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Abstract. In the field of Disaster Risk Reduction (DRR), there exists a proliferation of research into different ways to measure, 

represent, and ultimately quantify a population’s differential social vulnerability to  natural hazards. Empirical decisions such 

as the choice of source data, variable selection, and weighting methodology can lead to large differences in the classification 

and understanding of the ‘at risk’ population. This study demonstrates how three different quantitative methodologies (based 10 

on Cutter et al. (2003), Rygel et al. (2006), and Willis et al. (2010)) applied to the same England and Wales 2011 Census data 

variables in the geographical setting of the 2013/2014 floods of the Parrett river catchment, UK, lead to notable differences in 

vulnerability classification. Both the quantification of multivariate census data and resultant spatial patterns of vulnerability 

are shown to be highly sensitive to the weighting techniques employed in each method. The findings of such research highlight 

the complexity of quantifying social vulnerability to natural hazards as well as  the large uncertainty around communicating  15 

such findings to DRR practitioners.   

Introduction 

The impacts of a natural hazard event upon a population vary considerably depending upon the socioeconomic attributes of 

the people exposed to the hazard i.e. social vulnerability (Yoon 2012; Zakour & Gillespie 2013). Social vulnerability can be 

thought of as the degree to which a person is likely to be affected by a hazard, based upon their ability to prepare, cope, resist 20 

and recover from the hazard’s  impact (Twigg 2001; Cannon 1994). To support disaster risk reduction (DDR), it is important  

to quantify and spatially map a population’s social vulnerability to natural hazards so that mitigation and adaptation strate gies 

can target the most at risk populations (Rygel et al. 2006; Nelson et al. 2015; Yoon 2012).  

There is a general consensus in social science about some of the main factors influencing an individual’s social vulnerabilit y  

e.g. age, income, health, education level (Cutter 1996; Cutter et al. 2003; Adger et al. 2004; Wisner et al. 2004). Based on the 25 

concepts of political power, social capital, social networks and physical limitations, a distinction is made between the risk of 

natural perils and the antecedent conditions that may prevail and make some population groups more vulnerable than others. 

These notions were further outlined in the ‘Hazards -of-Place’ model by Cutter et al. (1996) to provide firstly, a conceptual 

understanding of how these influences interact, and then subsequently a quantitative methodology to identify and classify 

social vulnerability. This later technique became a trademarked methodology, known as the Social Vulnerability Index 30 

(SoVI®). However, there has been no agreement on a set of social vulnerability indicators for environmental hazards  to use 

within an index (Cutter et al. 2003; Yoon 2012). The data to include is constrained by the indicators relevance to the particular 

hazard(s) being assessed, and whether data are available and current (census data is often the primary data source). As a result, 

the number, and type of vulnerability indicators used within the construction of social vulnerability indices varies considerably 

depending on the type of analysis, and methods used (Nelson et al. 2015).  35 

Once the relevant vulnerability indicators have been selected to construct an index, they are combined into a single metric. 

However, Yoon (2012, p. 824) states that “there is still no consensus…on the quantitative methodology best suited to assess 

social vulnerability”. Within the literature, the predominant method used is a multivariate factorial method, in the form of 
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principal component analysis (PCA) using census data e.g. Rygel et al. (2006), Boruff et al. (2005), Cutter et al. (2003), Clark 

et al. (1998). Willis et al. (2010) use another method which utilised a commercial geodemographic (Experian Mosaic Italy) 40 

classification as the main data source, and Gini coefficients to weight the vulnerability variables.  

Yoon (2012) analysed the difference between a deductive and inductive approach when creating a vulnerability index, however 

there has been no further research into comparing different vulnerability methodologies . Therefore, there is limited information  

on whether all being equal, the different vulnerability methodologies classify the same people as highly vulnerable. The aim 

of this paper is to compare the social vulnerability indices produced when using three published methodologies: a method 45 

based on Cutter et al. (2003), a method using Pareto ranking based on Rygel et al. (2006), and a method with Gini coefficient  

weighting based on Willis et al. (2010). The area of the Parrett river catchment, in Somerset, UK, which was severely flooded 

in the winter of 2013/2014, will be used as a case study. If these approaches identify different populations as vulnerable, it 

raises a number of questions about how the ‘at risk’ population is defined. This paper will firstly, review the chosen 

vulnerability index methodologies, and describe the case study area. Secondly, the method used to compare the social 50 

vulnerability indices will be detailed. Finally, the results will be presented, and discussed. 

