map could have underestimated the real avalanche density, whereas an area-weighted map avoids this issue. 

The selected 2-km size of the bandwidth was large enough to avoid reproducing the pattern of input avalanche centroids, and 

small enough to reduce the smoothing of the point information. We found that avalanches clustered largely in the south-

eastern part of the study area (125 smaller avalanches in inset 1, Fig. 8, of which 104 were <2,000 m²). The area-weighted 25 

spatial density of avalanches was highest on the slopes of Fluela Schwarzhorn, Sentischhorn, and Wuosthorn. The biggest 

avalanche in inset 2 on Figure 8 had an area of ~390,000 m². 
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5.5 Automatic classification of snow-avalanche zones 

Automatic delineation of release and runout zones from remote sensing data can be conducted by verifying the elevation 

values in each polygon that represents an avalanche. The simplest approach uses a flow length, which represents the distance 

along the flow path inside the avalanche, as an indicator in evaluating the probability of the release and the runout zones. 

Herein, we suggest using the elevation values in an approach that allows exposure of local terrain height differences in the 5 

probability map. For example, applying the elevation for a release zone that occurs on very steep slopes determines that the 

highest probability will be represented only for a very small area, whereas on gentle slopes, the same probability will occur 

over a larger area, because the elevation differences are smaller than those of steep slopes. 

We used a 2-m resolution digital surface model (DSM) derived from stereomatching of aerial ADS images to automatically 

detect release zones, tracks, and runout zones. Because we generated our reference data in the same resolution as the aerial 10 

images, we first resampled the DSM to 0.25-m resolution (Fig. 9). We then used the reference data to clip the DSM to each 

avalanche polygon using a key ID. DSMs acquired in this way were used to compute the probability of representing 

individual parts of an avalanche. We assumed that the maximum (minimum) elevation on which the snow avalanche occurs 

has the highest probability of being a release (runout) zone. We estimated the probability by normalising elevation data (Fig. 

9) by subtracting the minimum value of DSM inside this avalanche from DSM pixel value, and dividing by the difference 15 

between the maximum and the minimum values inside each avalanche. Such stretching returns a 0 – 1 probability map for 

release areas. The thresholds in classifying the track are relative; we applied 0.3 – 0.8 as the thresholds, because most of our 

2,200 manually-digitised polygons represented loose snow avalanches where the release zone constituted a small part, and 

the runout zone compared to the track constituted an even smaller part. When dealing only with loose avalanches, the upper 

threshold for release areas may be set to a probability equal to 0.9. The selected thresholds worked well for single 20 

avalanches, where both the release zone and the runout zone were assigned correctly (Fig. 9). For avalanches with more 

complex shape and multiple avalanche arms (e.g. avalanche 1,207 on test site 2; Fig. 9), however, the release zones remain 

undetected, with the exception of only the highest-lying release areas. 

6 Discussion 

Automatic mapping of avalanches is crucial in mountainous regions to delineate susceptible areas and to produce cadastres 25 

for validating avalanche forecasting and hazard maps. Previous studies have demonstrated that a combination of aerial 

images and digital elevation models (Bühler et al., 2009), or aerial (Lato et al., 2012) and satellite (Larsen et al., 2013), or 

SAR images (Vickers et al., 2016) allow the detection of snow avalanche deposits; however, identifying release zones and 

tracks remains challenging. We have proposed an OBIA algorithm that tracks release zones, tracks, and runout zones in NIR 

images. We recommend using normalised derivatives NDWI and NDVI, instead of brightness, for classifying water (snow) 30 

and vegetation, respectively, because the thresholds allowing for classification of water and vegetation in these indices are 

stable (around zero) and widely applicable. Our approach upon expands previous work, as we have considered potential 
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snow avalanches in snow-covered areas only (NDWI >127), whereas others have used brightness thresholds (Lato et al., 

2012), with the danger of including other objects with similar values to those of snow. Rivers and lakes have similar values 

of NDWI, but are less bright than snow, we therefore combined NDWI and brightness in our model. We suggest using 

SDNDWI to trace rough snow or avalanche debris. Estimated accuracy was high for detecting avalanches using the test data, 

and the random spread of avalanches detected with high accuracy through the whole research area suggests that the 5 

assumptions in our approach are broad enough to be applied for a large area. 

