nhess-2017-101-RC1 Author Comments

Major Comments

A.1 VOD and NDVI: The application of stepwise regression on Equation 4 has excluded VOD as
predictor (eq. 10). Please provide in the main text a possible explanation for that feature. If NDVI is
also excluded by stepwise regression is expected that the obtained model performance will
decrease significantly. How much? NDVI and VOD are assumed to be (anti-) correlated. When the
predictors are correlated, some of them may be insignificant in regression and their inclusion may
lead to overfitting. The difference in R2 coefficient between calibration and evaluation may be also
a signal of overfitting. Did the authors aware of this feature? Please consider using a cross
validation technique to evaluate model performance.

Author Response: At every selected observed DOC sites (excluding the forest areas) from July
2002 to June 2011, the r? of VOD and NDVI is 0.5217 with an RMSE of 0.1117. VOD was
excluded as a predictor in the final model, as expressed in Eq. (10), because during the stepwise
regression, when the NDVI and (VOD)(NDVI) terms are included as the first and second
predictors, the VOD term does not contribute to improving the final model prediction (i.e. p-value
exceeds the acceptance threshold, preventing overfitting). When NDVI term is excluded,
(VOD)(NDVI) term is included first, followed by VOD term. The summary of calibration and
evaluation results with additional evaluation with independent sites only (excludes 5 sites that were
used in calibration) are as listed in Table RC1-1.

Table RC1-1
Calibration (5/23 Original Evaluation L(cglulgggﬁe(qg/ezry
sites; 112/238 (23/23 sites; 238/238 sites: 126/238
Model observations) observations) ) et
observations)
r2 RMSE r? RMSE r? RMSE
C=145.565-

260.817(NDVI)+137.194(VOD)(NDVI) 0.6724 13.3960 0.5510  15.2540 0.4430 16.7600
[Eq. (10)]

C=48.699+147.603(VOD)-

259.947(VOD)(NDVI) 0.5355 15.9504 0.5034  15.9522 0.5423 15.5269
[Not shown in original paper]

C=91.637-125.219(VOD)(NDVI)
[Not shown in original paper]

Method B [Eq. (5)] N/A N/A 06110 14.4380 0.6320  11.9240
MapVic [Eq. (6)] N/A N/A  0.4350 19.8010 0.5620  14.6820

0.4252 17.6304 0.3587 18.4265 0.4391 18.0763

Changes in Manuscript: Additional explanations as stated in author response above has been
added to section 4.1 (page 7, line 24-25, 33-38). Table 1 has been updated with the results from
the model with VOD and (VOD)(NDVI) due to its better cross validation performance (shown in
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Table RC1-1). The model with only (VOD)(NDVI) term is not included in the updated paper, since it
is outperformed by other models. Texts and conclusions have been updated to reflect the added
cross validation results, which show that Method B and MapVic outperformed DOC model with
VOD (page 1, line 14-20; page 3, line 1-4; page 8, line 16-20; page 10, line 13-24; page 11, line
20-24).

A.2 Spatial and Temporal Standard Deviation (SD): A seasonal behaviour of Spatial SD seems to
be present. Further analysis of the seasons/months with higher values of SD should give additional
and important information. The same analysis could be performed for each land cover type.

Author Response: Forest areas are now excluded from the analysis and Fig. 4 in the original
manuscript has been replaced with Fig. RC1-1. The continental mean spatial DOC standard
deviation is updated from 21.70 % to 20.39 % (page 8, line 31). Further analysis on DOC spatial
standard deviation are as shown in Table RC1-2. This includes seasonal, monthly, and land cover
type spatial standard deviation of DOC. From both seasonal and monthly spatial standard
deviation of DOC, it is shown that DOC has the highest spatial variation during winter, which is
especially true for northern Australia (Anderson et al., 2011).

a
o

] (o] s
o o o
T T T
Fad
T
_
{I
%
=
S
=
f;{{
-
e
i
=
;__":?
:{’
T,
i«
=
=
32
<\
! ! !

—_—
o
T

I

DOC Spatial Standard Deviation (%)

0 1 1 1
20020704 20040224 20051016 20070608 20090128 20100920
Date

Figure RC1-1

Table RC1-2

DOC Spatial Standard Deviation

Season Spatial SD (%) Month Spatial SD (%) Land Cover Type Spatial SD (%)

Autumn (MAM) 20.6355 January  19.0502 Closed Shrublands 11.4843
Winter (JJA)  22.8947 February 21.3538 Open Shrublands 13.9821
Spring (SON) 18.8605 March 21.1669 Woody Savannas 17.9117
Summer (DJF) 19.1613 April 20.2281 Savannas 13.4322
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May 20.4982 Grasslands 19.1051
June 21.7699 Croplands 20.9953

July 23.2311
August 23.6343
September 21.9705
October  18.3045
November 16.3252
December 17.2764

Changes in Manuscript: Added the information stated in the above author response and Table
RC1-2 to the results in section 4.1 (page 8; line 29-30, 33-36).

A.3 Spatial and Temporal Standard Deviation (SD): Burned area maps were used as true baseline.
However, the burned area map may include fires that are lit in low—moderate conditions, such as
prescribed burns and fire. The less good quality of the proposed model could be associated with
such type of fires that are included in low and moderate classes. Please consider using Fire
Radiative Power (hotspots) as obtained by MODIS, in order to categorize burned areas according
to the power (energy) released and consequently with fire intensity and severity. This will allow to
eliminate low and moderate fires from your analysis and increase model accuracy, namely in case
of severe fires.

Author Response: It is true that burned area maps are not perfect for a true baseline, since it
includes prescribed burns. Following your suggestion, we use fire radiative power (FRP, unit: MW)
provided in MCD14ML to mask out burned area (MCD64A1) that have low FRP. We assume any
burned area with FRP lower than 100 MW to be likely prescribed burns. The changes in the GFDI
and burned area analysis results (Fig. 9, Table 3, and 4 in the original manuscript) are as shown in
Fig. RC1-2, Table RC1-3, and RC1-4. Note that while the true positive rate for every model
significantly increases, the accuracy slightly decreases. Nevertheless, the overall results are still
similar with the previous finding in the original manuscript (Method B has the highest accuracy, but
worst true positive rate, MapVic has the highest true positive rate, but worst accuracy, and our
proposed model sit in the middle among the three DOC models).
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MCD64A1 Burned/Unburned Area for Australia
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Figure RC1-2
Table RC1-3
Reference GFDI Recalculated GFDI
MCD64A1 No. of Pixels
Burned Unburned Burned Unburned
High or
88 446894217 80 319386462
GFEDI above
Severity Low
395703734 13 523211489
Moderate

Reference GFDI

Recalculated GFDI

True Positive Rate 0.9462 0.8602

False Positive Rate 0.5304 0.3790

Accuracy 0.4696 0.6210
Table RC1-4

Method B GFDI

MapVic GFDI
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MCD64A1 No. of Pixels

Burned Unburned Burned Unburned
High or 131413937 83 334095499
GFDI above
Severity Low
84 693718749 10 488464724
Moderate
Method B GFDI MapVix GFDI
True Positive Rate 0.0968 0.8925
False Positive Rate 0.1593 0.4061
Accuracy 0.8407 0.5938

Changes in Manuscript: Added the description of MCD14ML to the end of section 2.1 (page 4, line
12-14). Added the above explanation in the author response regarding the application of
MCD14ML on the burned area map (MCD64A1) to section 4.2 (page 9, line 26-28). Fig. 9, Table 2
and 3 will be replaced with Fig. RC1-2, Table RC1-3 and RC1-4.

Minor Suggestions

B.1 Why MODIS AQUA was not included in the analysis. The authors will have higher amount of
available data and better opportunities to have valid data and to avoid clouds.

Author Response: We tested both MODIS Terra and Aqua correlation with both VOD and NDVI
during the initial stage of the study and found that MODIS Terra (during our study period of 4 July
2002 to 26 June 2011) has better correlation than Aqua dataset. For consistency, we decided to
use only Terra dataset.

Changes in Manuscript: No changes needed.

B.2 Several sites are referred by name; e.g., Darnum, Simcocks, and Neerim South, Durran Durra,
Monaro, and Parry Lagoons. The authors should provide more details about the location of the
sites. Non-Australian readers will get lost without those additional information.
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Author Response: Apart from the site name, Australian states will also be provided. Grass type at
each site will also be labelled for additional information.

Changes in Manuscript: All site names in the paper are now accompanied with state and grass
type (page 4, line 37-38; page 5, line 2-3, 5-7). For instance, “Darnum”, becomes “Darnum, VIC
(mixed grass).” The name of the selected sites for calibration will also be stated in section 2.2
(page 5, line 14-15). The selected sites are: Majura, ACT (improved pasture), Tidbinbilla, ACT
(mixed grass), Ballan, VIC (improved pasture), Murrayville 1, VIC (native grass), and Murrayville 2,
VIC (improved pasture).

B.3 The sites showed in Figure 2 are the 23 sites retained from the original pool? Please clarify
and introduce this information in the main text.

Author Response: No, it included all 37 sites. New figure (shown as Fig. RC1-1 below) with only 23
valid sites will replace the original Fig. 2 in the paper.

Barren or Sparsely Vegetated
Urban and Built-up
Croplands

Grassland

Savannas

Woody Savannas

Open Shrublands

Closed Shrublands

Mixed Forest

Deciduous Broadleaf Forest
Deciduous Needleleaf Forest
Evergreen Broadleaf Forest
Evergreen Needleleaf Forest

Figure RC1-1

Changes in Manuscript: Updated Fig. 2 (shown as Fig. RC1-1 here) has replaced original Fig. 2.
(page 16). Original caption will also be updated to “Figure 2: MCD12C1 land cover type map for
Australia (Hansen et al., 2000). The locations of 23 valid observed degree of curing (DOC) sites
are marked with crosses.”
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B.4 Page 10, line 12: Use a dot before ‘With’

Author Response: Thank you for pointing out the missing period.

Changes in Manuscript: Text on page 11, line 24 will be updated as noted.
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nhess-2017-101-RC2 Author Comments

Major Comments

A.1 The selection of field sites in Section 2.2 raises concerns. The rejection of sites without the
expected negative correlation between VOD and curing seems very dubious: if such sites are
rejected then of course the performance of a VOD-based estimate over the set of remaining sites
must improve. Only five sites are accepted for the training dataset, which is a small number. Which
five sites are used is not stated but should be: are they all the same grass type (improved pastures
or native grasses); is the hummock grass site Lorna Glen included (the field data from site has very
litttle DOC variation)?

