Reply to Referee

I see the change made by the authors in the new manuscript was the inclusion of lines 252-258. By

- 5 doing so the authors attempted to address my concern regarding the inclusion of a proper discussion on the advantages of the use of currents in the wave model. Although the discussion added in the current version improved the manuscript and compare both simulations (with and without currents), my point from the last two revisions was not addressed whatsoever. There are still no discussion on whether the inclusion of current improves or deteriorates wave simulation at the buoy location. It, once again, simply mention that currents reduce wave height and period and that the overall effect is marginal. The
- 10 simply mention that currents reduce wave height and period and that the overall effect is marginal. The final conclusion on the relevance and benefits of currents to the simulations are left to be drawn by the readers.

My two simple questions to the authors are: Do the inclusion of currents improve wave simulation? Are the current-induced reduction in wave height and period beneficial to wave simulation in hurricane Hudson? This is the same point I raised in my previous two revisions, which I feel compelled to raise once again, since it was not properly addressed. I suggest the use of statistical metrics of bias and errors to answer the above questions in a quantitative sense.

20 **Response to Comment – 1:**

25

The authors appreciate the referee for the constructive comments. The results obtained for the Hudhud cyclone show that inclusion of currents does not improve the wave simulation. It is found that inclusion of currents deteriorated the wave simulation at the buoy location when waves and currents were nearly in the same direction, whereas when waves and currents were in the opposite direction, the inclusion of currents enhanced the wave simulation. Overall, it is seen that the influence of currents on the wave system is marginal. This observation is also supported by a recent study of Liu et al. (2016), and that is now included in the revised manuscript.

As suggested by the referee, a Table (Table 1) highlighting various statistical metrics with and without currents on the wave system at the buoy location is now added in the revised manuscript for clarity. It is evident from Table 1 that inclusion of currents does not improve wave simulation for Hudhud cyclone.

35 Liu et al. (2016) investigated the non-linear wave-current interaction in water of finite depth analytically using the homotopy analysis method (HAM) with solutions that are suitable for steep waves and strong currents expected during cyclonic conditions. The results were verified with flume experiments, and the analytical solution was in good agreement with experimental results. Various parameters such as influence of water depth, wave steepness and current velocity on co existing wave-current field were also reported in the above study. They stated that an opposing current can lead to significant decrease in wave length and thereby tends to narrow both the crest and trough of the wave. This in turn causes an increased elevation in wave crest as the opposing current speed increases, whereas the wave trough elevation tends to remain constant throughout. On the contrary, when waves and currents follow same direction, there is enhancement in wave length that tends to decrease the wave height elevation.

Reference:

Liu, Z., Lin, Z., Tao, L., and Lan, J., (2016). Nonlinear Wave-Current Interaction in Water of 50 Finite Depth. Journal of Waterway, Port, Coastal, Ocean Eng., 142(6), 04016009, 1-16.

Table 1. Statistical measures with (coupled)/without (standalone) currents on waves at the buoy location

55

Statistical Metrics	Mean (m)	Bias (m)	RMSE (m)	Scatter Index	Correlation Coefficient
SWAN	1.89	-0.08	0.53	0.28	0.95
(standalone)					
Coupled	1.89	-0.04	0.48	0.25	0.95
(ADCIRC+SWAN)					

60 Wave-current interaction during Hudhud cyclone in the Bay of Bengal

Samiksha Volvaiker¹, Ponnumony Vethamony¹, Charls Antony¹, Prasad Bhaskaran², Balakrishnan Nair³

¹Physical Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, 403004, Goa - India
 ²Department of Ocean Engineering and Naval Architecture, Indian Institute of Technology Kharagpur, Kharagpur - 721 302, India
 ³U. Transitional Control of Con

³Indian National Centre for Ocean Information Services, Hyderabad - 500 090, India

Correspondence to: Samiksha S. V. (vsamiksha@nio.org)

- Abstract. The present work describes the interaction between waves and currents utilizing a coupled ADCIRC+SWAN model for the very severe cyclonic storm 'Hudhud' which made landfall at Visakhapatnam on the east coast of India in October 2014. Model computed wave and surge heights were validated with measurements near the landfall point. The Holland model reproduced the maximum wind speed of ≈ 54m/s with the minimum pressure of 950hPa. The modelled maximum surge of 1.2 m matches with the maximum surge of 1.4 m measured off Visakhapatnam. The two-way coupling with SWAN showed that waves contributed ≈ 0.25m to the total water level during the Hudhud event. At the landfall point
- 75 near Visakhapatnam, the East India Coastal Current speed increased from 0.5 to 1.8 m/s for a short duration (\approx 6h) with net flow towards south, and thereafter reversed towards north. An increase of \approx 0.2m in H_s was observed with the inclusion of model currents. It was also observed that when waves travelled normal to the coast after crossing the shelf area, with current towards southwest, wave heights were reduced due to wave-current interaction; however, an increase in wave height was observed on the left side of the track, when waves and currents opposed each other.

80 1 Introduction

In coastal and shelf regions, winds and waves interact with the prevailing current system and several mutual nonlinear interactions occur. Studies (Kudryavtsev et al., 1999; Davies and Lawrence, 1995; McWilliams et al., 2004) show that waves contribute to local currents, water level and mixing. Wind and wave induced currents can reinforce or interfere with tidal currents, depending on the phase of the tide. The impact of surface waves on currents or currents on waves is an important aspect in coastal hydrodynamics. Several studies have been carried out relating to individual processes, but not on interactions between them. Therefore, we need to take into account different processes that impact a specific process.

85

In the last few decades, there have been several efforts to develop theories and models on wave-current interactions⁴ (Ardhuin et al., 2008; Mellor, 2008; Warner et al., 2008; Uchiyama et al., 2010; Bennis et al., 2011). Holthuijsen and Tolman (1991) and Komen et al. (1994) studied interaction between current and wave fields in the regions of the Gulf

Formatted: Normal, Line spacing: 1.5 lines

- 90 Stream, the Kuroshio and the Agulhas currents. The refraction theory of waves on current has advanced well, and this concept has been already introduced into the wave-action conservation equation. Linear wave theory on vertically sheared weak current is also discussed using both perturbation and numerical methods (Kirby and Chen, 1989; Dong, 2012). When waves propagate through strong currents, their characteristics change with refraction, bottom friction and blocking (Kudryavtsev et al., 1999; Ris et al., 1999). Also, the mean flow will be affected by the addition of momentum and mass
- 95 fluxes. With variation in water level, the depth felt by the waves also changes in the coastal region, thereby modifying the shallow water effects on the waves (Pleskachevsky et al., 2009). Liu et al. (2016) investigated the non-linear wave-current interaction in water of finite depth analytically using the homotopy analysis method (HAM) with solutions that are suitable for steep waves and strong currents expected during cyclonic conditions. The results were verified with flume experiments, and the analytical solution was in good agreement with experimental results. Various parameters such as influence of water
- depth, wave steepness and current velocity on co-existing wave-current field were also reported in the above study. <u>A recent</u> study by Liu et al. (2016) investigated the non-linear wave current interaction in water of finite depth analytically using the homotopy analysis method (HAM) with solutions that are suitable for steep waves and strong currents expected during cyclonic conditions. Their study proved that an opposing current can lead to significant decrease in wave length and thereby tends to narrow both the crest and trough of the wave. This in turn causes an increased elevation in wave crest as the opposing current speed increases, whereas the wave trough elevation tends to remain constant throughout. When waves and currents follow same direction, there is enhancement in

wave length that tends to decrease the wave height elevation.