To increase the accuracy of true positives in detecting release zones in our classification, a customised threshold for every 

data tile can be applied. In any case, we focused on developing a method that is transferable and works well for a greater 

area. We also wanted to test the usability of the image derivatives and verify how much information we could obtain from 

them when detecting snow avalanches. We therefore did not change any parameter or its threshold when applying the 10 

algorithm for other data tiles (Lato et al. 2012). We implemented several steps that allowed the classification of different 

avalanche scenarios that occur in diverse topographic conditions, such as single vs. multiple avalanche; small vs. large 

avalanche; avalanche revealing the ground or vegetation vs. avalanche that does not reveal the ground or vegetation; 

avalanche that is blocked by vegetation or other objects having high roughness vs. avalanche that is not adjacent to any 

rough object. These topographic conditions influence the appearance of avalanches on images; therefore, the number of steps 15 

in our OBIA workflow is large. We found that OBIA is useful for complex shapes, because it allows the implementation of 

assumptions regarding each different situation. Additionally, this OBIA algorithm may be used and modified according to 

the need of the user and the data. For example, some steps in our OBIA workflow may be omitted, such as those used for 

filling the gaps inside the avalanche. If the data do not contain avalanches that reveal bare ground or vegetation, these steps 

may not improve the classification, because there will not be any gaps to reclassify. Additionally the number of loops in the 20 

shrinkage and growth steps depend on pixel size. With our 0.25-m resolution NIR images, we shrank and increased the 

segments of 1.25-m, which was sufficient to split segments into small parts; with higher (lower) resolution, the number of 

loops should be increased (decreased) accordingly. Previous studies have reported very high accuracy in separating 

vegetation and water using vegetation and water indices (Townshend and Justice, 1986; Ji et al., 2009); therefore, we assume 

that the NDVI, and NDWI thresholds are stable and may be easily transferable to other areas and data. Despite this, the 25 

thresholds for SDNDWI should always be verified by analysing the mode of data distribution on a histogram of the SDNDWI, 

testing the thresholding of data samples, and checking the thresholding results visually. We are aware that such visual 

checking may introduce some bias, although so far it is the most common way in OBIA to find the most suitable threshold. 

The size and the shape of avalanches did not influence the classification accuracy if they were bigger than 2,000 pixels, 

which is what we regard as the minimum detectable size in our OBIA algorithm. We selected the minimum number of pixels 30 

necessary by analysing the reference data, where avalanches smaller than 2,000 pixels constituted only 7.5% of the total 

number of avalanches, and by taking into account the classification of avalanches with respect to their size. According to 

Bühler et al. (2009), very small avalanches are <100 m², which coincides with 2,000 pixels (125 m²). The parameters playing 

the biggest roles were brightness and the SDNDWI (Fig. 6). Visual inspection showed that the easiest avalanche part to detect 
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was the runout zone and the most difficult was the release zone, because release zones were not usually rough enough or did 

contain outcrops of the vegetation or bare ground. The correct detection of the track depended mostly on snow roughness 

and depth. In a case of low roughness values or a very thin snow cover revealing the ground and the vegetation, the track 

was not detected correctly or not detected at all.  

The most difficult to classify were old avalanches where the bare ground cropped out or where vegetation occurred in the 5 

path of the avalanche. These avalanches did not meet the assumptions in our OBIA protocol and could not be classified 

correctly because they were not rough enough, or were too vegetated or dark due to thin snow cover. We tested different 

thresholds for the input layers and different neighbourhood assumptions in order to include these avalanches; however, this 

resulted in more false positives, so the cost of correct classification of these avalanches was higher than the benefit. We 

therefore decided to stay with the same workflow and thresholding shown in Figure 4 for the whole study area. 10 

Errors in automatic classification also occurred due to data tiling. Using an Intel Xeon E5-2667U processor with 256GB 

RAM memory, we were able to run our OBIA algorithm only for tiles of 6.25 km² (10,000 columns x 10,000 rows), 

requiring a computing time of ~30 minutes for each tile; our test in executing bigger tiles ended in crashing the computation 

in the eCognition software. In many cases the avalanches were therefore split into two or more neighbouring tiles, which 

influenced the correct detection of avalanche parts, especially those where the avalanches were spread across tiles or had 15 

small gaps. 

Avalanches often have a tongue shape that may also be used as a property for classifying. In our test area, however, using 

such information may be insufficient, because we are dealing with avalanches repeated in the same location and merged 

avalanches, which have more complex shapes. In such cases, a new avalanche may partly cover previous avalanche, making 

it difficult to distinguish them. In addition, a few avalanches may simply have a more complex and difficult-to-interpret 20 

shape. 

Our estimated avalanche density map and information concerning the most common prevalence of avalanches may be used 

to help generate a hazard map in mountainous areas. The most crucial issue, however, is whether the size or the number of 

avalanches is more important in such mapping. As mentioned by Eckerstorfer et al. (2016), only very small avalanches cause 

less damage; therefore, we suggest weighting the density map according to avalanche size to give more information 25 

regarding the degree of danger in a specific area. 

