

1 GIS analysis of effects of future Baltic Sea level rise on the island of

- 2 Gotland, Sweden
- 3 Karin Ebert, Karin Ekstedt, Jerker Jarsjö
- 4 Department of Physical Geography and the Bolin Centre for Climate Research, Stockholm University,
- 5 S- 10691 Stockholm, Sweden.
- 6 Correspondence to: Karin Ebert (karin.ebert@natgeo.su.se)

7 Abstract

8 Future sea level rise as a consequence of global warming will affect the world's coastal regions. Even 9 though the pace of sea level rise is not clear, the consequences will be severe and global. Commonly 10 the effects of future sea level rise are investigated for relatively vulnerable development countries; 11 however, a whole range of varying regions need to be considered in order to improve the 12 understanding of global consequences. In this paper we investigate consequences of future sea level rise along the coast of the Baltic Sea island of Gotland, Sweden, with the aim to fill knowledge gaps 13 14 regarding comparatively well-suited areas in non-development countries. We study both the 15 quantity of loss of infrastructure, cultural and natural values for the case of a two metre sea level rise of the Baltic Sea, and the effects of climate change on seawater intrusion in coastal aquifers, causing 16 17 the indirect effect of salt water intrusion in wells. We conduct a multi-criteria risk analysis by using 18 Lidar data on land elevation and GIS-vulnerability mapping, which gives formerly unimaginable 19 precision in the application of distance and elevation parameters. We find that in case of a 2 m sea 20 level rise, 3% of the land area of Gotland, corresponding to 99 km², will be inundated. The features 21 most strongly affected are items of touristic or nature values, including camping places, shore 22 meadows, sea stack areas, and endangered plants and species habitats. In total, 231 out of 7354 23 wells will be directly inundated, and the number of wells in the high-risk zone for saltwater intrusion 24 in wells will increase considerably. Some values will be irreversibly lost due to e.g. inundation of sea 25 stacks and the passing of tipping points for sea water intrusion into coastal aquifers; others might 26 simply be moved further inland, but this requires considerable economic means and prioritization. 27 With nature tourism being one of the main income sources of Gotland, monitoring and planning is 28 required to meet the changes. Seeing Gotland in a global perspective, this island shows that holistic 29 multi-feature studies of future consequences of sea level rise are required, to identify overall 30 consequences for individual regions.

31 1 Introduction

32 Sea level rise is currently a fact, as stated by the IPCC (2014; references therein), being a result of e.g. 33 the observed slow but ongoing and irreversible collapse of the West Antarctic Ice Sheet (WAIST) and 34 the melt of the Greenland ice sheet (e.g. Hanna et al., 2005; Meier et al., 2007; Stroeve et al., 2007). 35 The pace of sea level rise is increasing; according to IPCC (2014), a global mean sea level rise of 36 0.63 m is likely to occur until the year 2100, with virtually certain continued sea level rise after this 37 point (IPCC, 2014); in a millennium scale, the near-complete loss of the Greenland Ice Sheet will with 38 high confidence cause mean sea level rise of 7 m (IPCC, 2014). The exact pace and amount of future 39 sea level rise is consequently highly uncertain (Nicholls et al., 2010). In any case, projected future sea

Submitted to Special Issue Geomorphometry NHESS

40 level rise will inundate areas along the world's coasts, where we find most of our settlements and

41 infrastructure (e.g. Small and Nicholls, 2003; Neuman et al., 2015). We will need to adapt. A first

42 step in the process of adaptation is to investigate the consequences of sea level rise, reversible and

43 irreversible, on nature, humans and society, including infrastructure. We present here results for a

future sea level rise of 2 m, beyond the predictions until 2100, but still clearly below the highest

45 possible sea level rise.

46 One frequent and arguably severe effect of sea-level rise on coastal regions would be seawater 47 intrusion into coastal aquifer systems. For the Baltic Sea and elsewhere, most studies have primarily 48 been concerned with effects on climate change on river discharge (Andréasson et al., 2004; Graham, 49 2004; Chalov et al., 2015). Fewer have addressed groundwater resources; Sherif and Singh (1999) 50 present one of the first studies on the effects of climate change on seawater intrusion in two coastal 51 aquifers. Even relatively modest increases in average sea level will change the position of the toe of 52 the freshwater-saltwater interface of coastal aquifers relatively far in the inland direction. Hence, 53 merely due to differences in density between fresh and brackish water, the thickness and volume of 54 coastal freshwater reservoirs can reduce considerably. For instance, a moderate rise of one to two 55 decimetres in the average level of the Baltic Sea may reduce the average thickness of freshwater 56 reservoirs by several meters in some coastal aquifers. This may put severe constraints on 57 groundwater use near the coastal, although for most regions, the extent of the problem is yet 58 unclear.

59 In addition to such effects on water quality water supply, climate-driven sea level rise is expected to 60 have various effects on agricultural, industrial and service sectors. Flooded industrial and agricultural 61 land may be associated with significant production losses. Such land may potentially also release 62 contaminants and nutrient from the soil surface. The inherent complexity of natural and social 63 systems makes it a research challenge to more comprehensively understand and address the impacts 64 of climate change on the basis of social relevance, systemic risks and options for action. In this 65 context it is important to build a knowledge base that allows consideration of various conflicting 66 perspectives when dealing partly emotive issues (Raymond et al., 2010). Climate adaptation involves 67 the management of shared natural resources, where the different possible priorities and conditions 68 make sustainable management relatively complex. In particular, the system risks, unlike traditional 69 risks, need attention. Systemic risks are characterized by a high degree of complexity and uncertainty 70 and are usually not limited to a single sector, which requires more holistic, reflective and adaptive 71 strategies (Renn et al., 2011).

To allow for system analysis on the necessary overall level, we will here process spatially distributed
 data and through GIS synthesize and visualize areas that are at high risk of suffering from the effects
 (basic methodology e.g. according to Persson et al., 2011). Risks related to climatology,

75 geomorphology, hydrology, natural resources, ecology, and environmental assessment can then be

replicitly considered. We acknowledge that several studies have considered the impact of sea level

rise on a variety of environmental and anthropogenic features (Kolt et al., 2003; Blankespoor et al.,
2014) yet often they fail to take on the multi-consequential characteristic of this subject.

