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Abstract 16 

We executed an experiment to determine the effects of optical image characteristics on event 17 

landslide mapping. In the experiment, we compared eight maps of the same landslide, the 18 

Assignano landslide, in Umbria, Central Italy. Six maps were obtained through the expert visual 19 

interpretation of monoscopic and pseudo-stereoscopic (2.5D), ultra-resolution (3 × 3 cm) images 20 

taken on 14 April 2014 by a Canon EOS M photographic camera flown by an CarbonCore 950 21 

hexacopter over the landslide, and of monoscopic and stereoscopic, true-colour and false-colour-22 

composite, 1.84 × 1.84 m resolution images taken by the WorldView-2 satellite also on 14 April 23 

2014. The seventh map was prepared through a reconnaissance field survey aided by a pre-event 24 

satellite image taken on 8 July 2013, available on Google Earth™, and by colour photographs taken 25 

in the field with a hand-held camera. The images were interpreted visually by an expert 26 

geomorphologist using the StereoMirror™ hardware technology combined with the ERDAS 27 

IMAGINE® and Leica Photogrammetry Suite (LPS) software. The eighth map, which we 28 

considered our reference showing the “ground truth”, was obtained through a Real Time Kinematic 29 

Differential Global Positioning System (GPS) survey conducted by walking a GPS receiver along 30 

the landslide perimeter to capture geographic coordinates every about 5 m, with centimetre 31 

accuracy. The eight maps of the Assignano landslide were stored in a Geographic Information 32 

System (GIS), and compared adopting a pairwise approach. Results of the comparisons, quantified 33 

by the error index E, revealed that where the landslide signature was primarily photographical (in 34 

the landslide source and transport area) the best mapping results were obtained using the higher 35 

resolution images, and where the landslide signature was mainly morphometric (in the landslide 36 

deposit) the best results were obtained using the stereoscopic images. The ultra-resolution image 37 

proved very effective to map the landslide, with results comparable to those obtained using the 38 

stereoscopic satellite image. Conversely, the field-based reconnaissance mapping provided the 39 

poorest results, measured by large mapping errors, and confirmed the difficulty in preparing 40 

accurate landslide maps in the field. Albeit conducted on a single landslide, we maintain that our 41 

results are general, and provide useful information to decide on the optimal imagery for the 42 

production of event, seasonal and multi-temporal landslide inventory maps. 43 

  44 
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1 Introduction 45 

Accurate detection of single landslides has different scopes, including landslide mapping (Di Maio 46 

and Vassallo, 2011; Manconi et al., 2014; Plank et al., 2016), landslide hazard analysis and risk 47 

assessment (Allasia et al., 2013), to support the installation of landslide monitoring systems (Tarchi 48 

et al., 2003; Teza et al., 2007; Monserrat and Crosetto, 2008; Giordan et al., 2013), and for 49 

landslide geotechnical characterization and modelling (Gokceoglu, 2005; Rosi et al., 2013). 50 

Mapping of single landslides can be executed using the same techniques and tools commonly used 51 

by geomorphologists to prepare landslide inventory maps i.e., through field surveys (Santangelo 52 

et al., 2010) or the heuristic visual interpretation of monoscopic or stereoscopic aerial or satellite 53 

images (Brardinoni et al., 2003; Fiorucci et al., 2011; Ardizzone et al., 2013), of LiDAR-derived 54 

images (Ardizzone et al., 2007; Van Den Eeckhaut et al., 2007; Haneberg et al., 2009; Giordan 55 

et al., 2013; Razak et al., 2013; Niculita et al., 2016, Petschko et al., 2016 ), or of ultra-resolution 56 

images acquired by Unmanned Aerial Vehicles (UAV, Niethammer et al., 2010, Giordan et al., 57 

2015a, 2015b; Torrero et al., 2015, Turner et al., 2015). The heuristic visual mapping of landslide 58 

features is based on the systematic analysis of image photographic and morphological 59 

characteristics such as colour, tone, mottling, texture, shape, size, curvature (Pike, 1988). These 60 

photographic and morphological characteristics encompasses all the possible landslide features that 61 

can be used for the (visual) interpretation of the available imagery. 62 

All these mapping techniques have inherent advantages and intrinsic limitations, which depend on 63 

the size and type of the landslides, and on the characteristics of the images, including their spatial 64 

and spectral resolutions (Fiorucci et al., 2011). As a result, landslide maps prepared exploiting one 65 

or more of the mentioned techniques are inevitably incomplete, and contain errors in terms of the 66 

position, size and shape of the mapped landslides (Guzzetti et al., 2000; Galli et al., 2008, 67 

Santangelo et al., 2015a). 68 

Attempts have been made to evaluate the errors associated to different types of landslide inventory 69 

maps (Carrara et al., 1992; Ardizzone et al., 2002, 2007; Van Den Eeckhaut et al., 2007; Fiorucci 70 

et al., 2011; Santangelo et al., 2010; Mondini et al., 2013). Most of these attempts compare 71 

landslide maps prepared using aerial or satellite images to maps obtained through reconnaissance 72 

field mapping (Ardizzone et al., 2007; Fiorucci et al., 2011) or GPS surveys (Santangelo et al., 73 

2010). Conversely, only a few authors have attempted to evaluate the influence of different types 74 
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of imagery on landslide detection and mapping (Carrara et al., 1992).  75 

In this work, we evaluate how images of different types and characteristics influence event 76 

landslide mapping. We do this by comparing eight maps of a single, rainfall-induced landslide near 77 

the village of Assignano, Umbria, central Italy. Seven maps of the same landslide were obtained 78 

using different techniques and images, including (i) a reconnaissance field survey, (ii) the 79 

interpretation of ultra-resolution images taken by an optical camera on-board an UAV, and (iii) the 80 

visual interpretation of Very High Resolution (VHR), monoscopic and stereoscopic, multispectral 81 

images taken by the WordView-2 satellite. These maps were compared to an eighth map considered 82 

to be the benchmark showing the “ground truth” i.e., the “true” position, shape and extent of the 83 

Assignano landslide. Based on the results of the map comparison, we infer the ability of different 84 

optical images, with different spectral and spatial characteristics, to portray the landslide features 85 

that can be exploited for the visual detection and mapping of landslides. We maintain that the 86 

results obtained in our test case are general, and should be considered for the optimal selection of 87 

images for the detection and mapping event landslides. 88 

2 The Assignano landslide 89 

For our study, we selected the Assignano landslide, a slide-earthflow (Hutchinson, 1970) triggered 90 

by intense rainfall in December 2013 in the northwest-facing slope of the Assignano village, 91 