Continuation of our research should contain verification of the transferability of our OBIA algorithm to data from different 

winter years for the area of Davos, Switzerland, which we have in our repository. In addition, future tests involving diverse 

areas across the World and different types of data (e.g. UAV) are desirable. An approach for distinguishing single and repeat 

avalanches at the same area should be developed, because it would give more detail about the quantity and the frequency of 30 

avalanches in a given area. 
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7 Conclusions 

We have presented an automatic object-based image analysis (OBIA) approach to detecting snow avalanches and their 

release, track, and deposition zones for a large region from ADS80 NIR aerial images. We used image-derived parameters, 

including the normalised difference vegetation index (NDVI), and the normalised difference water index (NDWI) and its 

standard deviation (SDNDWI), to separate vegetation, snow, and rough snow representing avalanche debris, respectively. We 5 

applied buffering assumptions relying on the local neighbourhood of segments to remove salt-and-pepper noise and objects 

that were falsely assigned as avalanches, using the thresholding of derivatives obtained from NIR images. For an area of 

226.3 km², our algorithm achieved producer’s and user’s accuracies of 0.61 and 0.78, respectively, and a Cohen’s kappa of 

0.67. Our algorithm uses only information taken from these images, from which the evaluated NDVI and NDWI indices are 

normalised, helping to transfer their thresholds to other areas. Our approach contains only three fixed parameters (NDVI, 10 

NDWI, and SDNDWI) and two changeable parameters (brightness and segment area). The first depend on the spectral 

characteristics of images and the latter one depend on the resolution of images. Our OBIA workflow is not sequential when 

compared to that of Lato et al. (2012); the segments that do not fulfil assumptions in one step can still be considered as 

potential snow avalanches in the next steps. To assign potential snow avalanches, our method takes into account only the 

rough snow, which allows more reliable detection of avalanches. Our probability approach determines, in an automatic way, 15 

the highest and the lowest parts of the avalanche, and thus its release zone, track, and runout zone, which allows easy 

analysis of the topographic condition of areas where the avalanche starts and where the snow is deposited. For multiple 

avalanches with a complex shape, our probability map may not be sufficient to correctly identify all release and runout 

zones, but for single avalanches, it gives valuable results. For some avalanches, we were not able to judge visually if they 

were single or multiple; a discussion of this topic should therefore be undertaken. The probability approach may be used for 20 

any other mass movement landforms, such as landslides, to delineate their release and deposition zones. In the future, we 

plan to validate our snow avalanche algorithm for ADS data, which we have for other winters, and to verify its transferability 

to other NIR images, because successful results in this matter may offer a chance to improve hazard maps and avalanche 

forecasting in Switzerland. 
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Figure 1: Snow avalanche accidents with victims in Switzerland in the winters of 1996/97 to 2015/16, and the Alps percentage per 

country. Data from: Swiss Federal Institute for Snow and Avalanche Research (WSL-SLF), Davos, Switzerland. 

Nat. Hazards Earth Syst. Sci. Discuss., doi:10.5194/nhess-2017-120, 2017
Manuscript under review for journal Nat. Hazards Earth Syst. Sci.
Discussion started: 10 April 2017
c© Author(s) 2017. CC-BY 3.0 License.



17 

 

 

Figure 2: a) Types of avalanche release: slab avalanches and loose avalanches, with marked avalanche body parts (crown, bed 

surface, stauchwall, deposition zone, and right and left flanks; Schweizer et al. 2003); b) Avalanche classification with respect to 

length: small, middle, and large [m], with the avalanche area [m²] and marked parts of avalanches: release zone, track, and runout 

zone. Data from: WSL Institute for Snow and Avalanche Research (SLF), Davos, Switzerland. 5 
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Figure 3: Topographic setting of research area and ADS 80 NIR aerial images with test sites (1 – 3) and digitally mapped snow 

avalanches; different colours mark different snow avalanche polygons. Inset histograms show a) distribution of local slope and b) 

the main slope aspect. 
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Figure 4: Workflow for classifying snow avalanches with object-based image analysis (OBIA). The white boxes indicate the 

classification; dashed outlines feature the number of reiterations (red), and the local decision boundaries show change (blue). The 

colours of squares are coded to the input and output class in each step. Figs. a), b), c), and d) represent visual results of the sub-

step classification. 5 
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Figure 5: Accuracy assessment of OBIA classification for training (test sites 1 – 3) and testing data together; avalanche debris are 

shaded with orange colour, where they were detected with an accuracy >=80%. TP = true positive; FP = false positive; FN = false 

negative. 
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Figure 6: The role of avalanche area, roundness, brightness, normalised difference vegetation index (NDVI), normalised difference 

water index (NDWI), and standard deviation of normalised difference water index (SDNDWI) in the estimated accuracy, when 

detecting snow avalanches with our OBIA approach. 
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Figure 7: Elevation, slope, and aspect of mapped reference avalanches with marked northeast and southwest directions in the 

winter of 2012/13. The values presented for every single avalanche represent the mean value of each pixel contained inside the 

reference avalanche polygon. Bubble size on the scatter plot is scaled to avalanche area. 
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Figure 8: Density maps showing the clustering of avalanches in the winter of 2012/13, with respect to their a) quantity, and b) size. 

The insets (zoom 1 and zoom 2) show the density maps with respect to manually-classified reference snow avalanche polygons 

shown in white. Outlined test sites 1 – 3 are the test sites that were used for developing our OBIA algorithm. 
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Figure 9: Estimating the probability of an avalanche release area. A probability close to one indicates a pixel representing a release 

zone, whereas a probability close to zero indicates a runout zone in automatically classified data. 
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