79 Furthermore, commonly the effects of future sea level rise are investigated for development

80 countries (Dasgupta et al., 2009; Dwarakish et al., 2009). Although such countries may be relatively

81 vulnerable, a whole range of regions with different characteristics need to be considered in order to

82 improve the understanding of global consequences. Using the case study of the Baltic Sea island of

Submitted to Special Issue Geomorphometry NHESS

- 83 Gotland, Sweden, we aim at filling a knowledge gap regarding comparatively well-suited areas in
- 84 non-development countries, where means may be stronger to prepare for future sea level rise, but
- 85 where at the same time historical investments in infrastructure, industries and private properties
- 86 may be considerable.
- 87 We here investigate the effects of future sea level rise on a multitude of features combined, thereby
- 88 providing a basis for assessments on overall impacts on the environment and infrastructure of the
- 89 island. We base the investigation on GIS-vulnerability mapping as a variant of the coastal
- 90 vulnerability index (CVI) (Gornitz, 1990; Dwrakish et al., 2009), addressing the following main issues:
- Quantitatively assess some consequences of future sea level rise of 2m around Gotland
 for infrastructure, cultural and environmental values
 - 2. Establish the effect pattern on groundwater hydrology and wells
- 932.943.
- 943. Establish the risk of well salinization with the current (2015) sea level and with a 2 m sea95level rise

With the results at hand will discuss which of these losses are irreversible and which might be
mended or prevented; possible economic consequences, arising from movement of humans,
movement of infrastructure, restoration of polluted areas, saline wells, decreasing tourism; possible
environmental consequences – pollution, saline wells and groundwater, decreasing area of beach
meadows and bird life, higher population density on remaining land surface; resulting consequences
for live quality: deteriorating water quality, smaller land surface, pollution, freshwater supply; if we
see Gotland as a "miniature world" – what effects have sea level rise globally?

103 2 Gotland – study area description

104 Located in the Baltic Sea about 80 km east of Sweden, Gotland is the county's largest island (Figure 1) 105 with an area of 3 140 km² and a permanent population of just under 60 000 people (Region Gotland, 2014). Climate here is temperate and characterized by its coastal position with a range of average 106 temperature from -2,5°C in February to 16 °C in July. Precipitation averages 500 to 700 mm/yr in the 107 108 coastal and inner regions respectively. This island setting, in combination with the distinguishable 109 Silurian limestone bedrock, creates key habitats for both flora and fauna that are unique to this region. More than 8 % of the island is under official nature protection. Accordingly, cultural 110 111 landscapes and heritage on the island are rich with hundreds of stone ships (oldest dating 1000 B.C.) 112 and rune stones (oldest dating year 400), 92 medieval churches and extensive historical pasture- and farm land (Region Gotland, 2014). 113

114 Tourism is in accordance an important factor in commercial life on the island. Almost 100 000 115 international tourists visited the island in 2014 (Region Gotland, 2014). Other important business 116 areas are lime and cement mining, agriculture and food industry; more than 10 % of the sheep and 117 lambs in Sweden are found on this island for example. Administratively Gotland constitutes both a county and a municipality of its own; with a gross regional product per capita of 308 000 SEK in 2013 118 119 which corresponds to 78 % of the national average. Infrastructure on the island is well established: 120 the public transport network for example, covers most of the island and frequent ferry and airplane 121 departures connect it to the mainland, in 2013 40 % of the electricity supply came from wind power stations on the island, 50 % of the rural population has access to fiber broadband and finally the 122 123 municipal water supply system holds good quality. There are issues of pollution, mainly from poor

Submitted to Special Issue Geomorphometry NHESS

124 individual sewage systems, in many of the separate water catchments however (Region Gotland,

125 2014).

126 Gotland was covered by Fennoscandian ice sheets during the Quaternary (Kleman et al., 1997) and is

still uplifted in glacio-isostatic adjustment, c. 1,5 mm/year in its northern parts and c. 0,5 mm/year in

its southern parts (Ågren and Svensson, 2011), which is insufficient to amend the consequences ofpredicted sea level rise.

The topography of Gotland is shaped by the Silurian cover rock layers, dipping slightly towards the
east, and with a clear SW-NE structure forming the two highest ridges in the islands interior (Figure
1B). The lowest and thereby most vulnerable parts of the coastline are consequently along the east
coast and in between the ridges.

134 3 Data and methods

135 Analyses for this study were conducted in an ArcGIS environment using a broad range of data 136 sources: i) LIDAR elevation data and data on infrastructure (vector) provided by the Swedish National 137 Land Survey, ii) biological protective values (vector) from the County administrative board of 138 Gotland, iii) wells and soil types (vector) from the Swedish Geological Survey (SGU) and iv) a map of 139 annual average precipitation from the Swedish Meteorological and Hydrological Institute (SMHI). 140 Notably, the LiDAR-based 2m-resolution elevation model of Sweden gives a formerly unimaginable 141 precision in the application of distance and elevation parameters with a standard error in elevation 142 of 0.05 m and a standard error on plain of 0.25 m on average (Lantmäteriet, 2015). The Swedish 143 raster model is delivered in ASCII format. This 2 m ground elevation model is based on airborne laser 144 scanning of the terrain, with a point density of approximately 0.5-1 points per m². The ground 145 surface was produced through automatic classification of points in the point cloud, with known elements (such as water polygons and buildings) used as supportive elements to remove buildings 146 147 and vegetation (Lantmäteriet, 2015).

148 **3.1 Quantitative assessment of inundated areas**

For quantifying the proportion of affected and lost assets, a successive overlay analysis was applied
combining the digital elevation model (DEM) with vector layers of infrastructure, cultural objects and
environmental values. The overlay layer of the DEM consisted of all pixels ≤ 2 m a.s.l. of the 2 m
elevation model, to model a sea level rise of a 2 m worst case scenario until 2100. The vector layers
of infrastructure included for example built-up areas, wells, roads, industrial areas and gas stations,
as well as natural and cultural heritages such as shore meadows, cultural grazing fields and rune
stones.