Umbria, central Italy (Fig. 1). The landslide develops in a crop area, where a layered sequence of 92 

sand, silt and clay deposits crop out (Santangelo et al., 2015b). The slope failure is about 340 m 93 

long, 40 m wide in the transportation area, and 60 m wide in the deposition area, and is 94 

characterized by three distinct source areas, two located on the south-west side of the landslide and 95 

third located on the north-east side of the landslide. The source and transportation area has an 96 

overall length of about 230 m, and a width increasing from 10 to 40 m from the top of the source 97 

area to the bottom of the transportation area. Elevation in the landslide ranges from 276 m along 98 

the landslide crown, to 206 m at the lowest tip of the deposit. The source and transportation area is 99 

bounded locally by sub-vertical, 2 to 4-m high escarpments. In the landslide, terrain slope averages 100 

11°, and is steeper (12°) in the source and transportation area than in the deposition area (9°). The 101 

landslide signature (Pike, 1988) is different in the different parts of the landslide. In the source and 102 

transport area the signature is predominantly photographical (radiometric), whereas in the landslide 103 

deposit it is mainly morphometric (topographic). The differences allow to separate the source and 104 
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transportation area from the deposition area. 105 

3 Image acquisition 106 

On 14 April 2014, we conducted an aerial survey of the Assignano landslide using a “X” shaped 107 

frame octocopter with eight motors mounted on four arms (four sets of CW and CCW props) with 108 

a payload capacity of around one kilogram, and a flight autonomy of about 20 minutes. The UAV 109 

was equipped with a remotely controlled gimbal hosting a ©GoPro Hero 3 video camera and a 110 

Canon EOS M camera. We controlled the flight of the UAV manually, relaying on the real-time 111 

video stream provided by the ©GoPro. We kept the operational flight altitude of the UAV in the 112 

range between 70 and 100 m above the ground. This allowed the Canon EOS M camera to capture 113 

97 digital colour images of the landslide area with a ground resolution of about 2-4 cm, with the 114 

single images having an overlap of about 70% and a side-lap of about 40%. For the accurate 115 

geocoding of the images, we positioned 13 red-and-white, four-quadrants square targets, 116 

20 cm × 20 cm in size, outside and inside the landslide. We obtained the geographical location 117 

(latitude, longitude, elevation) of the 13 target centres using a Real Time Kinematic (RTK) 118 

Differential Global Positioning System (DGPS), with a horizontal error of less than 3 cm. We 119 

processed the 97 images using commercial, structure-from-motion software to obtain (i) a 3D point 120 

cloud, (ii) a Digital Surface Model (DSM), and (iii) a digital, monoscopic, ultra-resolution (ground 121 

sampling distance is 3 × 3 cm) ortho-rectified image in the visible spectral range, which we used 122 

for the visual mapping of the Assignano landslide (Table 1). 123 

To map the landslide, we also used a stereoscopic pair of VHR images taken on 14 April 2014 i.e., 124 

the same day of the UAV survey, by the WorldView-2 satellite that operates at an altitude of 496 125 

km, and collects 46-cm panchromatic, and 1.84-m eight-band, multispectral (coastal blue, blue, 126 

green, yellow, red, red edge, and near infrared-1, near-infrared-2) imagery at 11-bit dynamic range, 127 

in the spectral range 0.400 – 1.040 µm. For the satellite imagery, the rational polynomial 128 

coefficients (RPCs) are available, allowing for accurate photogrammetric processing of the images. 129 

We used the RPCs to generate 3D models of the terrain from the stereoscopic image pair. 130 

Exploiting the characteristics of the satellite image, we prepared four separate images for landslide 131 

mapping, namely, (i) a monoscopic, “true colour” (TC) image, (ii) a monoscopic false-colour-132 

composite (FCC) image obtained from the composite near infrared, red and green (band 4,3,2), (iii) 133 

a TC stereoscopic pair, and (iv) a FCC stereoscopic pair. We prepared separate maps of the 134 
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Assignano landslide through the visual interpretation of the four images (Table 1). Both satellite 135 

and UAV images are free from deep shadows (Fig. 2). 136 

To compare the images obtained by the UAV and the WorldView-2 satellite, we co-registered the 137 

images, and we evaluated the co-registration on seven control points (Fig. 3), obtaining a Distance 138 

Root Mean Square error, DRMS = 0.53 m, and a Circular Error Probability, CEP50% = 0.42 m, 139 

which we consider adequate for landslide mapping, and for the map comparison. 140 

4 Landslide mapping 141 

We prepared eight maps of the Assignano landslide using different approaches, images and 142 

datasets, including two maps prepared through field surveys, four maps prepared through the visual 143 

interpretation of monoscopic and stereoscopic satellite images, and two maps prepared through the 144 

visual interpretation of the orthorectified images taken by the UAV (Table 1). 145 

The field mapping and the image interpretation were carried out by independent geomorphologists. 146 

The two geomorphologists who carried out the field activities i.e., the reconnaissance field mapping 147 

and the RTK-DGPS survey, were not involved in the visual interpretation of the satellite and the 148 

UAV images. Equally, the geomorphologist who interpreted visually the satellite and the UAV 149 

images did not take part in the field activities. Visual interpretation of the remotely-sensed images 150 

was performed by a single geomorphologist to avoid problems related to different interpretation 151 

skills by different interpreters (Carrara et al., 1992). We then compared the eight resulting maps of 152 

the Assignano landslide adopting a pairwise approach to quantify and evaluate the mapping 153 

differences. 154 

The geomorphologist who interpreted visually the images was shown first the 1.84-m resolution, 155 

monoscopic satellite image, next the 1.84-m resolution stereoscopic satellite pair, and lastly the 3-156 

cm resolution UAV images. The monoscopic and the stereoscopic satellite images were first shown 157 

in TC and then in FCC. Lastly, the interpreter was shown the draped ultra-resolution UAV image. 158 

Selection of the sequence of the images given to the geomorphologist for the expert driven visual 159 

interpretation was based on the assumption that for landslide mapping (i) the ultra-resolution 160 

monoscopic images provide more information than the 1.84-m monoscopic or stereoscopic images, 161 