Some of the wave processes that impact the coastal environment are as follows: (i) wave set-up during cyclones,
which contributes significantly to storm surge and inundation; for example, when waves were included in the model, Beardsley et al., 2013 found that more areas were influenced by flooding in the Massachusetts Bay, (ii) wave-current interaction increases the bottom friction, and thereby increasing the bottom stress. For example, Xie et al. (2001, 2003) introduced wave-induced surface and bottom stresses in the dynamic coupling between waves and currents, (iii) Carniel et al. (2009) and Zhang et al. (2011) included mixing due to wave breaking in their respective models and found improvements in the accuracy of surface drifter tracks in the Adriatic Sea and surface boundary layer thickness in the

Yellow Sea, and (iv) Mellor (2003) and Xia et al. (2004) incorporated radiation stress in the coupling between wave, ocean circulation and storm surge modelling.

Several numerical coupling experiments linking waves, currents and storm surges have been conducted in coastal areas in the past. For example, Tolman (1991) demonstrated the effect of water level and storm surges on wind waves for
 storms generated in the North Sea, and indicated that storm surges are essential factors to be considered for assessing the wave-current interactions. Mastenbroek et al. (1993) and Zhang and Li (1996) modelled the impact of waves on storm surges

Formatted: Font: 10 pt Formatted: Font: 11 pt and showed that wind stress with wave-dependant parameterization amplified the storm surge by 10–20%. Moon (2005) developed a wave-tide-circulation coupled system by including the influence of wave-current interaction, wave breaking and depth changes due to water level and found that the wave-dependent stress is strongly dependent on wave age and relative position from the storm centre. However, it may be noted that storm surge, tides or oceanic currents will have a significant effect on wave field only if their strengths are sufficient to interact.

125

130

Presently, in storm surge modelling, circulation and wave models are coupled in the same mesh, so that mesh resolution is fit to capture both circulation and wave physics. ADCIRC+SWAN (ADvanced CIRCulation + Simulating WAves Nearshore) is a coupled model that works on an unstructured mesh, and allows for interaction between storm surges, waves and currents. This modelling system has been applied to hindcast hurricanes such as Katrina, Rita, Gustav and

Ike (Westerink et al., 2008; Dietrich et al., 2011a, 2011b, 2012; Hope et al., 2013; Longley, 2013; Sebastian et al., 2014). Several studies (Rao et al., 1982; Murty et al., 1986; Dube et al., 1997, 2000; Rao et al., 2013) reported storm surge

along the east coast of India. Rao et al. (2012) simulated surge and inundation using ADCIRC for the following cyclones: Kavali (1989), Andhra (1996) and Cuddalore (2000). Three super cyclones, viz, 1999 Odisha cyclone, 2013 Phailin and

- 135 2014 Hudhud created significant impact along the east coast of India. Phailin cyclone generated waves with significant wave heights of the order of 7m (Balakrishnan et al., 2014). Hudhud was the first cyclone which effected urban areas and it is the second severe cyclone which crossed the Visakhapatnam coast (Amarendra et al., 2015). Also, the beach erosion was very severe on the Ramkrishna beach, with a net sand volume of about 1457 cu.m lost over a stretch of 14 km (Hani et al., 2015). From the literature review, it is evident that most of the storm surge studies carried out for the Indian coast used standalone
- 140 models (Rao et al., 2012; Bhaskaran et al., 2014; Gayathri et al., 2015; Gayathri et al., 2016, Dhana Lakshmi et al., 2017). A comprehensive review on the coastal inundation research and an overview of the processes for the Indian coast was o reported by Gayathri et al. (2017). One can find very few studies reported using a coupled model (ADCIRC with SWAN) for the Indian seas (Bhaskaran et al., 2013; Murty et al., 2014, 2016; Poulose et al., 2017) for extreme weather events. These studies examined the performance of coupled models and role of improved wind forcing on waves and hydrodynamic
- 145 conditions. The coupled model (ADCIRC+SWAN) has demonstrated its efficacy in predicting storm surge and water level elevation as compared to the standalone ADCIRC model. For example, the difference in residual water level at Paradeep obtained by standalone and coupled models at Paradeep in Odisha coast during 2013 Phailin cyclone were about 0.3m, and the coupled model performed relatively better than the standalone model (Murty et al., 2014). For the 2011 Thane cyclone also good performance of coupled parallel ADCIRC-SWAN model was reported by Bhaskaran et al. (2013). The model
- 150 values of waves and currents obtained during Thane cyclone validated against HF Radar observations, satellite data of ENVISAT, JASON-1, JASON-2 and wave rider buoy observations very clearly show that coupled model performed reasonably well. During extreme weather events like cyclones, the interaction between waves and currents is a highly nonlinear process, and the transfer and exchange of energy between them is a very complex process. Along the nearshore region, the non-linear interaction process is highly complex and to a larger extent, it is controlled by the local water depth and

155 coastal geomorphological features. There can be instances, wherein the computed results using a coupled model may be under-estimated, when the influence of currents is considered. However, in this case the role of bottom characteristics and water level needs a separate detailed study.

The present study is a comprehensive exercise that aims at studying the following interactions during the Hudhud event: (i) impact of wave-current interaction on water level, (ii) impact of wave-current interaction on waves and (iii) impact of wave-current interaction on currents. This involves simulation of winds, tides, storm surges, currents and waves in the study domain during this extreme weather event using the coupled ADCIRC and SWAN models. Only wave and water level measured data were available for the verification of model results. Unfortunately, no measured current data was available for verification of the model-computed currents.

165 2. Data and methodology

2.1 Modelling system

ADCIRC and SWAN models were run in standalone and coupled modes on the same computational grid system. The cyclonic wind data were derived from the Holland formulation (Holland, 1980) using the best track estimate of Hudhud obtained from the JTWC (Joint Typhoon Warning Center) database. The hydrodynamic depth-averaged model
ADCIRC applies the continuous Galerkin finite-element method to solve shallow water equations for water levels and vertically integrated momentum equations for velocity (Kolar et al., 1994; Atkinson et al., 2004; Luettich and Westerink, 2004; Dawson et al., 2006; Westerink et al., 2008; Kubatko et al., 2009; Tanaka et al., 2011). The model utilizes an unstructured mesh, and allows for refinement in areas where the solution gradients are the highest. It has an option for wetting and drying that activates and deactivates the entire grid elements during inundation and recession.

175

180

SWAN (Simulating WAves Nearshore) is a third-generation wave model developed at the Delft University of Technology, Netherlands. It computes random, short-crested wind-generated waves in coastal regions and inland waters (Booij et al., 1999). The current version of SWAN is 40.85 (Zijlema, 2010). The model is based on the wave action balance equation, with various source and sink mechanisms, that governs the redistribution of energy balance in the wave system. SWAN can be used on any scale relevant for wind generated surface gravity waves. However, the SWAN model is specifically designed for coastal applications that should actually not require such flexibility in scale. The input parameters provided to SWAN includes bathymetry, current, water level, bottom friction and wind. The wave action balance equation is expressed in the following form:

$$\frac{\partial N}{\partial t} + \frac{\partial C_{g,x} N}{\partial x} + \frac{\partial C_{g,y} N}{\partial y} + \frac{\partial C_{g,\sigma} N}{\partial \sigma} + \frac{\partial C_{g,\theta} N}{\partial \theta} = \frac{S}{\sigma}$$

where, N is the wave action density, σ is the relative frequency, θ is the wave direction, Cg is the propagation speed in (x,y, σ , θ) space and S is the total of source/sink terms expressed as the wave energy density. In SWAN model, the source terms are expressed in the following form:

$$S = S_{in} + S_{ds,w} + S_{ds,b} + S_{nl4} + S_{nl3}$$

The terms in the R.H.S of the equation represent wind input, white-capping, bottom friction, quadruplet wave-wave interactions and triad wave-wave interactions, respectively. The terms like bottom friction and triad wave-wave interaction can be neglected in deep water calculations. The model coupling is based on the work of Bunya et al. (2010) and Dietrich et al. (2011) conducted for the Gulf of Mexico region. The SWAN model employs an implicit sweeping method to update the wave field at each computational vertex, which allows SWAN to apply longer time steps than ADCIRC. Thus, the SWAN