156 3.2 Well density and depth to groundwater

Well density was calculated with the point density function in ArcGIS, with the aim to visualize the
areas with accumulation of wells, and thereby areas of accumulation of settlement and
infrastructure, on Gotland. DEM elevation values were extracted for every well point. With the depth
to groundwater for each well available, we interpolated the depth to groundwater for the entire
area. We subtracted the depth to groundwater from the land surface topography to model the

162 pattern of the groundwater surface topography.

Submitted to Special Issue Geomorphometry NHESS

163 **3.3 Risk of saltwater intrusion in wells**

- 164 In assessing the risk of groundwater salinization of wells, we use the GIS-based RV method (Sazvar,
- 165 2007), which is a variant of multi-criteria risk analysis that have been used widely both for
- 166 groundwater protection and environmental management (e.g. Vias et al., 2005; Hossam et al., 2013)
- as well as slope risk analysis (e.g. Tangestani, 2009; Pradhan, 2010; Sharma et al., 2013).
- 168 The RV-method is based on risk parameters and weighing factors that are assessed for individual
- areas. The weighing factors R 1,2,3 are given with increasing importance of the parameters influence
- 170 on the salinization risk; R is multiplied with the internal risk values V of each parameter to achieve
- 171 the final risk value SRV (Eq. (1), Table 1).

172 $SRV = V1 \cdot R1 + V2 \cdot R2 + V3 \cdot R3 + + Vn \cdot Rn = \Sigma Vi \cdot Ri$ (1)

173

174 where V is the Risk value and R is a weighing factor.

175

176 The resulting values are used in the GIS-overlay of the parameter layers (see input layers in figure 5, 177 and visual result of the overlay analysis in figure 6). In Sweden, this method has been used previously 178 in areas around Stockholm (Lång et al., 2006) and Gotland (Lange, 2013). The here used variant 179 comprises parameters that express 1) distance to coast, 2) distance to lakes, 3) soil type, 4) yearly 180 average precipitation, 5) elevation a.s.l. (Table 1). Gotland consists entirely of Silurian limestone; we 181 omit for simplicity bedrock type as a parameter, since the factor would be constant across Gotland 182 without effect on the outcome of the analysis. We here use values of parameters and weighing 183 factors that were developed for Sweden and Gotland in previous work (Gontier et al., 2003; Lång et al., 2006; Sazvar, 2010; Lange, 2013). For Gotland's current ambient conditions, these parameters 184 185 and weighing factors (Table 1) were found to produce risk values that agree well with observed 186 chloride contents of existing wells (Lange, 2013).

187 The GIS-analysis using the R·V values (Table 1) was performed for current (year 2015) sea level and 188 for the area of Gotland after a 2 m sea level rise (Figure 6). For the 2m sea level rise scenario, the

area below 2 m a.s.l. was removed from the Gotland DEM. The parameters yearly average

- 190 precipitation, soil type and distance to lakes are assumed be the same also for a 2 m sea level rise.
- 191 The factors distance to coastline and land elevation were recalculated for the 2 m sea level rise
- scenario. The distance to coast was recalculated for the new coastline; elevation above sea level was
- recalculated emanating from the new elevations a.s.l., with 0 m a.s.l. corresponding to the current 2m a.s.l.

195 4 Results

196 4.1 Inundation of land area and infrastructure

The main findings of the overlay analysis are presented in Table 2. The table presents values thatexperience notable losses according to our calculation. An investigation of gas stations identified two

199 of the existing ones as inundated in the scenario. Some examples are illustrated in Figure 2.

- 200 In total, about 3 % of Gotland's current land surface, an area of 99 km², will be inundated in the
- 201 scenario of a 2 m sea level rise. In the relatively flat, southern part of the island, the expected
- 202 percentage of inundation is twice as high. Generally, between 1% and 3% of the overall infrastructure

Submitted to Special Issue Geomorphometry NHESS

- 203 will be inundated; roads, power lines, wells and individual buildings for example. The features that
- show a higher proportional loss are understandably those that tend to be concentrated along the
- 205 coast, like wind power stations, lumber yards, camping sites and lighthouses.

As for cultural values there are mostly solitary objects affected, such as one smaller church and 11 ancient monuments. The characteristic sea stacks will suffer considerable loss (Figure 2B), which may

- also be attributed with cultural values. Almost the entire sea stack area will be inundated. Walking in
 between sea stacks will not be possible anymore; wave action will contribute to an increased erosion
- 210 of the sea stacks (Forsmark, 2001).

For natural reasons, the dominating proportion of the key habitats and nature protection zones are located along the coast; these are indeed vulnerable to rising sea levels and potential losses here reach 10 - 60 % (e.g. Figure 2C). With time these habitats may migrate landwards yet. 60% of shore meadows (Table 2; Figure 2A) will be inundated. The Gotland shore meadows are unique habitats for birds and endangered species (Olsson, 2008). Landward migration of these is limited by forests and would require human intervention to persist (cf. Olsson, 2008; Cedergren, 2013).

217 4.2 Well density and depth to groundwater

218 Figure 3A shows that 231 wells, corresponding to about 3% of all wells, are located on ground elevations between 0 and 2 m a.s.l. They will hence be directly affected by sea level rise through 219 inundation. Most of these wells, 131 out of 231, belong to summer houses and smaller farms. There 220 221 were also 30 energy wells, 8 large farm wells, 4 industry wells, 1 irrigation well and 49 wells with 222 unspecified usage. This reflects the overall spectrum of usage; outside cities and towns, wells are 223 used for summer houses and smaller farms (3837 out of a total of 7354), large farms (297 out of 224 7354), and irrigation and market-gardens (74 out of 7354). There are also a relatively large number of 225 energy wells (1068 out of 7354) and a smaller number of wells with industrial and other usages.