Author Response: While only five sites are accepted for calibration, these five have the largest
number of sequential DOC records available, totalling up to 122 observations (out of 238
observations from 23 valid sites). The selected five sites are: Majura, ACT (improved pasture),
Tidbinbilla, ACT (mixed grass), Ballan, VIC (improved pasture), Murrayville 1, VIC (native grass),
and Murrayville 2, VIC (improved pasture).

Lorna Glen, WA (native grass - hummock) is not included in calibration, but is included in the
evaluation.

A significant limitation of VOD is the large pixel size (0.1° x 0.1°). Such a large area frequently
includes many land cover types and may not be dominated by grass even though a grassland
observation field site falls within the pixel. The sites without the negative correlation with VOD also
had no correlation with NDVI suggesting other land cover types where dominating the signal.

Changes in Manuscript: The name of the selected sites for calibration has been stated in section
2.2 (page 5, line 14-15). Total number of observations (238 DOC records) has also been added to
the end of section 2.2 (page 5, line 14). Minor wording changes in page 5, line 3-4 to emphasis the
reasons for site rejections due to non-negative relation between VOD and DOC.

A.2 VOD is primarily sensitive to vegetation water content (fuel moisture content), as you note,
whereas NDVI and some other optical indices are sensitive to chlorophyll content. As grassland
senesces the water and chlorophyll contents both decrease but not necessarily in perfect
correlation, and also the relationship between DOC and FMC varies between species of grass
(your reference Dilley at el. 2010). Curing is usually assessed in the field - whether by the
destructive, visual or Levy rod method - by using the colour of the grass to distinguish live from
dead. Since the colour is controlled by the amount of chlorophyll, a remote sensing method that
responds to vegetation water would be a less direct estimate of DOC than a method that responds
to chlorophyll.
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Author Response: While this is true, given the different capabilities of VOD (ability to see through
cloud, smoke etc) we would like to explore the possibility of whether adding the VOD (responding
to vegetation water content) will improve DOC prediction when compared with existing NDVI
(responding to vegetation greenness) based DOC prediction model.

Changes in Manuscript: Added the above reasoning and reworded the study objectives (page 3,
line 1-4) for clarification.

A.3 Page 5, lines 18-21 discuss the authors’ failure to reproduce Newnham et al.’s result that
relative greenness (RG) predicts DOC better than plain NDVI, noting the sensitivity on the time
range used to calculate RG. Newnham et al. examined the dependence on time range, but you
don’t cite their result or mention using it; you have not stated what time range you used. More
importantly, Newnham found that the simple per-pixel RG performed worse than NDVI, as you
have. Newnham only found that RG could improve on plain NDVI by using a version of RG that
normalised NDVI by a spread based on climate zone, rather than per-pixel. While you were right to
consider RG as a possible improved way of using NDVI to predict DOC, against which a VOD-
based method should be compared, to do this properly you would have to use Newnham’s
preferred variant of RG. However, Newnham et al. note that the improvement is small over plain
NDVI, so it may be enough just to quote Newnham'’s value for RMSE.

Author Response: We did not attempt to compare the spread based RG, but only range based (per
pixel) RG. In Newnham et al. (2011), while range based RG performance is not as good as
preferred spread based RG (r? = 0.62 and RMSE = 14.2 %), it is still better than plain NDVI (NDVI
had r?> = 0.50 and RMSE = 16.4 %, while 2.5 years range based has r? = 0.57 and RMSE = 15.1
%). Note that while we cannot exactly reproduce 10 years time range Newnham et al. (2011) used,
since our study time frame is 9 years, we tried various 2.5 years time ranges that overlapped with
Newnham et al. (2011) study period, but did not achieve the r> and RMSE as high as 0.57 and 15.1
%, respectively.

Changes in Manuscript: Cited Newnham et al. (2011) range based RG results and additional
explanation (as stated in the above Author Response) to section 3.1 (page 6, line 1-6).

A.4 Page 5, lines 25-27 states that your search for correlations between VOD anomalies and DOC
was unsuccessful. Also, page 6 line 35 to page 7 line 1 says the DOC versus VOD regression
indicates that VOD alone is not reliable enough to estimate DOC. These two statements both
suggest that VOD is a poor predictor of DOC, and in particular that VOD is poor at explaining the
residual DOC variation beyond that explained by NDVI. Related to this, it is surprising that
Equation 10 does not include a term linear in VOD but instead VOD appears only in the cross-term
(VOD)(NDVI).

Author Response: While it is true that VOD alone is a poor predictor of DOC, it is found that when
using stepwise fit to calibrate NDVI, VOD, and (VOD)(NDVI) terms with the selected DOC
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observation sites records, the addition of (VOD)(NDVI) term improves the calibration r2. The VOD
term does not appear as the related p-value does not meet the acceptance threshold. However, if
the linear NDVI term is excluded then a linear VOD term does contribute significantly to a model
with the (VOD)(NDVI) term (meeting the p-value threshold).

Changes in Manuscript: The second DOC-VOD-NDVI Model [Eqg. (11)] has been added to Table 1.
See all changes suggested by Referee Comment 1, RC1, A.1.

A.5 It is important to acknowledge that a regression of DOC against NDVI together with any other
predictor variables must mathematically give at least as good a fit as does a regression against
NDVI alone. The question then becomes how well the new predictors explain the residual after the
NDVI regression. From Table 1 it appears that the ratio of MODIS band 7 to band 6 (used in
Method B) explains the residual better than does VOD (“Evaluation” line in Table 1). The different
evaluation datasets (23 sites for the VOD method, 37 sites for Method B) make the comparison of
the statistics that the authors compare for the two methods more uncertain.

Author Response: Method B does have better evaluation performance than the proposed model.
Note that both Method B and MapVic are evaluated with the same 23 sites as our proposed model,
as stated in section 3.2 (page 7, line 1-2). It should be noted that Method B used all sites in its
calibration, so it is not being evaluated against any independent data, while MapVic is always
being evaluated against independent data, regardless of evaluation methods as stated on page 8,
lines 12-16

Changes in Manuscript: No changes needed.

A.6 Page 6, line 35 says Table 1 includes the DOC versus VOD regression results but in fact it
does not. It would be instructive to see a scatter plot of DOC against VOD, or of the residual DOC
unexplained by the NDVI prediction against VOD.

Author Response: Removed left over reference to Table 1 in page 7, line 26. Thank you for
pointing this out. Scatter plot for calibration of DOC against VOD, NDVI, and (VOD)(NDVI) terms is
as shown in Fig. RC2-1. Another scatter plot for residual DOC unexplained by NDVI (differences
between observed DOC and NDVI-based DOC) against VOD and (VOD)(NDVI) terms is as shown
in Fig. RC2-2.
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Changes in Manuscript: Changed the following sentence from “Using the linear model, as
described by Eq. (3), Table 1 summarises the curing and VOD correlation result with a significant
relationship and an r? of 0.20 with RMSE of 20.80 %” to “Using the linear model, as described by
Eg. (3), the DOC and VOD correlation result has a significant relationship and an r? of 0.20 with
RMSE of 20.80 %” (page 7, line 25-26). The scatter plots in Fig. RC2-1 and Fig. RC2-2 are also
added to section 4.1 (page 7, line 26-28) as Fig. 3 and Fig. 4 (original figures from Fig. 3 onward
will be shifted to Fig. 5 and so on).

A.7 DOC as a function of VOD alone could be a useful alternative to optical indices in situations of
prolonged cloud such as northern Australia during the monsoon. The two approaches could even
be used together if they could be harmonised to be practically interchangeable, but this needs
much more work.

Author Response: While we initially planned on predicting DOC as a function of VOD alone, we
found that VOD (and its modified forms, such as VOD anomalies and seasonal based VOD) are
not robust enough to be used as a lone DOC predictor.

Changes in Manuscript: No changes needed.

A.8 Page 7, lines 20-35 analyse the spatial and temporal variation of DOC. It is not clear that this
says anything new or that the quantitative measures of variability are useful. It is well known that
DOC varies spatially and temporally, including having interannual variations. The spatial patterns
and standard deviations of these are not obviously useful. What is critical is the uncertainty of
estimates at any particular location and date. In any case, it is dubious to calculate these variations
over the entire continent which includes non-grassland regions (e.g. forest, heath) and substantial
arid or semi-arid regions for which remotely sensed characterisation of the sparse (or absent)
vegetation is challenging.

Author Response: The temporal and spatial variability provides an indication of areas that are
likely to be more or less difficult to predict, as well as a measure to compare prediction errors to.
That is, if the variability is larger than the prediction error then the prediction is likely to be useful
and vice versa. Also, we are not aware of any peer reviewed literature that provides this
information. Forest areas are now excluded from the analysis and Fig. 4 in the original manuscript
has been replaced with Fig. RC1-1 (as shown in Referee Comments 1). The continental mean
spatial DOC standard deviation is updated from 21.70 % to 20.39 % (page 8, line 31). Additional
spatial variability information is added as suggested in Referee Comments 1 (RC1, A.2); see Table
RC1-2 in RC1 document for more information.

Changes in Manuscript: Added the information stated in the author response of RC1, A.2 and
Table RC1-2 to the results in section 4.1 (page 8, line 28-36). Fig. 4 in the original manuscript will
be replaced with Fig. RC1-1.
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A.9 The paper would be improved by including discussion of the drawbacks of VOD. For instance,
noting the magnitude of VOD errors resulting from imperfect separation of the VOD, soil surface
and soil moisture contributions to the microwave radiometer signal. Also, citing any validation of
the VOD dataset over Australia. A spatial resolution of 0.1 degree (~ 10 km) is fine enough for
regional DOC assessments in extensive grasslands but not quite fine enough for some purposes
such as input to fire behaviour models or operational GFDI calculations (currently on a 3 km or 6
km grid depending on state), or in landscapes where grassland is fragmented on small scales. You
have mentioned the drawback that VOD cannot be estimated near the coast where much
grassland is located.

Author Response: The following changes in manuscript limitation section will be added as
suggested. The validation of VOD over Australia is already cited in Liu et al. (2013b, 2015) (page
2, line 40). While their work focused on the global scale, they also covered Australia.