Quantitative approaches to measure social vulnerability 

Cutter et al. (2003), Rygel et al. (2006), and Willis et al. (2010) utilise PCA but with different intent and application. PCA is 

used to “reduce the dimensionality of a data set consisting of a large number of interrelated variables, while retaining as much 

as possible of the variation present in the data set” (Jolliffe, 2002, p. 1). PCA is a useful tool when creating composite 55 

vulnerability indices, as a number of vulnerability indicators are used, which are often correlated to various degrees. By using 

PCA, it is intended that factors or components that inherently capture social vulnerability are created. Whilst Willis et al. 

(2010) did not make explicit use of PCA extraction scores in their quantitative assessment of social vulnerability, multivariate 

analysis was used in the screening and assessment of variables, hence its inclusion in this comparison. 

Cutter et al. (2003) first used the SoVI approach to assess social vulnerability to a general environmental hazard using  1990 60 

US census data, whereby 42 initial variables were reduced to 11 components using factor analysis (see Table 1 for further 

information). On this basis, the 11 factors identified in PCA accounted for 76.4 % of the variance within the data. These 

components were subsequently used to derive an overall social vulnerability index score (SoVI). The principle underlying the 

methodology includes a binary assumption of the trend of specific vulnerability-related census variables. Variables included 

in the initial assessment were assumed to have a positive or negative cardinality in their relationship to vulnerability. For 65 

example, non-white ethnicity was considered to increase an individual’s social vulnerability on the basis of historical studies 

of disaster experience (Pulido 2000; Bolin 1993). Conversely, indicators relating to wealth are seen as negative factors, 

reducing the relative social vulnerability score. Following this process of initial variable selection, PCA is then undertaken to 

analyse the variables. The method used by Cutter et al. (2003) recommends the preservation of cardinality between vectors, 

hence, any variables not correlated with the principal components of vulnerability are recommended to be removed and any 70 

scores negatively correlated to vulnerability are inverted. Cutter et al. (2003) recommend a varimax orthogonal rotation is 

undertaken to reduce the loading on the first component, as well as provide more independence among factors. Extraction  

scores are then output for each factor in the data, and summed against the initial variables in an additive model to produce a 

composite SoVI score.  

Rygel et al. (2006) used a modified approach to the SoVI in their assessment of areas vulnerable to hurricane storm surge 75 

(Table 1). Following PCA and subsequent varimax rotation of the variables, it is proposed that Pareto ranking is applied to the 

PCA extraction scores (see Rygel et al. (2006) for a fuller explanation of the theory of Pareto ranking). The basis of applying 

a Pareto distribution across the vulnerability scores is to remove the requirement of individually weighted scores, and thus, 
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overcome concerns about systematic bias. Each component score is then ranked on the basis of a user defined interval (19 in 

the original method) and an overall ranking is determined. 80 

Table 1: Summary of the three social vulnerability methods applied within this paper. 

  Cutter et al. (2003) Rygel et al. (2006) Willis et al. (2010) 

Hazard General Environmental Hazards Hurricane Storm Surges Volcanic Eruption 

Study Area United States 
The Hampton Roads, 

Virginia, United States 

Mount Vesuvius, Naples, 

Italy 

Data Source 1990 United States Census 
2000 United States 

Census 
Experian Mosaic Italy  

Spatial Unit County Census Unit Census Unit 

Number of Indictors 42 57 7 

Indicator Format Percentages, Per Capita, Density Functions 
Percentages, Areal 

Densities 
Propensity index score 

PCA Factors 
11 – explained 76.4 % of variance (used 

Varimax rotation) 