The well density is highest along the coastline and at elevations below 20 m a.s.l. (Figure 3B), which is
consistent with a higher population density near the coast. Except for northwest Gotland that
contains its largest town (Visby), coastal regions are flat (Figure 1B). Hence, despite the fact that
groundwater tables are frequently close to ground surface levels in the coastal regions (Figure 4A),
the absolute level of groundwater is currently near or at the sea surface level (Figure 4B). In
particular, in the areas shown in purple in Figure 4B the groundwater surface is at sea level, which
implies very high risk of salinization of wells even without sea level rise.

233 4.3 Wells and risk of salinization

Figure 5 shows individual contributions of different factors to the risk of well salinization. For each 234 235 factor, the risk is expressed as a risk value V (Eq. 1), where high values reflect elevated saltwater 236 intrusion risk. The risk for density-driven intrusion of relatively heavy salt water is clearly high (red 237 areas of Figure 5) at short distances to the coast where saline waters can readily replace fresh 238 groundwater when the fresh groundwater is pumped from the well. Land surface elevation is also an 239 important risk factor, since elevation differences drive groundwater flows from land coast, which can 240 counteract density driven flows of saline water from sea to land. The fact that the annual mean 241 precipitation of Gotland is higher in its central parts than near the coast implies lower local recharge 242 of freshwater close to the coast, which contributes to higher salinization risks. Conversely, proximity

Submitted to Special Issue Geomorphometry NHESS

to lakes implies higher potential for freshwater replenishment, which decreases the saltwater intrusion
risk. The heterogeneous pattern of soil types across Gotland adds a patchiness in V. The salinization
risk is elevated in coarse sediments (Table 1), which in many cases are located close to the coast. In

246 contrast, lower-risk bare bedrock is frequently located further from the coast.

247 Figure 6A shows the current spatial variation in final risk of salt water intrusion (SRV, Equation 1), resulting from all contributing factors of Figure 5. Reinforcing factors related to soil, precipitation, 248 249 topography and proximity to seawater make the current salt water intrusion risk considerably higher 250 in a zone that extends up to 5 kilometres from the coastline (yellow to red areas in Figure 6A). 251 Beyond that zone, risks exhibit a considerable spatial variability (light to dark blue shades of Figure 252 6A), but are generally lower albeit non-negligible. These current risks of salt water intrusion in 253 groundwater wells can be compared to estimated future risks given a projected sea level rise of 2m 254 shown in Figure 6B. As previously mentioned, the land area of Figure 6B is 3% lower than in Figure 6A 255 due to inundation from intruding seawater, which for instance is reflected in a wider straight to 256 between Gotland and the smaller island of Fårö in the northwest corner of Figure 6. Differences are 257 also pronounced on the southern tip of Gotland, see Figure 6C (current sea level) and Figure 6D (2m 258 sea level rise). In particular, the spit of land in the middle region of the insert maps is considerably 259 narrower in Figure 6D than in Figure 6C due to the 2m sea level rise. However, despite this shrinkage 260 of total land area, the areas that have high risk for saltwater intrusion are projected increase in the 261 future, which is most pronounced in the south, where for instance the very highest risk classes (red 262 to orange) extend much further in Figure 6D than for the current conditions depicted in Figure 6C.

263 In total, more than231 wells of Gotland will be inundated given a 2m sea level rise (Figure 7, rightmost 264 bar). Despite the reduced total number of wells in the future compared with today, Figure 7 shows 265 that the number of wells in the high risk value classes (18 to 22) will be considerably higher in the 266 future. The most pronounced change is predicted to occur for the highest risk value class (22), where 267 the number of wells will increase by 250% from 47 to a total value of 120. The second highest increase 268 is predicted to occur for risk value class 21, where the number of wells will increase by 150% in the 269 future, from 402 to a total value of 609. Overall this shows that the percentage of high-risk wells will increase in the future, considering the remaining part of the island. 270

271 5 Discussion

272 5.1 Multi-criteria risk analysis

273 Multi-criteria risk analysis with help of GIS-vulnerability mapping to identify risk areas of different 274 types has been used in numerous studies (e.g. Vias et al., 2005; Tangestani, 2009; Pradhan, 2010; 275 Hossam et al., 2013; Sharma et al., 2013). The advantages of this type of analysis is that parameters 276 used can be adapted to the characteristics of both the study area in question and the type of studied 277 risk. However, studies that rely on elevation models for mapping inundation from sea level rise have 278 frequently had too coarse vertical accuracy to support local decision making (Williams, 2013). The 279 on-going development of high-resolution Lidar-datasets including the presently used one for Gotland 280 contributes to removing this constraint from an increasing number of coastal regions of the world. In the present study, we used overlay analysis to quantify direct losses by climate-driven rise in 281

- average sea level due to land inundation, considering available layers related to infrastructural,
- 283 cultural and natural values. Recognising that increased average sea levels are associated with inland

Submitted to Special Issue Geomorphometry NHESS

284 advancement of today's freshwater- seawater transition zones, we use RV-analysis with weighted 285 risk values of parameters to identify future risk areas of saltwater intrusion in wells. Notably, we here 286 aimed at quantifying direct effects of mean sea level rise and land inundation, providing a basis for 287 understanding their contribution and significance relative to secondary effects of sea level rise and 288 other effects of hydro-climatic change on coastal regions. The latter effects include, for instance, 289 increased coastal erosion that might be expected as a consequence of future sea level rise, and that 290 might account for additional land loss (Sales, 2009), effects of changes in sea level extremes relative 291 to mean level (Williams, 2013), and effects of changes in patterns of precipitation and 292 evapotranspiration on surface water levels and groundwater recharge (Luoma and Okkonen, 2014). 293 Hence, in the context of overall impacts from multiple processes in coastal regions, results of 294 inundation-focussed studies such as ours should be seen as relatively robust estimates of minimum 295 effects, which may be exceeded due to the influence of parallel processes and secondary effects 296 (e.g., Torresan et al., 2012).