Changes in Manuscript: Updated section 2.1 (page 3, line 19-26) with the following statements:
“The VOD dataset used here is derived using the LPRM approach from which soil moisture
and VOD are retrieved simultaneously. Several assumptions are made in the LPRM approach,
including: canopy surface temperature equal to soil surface temperature, a constant single
scattering albedo, same vegetation parameters for both Horizontal and Vertical polarizations,
and minimal effect of surface roughness (Meesters et al., 2005; Owe et al., 2001).
Uncertainties in soil moisture and VOD retrievals are expected with these assumptions. The
evaluation of LPRM soil moisture over Australia showed that the temporal patterns of satellite-
based and in situ soil moisture agree very well (Draper et al. 2009; Gevaert et al. 2016). This
agreement suggests a reasonable separation of temporal patterns of soil moisture and VOD,
while uncertainties may exist in the absolute magnitudes of these two variables.”

Then, added the following paragraph to the beginning of section 5.3 (page 11, line 2-7): “It is worth
noting here that in an operational setting atmospheric interference by clouds or smoke will cause
gaps in the optical and near-infrared (NDVI) data, though the VOD data remains unaffected. We
also note that while the VOD data use here was derived from the AMSR-E sensor, which is no
longer operational, VOD data derived from currently operating passive microwave sensors, such
as Advance Microwave Scanning Radiometer 2 (AMSR2), could be used in an operational setting.
It should also be noted that VODs moderately coarse resolution of 0.1° may not be fine enough for
use in many applications.”

Draper, C. S., Walker, J. P., Steinle, P. J., de Jeu, R. A. M. and Holmes, T. R. H.: An evaluation of
AMSR-E derived soil moisture over Australia, Remote Sensing of Environment, 113(4), 703-710,
doi:10.1016/j.rse.2008.11.011, 2009.

Gevaert, A. |., Parinussa, R. M., Renzullo, L. J., van Dijk, A. I. J. M. and de Jeu, R. A. M.: Spatio-
temporal evaluation of resolution enhancement for passive microwave soil moisture and vegetation
optical depth, International Journal of Applied Earth Observation and Geoinformation, 45, 235-244,
doi:10.1016/j.jag.2015.08.006, 2016.
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A.10 | now turn to the analysis of GFDI with different input DOC. The conclusion that can be drawn
from Figure 8 is no more than that a realistic dynamic DOC better predicts fire risk than one fixed
at 100%. An NDVI-only DOC might do as well or better. It would have been more useful for you to
demonstrate that GFDI is better calculated from DOC based on NDVI and VOD rather than DOC
based on NDVI alone, but you have not attempted that.

Author Response: While this is true, the point of Fig. 8 (currently Fig. 10) is to demonstrate that
GFDI with dynamic DOC can reduce overestimation in GFDI with 100 % constant DOC. The
comparison between the proposed model, Method B, and MapVic models for predicting DOC and
computing recalculated GFDI (with dynamic DOC) is as stated in section 4.2 (page 9, line 35-42;
page 10, line 1-7) by using burned area map.

Changes in Manuscript: No changes needed.

A.11 Page 9, lines 20-21 notes that “the recalculated GFDI places the largest percentage of
unburned pixels in the low—moderate GFDI severity class”. | think that this improvement in the
distribution is inevitable no matter how good or bad the DOC estimate, simply because now some
fraction of pixels has DOC < 100% and so GFDI is lower for those pixels. There is no comparison
for DOC estimates (< 100%) with and without VOD.

Author Response: The purpose of that specific line and Fig. 9 (currently Fig. 11) are to illustrate the
different between reference GFDI (with 100% DOC) and recalculated GFDI (with dynamic DOC).
The comparison between the proposed model (with VOD), Method B (without VOD), and MapVic
models (without VOD) for predicting DOC and computing recalculated GFDI (with dynamic DOC) is
as stated in section 4.2 (page 9, line 35-42; page 10, line 1-7) by using burned area map.

Changes in Manuscript: No changes needed.

A.12 The analysis of GFDI has serious problems, which are acknowledged in Section 5.3 (e.g.
forests and prescribed burns are included), that make the conclusions doubtful. Also, GFDI should
be calculated from simultaneous meteorological parameters. The maximum wind speed (page 4,
line 42) is often at a very different time of day and with a very different value from the 3 pm wind
speed.

Author Response: Daily GFDI is calculated using the daily maximum wind speed (while daily
relative humidity is from 3pm). While it is true that prescribed burns are included in the burned area
map, we implement changes as suggested in Referee Comment 1, RC1, A.3 to minimise
prescribed burns and low intensity fires. We acknowledge these problems in the section 5.3 (page
11, line 8-11).
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Changes in Manuscript: Updates on burned area analysis as suggested in RC1, A3.

A.13 In light of my previous three comments, | suggest omitting the analysis and discussion of the
effect of DOC on GFDI from the paper.

Author Response: While there are some acknowledged limitations in our analysis and discussion,
we feel that these elements are still important elements in the paper. That is to emphasis the
different between the GFDI computed with a constant 100% DOC and dynamic, satellite based
DOC whether VOD is included or not.

Changes in Manuscript: No changes needed apart from updates on burned area analysis
suggested in RC1, A3.

Specific Comments

B.1 Page 2, line 23: You correctly note that optical based remote sensing products, including
NDVI, are affected by aerosols but fail to mention that atmospheric correction can, if appropriate
aerosol data is available, mitigate that. However, it could well be that VOD sidesteps this issue by
being insensitive to aerosol.

Author Response: Thank you for pointing this out. The particular line will be updated with
information about atmospheric correction on optical based remote sensing product.

Changes in Manuscript: Added the following line to the end of page 2, line 25-26: “However, if
appropriately detailed aerosol data is available, atmospheric correction can mitigate the aerosol
effect on NDVI.”

B.2 Page 3, line 24: Nijs et al. (2015) is not in the reference list.

Author Response: Thank you for pointing this out; missing citation will be added.

Changes in Manuscript: Add the following citation to the reference list:

Nijs, A. H. A. de, Parinussa, R. M., Jeu, R. A. M. de, Schellekens, J. and Holmes, T. R. H.: A
methodology to determine radio-frequency interference in AMSR2 observations, IEEE
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Transactions on Geoscience and Remote Sensing, 53(9), 5148-5159,
doi:10.1109/TGRS.2015.2417653, 2015.

B.3 Page 4, line 10: Give the RMSE too, as well as the bias.

Author Response: The levy rod method DOC has RMSE of 13.5 % with a bias less than 1 %
(Newnham et al., 2011).

Changes in Manuscript: Added RMSE of 13.5 % to page 4, line 24.

B.4 Page 6, line 1: There is more than one version of DOC products available, from different
sources each related to the Bureau of Meteorology. State exactly how/where the data were
obtained, e.g. URL of website or server.

Author Response: The product page can be found via the following link:
http://data.auscover.org.au/xwiki/bin/view/Product+pages/Grassland+Curing+MODIS+BoM

DOC datasets are downloaded from the following catalogue (Method B and MapVic):
http://opendap.bom.gov.au:8080/thredds/catalog/curing modis 500m 8-
day/aust/netcdf/catalog.html

Changes in Manuscript: Added the above links to Data Availability section (page 11, line 34-37).

B.5 Page 8, lines 1-2: This should also state that higher GFDI also indicates higher ignition
probability (a separate factor from rate of spread of an already ignited fire).

Author Response: Thank you for pointing this out.

Changes in Manuscript: Add the following sentence at the end of page 9, line 10: “Though the
higher GFDI does indicate higher probability of fire ignition.”

B.6 Page 9, line 20: AVHRR data can be obtained at 1 km (~0.05°) resolution (Local Area
Coverage (LAC) or High Resolution Picture Transmission (HRPT) formats).
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http://opendap.bom.gov.au:8080/thredds/catalog/curing_modis_500m_8-day/aust/netcdf/catalog.html
http://opendap.bom.gov.au:8080/thredds/catalog/curing_modis_500m_8-day/aust/netcdf/catalog.html

Author Response: Thank you for pointing this out.

Changes in Manuscript: Removed the following statement from page 10, line 29: “...the advantage
of high resolution offered by MODIS (0.05° for AVHRR, but 0.005° for MODIS), or...”

B.7 Page 10, line 19 and Page 11, line 4: As well as NCI, it is important to acknowledge the
CSIRO who produced the NCI datasets by mosaicing and regridding the tiled data provided by
NASA.

Author Response: Thank you for pointing this out.

Changes in Manuscript: Added acknowledgement to CSIRO in page 11, line 31 and page 12, line
17.

B.8 Page 11, line 7: Also acknowledge the Bureau of Meteorology, who continue to generate and
distribute the data products set up by the AWAP project.

Author Response: Thank you for pointing this out.

Changes in Manuscript: Added acknowledgement to the Bureau of Meteorology in page 12, line
18-19.

B.9 Page 13, line 28: Fix spelling of “Reflectances”.

Author Response: Thank you for pointing this out.

Changes in Manuscript: Fix the spelling as pointed out in page 15, line 12.

B.10 Page 24, lines 18-20: Write the band wavelength ranges as, for example, “620 to 670 um”.
The wavelength unit is um, which equals 10°-6 m, not m"-6.

Author Response: Thank you for pointing this out.
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Changes in Manuscript: Correct m® to um (page 27, line 20-22).
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Abstract. Wildfire can become a catastrophic natural hazesgecially during dry summer seasons in Austr8ieerity is
influenced by various meteorological, geographieall fuel characteristics. Modified Mark 4 McArtluGrassland Fire
Danger Index (GFDI) is a commonly used approactietermine the fire danger level in grassland edesys. The degree
of curing (DOC, i.e. proportion of dead materiaf) the grass is one key ingredient in determiningftteedanger. It is
difficult to collect accurate DOC information ingttield, thereforeground observed measurements are rather limitetiidn

study, we explore the possibility of whether additfie-satellite observed data responding to vegetatiotenweontent

(Vegetation Optical Depth, VOD) will improve DOCaegtiction when compared with the existing sateliiteserved data

responding to vegetation greenness (Normalisedei@iffce Vegetation Index, NDVI) based DOC predictioodes. we

atidfirst,—a statistically
significant relationshipis-areestablished between selected ground observed D@Gaialliteobserved vegetation datasets
(NDVI and VOD) with an T ef-up t00.67. DOC levels estimated using satellite obs@natverethen evaluated usinfield
measurements with af of 0.44 t00.55. Results suggest thattelite VOD based DOC estimation can reasonaielyroduce

ground basedobservations in space and timed is comparable to the existing NDVI based DGGn®tion models

rrere-balonesd norormance

Copyright statement

The article is distributed under the Creative Comsattribution 3.0 License. Unless otherwise statsdociated published

material is distributed under the same licence.