(ii) for equal spatial resolution images, stereoscopic images provide more information than 162 

monoscopic images, and (iii) for equal image type (monoscopic, stereoscopic), the FCC images 163 
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provide more information than the TC images. To prevent biases related to a possible previous 164 

knowledge of the landslide, the interpreter was not shown the results of the reconnaissance field 165 

mapping. 166 

4.1 Field mapping 167 

Field mapping of the Assignano landslide consisted in two synergic activities, (i) a reconnaissance 168 

field survey, and (ii) a RTK DGPS aided survey. First, the reconnaissance field survey was 169 

conducted by two geomorphologists (FF and MR) who observed the landslide and took 170 

photographs of the slope failure from multiple viewpoints, close to and far from the landslide. The 171 

geomorphologists draw in the field a preliminary map of the landslide exploiting the most recent 172 

satellite image available at the time in Google Earth™, which was taken on 8 July 2013 i.e. (Fig. 173 

4), before the landslide occurred. The reconnaissance field mapping was then refined in the 174 

laboratory using the ground photographs taken in the field. We refer to this reconnaissance 175 

representation of the Assignano landslide as “Map B”. 176 

Next, the same two geomorphologists (FF and MR) conducted an RTK DGPS aided survey 177 

walking a Leica Geosystems GPS 1200 receiver along the landslide boundary, capturing 3D 178 

geographic coordinates every about 5 m, in 3D distance. For the purpose, we used the SmartNet 179 

ItalPoS real-time network service to transmit the correction signal from the GPS base station to the 180 

GPS roving station. The estimated accuracy obtained for each survey point measured along the 181 

landslide boundary was 2 to 5 cm, measured by the root mean square error (RMSE), on the ETRF-182 

2000 reference system. We refer to the cartographic representation of the Assignano landslide 183 

produced by the RTK DGPS survey as “Map A”. We consider this map as the “ground truth”, and 184 

we use it as a benchmark against which to compare the other maps. We acknowledge that mapping 185 

a landslide by walking a GPS receiver around its boundary is an error prone operation e.g., because 186 

in places the landslide boundary is not sharp, or clearly visible from the ground (Santangelo et al., 187 

2010). However, we maintain this is the most reasonable working assumption, and that the 188 

geometrical information obtained by walking a GPS receiver along the landslide boundary was 189 

superior to the information obtained through the reconnaissance field mapping (Map B) 190 

(Santangelo et al., 2010). 191 

4.2 Mapping through image interpretation 192 

A trained geomorphologist (MS) used the three monoscopic images (i.e., the TC and FCC 193 
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monoscopic satellite images, and the monoscopic ultra-resolution UAV image) to perform a 194 

heuristic, visual mapping of the Assignano landslide. For this purpose, the interpreter considered 195 

the photographic (colour, tone, mottling, texture) and geometrical (shape, size, curvature, pattern 196 

of individual terrain features, or sets of features) characteristics of the images (Antonini et al., 197 

1999). In this way, the geomorphologist prepared (i) “Map C” interpreting visually the 198 

monoscopic, TC satellite image, (ii) “Map D” interpreting visually the monoscopic, FFC satellite 199 

image, and (iii) “Map G” interpreting visually the monoscopic, TC UAV image (Table 1). 200 

Next, the interpreter used the two stereoscopic satellite images (i.e., the TC and FCC images) to 201 

prepare “Map E” and “Map F” (Table 1). In the stereoscopic images, the photographic and 202 

morphological information is combined, favouring the recognition of the landslide features through 203 

the joint analysis of photographic (colour, tone, mottling, texture), geometrical (shape, size, pattern 204 

of features), and morphological terrain features (curvature, convexity, concavity). To analyse 205 

visually the stereoscopic satellite images, the interpreter used the StereoMirror™ hardware 206 

technology, combined with the ERDAS IMAGINE® and Leica Photogrammetry Suite (LPS) 207 

software. To map the landslide features in real-world, 3D geographical coordinates, the interpreter 208 

used a 3D floating cursor (Fiorucci et al., 2015).  209 

To interpret the ultra-resolution UAV image, the interpreter overlaid (“draped”) the image on 210 

Google Earth™. For the purpose, we first treated the UAV image with gdal2tiles.py software to 211 

obtain a set of image tiles compatible with the Google Earth™ terrain visualization platform. To 212 

interpret visually the ultra-resolution UAV image, the interpreter overlaid (“draped”) the image on 213 

Google Earth™. For the purpose, we first treated the UAV image with the gdal2tiles.py software 214 

to obtain a set of image tiles compatible with Google Earth™ terrain visualization platform. To the 215 

best of our knowledge, the platform is the only free, 2.5D image visualisation environment that 216 

allows the editing of vector (i.e., point, line, polygon) information. Other commercial (e.g., 217 

ArcScene) and open source (e.g., ParaView, GRASS GIS), 2.5D visualization tools do not provide 218 

editing capabilities. Google Earth™ is a user-friendly solution for mapping single landslides, and 219 

for preparing landslide event inventories for limited areas, with the possibility for the user to 220 

visualize a landscape from virtually any viewpoint, facilitating landslide mapping. We refer to the 221 

representation of the Assignano landslide obtained through the visual interpretation of the ultra-222 

resolution UAV image as “Map H”. 223 
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For the visual interpretation of the satellite and the UAV images, the interpreter adopted a 224 

visualization scale in the range from 1:1000 to 1:6000, depending on the image spatial resolution 225 

(Table 1). The scale of observation was selected to obtain the best readability of each landslide 226 

feature and the surroundings, which is a common practice in image visual analysis for landslide 227 

mapping (Fiorucci et al., 2011). Hence, even if the maps were produced at slightly different 228 

observation scales, the differences arising from the comparison are due to actual features (i.e., the 229 

image resolution and radiometry), and not to the different observation scales. 230 

5 Results 231 

Using the described mapping methods, and the available satellite and UAV images (Table 1), we 232 

prepared eight separate and independent cartographic representations of the Assignano landslide, 233 

shown in Fig. 5 as Map A to Map H.  234 

Considering the entire landslide, visual inspection of Fig. 5 reveals that the maps most similar to 235 

the benchmark (Map A) are Map E, prepared examining the true colour (TC) stereoscopic satellite 236 

image, and Map F, prepared examining the false colour composite (FCC) stereoscopic satellite 237 

image. Conversely, the largest differences were observed for the landslide maps obtained through 238 

the reconnaissance field survey (Map B), and the visual interpretation of the monoscopic satellite 239 

images (Map C and Map D). Considering only the source and transportation areas (dark colours in 240 