297 5.2 Sea level rise – effect pattern on Gotland

We find for the island of Gotland that, as globally (Neumann et al., 2015), the density of settlements 298 299 and infrastructure are considerably higher towards the coast. We show that this is reflected in an 300 increasing density of wells near the coastal stretch (Figure 3). In the case of Gotland, the most 301 endangered values are touristically interesting. More than 50% of the wells in the risk zone of direct 302 inundation by a 2m sea level rise belong to summer houses and small farms. Additionally, more than 303 50% of the area of nature protection areas such as sea stacks, shore meadows and habitats for 304 endangered plants species that are naturally at the coast are threatened by direct inundation (Figure 305 2). This is a pattern known from other Baltic Sea states, for example Estonia (Kont et al., 2003). 306 Tourism and nature protection areas are main attractions and a major income of the economy of 307 Gotland so these losses will need to be addressed in future planning. This basic problem is for 308 instance also seen in the Caribbean islands, where main touristic attractions are located in coastal 309 regions that have been subject to considerable developments, but which however are vulnerable to 310 sea level rise and extreme weather events (Lewsey et al., 2004).

An indirect effect of inundation by a higher sea level will be the inland migration of areas with the risk of saltwater intrusion in wells. Naturally the risk is highest along the coastline, with distance to sea shore and elevation above sea level providing two main parameters in the overlay analysis. However, in the case of Gotland this trend is even enforced by permeable soil types along the east coast as well as lower amounts of precipitation that bring an even stronger increase of risk values along the lowland areas along the coastline of Gotland.

317 5.3 Irreversible and reversible losses

318 In case of a 2m sea level rise, according to the results of this study, Gotland will suffer the irreversible 319 loss of >50% of area unique nature values like sea stacks, bird and endangered species habitats as 320 well as shore meadows. Our results illustrate that in addition to direct and irreversible loss of land, 321 cultural values and infrastructure such as roads, industrial land, natural reserves and drinking water 322 wells, the remaining part of the island will be more vulnerable to salt water intrusion. The problem 323 could be further accentuated by pressures from increasing population and/ or population density of 324 the coastal zone (as the island shrinks). This means that the irreversible loss of 231 wells, according 325 to our study, would be followed by a near irreversible loss of 120 wells that are located in the group

Submitted to Special Issue Geomorphometry NHESS

of the highest risk values of our GIS-vulnerability analysis. Parallel studies have shown that sea level

327 rise may induce abrupt salt water intrusion events due to the existence of tipping points in coastal

328 aquifers (e.g., Mazi et al., 2013); for coastal aquifers of Gotland, the risk of such abrupt shifts appear

to be high since all five parameters we used in the overlay had the highest weighing values of the

330 highest risk parameters.

331 5.4 Economic and societal consequences

332 Our study gives a basis for further investigation of different indirect consequences of sea level rise, 333 not least economic and administrative implications. For example, present results show that a 2 m sea 334 level rise will result in inundation of approximately 2% of the total length of Gotland's road network. 335 This is on a par with projected road inundations as a result of 1 to 2 m sea level rise in coastal regions 336 of southern Europe (Demirel et al., 2015) and the U.S. (Koetse and Rietveld, 2009). Despite such 337 relatively low percentage of inundation, more detailed analyses of consequences in the U.S. case 338 showed that impacts on transport would be large due to network effects (Koetse and Rietveld, 2009). 339 Overall, many costs will appear due to necessary movement of inhabitants, movement/rebuild of infrastructure, leakage of contaminants from inundated polluted areas, drilling of new wells that 340 341 replace saline ones, and decreasing tourism as cultural values disappear. Economic estimates need to 342 take into account different possible scenarios where environmental values need to be weighed 343 against economical means. This study can be the base for crucially needed future studies that include local administration to take foresight action (cf. Libkovska and Zilniece, 2015). 344

345 5.5 Environmental consequences and life quality

346 For any region affected, sea level rise will not only pose economic problems but changes in 347 environmental conditions, with consequences of people's life quality. In the case of Gotland, saline 348 wells and groundwater, decreasing area of sea stacks, beach meadows, bird life and other nature 349 values, higher population density on remaining land surface with a deteriorating water quality will 350 have long-term effects. Even the minimum predicted sea level rise will consume 60% of Gotland's 351 protected shore meadows, a breeding place for a high variety of bird species. With the shore 352 meadows, sea stack areas and bird life diminishing, not only unique natural and cultural values, but 353 also, as a consequence, tourism will decrease.

354 With regard to industrial activities, the region that will be submerged by expected future sea level 355 rise contains contaminated industrial land and infrastructure that may have adverse environmental 356 effects such as gas stations. Sea level rise can hence imply that costs for mitigation measures 357 addressing Gotland's current environmental problems may change due to changing environmental 358 conditions; for completely submerged regions, costs for remediation may even become too high to 359 be feasible, due to an increased inaccessibility of flooded or partly flooded land. This in turn might 360 lead to severe environmental consequences for the already hard pressed Baltic Sea (e.g. Garmaga, 361 2012).

362 5.6 A global perspective

363

Sea level has risen and sunk many times and intensely during geological timescales (Haq et al., 1987);
however never before humans and settlements were present in coastal areas that will end up below
sea level. If we regard Gotland as a "miniature world" – a fully functioning society, will all