- time step usually defines the coupling interval between SWAN and ADCIRC models (Dietrich, 2010; Dietrich et al., 2011a,b). The wind field during Hudhud cyclone was generated using the Holland parametric model, which is specifically meant for simulating winds during cyclones.
- The tide data were taken from the Permanent Service for Mean Sea Level (PSMSL) (www.psmsl.org). Wave data was obtained from the directional wave rider buoy deployed off Visakhapatnam (17.63°N; 83.26°E) at 15 m water depth. The measurement range is -20 m to 20 m, with an accuracy of 3%. The in situ data was recorded continuously at 1.28 Hz, and the recording interval for every 30 min was processed as one record. At every 200 s, a total number of 256 heave samples were collected and a Fast Fourier Transform (FFT) was applied to obtain a spectrum in the frequency range 0 to 0.58 Hz having a resolution of 0.005 Hz. Eight consecutive spectra covering 1600 s were averaged and used to compute the half-hourly wave spectrum. Significant wave height (H_{m0}) or $4\sqrt{m_0}$ was obtained from the wave spectrum. The nth order spectral moment (m_n) is given by: $m_n = \int_0^{\infty} f^n S(f) df$, where S(f) is the spectral energy density at frequency f. The period corresponding to the maximum spectral energy (i.e., spectral peak period (T_p) was estimated from the wave spectrum. The wave direction (D_p) and directional width corresponding to the spectral peak were estimated based on the circular moments (Kuik et al.,1988).

205

185

190

2.2 Model domain and set-up

210

The model domain, chosen for the generation of winds, waves, currents and storm surges, covers the entire Bay of Bengal from 80-98°E and 6-21°N (Fig. 1a). The modified Etopo2 datasets by Sindhu et al. (2007) were used to generate the bathymetry grid. The data include improved shelf bathymetry for the Indian Ocean derived from sounding depths less than 200 m from the NHO (Naval Hydrographic Office, India) charts. The triangulated irregular mesh was prepared using SMS (Surface water Modeling System, http://www.aquaveo.com/) package for the selected domain (Fig. 1b). The unstructured

mesh resolves sharp gradients in bathymetry, particularly in nearshore regions (Dietrich et al., 2011b), and it minimizes the computational cost relative to a structured mesh. For better results, tides and surges are resolved using a coarse grid in deep water, and higher resolution in the nearshore (Blain et al., 1994; Luettich and Westerink, 1995). Accordingly, in the present 215 study, the mesh was generated with 82,253 elements and 41,795 nodes (Fig. 1b). A zoomed-in view of the landfall region with fine resolution of the mesh is shown in Fig. 1c. The mesh resolution varies from 1km in the nearshore region to a maximum of 80km in the deep water. The model has been run in a two-dimensional depth-averaged mode. The specifications of the model set-up are: (i) spherical coordinate system for the domain, (ii) cyclone duration (6.75 days), (iii) constant bottom friction (0.0025), (iv) minimum depth of 0.5 m for wet and dry elements and (v) horizontal eddy viscosity coefficient of 2 m²/s.

220

225

The dynamic Holland wind field model (Holland, 1980) calculates the wind field, sea-level pressure distribution and gradient wind within the tropical cyclone. The wind stress was specified to ADCIRC model using the relation proposed by Garrett (1977). Fig. 2 shows the relative position of cyclone eye and associated wind field of the Hudhud cyclone computed from the wind model at different intervals as the cyclone approached the coast, before making the landfall at Visakhapatnam coast. Holland model reproduced the maximum wind speed of ≈186 km/h with a minimum central pressure drop of 950 hPa when it transformed into a Very Severe Cyclonic storm.

ADCIRC was tightly coupled to the unstructured wave model SWAN (Zijlema, 2010). The ADCIRC model was

2.3 Model setup for water level, current and wave generation

cold started with 13 tidal harmonic constituents (K1, N2, O1, P1, S2, K2, L2, M2, 2N2, MU2, NU2, O1 and T2) taken 230 from the LeProvost tidal database, and specified along the open boundary to reproduce tidal response in the Bay of Bengal. In the present study, the unstructured version of SWAN (version 40.85) has been used which implements the four-direction Gauss-Seidel iteration technique with unconditional stability (Zijlema, 2010). SWAN was discretized into 31 frequency bins ranging from 0.05 to 1.00 Hz on a logarithmic scale and 36 direction bins having an angular resolution of 10°. SWAN was setup with Cavaleri and Malanotte-Rizzoli (1981) wave growth physics; the shallow water triad non-linear interaction was

- 235 computed using the lumped triad approximation of Eldeberky (1996). Earlier studies (Bhaskaran et al., 2014; Gayathri et al., 2015; Gayathri et al., 2016, Dhana Lakshmi et al., 2017; Bhaskaran et al., 2013; Murty et al., 2014, 2016; Poulose et al., 2017), carried out using the formulation of Komen et al. (1984) for cyclones which occurred in the Indian Ocean region, showed that SWAN with this scheme performed well for extreme weather events. Keeping this in view, in the present study, we have used the same formulation of Komen et al. (1984) to study the wave-current interaction during the Hudhud event.
- 240 The model was initiated with modified white-capping dissipation (Komen et al., 1984); quadruplet non-linear wave-wave interaction was computed using Discrete Interaction Approximation (Hasselmann et al., 1985); depth induced breaking was computed using spectral version of the model with breaking index of $\gamma = 0.73$ (Battjes and Janssen, 1978); bottom friction

was calculated based on JONSWAP physics (Hasselmann et al., 1973) with a friction coefficient, $C_b = 0.05m^2s^{-3}$. ADCIRC time step was specified as 10s, and SWAN as 600s. After every time step of SWAN, two-way coupling was carried out.

245

260

The model coupling is based on the work of Bunya et al. (2010) and Dietrich et al. (2011) in the Gulf of Mexico. SWAN employs an implicit sweeping method to update the wave details at each computational vertex, which allows SWAN to apply longer time steps than ADCIRC. Thus, the SWAN time step usually defines the coupling interval between SWAN and ADCIRC models (Dietrich, 2010; Dietrich et al., 2011a,b). SWAN computed radiation stress was passed on to ADCIRC to calculate wave set-up and nearshore currents. Similarly, water levels and currents computed by

250 ADCIRC were passed on to SWAN in the prescribed time step. SWAN accesses these inputs and wind speeds at each node and time, corresponding to the beginning and end of present interval. The radiation stress gradients used by ADCIRC were extrapolated forward in time, while the wind speeds, water levels and currents used by SWAN were averaged over each time step.

3. Results and Discussion

255 3.1. Cyclone track and wind generation

Hudhud cyclone is the second strongest tropical cyclone that crossed Visakhapatnam after 1985 (Amarendra et al., 2015) and caused extensive damage to the property. Hudhud crossed the Andaman Islands on 08 October 2014 at 0930h (IST). It moved west-northwest and intensified into a Very Severe Cyclonic Storm on 10 October 2014 (AN). It intensified further on 12 October and crossed the Visakhapatnam coast around 1300h (IST) with a maximum wind speed of 180 km/h (IMD Report, 2014). Figs. 1a and 2 show the track and passage of Hudhud. The maximum wind speed reproduced by the Holland model is ≈ 54 m/s (Fig. 2) with maximum pressure drop to 950 hPa.