3 – explained 50.83 % of 

variance (used Varimax 
orthogonal) 

Did not directly use PCA 

Vulnerability 

Dimensions 

Personal Wealth, Age, Density of the Built 

Environment, Single-Sector economic 

dependence, Housing stock and tenancy, 

Race (African American, Asian) Ethnicity 
(Hispanic, Native American, Occupation, 

Infrastructure dependence 

Poverty, Immigrants, Old 

Age/Disabilities 

Evacuation, Financial 

Recovery, Building 

vulnerability, Access to 
resources 

Method Used to 

Combine Indicators 
Addition of Extraction Scores 

Pareto Ranking of Factor 

Scores 

Addition and Averaging 

of Weighted (using Gini 

Coefficients) Index Score  

 

Willis et al. (2010) analysed Italian census areas around Mount Vesuvius using Mosaic Italy 2007 geodemographic index 

scores (Table 1). Instead of using PCA extraction scores, it was proposed that an additive model was applied, whereby social 

vulnerability variables were weighted according to their economic Gini coefficient  value to provide a composite score. The 85 

concept of this approach being that the Gini coefficient provides a precise measure of variable discrimination, and therefore 

an appropriate weighting tool to assign some vulnerability variables with higher loadings than others.  

The River Parrett Catchment  

For the purposes of comparing the alternative methodologies, it was decided that a relevant geographical setting be used to 

apply the vulnerability scores within a pertinent historic context. By doing so, it was proposed that meaningful assessment 90 

could be undertaken of the results within a realistic natural hazard setting. Given the low lying nature of the area and it’s 

prevalence to flood risk, the Parrett catchment, Somerset, UK was chosen as the case study area for this research (Figure 1).   

The UK experienced an unprecedented level of rainfall during the winter of 2013/2014, resulting in the flooding of 65 km2 of 

the Somerset Levels area of the River Parrett catchment area (Environment Agency 2015). Approximately 600 properties were 

flooded during this period, leaving a number of towns and villages cut off due to the high floodwaters. Flood waters persisted 95 

until March 2014 and the damage witnessed raised a national debate about the lack of dredging in the rivers throughout the 

Parrett catchment (Coghlan, 2014; Envionment Agency 2015;). This political pressure resulted in ministerial intervention and 

the subsequent production of ‘The Somerset Levels and Moors Flood Action Plan’, a 20-year scheme to mitigate future flood 

potential and increase the level of funding for flood management in the region (Somerset County Council 2014). Aside from 
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the flooding witnessed in 2013/2014, previous reports have estimated that 3,300 properties are potentially exposed to a 1% 100 

annual probability flood event within the catchment, with this possibly rising to over 6,600 properties in the future, due to the 

impacts of climate change (Environment Agency 2009). There is evidence that this rise is likely to occur as the flooding in 

England and Wales in 2013/2014 shown to have been linked to human-induced climate change (Schaller et al. 2016). 

Alongside the physical damage of the Somerset Levels flooding, there has been limited consideration of the social vulnerability  

of those communities affected. Within the River Parrett catchment area there are a range of socioeconomic profiles, and while  105 

many of the most deprived communities (those located in urbanised areas such as Yeovil, Taunton and Bridgewater) were not 

adversely impacted, flood risk potential remains high. In the wider context of flood risk management, England and Knox 

(2015, p, 7) show that in England “levels of planned expenditure in flood risk management to 2021 do not appear to align with 

areas of significant flood disadvantage, or with wider deprivation”, i.e. the social vulnerability of the population potentially 

impacted by flooding currently has no bearing on spending decisions. In this instance, vulnerability to flooding used by 110 

England and Knox (2015) was derived using a method based on Cutter el al. (2003) by Lindley et al. (2011). 

To help confine the research to the flood risk case study area, a GIS spatial extent, as seen in Figure 1, was delineated for the 

River Parrett catchment area and used as the bounding area to select the England and Wales Census Output Areas within the 

catchment. Similarly, a flood footprint relating to the 2013/2014 event was digitised as a GIS layer based on the maximu m 

extent identified by the Environment Agency (2014). This extent provided the basis of comparison results highlighted in Figure 115 

7 and Table 6. 