Fig. 5), interpretation of the UAV ultra-resolution images resulted in the landslide maps most 241 

similar (Map G and Map H) to the benchmark (Map A). It is worth noticing the systematic lack in 242 

the mapping of one of the two secondary landslide source areas located in the SW side of the 243 

landslide, which was recognized only from the visual inspection of the ultra-resolution 244 

orthorectified images taken by the UAV. In the field, this source area was characterized by small 245 

cracks along the escarpment and a limited disruption of the meadow, making it particularly difficult 246 

to detect and map. We argue that only the ultra-resolution images allowed for the detection of the 247 

cracks. Considering only the landslide deposit (light colours in Fig. 5), the landslide mapping that 248 

was more similar to the benchmark (Map A) was obtained interpreting the TC, stereoscopic 249 

satellite images (Map E). We also note that in most of the maps the landslide deposit was mapped 250 

larger (Map G, Map H) or much larger (Map B, Map C and Map D) than the benchmark (Map A).  251 

Table 2 lists geometric measures of the mapped landslides, including the planimetric measurement 252 
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of length, width and area (i) of the entire landslide, (ii) of the landslide source and transportation 253 

area (dark colours in Fig. 5), and (iii) of the landslide deposit (light colours in Fig. 5). The length 254 

and width measurements were obtained in a GIS as the length and the width of the minimum 255 

oriented rectangle encompassing (i) the entire landslide, (ii) the landslide source and transportation 256 

area, and (iii) the landslide deposit. Our benchmark (Map A) has a total area AL = 1.1×104 m2, and 257 

is LLS = 362 m long and WLS = 71 m wide. Amongst the other seven maps (Map B to Map H in 258 

Fig. 5), the largest landslide is shown in Map B, obtained through the reconnaissance field 259 

mapping, and has AL = 1.91×104 m2, 71.1% larger than the benchmark. Conversely, the smallest 260 

landslide is shown in Map F, with AL = 1.1×104 m2, 4.6% smaller than the benchmark. The longest 261 

and largest landslide is found in Map C, with LLS = 405 m (11% longer than the benchmark) and 262 

WLS = 113 m (60% wider than the benchmark).  263 

Considering the source and transportation area, in Map A (the benchmark) ALS = 5.4×103 m2, 264 

LLS = 228 m, and WLS = 52 m. The largest representation of the source and transportation area is 265 

found in Map B (reconnaissance field mapping) with ALS = 7.4×103 m2, 36.9% larger than the 266 

benchmark, and the smallest source and transportation area is found in Map G, with 267 

ALS = 5.2×103 m2, 3.6% smaller than the benchmark. The longest source and transportation area is 268 

found in Map F, with LLS = 239 m, 5% longer than the benchmark, and the shortest source and 269 

transportation area is shown in Map C, with LLS = 206 m, 9.7% shorter than the benchmark. The 270 

largest source and transportation area is shown in Map B, WLS = 60 m, 15.7% wider than Map A, 271 

and the narrowest source and transportation area is in Map C, LLS = 44 m, 15.3% narrower than the 272 

benchmark. Considering instead only the landslide deposit, our benchmark (Map A) has 273 

ALD = 5.7×103 m2, LLS = 153 m, and WLS = 61 m. The largest deposit is shown in Map B 274 

(reconnaissance field mapping) and has ALD = 1.2×104 m2, 103.4% larger than the benchmark, 275 

whereas the smallest landslide deposit is shown in Map F, with ALD = 4.6×103 m2, 19.8% smaller 276 

than the benchmark. Analysis of the length and width of the landslide deposit reveals that Map C 277 

shows the longest deposit, LLS = 206 m, 35% longer than the benchmark, and Map H shows the 278 

shortest deposit, LLS = 122 m, 20.2% shorter than the benchmark. Similarly, the largest landslide 279 

deposit is shown in Map C, WLS = 112 m, 82.8% wider than the benchmark, and the narrowest 280 

landslide deposit is portrayed in Map E, WLS = 56 m, 8.2% less than the benchmark. 281 

To compare quantitatively the different landslide maps, we use the error index E proposed by 282 
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Carrara et al. (1992), adopting the pairwise comparison approach proposed by Santangelo et al. 283 

(2015a). The index provides an estimate of the discrepancy (or similarity) between corresponding 284 

polygons in two maps, and is defined as:  285 

𝐸 =
(𝐴∪𝐵)−(𝐴∩𝐵)

(𝐴∪𝐵)
; 0 ≤ 𝐸 ≤ 1, (1) 

where, A and B are the areas of two corresponding polygons in the compared maps, and ∪ and ∩ 286 

are the geographical (geometric) union and intersection of the two polygons, respectively. E spans 287 

the range from 0 (perfect matching) to 1 (complete mismatch).  288 

We compared the eight maps of the Assignano landslide (Fig. 5) adopting a pairwise approach, 289 

and considering first only the landslide source and transportation area, next only the landslide 290 

deposit, and lastly the entire landslide. Fig. 6 summarizes the 84 values of the error index E, 28 for 291 

the landslide source and transportation area (Fig. 6 I), 28 for the landslide deposit (Fig. 6 II), and 292 

28 for the entire landslide (Fig. 6 III). On average, the source and transportation area exhibits 293 

values of the error index smaller than the values found in the landslide deposit. This indicates that 294 

in the source and transportation area the landslide maps are more similar than in the landslide 295 

deposit. Inspection of Fig. 6 I, reveals a decrease of the error index in the source and transportation 296 

area for the maps obtained interpreting the available images (from Map C to Map H), compared to 297 

our benchmark obtained through the RTK DGPS survey (0.15 ≤E ≤0.38), with Map G obtained 298 

interpreting the TC, monoscopic, ultra-resolution UAV image. In the landslide deposit (Fig. 6 II), 299 

the minimum difference (E = 0.21) was found comparing the benchmark to Map E, obtained 300 

through the interpretation of the stereoscopic TC satellite image, and the largest difference 301 

(E = 0.52) was found comparing the benchmark to Map C, prepared interpreting the TC, 302 

monoscopic, satellite image.  303 

Comparison of the maps obtained through the interpretation of the monoscopic images (Map C and 304 

Map D), and the maps obtained through the interpretation of stereoscopic (Map E and Map F) or 305 

ultra-resolution images (Map G and Map H), reveals high values of the error index, which is 306 

slightly worse in the landslide deposit. This is evident in the source and transportation area 307 