3.2. Role of waves in surface elevation during Hudhud cyclone

Tidal phase plays a major role in affecting the surface elevation during cyclones. If a cyclone makes its landfall
during high tide, the effective water level would be higher than during low tide. In this case, the landfall of Hudhud cyclone occurred during spring high tide. We have conducted three numerical experiments to assess the impact of waves, currents and tides on the total water surface elevation along the track during the passage of Hudhud cyclone. In the first experiment, the ADCIRC model was set-up with only the cyclonic winds and atmospheric pressure generated by the Holland Asymmetrical model (Fig. 2), and tides were switched-off. The model produced the maximum surge, which was due to
cyclonic winds and pressure alone. In the second experiment, ADCIRC model was run with tides, cyclonic winds and atmospheric pressure, and the model provided the maximum water elevation generated by these contributing factors. The

third experiment was a two-way coupling of ADCIRC and SWAN, that is, the model run was executed by combining winds, pressure fields, tides and wave forcing.

The resultant surface elevations from all these three numerical experiments were inter-compared and also validated 275 with tide gauge data off Visakhapatnam. The tide data from the Permanent Service for Mean Sea Level (PSMSL) was adjusted to a Mean Sea Level (MSL) reference to match with ADCIRC generated surface elevation. Fig. 3 represents the spatial distribution of maximum water surface elevation (in the whole domain) produced by the cyclone from the above three experiments. The India Meteorological Department (IMD Report, 2014) reports a maximum water level of 1.6 m. However, the tide gauge at Visakhapatnam recorded a maximum water level of 1.4 m. The simulation with winds, tides and waves 280 predicted a water level of 1.2 m (Fig. 4), which matches reasonably well with the measured data as well as other model

predictions (with a difference of 0.2 m during peak surge).

The two-way coupling with SWAN showed an increment of ≈0.15m in total water level near Visakhapatnam during the cyclone, which was contributed by waves to the total rise in water level. Wave set-up along the coast was caused as a result of waves generated by the storm that subsequently released momentum (radiation stress, Longuett-Higgins and 285 Stewart, 1964) to the water column due to dissipation. Therefore, during storm events, water level rises not only by winds, but by waves also, though the magnitude is much less compared to the water level contributed by the winds and pressure. Model results from both the runs were analysed to observe the change in storm surge height due to wave setup along the storm affected coastal regions, and the maximum change in the modelled surge height was $\approx 0.25m$ ($\approx 20\%$ of total surge height) between Visakhapatnam and Srikakulam (Fig. 3 b&c). Overall, the model prediction showed that during Hudhud 290 cyclone wave induced setup had a significant impact on the total surge height, which provides an example of the importance of coupling wave and circulation model in predicting the total storm surge height accurately, especially during extreme

3.3 Effect of wave-current interaction on currents

tropical cyclones.

Currents in the study region generated during the Hudhud cyclone period were analyzed to study the impact of 295 wave- current interaction on the local current system. The maximum current speed obtained from the three numerical experiments (model runs) are shown in Fig. 5. As current measurements were not available for the cyclone period, the model produced velocity fields were analyzed and compared with earlier studies. In general, the East India Coastal Current (EICC) flows towards north along the east coast of India (ECI) during southwest monsoon. During northeast monsoon, the current reverses, and flows southward (Schott et al., 1994; Schott and McCreary, 2001; Shankar et al., 2002). On 300 average, the maximum current speed along the ECI varies from 0.2 to 0.5 m/s (Mishra, 2010; Mishra, 2011; Panigrahi et al., 2010). Misra et al. (2013) observed through model simulations that tidal currents near the coast (water depth=20m) increases gradually from south to north.

The present simulations predicted current speeds upto 0.5 m/s, and this range is consistent with the earlier studies. However, during the cyclone period, the two-way coupling (ADCIRC+SWAN) increased the current magnitude by 0.25 m/s (due to waves) along the cyclone track and near the landfall region. When the cyclone made its landfall near Visakhapatnam, the current speed increased from 0.5 to 1.8 m/s for a short duration (≈6h) with direction of flow towards south. After ≈6h of landfall, current speed reduced to ≈0.1 m/s, with reversal of current (towards north) (Figs. 6 & 7). The current pattern shows semi-diurnal variation associated with tidal currents. The spatial distribution of current speed and direction during the cyclone period driven by winds, tides and waves is given in Fig. 7, and it is very evident how the flow pattern changed with the passage of cyclone.

3.4 Effect of wave-current interaction on waves

305

310

Waves were modelled using SWAN alone and SWAN coupled with the ADCIRC to assess the impact of currents on the cyclone generated waves. Measured wave data were available only at one location, off Visakhapatnam (83.26°E, 17.63°N), which was on the track of Hudhud cyclone. Fig. 8 presents the comparison between the simulated and measured Formatted: Font: 10 pt 315 wave heights, wave periods and wave directions for the model runs of SWAN alone and coupled ADCIRC+SWAN. In the early stages of Hudhud, the wave heights were of the order of 3 -5m near the Andaman and Nicobar islands (Fig. 9). But, when Hudhud intensified further while progressing towards ECI, it generated waves with heights of the order of 9-11 m, before making the landfall near Visakhapatnam on 12 October 2014 (1200h). Fig. 9 shows a swath of large waves (wave heights exceeding 10 m) propagating towards the coast with the passage of the storm. When the system was examined 320 just before the landfall on 11 October 2014 at 2000 h (Fig. 9), it was found that the waves followed the pattern of cyclone winds. As waves experienced depth-limited breaking during its course onto the continental shelf, they propagated towards the right side of the cyclone track. Near Visakhapatnam, the buoy recorded a peak wave height of 7.8 m (Fig. 8), whereas, the model peak value is 6.2m. Referring to Fig.8, we find that more or less the measured significant wave heights match with the modelled wave heights (with and without currents near the buoy location, off Vishakhapatnam). When current was 325 introduced, wave heights reduced approximately by 0.2m and mean wave periods reduced by 2s. It may be noted that during this time, the waves and currents were nearly in the same direction (Figs. 7 and 8d). Subsequently, when current speed increased to 0.5 m/s (Fig. 6) during 1300h to 2000h (12th October 2014) with the wave and currents directions opposite to each other, we observe an increase in wave height of approximately 0.3m. Hence, there is an influence of currents on waves though it is marginal. The spatial distribution of maximum significant wave heights (H_s) simulated along the track 330 of Hudhud cyclone using SWAN (no wave-current interaction) and coupled ADCIRC+ SWAN (with wave-current interaction) is given in Fig. 10 (a & b). Fig. 10(c) illustrates change in wave energy due to wave-current interaction. The Red inclusion of currents does not improve much the wave simulation for Hudhud cyclone. It is found that inclusion of currents deteriorates the wave simulation at the buoy location when waves and currents were nearly in the

Formatted: Font: 10 pt Formatted: Font: 10 pt Formatted: Font: 11 pt, Font color:

11

ourrents in 335 enhanced the wave simulation. Overall it is seen that the influence of currents on the wave system is marginal. Table 1 highlights various statistical metrics with and without currents on the wave system at the buoy location for Hudhud. It is evident from Table 1 that inclusion of currents does not improve wave simulation for Hudhud cyclone. It is found that inclusion of currents deteriorated the wave simulation at the buoy location when waves and currents were nearly in the same direction, whereas, when waves and currents were in the opposite direction, the inclusion of currents enhanced 340 the wave simulation. Overall, it is seen that the influence of currents on the wave system is marginal. This observation is also supported by the recent study of Liu et al. (2016). They stated that an opposing current can lead to significant decrease in wave length and thereby tends to narrow both the crest and trough of the wave. This in turn causes an increased elevation in wave crest as the opposing current speed increases, whereas the wave trough elevation tends to remain constant throughout. On the contrary, when waves and currents follow same direction, there is enhancement in wave length that tends to decrease 345 the wave height elevation (Liu et al., 2016).