 

Figure 1: The location of the Parrett catchment, within the Somerset Levels area of south-west UK. The extent of the flooding flood 

in 2013/2014 is also shown. Backdrop mapping provided by OpenStreetMap. 

A standardised methodology to compare quantitative approaches  120 

The principle aim of this study was to devise a methodology that could allow the different quantitative social vulnerability  

methods (outlined earlier in this paper) to be compared in a consistent manner. For this purpose, it was necessary to devise a 

repeatable process, whereby only the weighting of the variables would be changed to recognise each different methodology.  
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Selection of vulnerability indicators 125 

Data for this study were taken from the 2011 Area Classification for Output Areas, a joint venture between the Office of 

National Statistics (ONS) and University College London (UCL) to help disseminate and inform researchers about the 2011 

Output Area Classification (OAC2011). The OAC2011 is a neighbourhood classification based on the most recent UK census, 

conducted in March 2011. This study has made use of the UK Output Area spatial boundaries (in ESRI shapefile format) as 

well as census variable data (at Output Area level) used to construct the OAC2011 neighbourhood classification available from 130 

http://geogale.github.io/2011OAC/.  

The England and Wales census data was used in this study which comprises  of 232,296 Output Areas (ONS 2011). It’s 

important to note that not all data collected from the census is used in the creation of the OAC2011. To devise the 

neighbourhood classification, a process of variable selection was used to help determine data inte r-dependencies, correlations, 

and other factors that may affect the clustering process (Vickers et al. 2005). Of the 59 census variables (including derived 135 

statistics) used to create the OAC2011, it was determined that only seven specific data variables wo uld be suitable for inclusion 

in the social vulnerability classification comparison (Table 2). 

Table 2: 2011 UK Census data variables used as the indicators to assess social vulnerability to flooding 

Census 

Code 
Indicator Description 

+/- Effect on Social 

Vulnerability 

Supporting  

Literature 

k001 Persons aged 0 to 4 Negative 
McMaster and Johnson 1987; 

Lew & Wetli 1996 

k005 Persons aged 65 to 89 Negative 
McMaster and Johnson 1987; 

Lew & Wetli 1996 

k007 Number of persons per hectare Negative 

Johnson and Ziegler 1986; 

Chakraborty et al. 2005; Dow 

and Cutter 2002 

k023 
Main language is not English and cannot 

speak English well or at all 
Negative 

Pulido 2000; Elliot and Pais 

2006 

k033 Households who are social renting Negative Burton et al. 1992 

k035 
Individuals day-to-day activities limited a 

lot or a little (Standardised Illness Ratio) 
Negative 

Morrow 1999; Dwyer et al. 

2004 

k045 
Persons aged between 16 and 74 who are 

unemployed 
Negative Burton et al. 1992 

 

There were two main reasons for the seven initial indicators shown in  Table 2. Firstly, as the focus of the study was to determine 140 

the difference that alternative weighting mechanisms may have on vulnerability scores, using fewer indicators made it easier 

to infer the influence of each methodology being reviewed. Secondly, not all census variables were eligible for inclusion in 

this study given that the focus was on determining factors that impact a neighbourhood’s social vulnerability during extreme 

flooding. Whilst not exhaustive, Table 2 also provides example studies of where age, ethnicity, and disability have been shown 

to impact social vulnerability to support the selection of indicators within this study. Table 3 shows the correlation between 145 

the selected vulnerability indictors, with ‘Persons aged 65 to 89’ and ‘Individuals day-to-day activities limited a lot or a little ’ 