(0.31 ≤ E ≤ 0.44) (Fig.  6 I), and in the landslide deposit (0.43 ≤ E ≤ 0.63) (Fig. 6 II). Map C and 308 

Map D are very similar, with a mapping error E = 0.17. Maps obtained through the interpretation 309 

of stereoscopic satellite images (Map E and Map F, prepared using TC and FCC images, 310 
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respectively), and maps prepared by interpreting the UAV images (Map G and Map H), exhibit a 311 

generally low value of E. In particular, 0.14 ≤ E ≤ 0.26 in the landslide source and transportation 312 

area, and 0.15 ≤ E ≤ 0.38 in the landslide deposit. The reconnaissance field mapping (Map B) 313 

exhibited the largest differences compared to all the other maps (0.63 ≤ E ≤ 0.45) in the landslide 314 

source and transportation area, and 0.44 ≤ E ≤ 0.73 in the landslide deposit. The large values of E 315 

in the landslide deposit is probably due to lack of visibility of part of the landslide toe in the field. 316 

6 Discussion 317 

We discuss the ability of the different images used to detect and map the Assignano landslide (Fig. 318 

1) to resolve the landslide photographical and morphological signatures, considering separately the 319 

image spatial and spectral resolutions, and the image type i.e., monoscopic, stereoscopic, or 320 

pseudo-stereoscopic. We treat each of the three factors separately, keeping the other two factors 321 

constant. To evaluate the influence of the image spatial resolution on landslide mapping, we 322 

compare to our benchmark (Map A) two true-colour (TC) monoscopic maps (Map C and Map G), 323 

and two TC stereoscopic maps (Map E and Map H). Next, to evaluate the influence of the image 324 

spectral resolution on the landslide mapping, we compare to the benchmark (Map A) the TC and 325 

the false-colour-composite (FCC) monoscopic maps (Map C and Map D), and the corresponding 326 

TC and FCC stereoscopic maps (Map E and Map F). Lastly, to assess the influence of the type of 327 

image (i.e., monoscopic, stereoscopic, pseudo-stereoscopic) on the landslide mapping, we compare 328 

to the benchmark (Map A) the monoscopic (Map C) and the stereoscopic (Map E) TC maps 329 

(Fig. 7A), the two FCC maps (Map D and Map F) (Fig. 7B), and the maps obtained interpreting 330 

the ultra-resolution images captured by the UAV (Map G and Map H). Fig. 6 summarizes the 331 

mapping errors E obtained by the pairwise comparisons of the eight landslide maps shown in Fig. 5. 332 

We first evaluate the role of the image spatial resolution in the production of the different maps of 333 

the Assignano landslide. Inspection of Fig. 6 I reveals that the maps of the landslide source and 334 

transportation area obtained from images characterized by the highest spatial resolution (i.e., 335 

Map G and Map H) exhibits the smallest errors (E ≤ 0.16), when compared to the benchmark 336 

(Map A). The mapping error obtained for Map C (TC, monoscopic, E = 0.38) is 2.5 times larger 337 

than the error obtained using the ultra-resolution orhtorectified images taken by the UAV (Map G, 338 

E = 0.15, and Map H, E = 0.16), whereas the error obtained from Map E (TC, stereoscopic, 339 

E = 0.23) is smaller, and about 1.5 times larger than the error obtained for Map H (TC, pseudo-340 
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stereoscopic, E = 0.16). In the landslide deposit (Fig. 6 II), the map obtained exploiting the 341 

monoscopic, TC satellite image (Map C) exhibits an error E = 0.52, 1.7 times larger than the error 342 

obtained using Map G (TC, monoscopic UAV, E = 0.30). Conversely, the error is smaller in the 343 

map obtained from the 2-m spatial resolution, stereoscopic TC satellite image (Map E, E = 0.21) 344 

than from the 3-cm spatial resolution, pseudo-stereoscopic image taken by the UAV (Map H, 345 

E = 0.30). Collectively, the pairwise comparisons highlights an improvement of the quality of the 346 

mapping of the landslide features that exhibits a distinct photographical signature, most visible in 347 

the source and transportation area of the Assignano landslide, with an increase of the image spatial 348 

resolution (Fig. 6). Use of the ultra-resolution image captured by the UAV did not result in an 349 

improvement of the mapping in the deposition area of the Assignano landslide, where the landslide 350 

exhibits a distinct morphological signature. We further observe that most of the landslide parts that 351 

were not identified in the maps prepared using the satellite image are covered by vegetation, locally 352 

bounded by small and thin cracks with an average width smaller than the size of the 2  2 m pixel. 353 

In the satellite image, the cracks are located in pixels containing a mix of vegetation and bare soil, 354 

making it difficult for the interpreter to recognize the cracks. 355 

Next, we evaluate the effectiveness of the image spectral resolution, and for the purpose we 356 

examine the mapping errors of Maps C and Map E (TC), and of Map D and Map F (FCC). The 357 

mapping of the source and transportation area prepared using the false-colour-composite (FCC) 358 

images (Map D and Map F) resulted in smaller errors than the mapping prepared using the 359 

corresponding true-colour (TC) images (Map C and Map E), for both monoscopic and stereoscopic 360 

images (Fig. 6 I). In the source and transportation area, the false-colour-composite emphasized the 361 

presence or absence of the vegetation, and contributed locally to highlight the typical 362 

photographical signature of the landslide, which helped the photo-interpreter to detect and map the 363 

slope failure. Conversely, in the landslide deposition area (Fig. 6 II) use of the FCC images did not 364 

result in a systematic reduction of the mapping error, when compared to the TC images. We 365 

conclude that use of the additional information contributed by the Near Infrared (NIR) band in the 366 

1.84-m resolution satellite image did not improve the quality of the mapping. On the other hand, 367 

the contribution of the NIR in the 3-cm UAV image remains unknown. 368 

Next, we evaluate the influence of the image type (i.e., monoscopic, stereoscopic, pseudo-369 

stereoscopic) on the mapping error by comparing (i) the TC images (Map C and Map E), (ii) the 370 
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FCC images (Map D and Map F), and (iii) the ultra-resolution UAV image (Map G and Map H). 371 