Fig. 8 presents the comparison between the simulated and measured wave heights, wave periods and wave directions for the model runs of SWAN alone and coupled ADCIRC+SWAN. In the early stages of Hudhud, the wave heights were of the order of 3-5m near the Andaman and Nicobar islands (Fig. 9). But, when Hudhud intensified further while progressing towards ECI, it generated waves with heights of the order of 9-11 m, before making the landfall near Visakhapatnam on 12 350 October 2014 (1200h). Fig. 9 shows a swath of large waves (wave heights exceeding 10 m) propagating towards the coast with the passage of the storm. When the system was examined just before the landfall on 11 October 2014 at 2000 h (Fig. 9), it was found that the waves followed the pattern of cyclone winds. As waves experienced depth limited breaking during its course onto the continental shelf, they propagated towards the right side of the track. Near Visakhapatnam, the buoy recorded a peak wave height of 7.8 m (Fig. 8), whereas, the model peak value is 6.2m. The spatial distribution of maximum 355 significant wave heights (H_{*}) simulated along the track of Hudhud cyclone using SWAN (no wave-current interaction) and eoupled ADCIRC+ SWAN (with wave-current interaction) is given in Fig. 10 (a & b). Fig. 10(c) illustrates change in wave energy due to wave-current interaction. The spatial distribution of mean wave period (T_m) and peak wave period (T_p) simulated along the track of Hudhud cyclone using coupled ADCIRC+SWAN model (with wave-current interaction) is presented in Fig. 11 (a & b). Fig. 11a shows large mean wave periods (≈13s) in the nearshore region off Visakhapatnam 360 during the cyclone (otherwise, during normal condition, wave periods will be of the order of 6s). Fig. 11b shows small pockets (at a few locations) of waves with large peak periods, of the order of 20s, moving towards the coast, south of Visakhapatnam. It was found that despite these large peak periods, the coupled wave-surge modelling system reproduced reasonably good wave-induced water level changes at these locations. Bender et al. (2012) reported similar large peak period scenarios, and reasoned that the ADCIRC model applies the SWAN radiation stress gradients based on individual spectral

365 components only, and not the peak or mean parameters. This feature is also supported by the results of another coupled

model, STWAVE, applied to the Louisiana Storm Surge (Atkinson et al, 2008), where isolated regions exhibited peak wave periods, greatly different from the surrounding values. Dietrich et al. (2013) presented a method that greatly removed the high peak period values with little degradation of model results. These isolated high peak wave periods point to the difficulty in simulating waves in inundating inland areas with shallow water depths and significant wind forcing.

370

Fig. 12a presents the maximum radiation stress gradient values calculated from SWAN, and passed on to the ADCIRC component of the coupled model. In the nearshore, the breaking waves exert stress on water column, causing changes in total water level and underlying currents. Fig. 12a shows the expected features for radiation stress gradient of 0.009 m²s in the main wave breaking zone along the coastline when Hudhud made landfall between Visakhapatnam and Srikakulam.

375

We find from Fig. 10c that wave heights reduced by 0.5 m on the right side of the cyclone. Fig. 12b shows that waves travelled normal to the coast after crossing the shelf area, and currents flowed in the southwest direction (Fig. 7), and due to wave-current interaction wave heights have reduced. Subsequently, increase in wave height is noticed on the left side of the cyclone track when waves and currents opposed each other (waves propagated from southwest and currents flowed towards southwest direction, Fig. 7). In general, wave-current interaction is prominent, when currents are strong. The effect 380 of currents on the wave field is examined by comparing the wave parameters collected off Visakhapatnam and the model results obtained from SWAN alone and ADCIRC+SWAN just before the landfall of the cyclone (Fig. 8). As discussed earlier, we observed an increase in current speed of ≈ 1.3 m/s just before the landfall (Fig. 6), and a an increase of ≈ 0.2 m in the significant wave height (H_s).

4. Conclusions

- 385 A coupled ADCIRC+SWAN modelling system has been used to simulate the changes that occurred in the ocean surface dynamics during the passage of Very Severe Cyclonic Storm Hudhud that made landfall near Visakhapatnam, located on the east coast of India. At the time of peak intensity, the Holland parametric model reproduced maximum wind speed of ≈54 m/s with a minimum central pressure drop of 950 hPa. The landfall of Hudhud event occurred during the spring high tide, and the tide gauge observation off Visakhapatnam recorded a maximum surge of 1.4 m, that matched reasonably 390 well with the modelled surge (1.2 m). The two-way coupling with SWAN showed an increment of ≈ 0.25 m (20%) in the total water level elevation, which was contributed by waves to the total rise in water level. During the time of landfall near Visakhapatnam, the current speed increased from 0.5 m/s to 1.8 m/s for a short duration (≈6 h) with the direction of flow towards south, and thereafter (≈ 6 h), the current speed reduced to ≈ 0.1 m/s with reversal in direction (towards north). The
- 395

study signifies that an increase of ≈ 0.2 m in significant wave height (H_s) was noted when the effect of currents was included

observed on the left side of the cyclone track, when waves and currents opposed each other (waves were propagating from southwest and currents flowing towards southwest). As wave-current interaction is a complex problem, and the expected changes in wave parameters are very small, further refinement is required in the two-way coupling of ADCIRC+SWAN (with fine resolution bathymetry and improved cyclonic winds).

Acknowledgements

400

415

420

We thank Director, CSIR-NIO, Goa for his support and interest in this study. The first author acknowledges the Dept. of Sci & Tech, Govt. of India for supporting the research work through WOS-A(SR/WOS-A/ES-17/2012). The

405 fieldwork data sharing is bounded with our institute data sharing policy. The ERA-Interim wind and wave data were freely downloaded from ECMWF (http://apps.ecmwf.int/datasets/). We are thankful to INCOIS, Hyderabad for providing the wave data. We acknowledge CSIR-NIO for providing high performance computing domain, HPC-Pravah for running the model. We are thankful to Dr. V.S.N Murty for giving input on impact of Hudhud on the coast. We are thankful to model developers for providing the source code for the model used in this study, ADCIRC+SWAN. We are also thankful to Chaitanya for assisting in preparation of the figures. The NIO contribution number is xxxx.

References

Amarendra, P.G., Bharathi, P., Bhanumurthy, K., Gopala Reddy, Balakrishnan Nair, T.M.: An observational study on wave characteristics during HUDHUD cyclone off Gangavaram, OSICON, CSIR,NIO, Goa 2015.

Ardhuin, F., Rascle, N., Belibassakis, K. A.: Explicit wave-averaged primitive equations using a generalized Lagrangian mean, Ocean Modeling, 32, 35–60, 2008.

Atkinson, J.H., Westerink, J.J., Hervouet, J.M.: Similarities between the Wave Equation and the Quasi-Bubble Solutions to the Shallow Water Equations, International Journal for Numerical Methods in Fluids, 45, 689-714, 2004.

Atkinson J. H., Westerink J. J, Wamsley T., Cialone M. A., Dietrich J. C., Dresback K. M., Kolar R. L., Resio D. T., Bender C., Blanton B. O., Bunya S., De Jong W., Ebersole B. A., Grzegorzewski A., Jensen R. E., Pourtaheri H., Ratcliff J., Roberts

H. J., Smith J. M., Szpilka C. M.: Hurricane Storm Surge and Wave Modeling in Southern Louisiana: A Brief Overview, Proceedings of the Tenth International Conference on Estuarine and Coastal Modeling, 467-506, 2008.

Battjes, J.A., Janssen, J.P.F.M.: Energy loss and setup due to breaking of random waves, Proc. 16th Coastal Eng. Conf., ASCE (1978), pp. 569–587, 1978.

425 Beardsley, R.C., Chen, C., Xu, Q.: Coastal flooding in Scituate (MA): A FVCOM study of the 27 December 2010 nor'easter, Journ Geophys. Res. 118, 6030–6045, doi:10.1002/2013JC008862, 2013. Bender, F.A.M., Ramanathan, V., Tselioudis, G.: Changes in extratropical storm track cloudiness 1983-2008: Observational support for a poleward shift, Clim. Dyn. 38, 2037-2053, doi:10.1007/s00382-011-1065-6, 2012.