(k005 and k035) showing the strongest relationship (0.687).  Table 3 demonstrates that none of the variables show particularly  

high degrees of correlation, and therefore none of the indicators were removed from the analysis on this basis. 
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Table 3: Correlation between input vulnerability indicators 150 

  k001 k005 k007 k023 k033 k035 

k005 -0.501      

k007 0.282 -0.62     

k023 0.644 -0.518 0.617    

k033 -0.225 -0.565 0.599 0.201   

k035 -0.044 0.687 -0.162 -0.133 -0.499  

k045 0.685 -0.364 0.591 0.586 -0.027 0.389 

Data standardisation 

The data from the England and Wales census are not in a standardised format or description. For example, age group data 

(K001 and K005) were initially provided as numerical counts within the Output Area. These values had to then be converted 

to a percentage with respect to the overall population recorded within a given Output Area. Alternatively, population density 

(K007) was recorded as a measure of people per hectare, and disability (K045) noted according to the standardised illness rat io 155 

(SIR). Whilst these data formats are relevant for their respective measures of a phenomenon, they would not have been suitable 

for multivariate analysis, correlation tests or weighting variables against one another. For this purpose, it was necessary to 

firstly standardise the data into a homogenous format. There are commonly two methods employed to standardise data, 

including Z-scores or Range standardisation (Wallace and Denham 1996). In this case, the Range standardisation method was 

applied as it was also used in the construction of the OAC2011, and was therefore determined to be the most relevant to this 160 

research (Vickers et al. 2006). The Range standardisation is shown in equation (1), whereby the standardised observation (𝑥𝑛) 

is calculated as a ratio from the maximum and minimum observations for a given variab le. This leads to all observation values 

being classified between 0-1.  

𝑥𝑛 =
𝑥− 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥− 𝑥𝑚𝑖𝑛
            (1) 

   165 

Exploratory Principal Component Analysis  

To help assess the cardinality of the data variables as well as their inter-dependency and variance, PCA was undertaken on the 

standardised census data. An initial PCA showed that three components accounted for 91% of the overall variance in the data, 

with the first component accounting for 48%. Further analysis of this  component showed that the variables population density 

(K007), non-English speaking (K023) and unemployment (K045) were highly correlated and had the largest component 170 

loadings. Conversely, the variables age 65-89 (K005) and Standardised Illness Ratio (K035) showed negative loadings  for the 

same component. This pattern of correlation among variables can be seen further in Figure 2 whereby the cardinality of vectors 

are positively aligned for K007, K023, K001, and K045. Conversely, K005 showed strong negative correlation with all 

variables apart from K035.  
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 175 

Figure 2: Left – correlation plots of the UK census variables. Right – biplot of the component vectors 

Assess cardinality of vectors 

The method used by Cutter et al. (2003) proposed that following analysis , only vectors with the same cardinality should be 

retained for inclusion in the vulnerability index. This is based around the concept that each of the variables remaining is 

correlated with vulnerability and therefore, an index can be produced by summing these variables with the component score. 180 

It should be noted that Cutter’s  approach states that where a variable is understood to reduce vulnerability due to having a 

positive effect (such as a household‘s wealth/income), the variable should be inverted to become a negative score.  

Although Rygel et al. (2006) and Willis et al. (2010) did not espouse reducing variables on the basis of PCA cardinality, it was 

necessary to remove variables K005 and K033 from further inclusion to ensure a consistent methodology was maintained.  As 

the comparison methodologies outlined in Cutter et al. (2003) and Rygel et al. (2006) made use of rotated component scores 185 

as an input to the vulnerability assessment, a similar step would be required in this research to maintain continuity of the 

methods being compared. In accordance with the prescriptive methodologies outlined in these applic ations of multivariate 

analysis, the remaining five variables were subsequently rotated using a varimax rotation, and the component scores extracted 

for each Output Area. The extracted score became a new input variable (referred to hereafter as PCA Vulnerability Score) and 

was used in the creation of the vulnerability indices outlined in the results section. 190 

Gini Coefficients 

Figure 3 provides a summary of the Lorenz curves for each of the variables. Lorenz curves provide a graphical illustration of 

the Gini Coefficient and thus show the cumulative distribution of a variable within a population (Gastwirth 1972). The greater 

the area between the curve and the ‘line of equality’ represents how skewed or discriminatory a variable is within a given 

population.  195 
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Figure 3: Lorenz curves of Output Area Classification (OAC) selected to assess social vulnerability to flooding. Gini coefficient is 

shown within the graph legend.  