1. Introduction

Wildfire can be responsible for major environmertamage or changes to ecosystems (Cobb et al.; BxA&ard et al.,
2016; Mistry et al., 2016). One of the importantngmnents in determining the severity of wildfirefigel availability.
Wildland fuels can vary considerably, both spaiahd temporally (Stambaugh et al., 2011). Varimterpretations and
characterisations of fuel have been made in pasliest as a key contribution to assessing wildfioeeptial (Hudec and
Peterson, 2012; Jurdao et al., 2012; Sharples.,e2@G09b; Stambaugh et al., 2011; Yebra et al. 3R0Buel can also be
quantified by its age or time since last fire (Bstadk et al., 2010).

In this study, we focus on the availability of camstible fuel in theaboveground biomass in grassland ecosystems;uiblis f
availability metric is referred to as the degree of curing (DO®Ee DOC is thepercentage of deaahaterial in a grassland
fuel bed; 100 % indicates a fully cured (dead) glasd fuel complex. The DOC has a direct influence wildfire

development in grasslands, hence, it is an impbitggut for fire danger indices and fire spread eled such as the
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McArthur Grassland Fire Danger Index (GFDI) (Gillad., 2010) and the CSIRO grassland fire spreadan(Cruz et al.,
2015; Kidnie et al., 2015). Generally, fires arebie to spread across grasslands that are les&@#ncured (Anderson et
al., 2011). Though this lower limit has been redisgince a more recent study demonstrated thatdinespread in grassland
with DOC as low as 20 % (Cruz et al., 2015). Imeltological studies, DOC is often assumed to be%Q®itman et al.,
2007). This leads to an overestimation of areaemspcing high levels of fire danger and hence jples only a weak
indication of where to focus resources of fire ages An accurate, spatially and temporally expliestimate of DOC
would provide more useful guidance to these agencie

Measuring DOC in the field is a tedious and expensask, especially when an accurate assessmentiafy is required.
Anderson et al. (2011) suggested that current ndatlior measurind>OC still present problems. The visual assessment
method, which relies on field observers to estintagegeneral curing value based on their expedigka visual guide, is
subjective and can often be unrepresentative of DDEhe entire area. Destructive sampling approsaten provide
accurate fieldoased observation, but is a labour intensive tabks, Anderson et al. (2011) offered a simple fie&bed
method utilising a levy rod, based on the modiffEdnt quadrant method of pasture assessment; th@agh involves
counting the number of live and dead touches dmirasteel rod that was driven into the ground. disveuggested that this
approach can be applied across Australia with miglceuracy than current visual assessment metfdderson et al.,
2011).

Apart from ground measurement, DOC can be estimagety satellite remotely-sensed data, but inBtéd by the satellite
sensors’ capability, e.g. spatial resolution andiows atmospheric interferences. Dilley et al. @0@stablished a
relationship between curing and Normalised DiffeeeWegetation Index (NDVI, a proxy of vegetatiomopy greenness)
by estimating live fuel moisture content from ND¥hd relatingit to curing via an exponential function using ait
difference Levenberg—Marquardt method (Dilley et 2004; Rouse et al., 1973). Newnham et(2011) showed that
estimation of curing using eelative greenness (RG) approach that was bas&Daf distribution provided more accurate
estimation of curing than a direct linear regressietween curing and NDVI. (Chladil and Nunez, 198S5ed curing
derived from a soil dryness index model and NDVIpmdict soil and fuel moisture content. Variooptical based
vegetation indices computed from remote sensinigateince products can also be developed into ditateased model
integrated with ground observations to predictrogiiMartin et al., 2015; Turner et al., 2011). Thesethods, though vastly
different in their approaches, achieved good redolt their set objectives, but they tend to foonsparticular applications.
It should also be noted that optical based remarsiag products, including NDVI, are affected byutl cover and aerosols.
Some studiegxplicitly acknowledge challenges presented by @leffects and when there are both forest and viateies
in the same NDVI pixel, which results in an errongegrassland interpretation (Allan et al., 2003ta@ih and Nunez, 1995).

However, if appropriately detailed aerosol datavigilable, atmospheric correction can mitigateabesol effect on NDVI.

Currently, there are satellite based DOC produets dustralia provided by Bureau of Meteorology€Tproducts have 500
m spatial resolution and 8 day temporal resolutéord are based on two past studies (Martin e2@15; Newnham et al.,
2010). There are five separate satellite based D@@Gels; four are from Newnham et al. (2010) and isrfeom Martin et
al. (2015). All satellite based DOC models herelmsed on optical and near-infrared wavelength ©aké would like to

investigate whether including a recent passive owmave based satellite product can improve the D®i@nation over

Australia_or notW
satellite productinto-our-analysis.

A passive microwavdased remote sensing vegetation product, refeaed tVegetation Optical Depth (VOD), has been

developed recently (Meesters et al., 2005). VOprisarily sensitive to vegetation water contentluding both leafy and
woody component§Guglielmetti et al., 2007; Jackson and Schmug8811Kerr and Njoku, 1990). Unlike the traditional
optical based vegetation indices, such as NDVI, VOD is mally influenced by the atmospheric conditions daets

longer wavelength and stronger penetration capddiges et al., 2009). However, it has a coarsdraspasolution (0.1°)
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in comparison with opticabased products, which is a consequence of the h@rgg microwave emissions from the Earth’s
surface. It has been demonstrated that VOD canujtie changes in vegetation water content ovéesreit land cover
types at the global scale, including grasslandplaral, savannas, tropical forests, and boreal t®fésu et al., 2013a,
2013b, 2015). Also, NDVI and VOD provide complen@gtinformation and can comprehensively characeragetation
dynamics when combined (Andela et al., 2013).

There are two objectives of this study. The fisstto explore the possibility of whether adding the VOi@sponding to

vegetation water content) will improve DOC predictiwhen compared with existing NDVI (respondingviegetation

greenness) based DOC prediction modelimprovethimate of DOC-in—grasslands—by-integrating—NDVedetatio

greenness)-and-VODb-(vegetation-watercontélitie second is to implement theproved satellite basddOC estimation

(both our and existing modeli#jto GFDI to investigate whether better fire séygpredictions can be achieved in grassland

environments.

2. Materials
2.1 Satellite based Products

The NDVI dataset used here is derived from the Mat@eResolution Imaging Spectroradiometer (MODIS)a§ surface
reflectance product (MODOQ9A1) on-board the Terreliige (Vermote and Vermeulen, 1999). The MODO09#&®bduct used
here for computing NDVI is an 8ay product, which has less noise than the dadgyset, and its spatial resolution is 0.005°
(~500 m). This product is obtained from Remote 8wnat National Computational Infrastructure (NGHODIS Land
Product for Australia websitéPaget and King, 2008). It is produced from origitiees provide by the United States
Geological Survey (USGS) for Australia with a stagtdate from February 18th, 2000.

The 8day NDVI data is derived from the MODIS reflectamtzgtaset using the following Eq. (1):

NDVI = £2=f2 (1)

p2+p1
where p, and p, are spectral reflectance measurements obtained ffe visible (red) and near-infrared regions,
respectivelyDuring the conversion, to ensure the quality obdanly pixels with ideal quality in all bands aamdiew angle
zenith of less than 60° were kept for the analymissuggested by Newnham et al. (2011). The spa8alution is kept at
0.005°.
The VOD dataset used here is retrieved from theafided Microwave Scanning Radiometer — Earth Ohsgr8ystem

(AMSR-E) and derived using the-using-tband Parameter Retrieval Model (LPRBH)proach from which soil moisture and
VOD are retrieved simultaneous(iMeesters et al., 2005; Owe et al., 200¢veral assumptions are made in the LPRM

approach, including: canopy surface temperatur@legusoil surface temperature, a constant sinci¢tering albedo, same

vegetation parameters for both Horizontal and eftpolarizations, and minimal effect of surfacegbness (Meesters et

al., 2005; Owe et al., 2001). Uncertainties in sodisture and VOD retrievals are expected with éh@ssumptions. The

evaluation of LPRM soil moisture over Australia sl that the temporal patterns of satellite-based ia situ soil

moisture agree very well (Draper et al., 2009; @evet al., 2016). This agreement suggests a rabpiseparation of

temporal patterns of soil moisture and VOD, whiheertainties may exist in the absolute magnitudésese two variables.

#-VOD has a spatial resolution of 0.1° (~10 km) and yeddily temporal resolution (Parinussa et al., 90The time
period covered by AMSR-E is from 2 June 2002 tocBoDer 2011, buive used a Year range from 4 July 2002 to 26 June
2011 in our analysis by excluding the beginning tr@lend of the AMSR-E records. The same time desalso used for
the MODO09A1 NDVI dataset.

VOD data, which has a near daily temporal resahytie converted to an 8ay average product to reduce noise and ensure
complete coverage over Australia (10° S to 45° & Bh0° E to 160° E) per temporal interval. The grédls with radio

frequency interference (RFI) are excluded from amalysis. RFI is caused by man-made transmitteid) as radars and
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wireless communications. These transmitters canoperated in the same frequency range as passiveowaice
observation, including VOD. Thus, natural signaptared by passive microwave observations are sm@icontaminated
with RFI(Nijs et al., 2015)}(Nijs-et-al—=2015)

An example comparison time series of VOD and NDMhf July 2002 to June 2011 at one of the obsen@q Bites,
Silent Grove, WA (17.131° S, 125.374° E) can bensieeFig. 1. It is shown that both VOD and NDVI feaa similar
seasonal cycle. Vegetation types that are presigminvthe VOD (0.1°) and NDVI (0.005°) pixel inflmee the differences in
VOD and NDVI behaviour. The difference between V@ NDVI spatial resolution can be clearly seethsmexample 2°
by 2° spatial maps around the Silent Grove areg (Bi We use both VOD and NDVI together to comhitmar strengths.
The global 0.05° land cover médgased on the MODIS MCD12C1 product is used forsifigimg the dominant land cover
type within each VOD pixel. The land cover clagsifion system is as proposed by the University afyiand (UMD
scheme) (Hansen et al., 2000). Figure 2 shows.0% (and cover type map of Australia, with obselrearing sites marked
with crosses. The land cover map used here is jiesn 2010.