- Bennis, A.C., Ardhuin, F., Dumas, F.: On the coupling of wave and three-dimensional circulation models: Choice of
 theoretical framework, practical implementation and adiabatic tests, Ocean Modelling. 40(3), 260-272, 2011.
- Bhaskaran, P.K., Nayak, S., Bonthu, S.R., Murty, P.N., Sen, D.: Performance and validation of a coupled parallel ADCIRC–SWAN model for THANE cyclone in the Bay of Bengal, Environmental Fluid Mechanics. 13(6), 601-623, 2013.
- Bhaskaran, P.K., Gayathri, R., Murty, P.L.N., Subba Reddy, B., Sen, D.: A numerical study of coastal inundation and its validation for Thane cyclone in the Bay of Bengal, Coastal Engineering. 83, 108–118, 2014.
- Blain, C.A., Westerink, J.J., Luettich, R.A.: The influence of domain size on the response characteristics of a hurricane storm surge model, Journal of Geophysical Research. 99, doi: 10.1029/94JC01348. Issn: 0148-0227, 1994.
 Booij, N., Ris, R.C., Holthuijsen, L.H., 1999. A third generation wave model for coastal regions, Part I: Model description and validation, Journal of Geophysical Research. 104, 7649-7666.
- 440 Carniel, S.J., Chiggiato, W.J., Sclavo, M.: Investigating the impact of surface wave breaking on modeling the trajectories of drifters in the northern Adriatic Sea during a wind-storm event, Ocean Modelling 30(2), 225-239, 2009. Cavaleri, L., Malanotte-Rizzoli, P.: Wind wave prediction in shallow water: Theory and applications, Journal of Geophysical Research 86, 961- 973, 1981.

Davies, A.M., John Lawrence.: Modeling the effect of wave-current interaction on the three-dimensional wind-driven circulation of the eastern Irish Sea, Journal of Physical Oceanography. 25(1), 29-45, 2005.

Dawson, C.N., Westerink, J.J., Feyen, J.C., Pothina, D.: Continuous, Discontinuous and Coupled Discontinuous-Continuous Galerkin Finite Element Methods for the Shallow Water Equations, International Journal for Numerical Methods in Fluids. 52(1), 63-88, 2006.

 Dhana Lakshmi, D., Murty, P.L.N., Bhaskaran, P.K., Sahoo, B., Srinivasa Kumar, T., Shenoi, S.S.C., Srikanth, A.S.:
 Performance of WRF-ARW winds on computed storm surge using hydrodynamic model for Phailin and Hudhud cyclones. Ocean Engineering, 131, 135-148, 2017.

Dietrich, J.C., Tanaka, S., Westerink, J.J., Dawson, C.N., Luettich, R.A.Jr., Marcel Zijlema, Holthuijsen, L.H., Smith, J.M., Westerink, L.G., Westerink, H.J.: Performance of the unstructured-mesh, SWAN+ ADCIRC model in computing hurricane waves and surge, Journal of Scientific Computing 52(2), 468-497, 2012.

455 Dietrich, J.C., Dawson, C.N., Proft, J.M., Howard, M.T., Wells, G., Fleming, J.G., Luettich, R.A.Jr., Westerink, J.J., Cobell, Z., Vitse, M., Lander, H., Blanton, B.O., Szpilka, C.M., Atkinson, J.H.: Real-Time Forecasting and Visualization of Hurricane Waves and Storm Surge Using SWAN+ADCIRC and FigureGen, Computational Challenges in the Geosciences, The IMA Volumes in Mathematics and its Applications, 156, 49-70, DOI: 10.1007/978-1-4614-7434-0_3, 2013. Dietrich, J.C., Bunya, S., Westerink, J.J., Ebersole, B.A., Smith, J.M., Atkinson, J.H., Jensen, R.: A high-resolution coupled
 riverine flow, tide, wind, wind wave, and storm surge model for southern Louisiana and Mississippi. Part II: Synoptic description and analysis of Hurricanes Katrina and Rita, Monthly Weather Review 138(2), 378-404, 2010.

Dietrich, J.C., Westerink, J.J., Kennedy, A.B., Smith, J.M., Jensen, R.E., Zijlema, M., Holthuijsen, L.H.: Hurricane Gustav (2008) waves and storm surge: Hindcast, synoptic analysis, and validation in southern Louisiana, Monthly Weather Review. 139(8), 2488-2522, 2011a.

465 Dietrich, J.C., Zijlema, M., Westerink, J.J., Holthuijsen, L.H., Dawson, C., Luettich, R.A., Jensen, R.E., Smith, J.M., Stelling, G.S., Stone, G.W.: Modeling hurricane waves and storm surge using integrally-coupled, scalable computations, Coastal Engineering. 58(1), 45-65, 2011b.

Dong, Z., Kirby, T.: Theoretical and numerical study of wave-current interaction in strongly-sheared flows, Coast Engg., 2012.

470 Dube, S.K., Rao, A.D., Sinha, P.C., Murty, T.S., Bahulayan, N.: Storm surge in the Bay of Bengal and Arabian Sea: the problem and its prediction, Mausam. 48, 283–230, 1997.

Eldeberky, Y., Polnikov, V., Battjes, J.A.: A statistical approach for modeling triad interactions in dispersive waves, Proc. 25th Int. Conf. Coastal Eng., pp. 1088-1101, 1996.

Hani, T., Ganesan, P., Murty, V.S.N.: Impact of the very severe cyclonic storms - The Phailin and Hudhud - on the beachprocesses along the Visakhapatnam coast, OSICON, CSIR,NIO, Goa, 2015.

Hasselmann, K., Barnett, T.P., Bouws, E., Carlson, H., Cartwright, D.E., Enke, K., Ewing, J.A., Gienapp, H.,
Hasselmann, D.E., Kruseman, P., Meerburg, A., Mller, P., Olbers, D.J., Richter, K., Sell, W., and Walden, H.:
Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP),
Ergnzungsheft zur Deutschen Hydro. Zeitschrift Reihe, A(8) (Nr. 12), p.95, 1973.

480 Hasselmann, S., Hasselmann, K., Allender, J., Barnett, T.: Computations and parameterizations of the nonlinear energy transfer in a gravity-wave specturm. Part II: Parameterizations of the nonlinear energy transfer for application in wave models, Journal of Physical Oceanography. 15, 1378-1391, 1985.

Holland, G.J.: An analytic model of the wind and pressure profiles in hurricanes, Monthly Weather Review. 108, 1212-1218, 1980.

485 Holthuijsen, L.H., Tolman, H.L.: Effects of the Gulf Stream on ocean waves, Journal of Geophysical Research. 96, 12-755, 1991.

Hope, M.E., Westerink, J.J., Kennedy, A.B., Kerr, P.C., Dietrich, J.C., Dawson, C., Bender, C.J.: Hindcast and validation of Hurricane Ike (2008) waves, forerunner, and storm surge, Journal of Geophysical Research. 118, 4424-4460, 2013.

Gayathri, R., Bhaskaran, P.K., Sen, D.: Numerical study on Storm Surge and associated Coastal Inundation for 2009 AILACyclone in the head Bay of Bengal. Int. Conf. on Water Resources, Coastal and Ocean Engineering (ICWRCOE 2015),

Aquatic Procedia, 4, 404-411, 2015.