Comparison of the TC, monoscopic (Map C) and stereoscopic (Map E) images revealed a mapping 372 

error for the entire landslide E = 0.48, with the mismatch larger in the deposition area (E = 0.59) 373 

than in the source and transpiration area (E = 0.45) (Fig. 6). A similar result was obtained 374 

comparing the FCC, monoscopic (Map D) and stereoscopic (Map F) images, with a mapping error 375 

for the entire landslide E = 0.44, and again the mismatch is larger in the deposition area (E = 0.60) 376 

than in the source and transpiration area (E = 0.36). In the deposition area, where the morphological 377 

signature of the Assignano landslide is strongest, the mapping error obtained comparing our 378 

benchmark (Map A) to the landslide maps prepared using the monoscopic images (Map C and 379 

Map D) is 2 times larger than the error observed for the maps prepared using the corresponding 380 

stereoscopic images (Map E and Map F). The differences are smaller in the source and 381 

transportation area, where the morphological signature of the landslide is less distinct. Direct 382 

comparison of Map E (TC, stereoscopic) and Map F (FCC, stereoscopic) for the entire landslide 383 

reveals a very small mapping error (E = 0.15), indicating the similarity of the two maps, which 384 

were also very similar to the benchmark (Map A), E ≤ 0.20.  385 

Comparison for the entire landslide of the maps prepared using the ultra-resolution images captured 386 

by the UAV (Map G and Map H) exhibits the smallest error of all the pairwise comparisons 387 

(E = 0.08) (Fig. 6 III), indicating the large degree of matching between the two maps. The degree 388 

of matching is only marginally smaller in the source and transportation area, and in the deposition 389 

area (E = 0.15). When compared to our benchmark (Map A), Map G and Map H exhibit a small 390 

error (E = 0.19) for the entire landslide, which is larger in the deposition area (E ≤ 0.30) and slightly 391 

smaller in the source and transport area (E ≤ 0.15). Interestingly, the mismatch with Map A (the 392 

benchmark) is lower for the monoscopic (Map G) than for the pseudo-stereoscopic (Map H) map. 393 

The finding highlights the lack of an advantage in using a pseudo-stereoscopic (2.5D) image for 394 

mapping the Assignano landslide. We attribute this result to the low resolution of the (pre-event) 395 

DEM used to drape the ultra-resolution image for visualization purposes, which did not add any 396 

significant morphological information to the expert visual interpretation.  397 

Joint analysis of Fig. 5B and Fig. 6 reveals that, when compared to our benchmark (Map A), the 398 

reconnaissance field mapping (Map B) exhibited the largest mapping error of all the performed 399 

pairwise comparisons, with E = 0.45 in the source and transportation area, E = 0.67 in the landslide 400 
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deposit, and E = 0.55 for the entire landslide. We note than an error of E = 0.50 indicates that 50% 401 

of the landslide area in one map (Map B, in this case) does not overlay with the other map (Map A, 402 

the benchmark, in this case). Our results are similar to the results of tests performed to compare 403 

field-based landslide maps against GPS-based surveys of single landslides (Santangelo et al., 404 

2010), the visual interpretation of very-high resolution stereoscopic satellite images (Ardizzone 405 

et al., 2013), or the semi-automatic processing of monoscopic satellite images (Mondini et al., 406 

2013), and confirm the inherent difficulty in preparing accurate landslide maps in the field, unless 407 

the mapping is supported by a GPS survey or a similar technology.  408 

Our experiment showed that the mapping of the Assignano landslide obtained exploiting the ultra-409 

resolution images captured by the UAV (Map G and Map H) was comparable to the maps obtained 410 

using the high resolution stereoscopic satellite image (Map E and Map F), and to the ground-based 411 

RTK DGPS survey (Map A, the benchmark). We conclude that ultra-resolution images captured 412 

by an UAV and the stereoscopic satellite images are well suited to map event landslides, at least in 413 

physiographical settings similar to the one of our study area, and for landslides similar to the 414 

Assignano landslide (Fig. 1).  415 

For event landslide mapping, selection between ultra-resolution pseudo-stereoscopic UAV images 416 

and very-high resolution stereoscopic satellite images depends on (i) the extent of the investigated 417 

area, (ii) the available resources, including time and budget, and (iii) the accessibility to the study 418 

area. The selection is largely independent from the landslide signature, at least for landslides similar 419 

to the Assignano landslide. From an operational perspective, modern multi-rotor UAVs allow for 420 

the acquisition of ultra-resolution images over small areas in a limited time, and at very low costs. 421 

UAV-based surveys are flexible in their acquisition planning, and partly independent from the local 422 

lighting conditions, including the cloud cover. As a drawback, UAVs are strongly (and negatively) 423 

affected by wind speed and weather conditions, they allow for a limited flight time (currently 424 

approximately 20 minutes in optimal conditions), which is reduced in bad weather conditions and 425 

in cold environments, and typically have limited data storage capacity. Further, it must be possible 426 

for the pilot to be at the same time near to the area to be surveyed and to maintain a safe distance 427 

from the UAV, a condition that may be difficult to attain in remote or in mountain areas. 428 

Collectively, the intrinsic advantages and limitations of modern UAVs make the technology 429 

potentially well suited for the acquisition of ultra-resolution images for event, seasonal, and multi-430 
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temporal mapping of single landslides, of multiple landslides in a single slope, or in a relatively 431 

small area (a few hectares). The use of UAV images was recently proposed by Turner et al. (2015) 432 

for determining the landslide dynamics, exploiting time series of images that can be constructed 433 

using UAVs. The result is achievable thanks to centimetre co-registration accuracy of the UAV 434 

images. Use of UAVs becomes impracticable with the increasing extent of the study area, largely 435 

due to (i) the operational difficulty of flying UAVs over large areas (more than a few square 436 

kilometres), and (ii) the acquisition and image processing time and associated cost, which increase 437 

rapidly with the size of the study area (Table 3). On the other hand, very-high resolution, 438 

stereoscopic satellite images have also advantages and limitations for the production of event, 439 

seasonal and multi-temporal landslide inventory maps (Guzzetti et al., 2012). The main advantage 440 

of the satellite images is that they cover large or very areas (tens to hundreds of square kilometres) 441 

in a single frame with a sub-metre resolution well suited for landslide mapping through the expert 442 

visual interpretation of the images (Ardizzone et al., 2013). On the other hand, limitations remain 443 

due to distortions caused by different off-nadir angles in successive scenes, and to difficulties – in 444 

places severe – to obtaining suitable (e.g., cloud-free) images at the required time intervals. This is 445 

particularly problematic for the production of seasonal and multi-temporal landslide maps. 446 

Information on the photographic or morphological signature of the typical, or most abundant, 447 

landslides in an area, is important to selecting the optimal characteristics of the images best suited 448 

for the production of an event, seasonal or multi-temporal landslide inventory map. Use of images 449 

of non-optimal characteristics for a typical landslide signature in an area may condition the quality 450 