Submitted to Special Issue Geomorphometry NHESS

- infrastructural necessities and good economic means, still we see that even this, globally seen well equipped area will suffer severe changes in the cause of climate-driven sea level rise. The present
 study gives only a small extract of the complex scenario caused by sea-level rise on Gotland, where
- 370 e.g. the economic, environmental and life-quality consequences are not further assessed in this
- effect-pattern vulnerability analysis. An increase in multi-factor research on the consequences of
- 372 climate driven sea level rise, as well as the distribution of the results to coastal municipalities, as well
- as global exchange of experiences, are needed as soon as possible.
- 374 6 Conclusions
- 375 We performed multi-risk analysis, based on Lidar data on land elevation and GIS-vulnerability
- 376 mapping, to identify region-based consequences of future sea level rise and land inundation,
- 377 providing a basis for understanding their contribution and significance relative to secondary effects
- of sea level rise and other effects of hydro-climatic change on coastal regions.
- 379 In case of a 2 m sea level rise, 3% of the land area of the Baltic Sea island of Gotland, corresponding 380 to ~99 km², will be inundated. The features most strongly effected, either by direct inundation or by 381 a decrease in size, are mostly items of touristic or nature values, including the complete inundation 382 of 35% of all camping places, 60% of all shore meadows, 60% of protected sea stack areas, and 53% 383 of endangered plants and species habitats. In addition to direct inundation of 231 out of a total of 384 7354 wells, the number of wells in the high-risk zone for sea water intrusion will increase 385 considerably, further diminishing the habitable land area of the island. Most of the effected wells are 386 summer houses and small farms that attract summer tourists.
- With nature tourism being one of the main income sources of Gotland, monitoring and planning is required to meet the changes. Some values will be irreversibly lost due to e.g. inundation of sea stacks and the passing of tipping points for sea water intrusion into coastal aquifers; others might simply be moved further inland, but this requires considerable economic means and prioritization. Seeing Gotland in a global perspective this island shows that holistic multi-feature studies of future consequences of sea level rise are required, in order to identify the consequences for individual
- regions and to be able to take action adjusted to the particular needs of the region in question.
- 394 Studies like the present one can give the base for administrative discussions and planning.

395

396 References

- Ågren, J. and Svensson, R.: The Height System RH 2000 and the Land Uplift Model NKG2005LU.
 Mapping and Image Science, 3, 4-12, 2011.
- Andréasson, J., S. Bergström, B. Carlsson, L.P. and Graham, G: Lindström. Hydrological change –
 Climate change impact simulations for Sweden. Ambio 33 (4-5): 228-234, 2004.
- Blankespoor, B., Dasgupta, S. and Laplante, B.: Sea-Level Rise and Coastal Wetlands. Ambio
 43(8):996-1005 DOI: 10.1007/s13280-014-0500-4, 2014.
- 403 Cedergren, B.: Havsnivåhöjningens påverkan på Gotlands kust och strandängar år 2100.
 404 Undergraduate thesis in Physical Geography, department of Physical Geography, Stockholm
 405 University, 2013.

Submitted to Special Issue Geomorphometry NHESS

- Chalov, S.R., Jarsjö, J., Kasimov, N.S., Romanchenko, A.O., Pietroń, J., Thorslund, J. and Promakhova,
 E.V.: Spatio-temporal variation of sediment transport in the Selenga River Basin, Mongolia and
- 407 E.V.: Spatio-temporal variation of sediment transport in the Selenga River Basin, Mongolia and 408 Russia. Environmental Earth Sciences, 73, 663–680, 2015.
- 408 Russia. Environmental Lartin Sciences, 75, 005–080, 2015.
- Dasgupta, S., Laplante, B., Meisner, C., Wheeler, D. and Yan, J.: The impact of sea level rise on
 development countries: a comparative analysis. Climatic Change, 93, 379-388, 2009.
- 411 Demirel, H., Kompil, M. and Nemry, F.: A framework to analyze the vulnerability of European road
- 412 networks due to Sea-Level Rise (SLR) and sea storm surges. Transportation Research Part A: Policy
 413 and Practice, 81, 62-76, 2015.
- Dwarakish, G.S., Vinay, S.A., Natesan, U., Asano, T., Kakinuma, T., Venkataramana, K., Jagadeesha Pai,
- B. and Babita, M.K.:Coastal vulnerability assessment of the future sea level rise in Udupi coastal
- 2009 zone of Karnataka state, west coast of India. Ocean & Coastal Management, 52, 467-478, 2009.
- 417 Garmaga, G.: Integrated assessment of pollution in the baltic sea. Ekologija, 58(3), 331-355, 2012.
- 418 Gontier, M. and Olofsson, B.: Areell sårbarhetsbedömning för grundvattenpåverkan av
- vägföroreninger. TRITA-LWR REPORT 3011, Royal Institute of Technology (KTH), Sweden, ISSN
 1650-8610 (in Swedish), 2003.
- 421 Gornitz, V.: Vulnerability of the east coast, USA to future sea level rise. Journal of Coastal Research, 1,
 422 9, 201-237, 1990.
- 423 Gotlands kommun: *ByggGotland översiktsplan för Gotlands kommun 2010–2025*. [PDF] Available 424 at: http://www.gotland.se/50616 [Accessed 27 June 2014], 2010.
- 425 Graham, L.P: Climate change effects on river flow to the Baltic Sea. Ambio 33(4-5): 235-241, 2004.
- Hanna, E., Huybrechts, P., Janssens, I., Cappelen, J., Steffen, K. and Stephens, A.: Runoff and mass
 balance of the Greenland ice sheet: 1958–2003. J Geophys Res, 110:D13108, 2005.
- Haq, B.U., Hardenbol, J. and Vail, P.R.: Chronology of Fluctuating Sea Levels Since the Triassic.
 Science, 235: 1156-1167, 1987.
- Hossam, H.E., Ragaa, E.S., Atef, A.Q. and Ahmad, M.N.. Determining groundwater protection zones
 for the Quaternary aquifer of northeastern Nile Delta using GIS-based vulnerability mapping.
 Environ Earth Eci 68, 313-331, 2013.
- 433 IPCC: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral
 434 Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental
- Panel on Climate Change [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E.
- 436 Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S.
- 437 MacCracken, P.R. Mastrandrea, and L.L. White (eds.)]. Cambridge University Press, Cambridge,
- 438 United Kingdom and New York, NY, USA, 1132 pp., 2014.
- Kleman, J., Hattestrand, C., Borgstrom, I. and Stroeven, A.: Fennoscandian palaeoglaciology
 reconstructed using a glacial geological inversion model. Journal of Glaciology, 43 (144), 283-299,
 1997.
- Kont, A., Jaagus, J. and Aunap, R.: Climate change scenarios and the effect of sea-level rise for
 Estonia. Global and Planetary Change 36, 1-15, 2003.