A burned area produdtom MODIS is acquired for further evaluation okthecalculated GFDI from satellite based DOC
results. The monthly archived MODIS burned area meggrojected for Australia is obtained from Rem8&nsing at the
NCI site (Paget and King, 2008). There are two s#paVODIS burned area products: the MCD45A1 ardMICD64A1.
The MCD64A1 burned area product is preferred ov@IM5A1, since it was proven to be more accurated@mand van
der Werf, 2014; Padilla et al., 2015; Ruiz et 2014).Its spatial specification is exactly the same aM®ODIS reflectance
dataset, with temporal availability from August BO@nwards. To ensure high quality of the burneeisixonly pixels with
the valid data flag from the provided quality cafiile are included in the analysis. Over 99 %podfels from mid-2002 to

mid-2011 are classified as unburn&d.reduce the number of prescribed burned and @ilaepower anomalies detected by

the burned area product, a fire radiative powerRF&it: MW) from MODIS active fire product (MCD14M is used to

mask out low severity fires.

2.2 Ground Based Curing Observations

The observed grassland DOC data was provided byfBeisand Natural Hazards Cooperative Researchr€eantd its
partner agencies [Project reference: http://wwwhlitecrc.com/projects/ald/grassland-curing]. Theseolded data were
collected from several sites across Australia aeev Mealand, ranging from August 2005 to March 20@9jally during
summer (Fig. 2). Selected sites were intendedpresent broad coverage of major grassland type tat the number of
locations and samples taken were highly dependenhe availability of field observers from fire megement agencies;
data were collected with inconsistent interval ew data collection dates (Anderson et al., 20Ifijee types of data
collection approaches were used: visual estimati®ry rod method, and destructive sampling. Dugh® number and
availability of data as well as their accuracy,yoobserved DOC from the levy rod method was usetigstudy. Anderson
et al. (2011) and Newnham et al. (2011) statettimtevy rod measurement is reliable wRNSE of 13.5 % and a bias of
less than 1 %-less-than-1-% bietsen compared with destructive sampling.

To identify robust relationships between the shisesved and remotely sensed DOC, a number of riiezi@ must be met.

Sites meeting these criteria were used for calitmanf the VOD and NDVI satellitbasedDOC models, while all of the
valid records were used for evaluation. One magatdr in deciding the site selection is the land psoperties of the
observed DOC site. The 0.05° land cover type ma@@¥R2C1) is used for classifying the site locatiand cover (Hansen
et al. 2000). Since 0.1° VOD pixel is covered bpy22 0.05° land cover pixels, the correspondingy2ipixels of land

cover type for each observed curing site can beiead The land cover type and homogeneity of edaderved DOC site
can then be determined, where the site is considerdvave a homogeneous land cover only if all lemd cover pixels
corresponding to the VOD pixel are the same. Ire acdsa site with heterogeneous land cover typedtminant land cover

with the most pixels out of four will be considered the representative land cover. All observed Dsli€s can be
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categorised into the following land cover typesergwveen broadleaf forest, open shrubland, savamasdy savannas,
grasslands, croplands, and urban.

According to the land use information for each VDD pixel, sites identified as evergreen broadlkeaést pixels were
removed from the analysis. There are three ou7dfites situated in the evergreen broadleaf forgsich areDarnum, VIC
(mixed grassybarnumSimcocks WA (improved pasture)and Neerim SouthVIC (mixed grass)Even though actual
locations of all observed curing sites were in gyameas, the VOD signal is a mixture of grasskamdi forest when the sites

are surrounded by dense forests within the sanfepixél.

All sites were also examined to ensure a negatweekation between VOD and the situ DOC data. That is, since VOD is
a proxy for water content in above ground biomassoverall negative correlation between VOD andncuis expected. If
this is not the case, then there is likely somesmotictivity within the 0.1° pixel that disrupts ghbasic relationship; this

effect was found in three sites (Durran DufsW (native grassMonarq ACT (improved pastureand Parry Lagoons

WA (native grasg) The sites without the negative correlation with V@Bo had no correlation with NDVI suggesting

other land cover types where dominating the sighak

NBVA Thus, six out of 37 sites are excluded from thedyamis.

In addition, there are eight sites (UmbigongCT (native grass)Kilcunda VIC (improved pasture)Tooradin VIC
(improved pasturg)Tooradin North VIC (improved pasturg)Caldermeade Park/IC (improved pasture)Kaduna Park
VIC (improved pasture)Hobart Airport TAS (native grass)and JeronaQLD (native gras3)in which VOD data are not
available. Most of these are due to sites beingtlmt near the coast or a large body of water, witere/OD signal is

strongly influenced by the water itself. With themaining 23 out of 37 sites, several site seleatiiteria were applied for
the calibration phase. The criterion used heredmtain consistency in observation time seriesiregtsites to have at least
eight consecutive records, where records are cereicconsecutive when they are separated by no timamel5 days. Only
the consecutive series of records within the setesites are included in the analysis for the catibon phase. This ensures
that the derived model contains the temporal eiaiuof DOC within years. Only five out of 23 sitage retained for this
group, containing a total of 12@ut of 238 totaljobservationsThe selected sites are: Majura, ACT (improved ua$t
Tidbinbilla, ACT (mixed grass), Ballan, VIC (impred pasture), Murrayville 1, VIC (native grass), &tdrrayville 2, VIC
(improved pasture)Multiple linear regression models of VOD and NDWere then calibrated with the observed curing

from the final selected sites.

2.3 Meteorological Datasets

To further assess the usability of the satebi@sedcuring acquired from the VOD and NDVI model, #6&DI is computed.
Additional meteorological data needed for GFDI catagion are dry bulb or maximum temperature, 3 plative humidity,
maximum wind speed, and fuel load (Purton, 198R)céSfuel load is often set as a constant valu@.46 kgm? (Sharples
et al., 2009a), there are 3 remaining input dasaseeded. These gridded, meteorological datasetssally derived from
the network of ground observation stations acrasstralia. The range for these datasefsas 4 July 2002 to 26 June 2011
to exactly match with the VOD 9ear range. Both temperature and relative humidiyasets are acquired from the
Australian Water Availability Project (AWAP) (Jonet al., 2009). Note that relative humidity is e¢ed from vapour
pressure and temperature data. These AWAP datage¢sa 0.05° spatial and daily temporal resolutidth a coverage
region of 10° S to 44.5° S and 112° E to 156° B.rmaximum wind speed data, the reanalysis maximaity &ind speed
is computed from the ERA-Interim wind componentsasiat, acquired from the European Centre for MedRange
Weather Forecasts (ECMWF) (Dee et al.,, 2011). Teéanalysis wind components dataset is available afjiobat

approximately 0.8° spatial resolution at &dur interval.
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3. Methods
3.1 Developing VOD NDVI based dynamic DOC estimates

As indicated by past studies (Dilley et al., 20@4terson et al., 2008), NDVI has a significanttreteship with live fuel
moisture content and DOC. In addition, the NDVIadat has a spatial resolution of 0.005°. Thus,westigate whether
VOD adds any information to satellitasedDOC beyond that embodied in the NDVI through the aba multiple linear
regression model. In addition, a past study suggetstat a modified form of NDVI, referred to asatéle greenness (RG),
has stronger relationship with DOC than NDVI (Newamnhet al., 2011)One of the two alternative Newnham et al. (2011)

purposed is the range basR@, whichcan be computed by the following Eq. (2):

NDVI-NDVIpin
NDVImax—NDVIin

RG = ®)

where theNDVI,;, andNDVI,,., are the minimum and maximum NDVI value over a sipetitime rangeNote that we did

not attempt to compare the other purposed altatmathe spread based RG, but only range basedp{rel) RG. In

Newnham et al. (2011), while range based RG pedar® is not as good as preferred spread based ‘RG0(62 and

used, since our study time frame is 9 years, veal tviarious 2.5 years time ranges that overlappéd Méwnham et al.
(2011) study periodHowever, given the same observed DOC data and Niatédset, we were unable to reproduce a result

where the RG correlation with DOC is stronger th#DVI. Further analysis showed that the RG resukseawvery sensitive

to the selected time range for the computationh ghat results were inconsistent with relativelyadindifferences in the
selected range. Due to this, RG is not used inghidy and NDVI is used directly in forming a mplé linear regression
model to estimate satellitbasedcuring. Some experimentation revealed that the V&@bDmalies, computed from the
difference between VOD and average VOD over a §pddiemporal range, yields the best correlatiothdidOC, but only
if the VOD anomalies are computed from the rangéchiag the insitu DOC observation range for each specific Sitee
range selection for computing VOD anomalies canlige problematic, since it can heavily influenbe torrelation result,
and no pattern could be found for determining goregriate VOD range for any other locations outghi® observed DOC
sites. Thus, we focus our analysis on using thelates VOD value. The linear regression equationdaring and VOD
correlation can be expressed as Eq. (3):

C = x; +x,(VOD) 3)
wherex,; andx, are the intercept and slope of the relationship.

Utilising both VOD and NDVI datasets, the followingultiple linear regression equation for estimatb@C can be
expanded from Eq. (3) as Eq. (4):

C = X, + X, (VOD) + x5 (NDVI) + x,(VOD)(NDVI) (4
wherex; to x, are the intercept and coefficients of VOD, NDVIdathe product of VOD and NDVI (interaction term),
respectively. Using a stepwise regression, thékd final model with corresponding coefficiecés be determined. The
stepwise fit algorithm used here selects the dianit terms with the lowest p-valueshich is smaller than the entrance
tolerance, to be included in the model first. Neélg algorithm chooses the next most significamhtéhat is still less than
the entrance tolerance. This process is repeatéceither there are no remaining significant teronsll terms are included
in the final model (Draper and Smith, 1998). Aftiee final model is calibrated, we evaluate the D@@del with all valid
(23) observed DOC sites.