(i.e., completeness, positional and thematic accuracy) of the landslide inventory. Where possible, 451 

we recommend that the acquisition of images used for the production of event, seasonal or multi-452 

temporal landslide inventory maps is planned considering the typical landslide signature, in 453 

addition to the purpose (event inventory, planning of monitoring systems), scale of the mapping 454 

(i.e. regional or slope scale), and the size and complexity of the study area (Table 3). 455 

7 Concluding remarks 456 

We executed an experiment aimed at determining and measuring the effects of the image 457 

characteristics on event landslide mapping. In the experiment, we compared landslide maps 458 

obtained (i) through the expert visual interpretation of an ultra-resolution image taken by an UAV 459 

with a ground resolution of 3 × 3 cm, and monoscopic and stereoscopic true-colour and false-460 
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colour-composite (1.84 × 1.84 m) images taken by the WorldView-2 satellite, (ii) a reconnaissance 461 

field survey of the landslide, and (iii) an accurate survey of the landslide obtained by walking a 462 

GPS receiver along the landslide boundary. We conducted the experiment on a the Assignano 463 

landslide (Fig. 1) triggered by intense rainfall in December 2013 in the northwest-facing slope of 464 

the Assignano village, Umbria, central Italy. The landslide exhibited a predominant photographical 465 

(radiometric) signature in the source and transport area, and a more distinct morphological 466 

(topographic) signature in the deposition area. The results of our mapping experiment allow for the 467 

following conclusions.  468 

First, in the landslide source and transport area, where the signature of the slope failure was 469 

primarily photographical (radiometric), mapping errors (Carrara et al., 1992; Santangelo et al., 470 

2015a) decreased with the increase of the spatial resolution of the images used for the expert visual 471 

detection and mapping of the landslide. In the same area, the image photographic (radiometric) 472 

characteristics (true-colour, false-colour-composite) and the image type (monoscopic, 473 

stereoscopic) played a minor role in augmenting the quality of the landslide map. Conversely, in 474 

the deposition area, where the signature of the landslide was primarily morphological 475 

(topographical), mapping errors decreased using stereoscopic satellite images that allowed 476 

detecting topographic features distinctive of the landslide. 477 

FCC and TC in the stereoscopic satellite images give similar values of the error. This indicates that 478 

the spectral resolution of the images does not provide useful information to recognize and map the 479 

landslide morphological features. On the other hand, the high spatial resolution provided by the 480 

UAV images reduces the error, when compared to the monoscopic satellite imagery. However, the 481 

error obtained using the UAV images remains higher than that obtained using stereoscopic satellite 482 

images, despite the latter having a pixel one order of magnitude larger than the UAV images. We 483 

conclude that the increase in the spatial resolution improves the ability to map morphological 484 

features when using monoscopic images. 485 

Second, use of the stereoscopic satellite images resulted in more accurate landslide maps (lower 486 

error index E) than the corresponding monoscopic images in the landslide deposition area, where 487 

the signature of the landslide was primarily morphometric (topographic). This was expected, as the 488 

stereoscopic vision allowed to better capture the 3D terrain features typical of a landslide (Pike, 489 

1988), including curvature, convexity and concavity. Conversely, visual examination of the false-490 
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colour-composite images resulted in more accurate maps than the corresponding true-colour 491 

images in the landslide source and transport area, where the signature of the landslide was primarily 492 

photographic (radiometric). This was also expected (Guzzetti et al., 2012). Expert visual 493 

interpretation of pseudo-stereoscopic ultra-resolution image failed to provide better results than the 494 

corresponding monoscopic ultra-resolution image, most probably because the DEM used to drape 495 

(overlay) the image on the terrain information was of low resolution.  496 

Third, the ultra-resolution (3 × 3 cm) image captured by the photographic camera flown on-board 497 

the Unmanned Aerial Vehicle (UAV) proved to be very effective to detect and map the landslide. 498 

The expert visual interpretation of the monoscopic ultra-resolution image provided mapping results 499 

comparable to those obtained using the about 2-m resolution, stereoscopic satellite image.  500 

Fourth, a comparative analysis of the technological constrains and the costs of acquisition and 501 

processing of ultra-resolution imagery taken by UAV, and of high, or very-high resolution imagery 502 

taken by optical satellites, revealed that the ultra-resolution images are well suited to map single 503 

event landslides, clusters of landslides in a single slope, or a few landslides in nearby slopes in a 504 

small area (up to few square kilometres, Giordan et al., 2017) , and prove unsuited to cover large 505 

and very large areas where the stereoscopic satellite images provide the most effective option 506 

(Boccardo et al., 2015). 507 

Fifth, our field-based reconnaissance mapping (Map B) provided the least accurate mapping 508 

results, measured by the largest mapping error (E = 0.55 for the entire landslide) when compared 509 

to the benchmark map (Fig. 6). Our results confirm the inherent difficulty in preparing accurate 510 

landslide maps in the field through a reconnaissance mapping (Santangelo et al., 2010).  511 

Although we conducted our study on a single landslide (Fig. 1), we maintain that the findings are 512 

general, and can be useful to decide on the optimal imagery and technique to be used when planning 513 

the production of a landslide inventory map. We emphasize that the technique and imagery used 514 

to prepare landslide inventory maps should be selected depending on multiple factors, including (i) 515 

the typical or predominant landslide signature (photographic or morphological), (ii) the scale and 516 

size of the study area (a single slope, a small catchment, a large region), and (iii) the scope of the 517 

mapping (event, seasonal, multi-temporal, Guzzetti et al., 2012).  518 
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 640 

Table 1. Characteristics of the images used to identify and map the Assignano landslide (Fig. 2). 641 

O: order in the sequence of images shown to the interpreter. Platform used to capture the image: 642 

W, WorldView-2 satellite; U, UAV. Resolution (ground resolution), in metre. Spectral (image 643 

spectral composite): TCC, True Colour Composite (Red, Green, Blue); FCC, False Colour 644 

Composite (Near infrared, Red, Green). Type (image type): M, monoscopic; S, stereoscopic; P, 645 

pseudo-stereoscopic. Map: Corresponding landslide map (Fig. 5).  646 

 647 

O Platform Resolution Spectral Type Map 

1 W 1.84 TC M C 

2 W 1.84 FCC M D 

3 W 1.84 TC S E 

4 W 1.84 FCC S F 

5 U 0.03 TC M G 

6 U 0.03 TC P H 

 648 
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Table 2. Comparison of the total landslide area (AL), the landslide source and transportation area 650 