Submitted to Special Issue Geomorphometry NHESS

444 445 446	Koetse, M. J. and Rietveld, P.: The impact of climate change and weather on transport: An overview of empirical findings. Transportation Research Part D: Transport and Environment, 14(3), 205-221, 2009.
447	Lange, E.: Saltvattenpåverkan i Gotlands dricksvattenbrunnar vid stigande havsnivåer.
448	Undergraduate thesis in hydrology and hydrogeologi, Stockholm university, 2013.
449	Lång, L-O., Olofsson, B., Mellqvist, E., Ojala, L., Maxe, L. and Thorsbrink, M.: Miljömålsuppföljning av
450	grundvatten i kustområden – statusbeskrivning och diskussionsunderlag, SGU-rapport 2006:24,
451	SGU, 44 p.p. (in Swedish), 2006.
452	Lantmäteriet (Swedish National Land Survey): Product description: GSD-Elevation data, Grid 2x. 2015.
453	[PDF] Available at: <u>https://www.lantmateriet.se/globalassets/kartor-och-geografisk-</u>
454	information/hojddata/produktbeskrivningar/eng/e_grid2_plus.pdf [Accessed 23 Febuary 2016].
455	Libkovska, U. and Zilniece, I: Environment and health management in the Baltic Sea coastal
456	municipalities: Resort development opportunities. 15th International Multidisciplinary Scientific
457	GeoConference Surveying Geology and Mining Ecology Management, SGEM, Albena; Bulgaria; 18
458	June 2015 through 24 June 2015; Code 1540093(5), 2015, Pages 235-242, 2015.
459 460	Lewsey, C., Cid, G. and Kruse, E.: Assessing climate change impacts on coastal infrastructure in the Eastern Caribbean. Marine Policy, 28(5), 393-409, 2004.
461	Luoma, S. and Okkonen, J.: Impacts of Future Climate Change and Baltic Sea Level Rise on
462	Groundwater Recharge, Groundwater Levels, and Surface Leakage in the Hanko Aquifer in
463	Southern Finland. Water, 6(12), 3671-3700, 2014.
464 465	Mazi, K., Koussis, A. D. and Destouni, G.: Tipping points for seawater intrusion in coastal aquifers under rising sea level. Environmental Research Letters, 8(1), 014001, 2013.
466	Meier, M., Dyurgerov, M., Rick, U., O'Neel, S., Pfeffer, W., Anderson, R., Anderson, S. and Glazovsky,
467	A.: Glaciers dominate eustatic sea-level rise in the 21st century. Science, 317, 1064–1067, 2007.
468 469 470	Neumann, B., Vafeidis, A.T., Zimmermann, J. and Nicholls, R.J.: Future Coastal Population Growth and Exposure to Sea-Level Rise and Coastal Flooding—A Global Assessment. PLoS ONE 10(3): e0118571. doi: 10.1371/journal.pone.0118571. pmid:25760037, 2015.
471	Nicholls R. J., Marinova N., Lowe J. A., Brown S., Vellinga P., de Gusmão D., Hinkel J. and Tol, R. S. J.:
472	Sea-Level Rise and its Possible Impacts Given a "Beyond 4 °C World" in the Twenty-First Century.
473	Philosophical Transactions of the Royal Society A. Vol 369,s 161-181, 2011.
474	Olsson R., i samarbete med HagmarksMistras forskare: Hävd av strandängar, Mångfaldsmarker:
475	Naturbetesmarker – en värdefull resurs. Solna. Alfaprint. Centrum för Biologisk Mångfald, 135-147
476	(in Swedish), 2008.
477	Persson, K., Jarsjö, J. and Destouni, G.: Diffuse hydrological mass transport through catchments:
478	scenario analysis of coupled physical and biogeochemical uncertainty effects. Hydrology and Earth
479	System Sciences, 15, 3195-3206, 2011.
480	Raymond, C. M., Fazey, I., Reed, M. S., Stringer, L. C., Robinson, G. M. and Evely, A. C.: Integrating
481	local and scientific knowledge for environmental management. Journal of environmental
482	management, 91(8), 1766-1777, 2010.
483 484	Renn, O., Klinke, A. and van Asselt, M.: Coping with complexity, uncertainty and ambiguity in risk governance: a synthesis. Ambio, 40(2), 231-246, 2011.

Submitted to Special Issue Geomorphometry NHESS

- 485 Pradhan, B.: Use of GIS-based fuzzy logic relations and its cross application to produce landslide 486 susceptibility maps in three test areas in Malaysia. Environmental Earth Sciences, 63, 329-349, 487 2010. 488 Region Gotland, 2014. Gotland i Siffror. [PDF] Available at: http://www.gotland.se/64224 [Accessed 489 29 October 2014]. 490 Sales, R. F. M., 2009. Vulnerability and adaptation of coastal communities to climate variability and 491 sea-level rise: Their implications for integrated coastal management in Cavite City, Philippines. 492 Ocean & Coastal Management, 52(7), 395-404. 493 494 Sazvar, P.: Metodik för beräkning och utvärdering av vattentillgång i kustnära områden. KTH Land 495 and water resource engeneering. TRITA-LWR Degree Project ISSN 1651-064X LWR-EX-10-10, 2010. 496 Sharma, L. P., Patel, N., Ghose, M. K. and Debnath, P.: Synergistic application of fuzzy logic and geo-497 informatics for landslide vulnerability zonation—a case study in Sikkim Himalayas, India. GEM -498 International Journal on Geomathematics, 2 August, Issue 5, sid 271-284, 2013. 499 Sherif, M.M. and Singh, V.P: Effect of climate change on sea water intrusion in coastal aquifers. 500 Hydrological processes 13(8): 1277-1287, 1999. 501 Small, C. and Nicholls, R.J.: A global analysis of human settlement in coastal zones. Journal of Coastal 502 Research, 19, 584-599, 2003. 503 Stroeve, J., Holland, M., Meier, W., Scambos, T., Serreze, M.: Arctic sea ice decline: faster than 504 forecast. Geophys Res Lett, 34:L09501, 2007.
- 505 Tangestani, M. H.: A comparative study of Dempster–Shafer and fuzzy models for landslide
- susceptibility mapping using a GIS: An experience from Zagros Mountains, SW Iran. Journal of Asian
 Earth Sciences, januari, Issue 35, sid 66-73, 2009.
- Torresan, S., Critto, A., Rizzi, J. and Marcomini, A.: Assessment of coastal vulnerability to climate
 change hazards at the regional scale: the case study of the North Adriatic Sea. Natural Hazards and
 Earth System Science, 12(7), 2347-2368, 2012.
- Vias, J., Andrea, B., Perles, M. and Carrasco, F.: A comparative study of four schemes for groundwater
 vulnerability mapping in a diffuse flow carbonate aquifer under Mediterranean climatic conditions.
 Environ Geol 47:586–595, 2005.
- Williams, S. J.: Sea-level rise implications for coastal regions. Journal of Coastal Research, 63(1), 184196, 2013.