	Gayathri, R., Murty, P.L.N., Bhaskaran, P.K., Srinivasa Kumar, T.: A numerical study of hypothetical storm surge and	
	coastal inundation for AILA cyclone in the Bay of Bengal. Environmental Fluid Mechanics, 16(2), 429-452, 2016.	
	Gayathri, R., Bhaskaran, P.K., Jose, F.: Coastal inundation research: an overview of the process. Current Science, 112(2),	
495	267-278, 2017.	
	IMD Report: Very Severe Cyclonic Storm, HUDHUD over the Bay of Bengal (07-14 October 2014), A Report, 2014.	
	Kirby, J.T., Tsung-Muh, Chen.: Surface waves on vertically sheared flows: approximate dispersion relations, Journal of	
	Geophysical Research: Oceans. 94, 1013-1027, 1989.	
	Kolar, R.L., Westerink, J.J., Cantekin, M.E., Blain, C.A.: Aspects of nonlinear simulations using shallow water	
500	models based on the wave continuity equation, Computers and Fluids. 23, 523-538, 1994.	
	Komen, G.J., Cavaleri, L., Donelan, M., Hasselmann, K., Hasselmann, S., Janssen P.A.E.M.: Dynamics and Modelling of	
	Ocean Waves, 532 pp., Cambridge Univ. Press, New York, 1994.	
	Komen, G., Hasselmann, K., Hasselmann, S.: On the existence of a fully developed wind-sea spectrum, Jour. of Phy.	
	Oceanography. 14, 1271-1285, 1984.	
505	Kubatko, E.J., Bunya, S., Dawson, C., Westerink, J.J.: Dynamic p-adaptive Runge-Kutta Discontinuous Galerkin Methods	
	for the Shallow Water Equations, Computer Methods in Applied Mechanics and Engineering. 198, 1766-1774, 2009.	
	Kudryavtsev, V.N., Makin, V.K., Chapron, B.: Coupled Sea Surface-Atmosphere Model 2. Spectrum of Short Wind	
	Waves, J. Geophys. Res. 104, 7625-7639, 1999.	
	Kuik, A.J., Vledder, G., Holthuijsen, L.H., A method for the routine analysis of pitch and roll buoy wave data, Journal of	
510	Physical Oceanography 18, 1020–1034, 1988.	
	Longuet-higgins, M.S., Stewart, R.W.: Radiation stresses in water waves; a physical discussion, with application, Deep-Sea	
	Res. 11, 529-562, 1964.	
	Luettich, R.A., Westerink, J.J.: Continental shelf scale convergence studies with a barotropic tidal model,	Formatted
	Quantitative skill assessment for coastal ocean models. 349-371, 1995.	spacing: 1. Left
515	Liu, Z., Lin, Z., Tao, L., and Lan, J.; Nonlinear Wave-Current Interaction in Water of Finite Depth. Journal of Waterway,	Formatted
	Port, Coastal, Ocean Eng., 142(6), 04016009, 1-16, 2016,	Formatted
		Formatted
	Luettich, R.A., Westerink, J.J.: Formulation and numerical implementation of the 2D/3D ADCIRC finite element	ULD PC
	model version 44, Tech Rep., 2004.	
520	Mastenbroek, C., Burgers, G., Janssen, P.A.E.M.: The dynamical coupling of a wave model and a storm surge model	
	through the atmospheric boundary layer, Journal of Physical Oceanography. 23, 1856-1866, 1993.	

McWilliams, J.C., Restrepo, J.M., Lane, E.M.: An asymptotic theory for the interaction of waves and currents in coastal waters, Journal of Fluid Mechanics. 511, 135–78, 2004.

Formatted: List Paragraph, Line spacing: 1.5 lines, Tab stops: 0.5 cm, Left

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Font: 10 pt, Expanded by 0.25 pt

Mellor, G.L.: The three-dimensional current and surface wave equations, Journal of Physical Oceanography. 33, 1978–1989, 2003.

Mellor, G.L.: The depth-dependent current and wave interaction equations: a revision, Journal of Physical Oceanography. 38, 2587–96, 2008.

525

550

Mishra, P., Patra, S.K., Bramha, S., Mohanty, P.K., Panda, U.S., Rao, V.R., Ramanamurthy, M.V.: Wave characteristic and tidal regime off Gopalpur, east coast of India and its implication in coastal erosion, In: Proceedings of the joint Indo-Brazil

530 workshop on coastal process and modeling relevant to understanding shoreline changes, Chennai, India, pp 22-32 4, 2010. Misra, S.K.: Studies on nearshore currents along the southern part of the East Coast of India, Ph.D. thesis, Awarded by Berhampur University, 2011.

Misra, S.K., Chandramohan, P., Satyanarayana, M.A., Panigrahi, J.K., Mahadevan, R.: Nature of the tide induced flow field along the East Coast of India, International Journal of Oceans and Oceanography. 7, 57-71, 2013.

535 Moon, Il-Ju.: Impact of a coupled ocean wave-tide-circulation system on coastal modeling. Ocean modelling. 8, 203-236, 2005.

Murty, P.L.N., Sandhya, K.G., Bhaskaran, P.K., Felix, J., Gayathri, R., Balakrishnan, N.T.M., SrinivasaKumar, T., Shenoi, S.SC.: A coupled hydrodynamic modeling system for PHAILIN cyclone in the Bay of Bengal, Coastal Engineering. 93, 71-81, 2014.

540 Murty, P.L.N., Bhaskaran, P.K., Gayathri, R., Sahoo, B., Srinivasa Kumar, T., SubbaReddy, B.: Numerical study of coastal hydrodynamics using a coupled model for Hudhud cyclone in the Bay of Bengal. Estuarine, Coastal and Shelf Science, 183, 13-27, 2016.

Murty, T.S., Flather, R.A., Henry, R.F.: The storm surge problem in the Bay of Bengal, Progress in Oceanography. 16, 195-233, 1986.

Nair, Balakrishnan, Remya, P.G., Harikumar, R., Sandhya, K.G., Sirisha, P., Srinivas, K., Nagaraju, C.: Wave forecasting and monitoring during very severe cyclone Phailin in the Bay of Bengal, Current Science. 106, 1121-1125, 2014.
 Panigrahi, J.K., Swain, J.: Numerical Simulation and Validation of Deepwater Spectral Wind-Waves, Marine Geodesy. 33, 39-52, 2010.

Pleskachevsky, A., Eppel, D.P., Kapitza, H.: Interaction of waves, currents and tides, and wave-energy impact on the beach area of Sylt Island, Ocean Dynamics, 59, 451-461, 2009.

Poulose, J., Rao, A.D., Bhaskaran, P.K.: Role of continental shelf on non-linear interaction of storm surges, tides and wind waves: An idealized study representing the west coast of India. Estuarine, Coastal and Shelf Science, http://dx.doi.org/10.1016/j.ecss.2017.06.007

Rao, A.D.: Numerical storm surge prediction in India, Ph.D. thesis, IIT Delhi, New Delhi, 211 pp, 1982.

555 Rao, A.D., Murty, P.L.N., Jain, I., Kankara, R.S., Dube, S.K., Murty, T.S.: Simulation of water levels and extent of coastal inundation due to a cyclonic storm along the east coast of India, Nat. Hazards. http://dx.doi.org/10.1007/s 11069-012- 0193-6, 2012.

560

565

Rao, V.R., Subramanian, B.R., Mohan, R., Kannan, R., Mageswaran, T., Arumugam, T., Rajan, B.: Storm surge vulnerability along Chennai–Cuddalore coast due to severe cyclone THANE, Nat. Hazards. http://dx.doi.org/10.1007/s11069-013-0630-1, 2013.

Ris, R., Holthuijsen, L.H., Booij, N.: A third-generation wave model for coastal regions: 2. Verification, Journal of geophysical research. 104, 7667-7681, 1999.

Schott, F., McCreary, J.P.: The monsoon circulation in the Indian Ocean, Progress Oceanogr. 51, 1-123, 2001.