(ALS), the landslide deposit (ALD), the width and length of the entire landslide (WL, LL), of the 651 

source and transportation area (WLS, LLS), and of the deposit (WLD, LLD), for eight separate and 652 

independent cartographic representations of the Assignano landslide. EL, entire landslide; ST, 653 

landslide source and transport area; LD, landside deposit. See Table 3 for the characteristics of the 654 

single maps. 655 

 656 

  Map A Map B Map C Map D Map E Map F Map G Map H 

Landslide area (m2) 

EL AL 1.11×104 1.91×104 1.53×104 1.52×104 1.09×104 1.06×104 1.19×104 1.16×104 

ST ALS 5.40×103 7.40×103 3.64×103 4.02×103 5.71×103 6.03×103 5.21×103 5.70×103 

LD ALD 5.73×103 1.17×104 1.16×104 1.12×104 5.15×103 4.59×103 6.70×103 5.87×103 

Landslide length (m) and width (m) 

EL WL 70.7 97.8 113.4 109.9 61.4 61.25 89.9 85.3 

LL 362.0 387.5 404.7 391.2 354.6 359.5 343.3 349.1 

          

ST WLS 51.5 59.6 43.6 49.2 51.92 54.3 49.5 50.5 

LLS 227.9 229.7 205.9 208.0 239.0 239.2 234.7 237.3 

          

LD WLD 61.0 98.69 111.5 109.0 56.0 57.6 89.9 81.9 

 LLD 152.7 172.1 206.2 203.5 129.8 134.7 139 121.8 

 657 
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Table 3. Comparison of the estimated cost, acquisition and pre-processing time, and storage 659 

requirement for an area of 4 km2 (2 km × 2 km) and for an area of 100 km2 (10 km × 10 km), for 660 

monoscopic and stereoscopic satellite images, and for an area of 15 km2 for photographic images 661 

captured by an UAV. 662 

 663 

 Satellite monoscopic Satellite stereoscopic UAV 

 4 km2 100 km2 4 km2 100 km2 4 km2 15 km2 

Acquisition cost (€) 1.500 1.500 3.500 3.500 1.000 3.000 

Pre-processing cost (€) 50 50 50 50 250-300 3.000 

Acquisition time (day/person) 7-60 7-60 7-60 7-60 1 4 

Pre-processing time 

(hr/person) 
1 1 1 1 5-6 20-24 

Storage (GB) 0.5 0.5 1 1 12 50 

Resolution (m) 2 2 2 2 0.02 0.02 
       

Morphologic signature no no yes yes yes yes 

Photographic signature yes yes yes yes yes yes 

 664 

 665 
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Figure captions 667 

Figure 1. The Assignano landslide, located near Collazzone, Umbria, central Italy. (A) global view 668 

of the landslide. (B) detail of the landslide source area. (C) detail of the landslide transportation 669 

area. (D) detail of the landslide deposit. Base image obtained overlaying (“draping”) the image on 670 

Google Earth™. Red line is the boundary of the landslide obtained using the RTK DGPS 671 

(benchmark). 672 

Figure 2. Images used to map the Assignano landslide. (A) TC WordView-2 satellite image, (A-673 

I) detail of the source area and (A-II) detail of the landslide deposit. (B) WordView-2 satellite 674 

image in FCC, (B-I) detail of the source area and (B-II) detail of the landslide deposit. (C) UAV 675 

monoscopic image and C-I a detail of the source area and C-II a detail of the deposition area. 676 

Figure 3. Position of the seven GCPs used to evaluate the co-registration of WordView-2 satellite 677 

image (A) and UAV image (B). Corresponding points are illustrated with the same symbol. 678 

Differences of the coordinates of the corresponding points along X (i.e., E-W direction, ΔX) and 679 

along Y (i.e., N-S direction, ΔY) are provided in metres on the left of the figure. 680 

Figure 4. (A) Overview of the Assignano landslide area in Google Earth™ taken on 8 July 2013. 681 

Photo shooting points and photograph taken (B) close to the landslide and (C) from a viewpoint. 682 

The photographs taken in the field and the Google Earth™ image were used to prepare the 683 

reconnaissance field map. 684 

Figure 5. Eight independent cartographic representations of the Assignano landslide, “Map A” to 685 

“Map H”. Map A obtained through a RTK DGPS survey is considered the “benchmark”, and 686 

shown as a thick black line in the other maps. Map B obtained through reconnaissance field 687 

mapping. Map C to Map F obtained through the expert visual interpretation of the satellite images. 688 

Map G and Map H obtained through the expert visual interpretation of the orthorectified image 689 

taken by the UAV. See Table 1 for image characteristics. Dark colours show the landslide source 690 

and transportation area. Visual inspection of the images reveals the maps most similar to the 691 

benchmark.  692 

Figure 6. The error index (E) proposed by Carrara et al. (1992), was used to compare quantitatively 693 

the different landslide maps. (I) Error index matrix for the landslide source and transportation area. 694 

(II) Error index matrix for the landslide deposit. (III) Error matrix for the entire landslide. E spans 695 
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the range from 0 (perfect matching) to 1 (complete mismatch). 696 

Figure 7. Comparison of landslide maps prepared for the Assignano landslide, Umbria, Central 697 

Italy. (A) Landslide map obtained from a monoscopic (Map C, dark yellow line) and a stereoscopic 698 

(Map E, light blue line), true-colour (TC) WordView-2 satellite image (base image), and a mapping 699 

of the landslide obtained by walking a GPS receiver along the landslide boundary (Map A, black 700 

line). (B) Landslide map obtained from a monoscopic (Map D, yellow line) and a stereoscopic 701 

(Map F, cyan line), false-colour-composite (FCC) WordView-2 satellite image, and a mapping 702 

obtained by walking a GPS receiver along the landslide boundary (Map A, black line). (C) 703 

Landslide map obtained from field survey (Map B, pink line) and from a monoscopic, TC, ultra-704 

resolution image captured by an UAV (Map G, purple line), and the mapping obtained by walking 705 

a GPS receiver along the landslide boundary (Map A, black line). 706 
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Figure 1 708 
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Figure 2 711 
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Figure 3 713 
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Figure 4716 
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Figure 5 718 
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Figure 6 720 
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Figure 7724 
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