3.2 Comparing with existing DOC estimates

We acquire existing satellite based DOC productslave from Bureau of Meteorology and compare rtiperformance

with our model. There are five models availablejrfare based on Newnham et al. (2010) and onesisdban Martin et al.
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(2015) studies. We decided to test only one of Nemms models — the one with the best overall RMBEthod B), and
Martin’s model (MapVic). Both Method B and MapViciL models are as described in Eq. (5) and Eq.a&shown

below:

Ciethod 8 = 237.31 — 190.14(NDVI) — 142.66(2—2) (5)

Cwapvic = 113.80 — 88.41(NDVI) — 67.71(GVMI) (6)
where pg and p, are spectral reflectance band six and seven fro@DM reflectance dataset and GVMI is Global
Vegetation Monitoring Index (Martin et al., 2015eWnham et al., 2010). GVMI can be calculated by:

_ (p2+0.1)=(pe+0.02)
GVMI = (p2+0.1)+(pg+0.02) ™

wherep, andp, are spectral reflectance band two and six from NEi2flectance dataset (Ceccato et al., 2002).
To compare both Method B and MapVic model perforagawith our model, we evaluate them using the sabserved

DOC sitesand evaluation method#/e also computed recalculated GFDI with both MdtB and MapVic DOC and assess

their burned area prediction capability.

3.3 Comparing GFDI dynamics using different DOC esinates

Several revisions of GFDI were made past studies (Noble et al., 1980; Purton, 1982 G#DI revision used in this
paper is modified Mark 4 GFDI, since it is the glasd fire danger assessing system that is gepérilthg used by Bureau
of Meteorology (Sharples et al., 2009b). Originatlye fire danger rating system was presenteddincalar slide rule. A
mathematical equation representation of modifiedkMaGFDI was derived from the circular meter, aaah be expressed
as follows Eq. (8) (Purton, 1982):

GFDI = QY*%"f(C)exp(—1.523 + 0.0276 Ty — 0.2205,/Hypm, + 0.6422,/Vinay) o 8)
whereQ is the fuel load (kgn), Tnax iS the drybulb or daily maximum temperature (° @spm is the daily relative
humidity at 3 pm (%)V,.x is the daily maximum wind speed (Knt), andf(C) is the curing factor. The curing factor can
be calculated b¥q. (9):

£(C) = exp(—0.009432(100 — C)153¢) 9)
whereC is the grassland DOC (%).

The GFDI is computed on the basis of meteorologitalt data and either a constant DOC at 100 %atellte based
dynamic curing values. These different GFDI datasétng with the burned area data (MCD64A1) candesl to examine
the changes due to variable DOC spatially and teatlyo By pairing up burned and unburned pixelshvitteir associated
GFDI pixel, we can assess the number of burneduadirned pixels for each GFDI severity level. Usitigtogram and
receiver operating characteristic (ROC) analygis, difference between original GFDI with constai@® at 100 % and
recalculated GFDI with satelliteased dynamic DOC can be assessed (DelLong et38; Z&eig and Campbell 1993).

4, Results

4.1 Comparing VOD-NDVI based and existing DOC estimates

NDVI and combined VOD and NDVI terms are as showrfig. 3, while Fig. 4 shows the residual DOC uraxgd by
NDVI (differences between observed DOC and NDVIdthdDOC) against VOD and combined VOD and NDVI

terms-Using-the-linear-model—as-described-by By-Table ummarises-thecuringand-\/OD correlationresuth ai



10

15

20

25

30

35

40

However, at this level ofrVOD alone is not reliable enough to estimB@C, especially across Australia in general. The
study of Newnham et al. (2011) indicated that NDMéone can perform better at estimating DOC, with rarof
approximately 0.50 for a DOC and NDVI linear retaship. The combined explanatory power of NDVI andbD is
explored using a multlple linear regression analyas expressed by Eq. (&he-correlation-results,-along-with-included
e-Thefirst final model includeghe VOD and NDVI
interaction &,) and NDVI (x;) terms, and is as shown in Eq. (10). The calibratefor the-finalthismodel is0.67 with
RMSE of 13.40 %VOD was excluded as a predictor in the first fimaddel, as expressed in Eq. (10), because during th

stepwise regression, when the NDVI and (VOD)(ND¥Pms are included as the first and second preadictioe VOD term

does not contribute in improving the final modeekdiction (i.e. p-value exceeds the acceptance thheés preventing

overfitting). When NDVI term is excluded, (VOD)(NDWVterm is included first, followed by VOD term, agpressed in the
second final model, shown in Eq. (11). The secdnal inodel has a calibrated of 0.54 and RMSE of 15.95 %. Table 1
shows the correlation results for both models.
C,€ = 145.57 — 260.82(NDVI) + 137.19(VOD)(NDVI)

(10)
C, = 48.70 — 147.60(VOD) + 259.95(VOD)(NDVI) (1)
The DOC model is-are then evaluated with all (23) valid observeging DOCsitesand independent (18) observed DOC
sites (excludes 5 sites that were used in caldmmatihe evaluation results for the first model are alsown inTable Talse
shows-the—evaluationresuivhere the evaluated fs 0.55and 0.44with RMSE of 15.25 %and 16.76 % for all sites
evaluation and independent sites evaluation, réisedc—which—is—slightly—degraded—compared—to—thalibration
performaneeThe second model evaluations results hdvef 10.50 and 0.54, with RMSE of 15.95 % and 15.530%all

sites evaluation and independent sites evaluatiespectively. While the evaluations resulted inrddgtion in _model

performance over the calibration in most cases,itidependent evaluation of the second model hakghtlg better

evaluation performance—\W

These results can be compared to those obtained esisting remotely sensed DOC estimates whichale shown in
Table 1. The MapVic DOC has a lowérand higher RMSE, while the Method B DOC has a &ighand lower RMSE
when compared withoth ofour VODB-and-NBVi-based-DOCmodels in all sites evaluatibhis indicates that Method B has

the best evaluation among the three models, whadeWi is the worst, and our modalits in the middle between the two.

However, during an independent sites evaluatioth &b—eurmodelswith VOD have the worst performance (lowesand

RMSE). This result is not entirely surprising as all theservations used here were also used in the cdibraf Method B
(Newnham et al., 2010), a subset is used in thibratibn of our method, and MapVic was developeidgisan independent
visual estimates dataset. That is, there is nopiedéent data available for testing Method B, whit¢h our method and

MapVic are being tested against independent dtale our first and second models do not have @lwiadvantages over

one another, since the second model only perfortigmthan the first in independent sites evalmatiwe decided to pick

the first model as our representative model fothierr comparison with the existing models from fhignt, since the terms

in the first model were selected based on stepfitigegression with none of our interference (weentionally removed

NDVI term in the second model before applying ttepwise fit regression).

Using the relationship between VOD, NDVI, and obser DOCfrom the first model , as stated in Eq. (10)}{Tablewe

calculatedsatellite basedDOC for Australia.Figure 3-5 presents maps of satellittased DOC data averaged over the
summer periods (December, January, February, @3fhé years 2002-2003 and 2010-2011. From mid-20@#d-2011,
the overall average curing for the Australian sumpegiod is the highest during 2003 and the lowdesing 2011. Note that

the pixels that are classified as any forest tygresmasked out in white. Comparison time seriewédus satellite based and
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site observed DOC at Silent Grove, WA (same locasis shown in VOD and NDVI example comparison ig. B) is also
shown at the top of Fig4 as an example.
To determine the amount of spatial variation in D&xstoss Australia, we computed the standard dewiati all valid DOC

estimates across the continent within a single step.All areas that are indicated as forests by thd @over type map are

excluded from the analysi¥he spatial variation time series can then beeaofor the available time period of mid-2002 to
mid-2011, as shown in Figi6. Note that the continental mean spatial DOC stahdieviation is21.7020.39%. This

indicates that there is significant spatial vadigpiin DOC that persists across all years, andtaios a small seasonal
component. For a normally distributed variable, ®5o0f values would lie within two standard deviasprwhich is

+43.4040.78% in this caseFurther analysis on DOC spatial standard deviationas shown in Table 2. This includes

seasonal, monthly, and land cover type spatiabst@hdeviation of DOC. From both seasonal and nmypsihatial standard

deviation of DOC, it is shown that DOC has the ligthspatial variation during winter, which is esphy true for northern

Australia (Anderson et al., 2011).

In addition, based on time series of satelitssed curing dat#,ig. 5-7 reveals the spatial distribution of standard déwmest
calculated for each pixel. It shows that most &fstrong temporal variation occurs in the south, esig in the southeast
and southwest of Australia. Several areas in thdcamtinent that have unexpectedly high variatiom ldely due to rare
inundation events. The continental mean tempoealdgird variation is at 11.88 %. Together, Bigand Fig.5-7 show the

variability in DOC that will impact calculations éife danger indices.

4.2 Comparing GFDI dynamics using different DOC esinates

The spatial plot for maximum summer recalculatedGffom the DOC multiple linear regression modekmown in Fig.
68, where the top row (a) and (b) are the maps formser 2003 and summer 2010, respectively. The miagniégions for
example fire events in Weston Creek, ACT 2003 aoddjay, WA 2010 events can be seen in the bottam(cp and (d).
The fire locations are marked with a red crosshéite pixels are forest areas that were maskeathubie land cover map.
Overall, summer 2003 has 4.51 % more areas indicgeevere or higher GFDI than summer 2010. MCO6dukned area
map (Fig. 79), also suggested that summer 2003 had 91.45 % sewexe wildfire counts than summer 2010. It shdadd
noted that high GFDI values do not guarantee aafirthere is no accounting for ignition sourcethema higher GFDI value
indicates that if a grassland fire were to stawiauld spread faster compared to low GFDI valuesrgno fire suppression
activity. Though the higher GFDI does indicate higher prditafof fire ignition. Further complicating comparison of F&y.

8 and Fig.7-9is the presence of prescribed burns that are detitlg done during low to moderate GFDI conditioasd
that some fires shown in Fig.9 occur in forested areas where GFDI is not appliealikevertheless, they provide a picture
of the inter-annual spatial variability in both GFahd burned area.