Figure 3 highlights how UK Census variables, such as Main language is not English  (K023) are disproportionately distributed 

among the OAC classification groups. In comparison, Standardised Illness Ratio (K035) is much less skewed among these 200 

profiles. This was further highlighted by the corresponding Gini coefficient values, 0.603 and 0.173 respectively for the 

variables. This was calculated using a generalised method (Bellù and Liberati 2006) whereby values closer to 1 represent 

greater inequality than values closer to 0. 

Apply weighting 

Though the alternative methodologies shared many similarities, they also had distinct differences in their selection, weighting 205 

and summation of the input variables. The application of each  of methodology to the standardised census data is  summarised  

in Table 4 below: 

Table 4: Summary of how the social vulnerability index is constructed using the three different methods  

 Cutter et al. (2003) Rygel et al. (2006) Willis et al. (2010) 

Variables 
K001+K007+K023+K045+PCA 

Vulnerability Score 
PCA Vulnerability Score K001+K007+K023+K045 

Process Additive 
Pareto ranking (100 

intervals) 
Additive 

Output Index (Xi / Xmean *100) Index (Xi / Xmean *100) Index (Xi / Xmean *100) 

 

In terms of input variables, Cutter’s Social Vulnerability Recipe recommends an additive approach, whereby the individual 210 

census variables are added together along with the PCA extraction score created during rotation of the varia bles (Cutter 2008). 

Willis et al. (2010) have a similar approach in summing variables but do not use the additional extraction scores. Conversely, 

Rygel et al. (2006) do not use any of the input census variables and instead use only the vulnerability extra ction score to 

provide a summary of the Output Area. Rygel et al. (2006) recommend applying a Pareto ranking to the extraction scores, 

which involves placing observations into discrete ‘blocks’ or ranges. Depending on how many components are input, the dat a 215 

can be ranked on multiple variables. The final step in the process is to sum the ranks and provide an overall weighting. The 
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intention of doing this is to reduce the skew effect that one variable may have on the overall result. The procedure of Paret o 

ranking is highly subjective in the choice of how many ranks or intervals are created for the given distribution of observations. 

Based on the proportion of intervals that Rygel et al. (2006) used in their study of US counties, it was decided that 100 intervals 

would provide an approximate correlation for the Output Areas based on the PCA Vulnerability Score.    220 

The final methodological step was to provide a normalised output from each technique to compare the results in a systematic 

manner. For this purpose, a propensity index was used. A propensity index is commonly used in geodemographics to convey 

relative variable scores and reduce any apparent bias between variable distributions . Equation (2) below summarises how the 

index score for a variable (𝑥𝑖) is calculated from a ratio of the observation value (𝑥) from the variable mean average (𝑥̅) 

multiplied by 100.  225 

𝑥𝑖 =
𝑥

𝑥̅
× 100                (2) 
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Results   

Distribution of social vulnerability scores  

 

Figure 4: Correlation of social vulnerability index scores for the Parrett Catchment. Trend lines are polynomial. 230 
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Figure 4 shows the correlation between the social vulnerability index scores derived from each of the three methods. The social 

vulnerability scores from Cutter et al. (2003) and Willis et al. (2010) show relationship close to linear with a strong correlation 

evident (R2 = 0.8975). Comparison of the Cutter et al. (2003) and Rygel et al. (2006) scores again show an almost linear 

relationship but the data show less correlation (R2 = 0.6341).  The relationship between the Willis et al. (2010) and Rygel et 

al. (2006) results show a much weaker correlation (R2 = 0.4405). The Willis et al. (2010) scores show that the method produces 235 

a more extreme classification of scores, than the Rygel et al. (2006) scores, shown by the flattening of the trend line. Figure 5 

highlights the distribution of vulnerability scores across the Output Areas for all methodologies for the Parrett catchment. 