Submitted to Special Issue Geomorphometry NHESS

517 Table 1. Factors included in the risk analysis for saltwater intrusion.

Factor	Value	Risk value V	Weighted Risk value R·V	
Distance to coast (m)	< 300	2	6	
	300-500	1	3	
	>500	0	0	
Distance to lakes (m)	< 300	0	0	
	300-500	1	2	
	>500	2	4	
Soil type	Coarse sediments	2	4	
	Fine sediments	1	2	
	Bare bedrock	0	0	
	NoData	NoData	NoData	
Prec yearly average (mm)	< 600	2	2	
	600-700	1	1	
	>700	0	0	
Elevation asl	< 5	2	6	
	5-10	1	3	
	> 10	0	0	

Submitted to Special Issue Geomorphometry NHESS

520

521

- 522 Table 2. Proportions of various types of infrastructure, cultural- and environmental values that would
- be inundated in a 2 m sea level rise scenario. Areas are given in square kilometers (km²) and lengths 523
- 524 in kilometers (km).

	In current data			Inundated			Proportion, %			
Parameter	Area	Length	Number	Area	Length	Number	Area	Length	Number	
Gotland	3 147.4			98.8			3			
Infrastructure										
Roads ¹		5 723.8			131.2			2		
Individual buildings ²			16 570			520			3	
Power lines		312.3			3.1			1		
Wells			7 354			231			3	
Wind power stations ³			146			23			16	
Lumber yards			3			2			67	
Camping sites			20			7			35	
Lighthouses			31			7			23	
Cultural values										
Farming land	894.6			7.9			1			
Churches (smaller)			10			1			10	
Wind mills			212			3			1.5	
Ancient monuments			1 140			11			1	
Environmental values										
Wetlands	79.1			5.6			7			
Forests	1 597.9			22.3			1.5			
Conservation areas	311.0			59.2			19			
Shore meadows ⁴	31.0			18.6			60			
Bird nesting areas	47.6			6.0			13			
Endangered plant species habitat (coastal)	0.24			0.13			53			

525 $\overline{1}$ of which several are mid-sections. From visual inspection total loss is about two times the inundated length.

526 ² buildings (residential and others) outside "built up areas".

527 ³ unclear what year this data was updated exactly. There were 170 wind power stations in 2014 according to

528 Region Gotland (2014). All but one of the inundated stations are found along the southern coast.

529 ⁴ 68 % of the shore meadows are bordered landwards by open areas which possibly allow for habitat migration.

Submitted to Special Issue Geomorphometry NHESS

533 Figure 1. Study area. A) Location in Fennoscandia; B) topography and major settlements; C) road

network and landcover. 534

535

536

Submitted to Special Issue Geomorphometry NHESS

538

Figure 2. A) In case of a 2m sea level rise, 99 km² of Gotland's total area of 3140 km² will be

540 inundated, corresponding to 3% of Gotland's land area. B) Gotland is famous for its nature

541 attractions, e.g. the sea stack area in Digerhuvud's nature reservat, NW Gotland. B) Gotland has the

542 richest bird life in northern Europe. A number of bird protection areas, mostly located at the coast,

543 will be inundated. C) In some areas, the sea will intrude more than 1 km inland in case of a 2 m sea

544 level rise. Except for natural and cultural values, agricultural areas and wells will be affected. In some

545 cases, new islands will be created.

Submitted to Special Issue Geomorphometry NHESS

547

548 Figure 3. A) 231 out of a total of 7354 wells are located on elevations 0-2 m, corresponding to about

549 3% of all wells. These wells will be directly affected by sea level rise through inundation; however

- other wells on higher elevations further inland will be indirectly affected by salinization. B) Well
- 551 *density expressed as point density.*

Submitted to Special Issue Geomorphometry NHESS

553

554

555 Figure 4. A) Depth to groundwater. Values for each well were interpolated to one surface. B) The

groundwater surface across Gotland, calculated by subtracting the depth to groundwater from thetopography.

Submitted to Special Issue Geomorphometry NHESS

559

Figure 5. Factors included in the risk analysis for saltwater intrusion (see table 2 for further
explanation).

Submitted to Special Issue Geomorphometry NHESS

Figure 6. Risk of saltwater intrusion as a result of the addition of weighted risk values according to 564 565 table 2 and figure 5. A) Risk of saltwater intrusion in wells with the current (2015) sea level; B) Risk of 566 saltwater intrusion in wells after a 2m sea level rise (areas below 2m a.s.l. are subtracted), C) and D) 567 give zoom ins of southern Gotland for both scenarios, including well locations.

Submitted to Special Issue Geomorphometry NHESS

570 Figure 7. Risk value classes of wells on Gotland for today's (2015) sea level and after 2m sea level rise.

571 The number of wells in higher risk classes will increase. Wells below 2 m above the current sea level

572 will be inundated.

573