The time series plots of recalculateédrDI at Weston Creek, ACT, and Toodyay, WA, for éx@mple 2003 and 2010 fire
events wereproduced,—andproduced amade shown in Fig81Q The black line represents the recalcula&®DI from
variable DOC, while the dashed, light green lindais original GFDI with constant DOC at 100 %. These locatiores ar
marked with red crosshair indicators on the spatiaps (Fig68). Note that the originaGFDI time series peaks every year,
whereas the recalculate@FDI with variable curing time series shows sudgeaks in the days near major fires. The
Weston Creek fire was part of the 2003 Canberr&firescomplex, where multiple fires merged and dapipropagated
from 18—22 January 2003, burning 1,600KiMcLeod, 2003). The weather conditions on 18 Jan@@03 were extreme
with temperature as high as 40° C and wind excee8linkm i. The Toodyay fire was much smaller in magnitudenmg
just over 30 krh on 29 December 2009. The Weston Creek area islymasinprised of forest with mixed land cover,
whereas the Toodyay area is mostly a mix betweaplands and savannas.

Using a burned area observation dataset from MQDISD64A1), we test the effectiveness of GFDI witlriable curing

in increasing the probability that fires will occir high GFDI severity levels compared to the piliy that fires will
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occur in low—moderate GFDI severity levelsw intensity fires, such as prescribed burned,raneoved from the burned

area observation by using the FRP provided in MO&xtve fire product (MCD14ML) to mask out burna@athat have
low FRP. We assume any burned area with FRP lowsar 100 MW to be unburned (associated with low—rreideGFDI
risk). At each burned and unburned daily data point, treesponding daily GFDI was calculated. The GFBkdgram in
Fig. 9-11shows the frequency of satellibmsed recalculated GFDIs and constaded (DOC = 100 %) reference GFDIs

over burned and unburned areas. FigirEl shows that the recalculated GFDI places the langestentage of unburned
pixels in the low—moderate GFDI severity classhwi#6-75% of all unburned pixels occurring in the low—maateror high
severity classes. Meanwhile the reference (DOC &%) GFDI places ~80 % of unburned pixels in thghhivery high,
severe and extreme classes.

We can evaluate the performance in correctly assigourned and unburned area for both recalculatetireferenc&FDI
by using the concept of ROC, as described eaf®sume that the MCD64A1 burned area map reprefeatsue condition
and that the GFDI severity level represents thelipted condition, where the prediction is positiveen GFDI level is
classified as high or abo¥er a burned area and low—moderate for an unbuanea Tabl&-3 shows the contingency table,
including both type | (unburned area with high tioee GFDI level; false positive) and type Il (budnarea with low—
moderate GFDI level) errors. Though recalcula®f€DI has a lower true positive rate of correctlgigsing burned area
than reference GFDI (@9-86vs 09588), it is much better at assigning unburned areeecty, i.e. lower false positive rate
(0.33-38vs 05253. Overall accuracy for recalculat&@FDI is higher than the referenG=DI (0.67 62vs 04847).

Both Method B and MapVic DOC are then used to campecalculated GFDI and compare with burned absmwation
dataset in the same manner as our DOC model. frerROC analysis in Tabk4 for Method B and MapVic recalculated
GFDI, we found that even though Method B has thet BEDC evaluation results (highe$t lowest RMSE) and highest
overall recalculated GFDI burned and unburned dietecaccuracy at 8584 it is the worst at detecting burned area
correctly with a true positive rate of onlyd@1Q This concurs with the findings in Newnham et (2010) who found
Method B to consistently under predict DOC, anddeeih produces fewer cases of high or above GFizérig. Our model

is in the middle ground between Method B and MapWiterms of overall accuracy.

5. Discussion

5.1 Evaluation of SatellitebasedDOC

Previous studies that derived satelliasedDOC have mostly relied solely on NDVI as a predictim the study by

Newnham et al. (2011) various forms of NDVI weredisincluding a straight NDVI linear regression aelhtive NDVI, as
shown in Eg. (2). Their results suggested thaheali regression model based on NDVI alone repratisite observations
with an £ of 0.50. The results presented here indicateitithision of VOD in the regression model yielss improvement

in-model-performance-with-an-increase-in-thr0-55a comparable performance withoff 0.44 to 0.55 (with independent

sites evaluation at the worst and all sites evalnaat the best performanceéjowever, when we compare the evaluation

results with the currently available satellite thB¥®OC from Bureau of Meteorology, the best perfariseéviethod B in both

r> and RMSHEor both evaluation methodlewnham et al., 2010). We note that this is nfgimcomparison as all the data

used to evaluate the models was used to calibrateed Method, regardless of our evaluation methoMapVic (Martin

et al. 2015), on the other hand, was developedyusina totallyindependent visual assessment dataset and hehe:g
evaluated against an independent datasebrdless of our evaluation methodtile-eur-medel-used-a-subset-ef the-data

or-calibration-ahd-therest-of the-dataprovidesnalependent-evaluation.Our models first modelgoers better in all sites
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evaluation (include subset of the data for calibrgtthan independent sites evaluation, as expeétediever, our second

model performs better in independent sites evalodtian all sites evaluation. Regardless, the dveeaformance is still

not obviously better than neither Method B or MapWiodels.While adding VOD to the DOC estimation model may

introduce a comparable alternative to the existiptical based models, there is still no clear athg of including VOD

over the current methods.

An earlier study for estimating DOC directly withDVI yielded even smaller RMSE of up to 6.3 %, bluatt particular
study is focused on data from only three differsités, within a limited study area of 1 krDilley et al., 2004). Older
studies that have used NDVI data derived from théddal Oceanic and Atmospheric Administration’sOQ/NA) Advanced

Very High Resolution Radiometer (AVHRR) have thensaproblem of interference from clouds and atmosptedfects,

but do not have

advantage that VOD is not affected by clouds oos@rinterference.

5.2 GFDI with Various DOC estimates

Though the overall recalculated GFDI from MethodBC is the best (overall accuracy from best to w@&<.85 for
Method B, 0.67 for our DOC model, 0.61 for MapVanid 0.48 for GFDI with 100 % constant DOC), we fodhat it is the
worst at detecting burned area correctly (truetpesrate from best to worst is 0.88 for GFDI witB0 % constant DOC,
0.74 for MapVic, 0.69 for our DOC model, and 0.@® Method B). Our VOD and NDVI based DOC modélst model)
has a good balance in having the second best éaluasult and overall recalculated GFDI accuraity a decent correct
burned area detection rate. We note that GFDI lig @mindicator for the level of fire risk, and doeot guarantee that a fire
will occur, even at an extreme danger level. Howgetlee improvement in accuracy indicates that isidn of time and
space varyinguring- DOCestimates makes it much more likely that areastifiiesh at a GFDI severity level of high or

above will burn than a low—moderate severity larela.

5.3 Limitations

It is worth noting here that in an operational ingttatmospheric interference by clouds or smoké egdlse gaps in the

optical and near-infrared (NDVI) data, though th®¥ data remains unaffected. We also note that vthdevOD data use

here was derived from the AMSR-E sensor, whichadslanger operational, VOD data derived from curiemperating

passive microwave sensors, such as Advance Microv@aanning Radiometer 2 (AMSR2), could be usechingerational

setting. It should also be noted that VOD modeyatelarse resolution of 0.1° may not be fine enofaghuse in many

applications.
Reducing the chance of incorrectly assigning undédrand burned areas correctly from the ROC anaiyside here is

purely based on using the burned area map as aasmline. However, the burned area map may indivee that are
deliberately lit in low—moderate conditions, suchpmescribed burns and fires that the GFDI is msighed for, such as a

fire that burns in forested region8rescribed burns and low intensity fires are h@awewminimised by applying low FRP

threshold, using information from active fire pratiiThe ROC analysis result here is only used to oete the idea that

using the reference GFDI with constant curing (¥0eads to overestimating GFDI in some situati@ms] might result in
misleading fire danger warnings.
The satellite based DOC produced here is also rab@erate spatial resolution, which is a limitatiohmany satellite

products. However, DOC in reality can vary overtgpacales much finer than the satellite footplass than 500 fin As

11
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such, our model should only be used as a guiddyfisamic, near daily assessment of grassland catingarse to moderate

spatial scales. This is also true for other sagetlased DOC models, including Method B and MapWarels.

6. Conclusions

This study developed asiternativeapproachte-impreve-the-estimation-acedraey _offor estimating diegree-of-grassland
curinggrassland DO@sing a relationship between the observed DOCsatellite based VOD and NDVI. The satellite

baseddataset was evaluated against the observed DOCwdaizh resulted in aoed-fitcomparable performance with the

currently existing optical based DOC estimation eladDespite the relatively coarse spatial resolutéord temporal
coverage of VOD and NDVI datasets used in thissttite satellitebasedeuring DOCdataset produceiom our model
has the potential to contribute to the preparedoésise management agencies and improve fire shreadelling With a
comparablgand arguably more balanggzerformance in correctly detecting burned and umedi area through GFDI than
currently available satellite based DOC models. (Method B and MapVic), our model could provide appealing

alternative estimated DOC data for GFDI computatiand fire risk modelling.

Data availability

The following datasets and their associated sowicesntact points are as listed below:
« MODIS MOD09A1, MCD16C1MCD14ML, and MCD64A1 for NDVI computation, land cover typmp, active
fire_product,and burned area map for Australia are freely alwlldrom NASA via Remote Sensing at NCI
(mosaicing and_regridding by CSIRORttp://remote-sensing.nci.org.au/u39/public/hinddis/[pdaac-mosaics-

cmar/
* AMSR-E VOD dataset for Australia is available upequest by contacting Yi Liu: yi.liu@nuist.edu.cn
¢ Method B and MapVic DOC products information can be found at:

http://data.auscover.org.au/xwiki/bin/view/Prodysagies/Grassland+Curing+tMODIS+BoM and the dataseds a

downloaded from the following catalogue:

http://opendap.bom.gov.au:8080/thredds/catalogigurnodis_500m_8-day/aust/netcdf/catalog.html

¢ Observed DOC dataset via visual assessment, lelyyar@ destructive methods is available upon reduas the
following  Bushfire and Natural Hazards CooperativeResearch  Centre legacy  project:

http://www.bushfirecrc.com/projects/al4/grasslandrg

e Maximum daily observed gridded temperature and uapoessure dataset for Australia are freely akilgldrom