Whilst the graph shows a correlation between the Gini coefficient approach (Willis et al.2010) and Cutter’s method (Cutter et 

al.2003), Rygel’s Pareto ranking method (2006) displays a greater variation in the classification of the same Output Areas; the 

choice of 100 rank intervals used in the method appears paramount to the relative distribution of these scores. This  point is 240 

further shown in the correlation plots of Figure 4 by the ‘stepped’ pattern of the Rygel et al. (2006) data and in Table 5 with 

the standard deviation for the Rygel et al. (2006) approach being 33.1, in comparison to the Willis et al. (2010) method (27.3), 

and Cutter et al. (2003) approach (23.3) for the Parrett catchment. Interestingly, this relationship is not the same when 

considering all of the England and Wales  Output Areas, whereby the Willis et al. (2010) method resulted in the highest standard 

deviation (42.6).  This last point appears due to the loading factor the Willis et al. (2010) method had on vulnerability scores 245 

that are greater than 100, thus leading to outlier scores. The Cutter et al. (2003) method showed the lowest standard deviation 

at all spatial scales along with the highest mean score (87.5) of vulnerability in the Parrett catchment, when compared to the 

other techniques. 

Table 5: Comparison of mean and standard deviations of the social vulnerability index scores  by OAC 2011 classification within the 

Parrett catchment. The mean and standard deviation of the England and Wales (E & W) is shown for comparison. 250 

 
OAC2011 Supergroup 

 Classification 

Number of  

Output Areas 

Cutter et al. (2003) 

 Mean Score 

Willis et al. (2010)  

Mean Score 

Rygel et al. (2006)  

Mean Score 

P
a
rr

et
t 

C
a
tc

h
m

en
t 

Constrained City Dwellers 78 124.8 123.6 138.3 

Cosmopolitans 12 87.3 94.5 95.6 

Hard-Pressed Living 258 102.4 96.9 105.4 

Multicultural Metropolitans 5 125.6 148.2 102.1 

Rural Residents 388 72.5 63.7 70.0 

Suburbanites 154 73.8 66.5 68.2 

Urbanites 223 91.8 91.5 82.4 

Total 1,118 87.5 82.2 85.6 

Standard Deviation - 23.3 27.3 33.1 

E
 &

 W
 

Total 232,296 100 100 100 

Standard Deviation - 32.5 42.6 42.3 

 

In terms of the spatial distribution of scores, the three comparative methodologies show a high degree of correlation with 

regard to their urban-rural pattern of vulnerability scoring (Table 5). Vulnerability index scores greater than 100 were largely  

constrained to the centres of greatest population density, most notably the large Somerset towns of Taunton, Bridgwater, and 

Yeovil. Table 5 shows that the highest average social vulnerability scores across the three methods are found in output areas 255 

classed by the OAC2011 classification as ‘Constrained City Dwellers’ and ‘Multicultural Metropolitans’. Similarly, and 

despite subtle differences in the magnitude of scoring, spatial correlation was noted to be closer between Cutter et al. (2003) 

and Willis et al. (2010) in comparison to Rygel et al. (2006).  
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Figure 5: Output Area comparison of social vulnerability index scores for the Parrett catchment 

 

Figure 6a: Spatial analysis of social vulnerability index based on the Cutter et al. (2003) methodology for the Parrett catch ment, UK 
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Figure 6b: Spatial analysis of social vulnerability index based on the Willis et al. (2010) methodology for the Parrett catchment, UK  

 

 

Figure 6c: Spatial analysis of social vulnerability index based on the Rygel et al . (2006) methodology for the Parrett catchment, UK  

 270 
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Figure 6: Output Area comparison of social vulnerability index scores for the areas impacted by the 2013/2014 flooding 

Table 6: Analysis of the areas impacted by the 2013/2014 flooding of the Somerset Levels. 