Schott, F., Reppin, J., Fischer, J., Quadfasel, D.: Currents and transports of the Monsoon Current south of Sri Lanka, Journal of Geophysical Research. 99, doi: 10.1029/94JC02216. Issn: 0148-0227, 1994.

- Sebastian, A., Bedient, P., Proft, J., Dietrich, J., Dawson, C.: Characterizing hurricane storm surge behavior in Galveston Bay using the SWAN+ADCIRC Model, Coastal Engineering. 88, 171-181, DOI: 10.1016/ j.coastaleng.2014.03.002, 2014.
 Shankar, D., Vinayachandran, P.N., Unnikrishnan, A.S.: The monsoon currents in the north Indian Ocean, Progr. Oceanography 52, 63–120, 2002.
- 570 Sindhu, B., Suresh, I., Unnikrishnan, A.S., Bhatkar, N.V., Neetu, S., Michael, G.S.: Improved bathymetric datasets for the shallow water regions in the Indian Ocean, Journal of Earth System Science. 166(3), 261-274, 2007. Tanaka, S., Bunya, S., Westerink, J.J., Dawson, C., Luettich, R.A.: Scalability of an Unstructured Grid Continuous Galerkin Based Hurricane Storm Surge Model, Journal of Scientific Computing. 46, 329-358, 2011. Thompson, E.F., Cardone, V.J.: Practical modeling of hurricane surface wind fields, ASCE, J. of Waterway, Port, Coastal
- and Ocean Engg. 122, 195-205, 1996.
 Tolman, H.L.: A third-generation model for wind waves on slowly varying, unsteady, and inhomogeneous depths and currents, Journal of Physical Oceanography. 21, 782-797, 1991.
 Uchiyama, Y., McWilliams, J.C., Shchepetkin, A.F.: Wave-current interaction in an oceanic circulation model with a vortex-

force formalism: application to the surf zone, Ocean Modelling. 34, 16–35, 2010.

- Warner, J.C., Sherwood, C.R., Signell, R.P., Harris, C.K., Arango, H.G.: Development of a three-dimensional, regional, coupled wave, current, and sediment-transport model, Computers & Geosciences. 34, 1284-1306, 2008.
 Westerink, J.J., Luettich, R.A., Feyen, J.C., Atkinson, J.H., Dawson, C., Hugh, J.R., Powell, M.D., Dunion, J.P., Kubatko, E.J., Pourtaheri, H.: A basin-to channel-scale unstructured grid hurricane storm surge model applied to southern Louisiana, Monthly Weather Review. 136, 833-864, 2008.
- 585 Xia, Y., Yang, Z., Jackson, C., Stoffa, P.L., Sen, M.K.: Impacts of data length on optimal parameter and uncertainty estimation of a land surface model, Journal of Geophysical Research. 109, doi: 10.1029/2003JD004419, 2004.

Xie, L., Wu, K., Pietrafesa, L., Zhang, C.: A numerical study of wave-current interaction through surface and bottom stresses: Wind-driven circulation in the South Atlantic Bight under uniform winds, Journal of Geophysical Research. 106, 16841-16855, 2001.

590 Xie, L., Pietrafesa, L.J., Wu, K..: A numerical study of wave-current interaction through surface and bottom stresses: Coastal ocean response to Hurricane Fran of 1996. Journal of Geophysical Research. 108, 3049, doi:10.1029/2001JC001078, 2003.

Zhang, M.Y., Li, Y.S.: The synchronous coupling of a third-generation wave model and a two-dimensional storm surge model, Ocean Engg. 23, 533-543, 1996.

595 Zhang, M., Zhao, Y.W., Chen, H., Jiang, W.Q.: SAR imaging simulation for composite model of ship on dynamic ocean scene, Progress In Electromagnetics Research. 113, 395-412, 2011.

Zijlema, M.: Computation of wind-wave spectra in coastal waters with SWAN on unstructured grids, Coastal Engineering. 57, 267-277, 2010.

600

Table 1. Statistical measures	with (coupled)/without	(standalone)	currents on	waves at	the buoy
	location				

Statistical Metrics	<u>Mean</u> (m)	Bias (m)	<u>RMSE</u> (m)	Scatter Index	Correlation Coefficient
<u>SWAN</u> (standalone)	<u>1.89</u>	<u>-0.08</u>	<u>0.53</u>	0.28	<u>0.95</u>
Coupled (ADCIRC+SWAN)	<u>1.89</u>	<u>-0.04</u>	<u>0.48</u>	<u>0.25</u>	<u>0.95</u>

605

Figure 1a

Figure 1c

Fig. 1a. Bathymetry of the model domain chosen for wave-current interaction during Hudhud cyclone; cyclone track details are also shown; red dot represents wave rider buoy location. Fig. 1b. Fine resolution unstructured mesh generated for the domain to run the coupled ADCIRC+SWAN model; rectangular box represents the region where measured data are available for model validation (details of the box is shown in Fig. 1c). Fig. 1c. Fine-resolution mesh of the box shown in Fig. 1b; black circle is the landfall point of the Hudhud cyclone; cyclone track is also shown.

620 Fig. 2. Typical winds (speed and direction) generated using Holland symmetrical model along the track of Hudhud cyclone (colour code represents wind speed in m/s; vectors represent wind direction).

625 Fig. 3. Spatial distribution of maximum surface elevation (m) due to (a) cyclonic winds, (b) cyclonic winds and tides and (c) cyclonic winds, tides and waves (colour code represents surface elevation in m).

Fig. 4. Time series of surface elevation (m) representing measured surface elevation (red line), SE from ADCIRC alone (blue line) and SE from ADCIRC+SWAN (black line) at Visakhapatnam coast (17.63°N; 83.26°E) during 10-13 October 2014.

Fig. 5. Spatial distribution of maximum surface currents (m/s) due to (a) winds, (b) winds and tides and (c) winds, tides and waves, during cyclone, (d) difference in current speeds from (b) and (c), illustrating change in current speeds due to wave-current interaction (colour code represents current speeds in m/s).

Fig. 6. Time series of currents (m/s) representing current speeds and direction obtained from ADCIRC alone ('x' and blue rectangle) and coupled ADCIRC+SWAN ('+' and red rectangle) off Visakhapatnam coast (17.63°N; 83.26°E) during 10-13 October 2014.

Fig. 7. Current speed and direction simulated along the track of Hudhud cyclone using the coupled ADCIRC+SWAN model (colour code represents current speed in m/s; vectors represent current direction).

Fig. 8. Comparison of measured (black) and modelled (a) significant wave heights (H_s), (b) mean wave periods, (c) peak wave periods and (d) peak wave directions obtained from SWAN (red) and coupled ADCIRC+SWAN (blue) during Hudhud cyclone with measured data off Visakhapatnam (17.63°N; 83.26°E).

 $\label{eq:Fig. 9. Significant wave heights (H_s) simulated along the track of Hudhud cyclone using the coupled ADCIRC+SWAN model (colour contours represent H_s in m).$

655

Fig.10. Spatial distribution of maximum significant wave heights (H_a) simulated along the track of Hudhud cyclone using (a) SWAN model (no wave-current interaction), (b) coupled ADCIRC+SWAN model (with wave-current interaction); colour code and contours represent H_a ; (c) change in H_a from (a) and (b), illustrating change in wave energy due to wave-current interaction.

Fig. 11. Spatial distribution of (a) mean wave period (T_m) and (b) peak wave period (T_p) simulated along the track of Hudhud cyclone using coupled ADCIRC+SWAN model (with wave-current interaction).

Fig. 12. (a). Maximum radiation stress gradient values calculated from SWAN and (b) spatial distribution of mean wave direction (Dir) simulated along the track of Hudhud cyclone using the coupled ADCIRC+SWAN model (with wave-current interaction); colour code and contours represent wave direction.