AWAP: http://www.bom.gov.au/jsp/awap/

* ERA-Interim maximum daily reanalysis gridded wirmh@ponents for Australia are freely available fro@NBNF:

http://www.ecmwf.int/en/research/climate-reanalieia-interim
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Figure 1: Example Vegetation Optical Depth (VOD) andNormalised Difference Vegetation Index (NDVI) timeseries (b) and
spatial maps, (c) for VOD and (d) for NDVI, at Sileit Grove, WA (17.131° S, 125.374° E). The star (*) dicate the location of the

time series on Australia map (a).
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Figure 4: Scatter plot of residual observed degreef curing (DOC) from five calibration sites that are unexplained by NDVI
against VOD and combined VOD and NDVI terms.
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Figure 57: Temporal standard deviation of estimated degreefauring (DOC) map from 4 July 2002 to 26 June 2011
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| Figure 68 Maximum estimated Grassland Fire Danger Index (GPI) for summer (December, January, February) of 202—2003
(a) and 2009—2010 (b). Both zoomed areas marked Wwited bounding boxes for (a) and (b) are shown ircj and (d), respectively.
The fires locations for Canberra fire (c) and Toodya fire (d) are marked with red crosshair. Forest aeas are masked out in white.
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| Figure 79 MCD64A1 burned area map (Ruiz et al., 2014) durig summer (December, January, February) 2002—2003 )@nd

2009—2010 (b) with forest areas masked out.
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| Figure 810 Grassland Fire Danger Index (GFDI) time series pit at Weston Creek, ACT, from July 2002 to June 201{a) and at
Toodyay, WA, from July 2002 to June 2011 (b) wheréhe vertical dash line indicates the date of firevent on 18 January 2003 for
Canberra fire and on 29 December 2009 for Toodyayrg. Solid black line is estimated GFDI time seriesomputed from estimated
degree of curing (DOC), whereas green dash line GFDI time series computed from constant DOC at 1006.
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| Figure 911: Grassland Fire Danger Index (GFDI) severity levehistograms at burned and unburned areas over Austlia during 4
July 2002 to 26 June 2011 where the dark and lightlue shaded bars are recalculated GFDI with satetié estimated variable
degree of curing (DOC), while the green and yellowhaded with diagonal hatch bars are reference GFDWwith constant DOC at
100 %.
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Table 2: Spatial standard deviation of estimated dege of curing (DOC) by season, month, and land cowéype from 4 July 2002*
to 26 June 2011.

DOC Spatial Standard Deviation ﬂ

Season  Spatial SD (%)

Autumn (MAM) 20.636

Winter (JJA)  22.895

Spring (SON) 18.861

~Month

January 19.050

Grasslands 19.105

/
~ Spatial SD (%) Land Cover Type Spatial SD (%) ,W !
Closed Shrubland41.484 |

Formatted: Font: (Default) Times
New Roman

Formatted: Font: (Default) Times
New Roman

Formatted: Font: (Default) Times
New Roman

New Roman, Not Bold

Formatted: Font: (Default) Times
New Roman, Not Bold

Formatted: Font: (Default) Times
New Roman, Not Bold

Formatted: Font: (Default) Times
New Roman

Formatted: Font: (Default) Times
New Roman, Not Bold

Formatted: Font: (Default) Times
New Roman

Formatted: Font: (Default) Times
New Roman

1
N
N
{Formatted Font: (Default) Times
il
bl
i
i
{
{

(U U W U | U, U\ W\ W, W

Formatted: Caption, Keep with next

New Roman

0

/ I

{Formatted: Font: (Default) Times
[ Formatted Table

Formatted: Font: (Default) Times
New Roman

Formatted:
New Roman

Font: (Default) Times

/ r r
,, ; Font: (Default) Times
)1\ New Roman

" /!, | Formatted:

New Roman

Font: (Default) Times
! »’ 'r !

i / /|| Formatted: Font: (Default) Times

////

i
il
[ Formatted:
i
i

| New Roman
/ Formatted: Font: (Default) Times
’ ' / New Roman

Formatted:
New Roman

Font: (Default) Times

Formatted:
New Roman

Font: (Default) Times

Formatted:
New Roman

Font: (Default) Times

Font: (Default) Times
New Roman

Formatted:
New Roman

Font: (Default) Times

Formatted:
New Roman

Font: (Default) Times

i
il
i
{ Formatted:
1
1

(U Y U U | W U\ U | W, U, U, U | U W | W




| une 21.779 Croplands =~ 20995 _ -~ -| Formatted: Font: (Default) Times
| N Jut 93.931 New Roman
: - = - Formatted: Font: (Default) Times
| A August- - 23634 — — - — - - - - - - o New Roman
777777777777777777777777777777777777777777777777777 " | Formatted: Font: (Default) Times
| ‘ Mgig? ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, : ~ \{ New Roman
\ ~
| A Oetober - 18305 -~ -~ - - - - - - ----------------- -\ ‘{Formatted:Font:(Default)Times
W\ | New Roman
| A Novemberl6325 - - - -~~~ — -~ -~~~ -~ - - -~ AR
\ \\ . | Formatted: Font: (Default) Times
A Decemberl? 276 - - — - - - - - - — - - - - - - ~ 4\ New Roman
e \\ \\\\ Formatted: Font: (Default) Times
) | Y [ New Roman
\\ ‘\\\ Formatted: Font: (Default) Times
\\ \ \\ New Roman
\
|\ | Formatted: Font: (Default) Times
\ \\ New Roman
\
\ | Formatted: Font: (Default) Times
\\ New Roman
Formatted: Font: (Default) Times
New Roman

(U U W U | W/ W\ U\ W, W

10

15

20

25

| Table 23: Referenced and recalculated Grassland Fire Dangeindex (GFDI) severity and burned—unburned area cotingency

table for satellite based degree of curing (DOC) di&ved from Vegetation Optical Depth (VOD) and Normdised Difference
Vegetation Index (NDVI). Reference GFDI is computedrom constant DOC at 100 %, while recalculated GFDis computed from
satellite based DOC.
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| Table 34: Recalculated Grassland Fire Danger Index (GFDI) everity and burned—unburned area contingency tabldor degree of
curing (DOC) computed with Method B (Newnham et al.,2010) and MapVic (Martin et al., 2015) model. Refence GFDI is

computed from constant DOC at 100 %, w

hile recalcalted GFDI is computed from satellite based DOC.

Method B-GFD! MapVic GFDE

MCD64A1 No—of Pixels

S e S Lo

311 131271221 2448 333457942
GED} above

i Low
Severity 3005 717643041 866 512701649
Meoderate
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Seote 08454 Ctiel
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GFDI above
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Accuracy 08407 05938
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Appendix A: List of VaraiblesVariables

C — degree of curing (%)

C, — estimated degree of curing using our first mostebwn in Eq. (10) (%)

C, — estimated degree of curing using our second msldewn in Eq. (11) (%)

Cumethod B — €Stimated degree of curing using Method B m{gl(Newnham et al., 2011)

Cmapvic — €stimated degree of curing using MapVic modg)l (Martin et al., 2015)

GVMI — global vegetation monitoring index (unitless)

f(C) - curing factor (unitless)

H;pm — daily relative humidity at 3 pm (%)

NDVI,,., — maximum NDVI value over a specific time rangedifor calculating relative greenness (unitless)
NDVI,,;, — minimum NDVI value over a specific time rangedsor calculating relative greenness (unitless)
Q — fuel load (kg rif)

RG - relative greenness (unitless)

Tmax — dry bulb or daily maximum temperature (° C)

Vimax — daily maximum wind speed (kmth

x, — coefficient in the linear regression equation

x, — coefficient in the linear regression equation

x5 — coefficient in the linear regression equation

x, — coefficient in the linear regression equation

p, — spectral reflectance measurements obtained6&frto 67Qumm° region (unitless)

p, — spectral reflectance measurements obtained 8etinto 876um#i° region (unitless)

pe — spectral reflectance measurements obtained 1628 to 16521m-#i°-region (unitless)
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Appendix B: List of Acronyms

AMSR-E (Advanced Microwave Scanning Radiometer —tiE@bserving System) — one of the sensors aboard
Aqua satellite; a passive microwave radiometrep stvating on 4 October 2011

AMSR2 (Advance Microwave Scanning Radiometer 2) e ohthe sensors aboard JAXA's GCOM-W1 satellite; a
passive microwave radiometre; currently operating

AVHRR (Advanced Very High Resolution Radiometera—+adiation detection that used for determiningudlo

cover and surface temperature

AWAP (Australian Water Availability Project) — aasé and trend of the terrestrial water balance todng project

in Australia

CSIRO (Commonwealth Scientific and Industrial ReskaOrganisation) — independent Australian Federal

Government's scientific research agency

DOC (Degree of Curing) — a percentage measureni@i@anl material in grassland fuel complex

ECMWF (European Centre for Medium—Range Weather lasteg— independent, intergovernmental organisation
producing global numerical weather forecasts

ERA-Interim — a global reanalysis climate datasainf1979 to present

LPRM (Land Parameter Retrieval Model) — a radiatir@nsfer model for solving surface soil moistured an
vegetation optical depth from microwave observation

Modified Mark 4 McArthur's Grassland Fire Danger éxd(GFDI) — fire danger index for grassland ecamyst

developed and used in Australia

¢ MCD12C1 - 2010 MODIS land cover type product (Unsiggrof Maryland scheme)

MCD14ML — MODIS fire radiative power product

MCD45A1 — daily MODIS burned area product

MCDG64A1 — daily MODIS burned area product

MODO09A1 — 8 day MODIS reflectance product on boardd eatellite

MODIS (Moderate Resolution Imaging Spectroradiometerkey instrument abroad Terra and Aqua satellites
acquiring data in 36 spectral bands

NDVI (Normalised Difference Vegetation Index) — igad based satellite product used as proxy for tagm
greenness

NCI (National Computational Infrastructure) — Awdia’'s highly integrated and high performance resea
computing environment

NOAA (National Oceanic and Atmospheric Administeaj — United States government agency working aly da
weather forecasts and climate monitoring

P-Value - the significant of the results in a stats hypothesis test where strong evidence agéestmull
hypothesis is indicates by low p-value

r? (R-Squared) — a statistical measurement of thenkess of the data to the fitted regression line

RFI (Radio Frequency Interference) — interferemcenicrowave based satellite product (VOD in thisejadue to
wireless transmission, causing erroneous valudimffected grid pixels

RMSE (Root Mean Square Error) — differences betwkewalues estimated by a model and the observads/a
USGS (United States Geological Survey) — the Uniftdtes government's scientific agency studying the
landscape, natural resources, and natural hazhthe bnited States

VOD (Vegetation Optical Depth) — microwave baseltite product used as proxy for vegetation maistu
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