OAC2011 Supergroup  

Classification 

Number of 

 Output Areas 

Cutter et al. (2003)  

Mean Score 

Willis et al. (2010) 

Mean Score 

Rygel et al. (2006) 

Mean Score 

Hard-Pressed Living 2 102.1 86.3 110.5 

Rural Residents 67 71.9 63.9 67.0 

Suburbanites 1 81.6 74.9 100.0 

Urbanites 3 110.3 119.5 124.6 

Total 73 74.5 66.9 71.0 

Standard Deviation - 15.4 18.2 24.1 

 

The distribution of social vulnerability in the Parrett catchment is repeated at the smaller scale when an assessment of the 275 

output areas that experienced flooding in 2013/2014 flood are considered (flood extent is shown in Figure 1). The flooding 

impacted upon a total of 73 output areas with the majority (67) of these output areas categorised as ‘Rural Residents’ according 

to the OAC2011 Supergroup classification (Table 6). The average social vulnerability score across the three methods within  

the Rural Residents classification is 67.6, considerably below the England and Wales mean score of 100. This assessment 

demonstrates that the people impacted by the flooding in 2013/2014 would most likely be considered  to be less vulnerable 280 

than the majority of the England and Wales population. Using a smaller spatial scale to compare the three methods shows that 

a relatively consistent interpretation about the social vulnerability can be derived.  However, as with the Parrett catchment 

analysis, the Rygel et al. (2006) method has a higher standard deviation than the two other methods. This is supported by 

Figure 6 which shows that the social vulnerability score derived from the Rygel et al. (2006) method of individual output areas 

is extremely erratic, with the Cutter et al. (2003) and Willis et al. (2010) showing a more consistent relationship.  285 
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Conclusion 

The three methods presented within the study are consistent when considering the mean scores and interpreting the general 

picture of social vulnerability within a geographic area.  However, at the level of census output area level, the method  based 

on the Rygel et al. (2006) method produces a social vulnerability classification that differs markedly from the results of the 

Cutter et al. (2003), and Willis et al. (2010). This research demonstrates the complexity in quantitatively defining the ‘at risk’ 290 

population in terms of social vulnerability to natural hazards. Despite applying alternative methodologies to standardised 

variable data in a confined geographical setting, differences in the classification and interpretation of the most vulnerable are 

shown to be evident. The study showed that the application and subsequent decision-making on the basis of Principle 

Component Analysis (PCA) results can lead to the creation of very different, but equally plausible methodologies to define 

vulnerable populations  in the same study area. The subjective choices of whether to apply Pareto ranks, PCA rotation, and 295 

summation methods are just small examples of the relative impact such decisions may have on both the locality and quantitative 

value associated with risk. For example, Pareto ranking used within the Rygel et al. (2006) method was shown to lead to greater 

heterogeneity of scores, but arguably, less precision in the quantification of risk. The application of a Gini coefficient use by 

Willis et al. (2010) may lead to outliers through the exponential loading of higher vulnerability scores, however, the concept 

of an inclusive methodology could be argued to be equally as relevant  as the non-selection approach based on the PCA 300 

cardinality.  

Whilst recognising the uncertainty that various statistical methods impose on such classifications, it is also important to be 

mindful that the fundamental qualitative assumptions underlining social vulnerability are perhaps the first source of uncertainty 

in this process. For example, Table 1 shows the binary assessment quantitative methods apply to variables associated with 

social vulnerability. However, transferring knowledge of variable correlations from historic disaster experience to alternative 305 

geographies, cultures and natural hazards leads to an a priori approach, and is not always appropriate. Considering the amount 

of media coverage and subsequent management of the Parrett catchment after the 2013/201 4 flooding, it is surprising that this 

population is classified as less vulnerable than the England and Wales population.  Using the ‘Number of persons per hectare’ 

indictor with vulnerability increasing with population density  as in input is potentially results in an underestimate of social 

vulnerability in rural settings. Therefore, it is important to be mindful that the differences highlighted in the methodologies of 310 

this paper are just one aspect of the complexity involved in defining social vulnerability. To further investigate the influence 

the methodological approach has on the classification of social vulnerability, additional research is required which assess a 

range of different natural hazards, using a greater number of vulnerability indicators, and over a range of spatial scales.  
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