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Abstract: 13 

Based on a novel specification of the background error covariance applying to Argos 14 

profiles assimilation, an oceanographic three-dimensional variational (3DVAR) data 15 

assimilation scheme is set up in the Regional Oceanic Model system (ROMs). 16 

Temperature and salinity data extracted from Argos profiles in 2006 have been 17 

assimilated into the North-West Pacific Model (NWPM). The quality control is done 18 

by comparing background estimation with observations in 2006.Firstly, the 19 

assimilated results are compared with merged in-situ data, Sea Surface Temperature 20 

(SST) derived from satellite data and reanalysis salinity data. It is found that 21 

assimilation of Argos profiles can improve the model results of SST and salinity. 22 

Secondly, the Root Mean Square (RMS) difference between model and Argos profiles 23 

is analyzed. For the tropic Pacific, the range of RMS temperature (salinity) error are 24 

less than 0.83  (0.1℃ 1 PSU), decreasing ~23.2% (~18.8%) by comparing with the 25 

experiments without data assimilation. For the sub-tropic Pacific Ocean, the RMS of 26 

temperature (salinity) is less than 1.43  (0.1℃ 35 PSU) and it also shows a decreasing 27 

trend after assimilation. It’s indicated that the 3DVAR method works well in ROMs 28 

and can be used for the operational forecasting systems. 29 
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 32 

1. Introduction 33 

The Chinese Global operational Oceanography Forecasting System (CGOFS) running 34 

at National Marine Environmental Forecasting Center of China (NMEFC) is used to 35 

predict properties of global ocean, such as temperature, salinity, current, wave and sea 36 

ice. The operational North-West Pacific Model (NWPM) is a regional model of 37 

CGOFS consisting of a suite of nested model configurations, which produce daily 38 

analysis and forecast, out to 5 days ahead, of the ocean variables, and provide the 39 

nested configuration for East China Sea Model (ECSM) and South China Sea Model 40 

(SCSM). The model component of NWPM is based on the Regional Ocean Model 41 

System (ROMS) which is a free-surface, primitive equation ocean circulation model 42 

formulated using terrain-following coordinates. 43 

Model forecast requires the specification of initial conditions, and the accuracy of the 44 

forecast depends on the accuracy of the initial conditions. Data assimilation is a 45 

widely used and proved effective way to produce best estimates of the state of the 46 

physical system by integrating observations into prognostic model. Over the past few 47 

decades, many data assimilation methods have been developed for combining model 48 

and observational data. These can broadly split into three approaches: Kalman Filter, 49 

generally known as sequential schemes (Daley, 1991); Optimal Interpolation; and 50 

variational methods (Lorenc, 1986), which are based on minimization of a cost 51 

function that measures the differences between the model and the observations. The 52 

Ensemble Kalman Filter (EnKF) was introduced by Evensen et al. (2003). Because of 53 

the computational requirements limitation, the EnKF is not suitable for operational 54 

forecasting system. As an approximation of EnKF, Ensemble Optimal Interpolation 55 

(EnOI) scheme has been applied to ROMS to assimilate the along track Sea Level 56 

Anomaly (TSLA) (Lv et al., 2013). ROMS also is equipped with the four-dimensional 57 

variational assimilation (4DVAR) method (Tshimanga et al, 2008; Moore et al., 2011a, 58 

2011b), which isn't used in the operational forecasting system considering the 59 

computational requirements. With considering the 3DVAR is the soundest path to the 60 

ultimate development of more advanced data assimilation systems, Li et al (2008) has 61 
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developed a 3DVAR approach for ROMS independently. 62 

Three-dimensional variational (3DVAR) data assimilation method is a widely used 63 

method in oceanic operational forecasting systems (e.g. Li et al, 2008). In this study 64 

we applied an oceanographic three-dimensional variational data assimilation scheme 65 

called OCEANVAR (Dobricic and Pinardi, 2008) to ROMS to assimilate the 66 

Temperature and Salinity profiles from Argos. In order to illustrate and evaluate the 67 

performance of the assimilation scheme, it was applied to the north-west pacific with 68 

an eddy-resolving resolution. This system will be used in the future to augment the 69 

quality of initial conditions for daily forecasts that has started to produce on 70 

CGOFSv1.0. 71 

The paper is organized as follows. The section 2 describes the components of the data 72 

assimilation scheme for assimilating Argos profiles in the North-west Pacific. The 73 

results from data assimilation are presented in the section 3, with focusing on the 74 

performance of 3DVAR and multivariate properties. Finally, section 4 presents 75 

conclusions. 76 

2. Model and data 77 

2.1 model configuration 78 

The ROMS (Shchepetkin and McWilliams 2005; Malcolm et al., 2009) used in this 79 

paper is a free-surface and primitive equation ocean circulation model formulated 80 

using terrain-following coordinates, which is widely used in oceanic studies (Wang, et 81 

al. 2012, Lv et al,.2014) . The model domain in this study is North-west Pacific Ocean 82 

that extends from 8°S to 52°N and from 99°E to 160°E, as shown in Figure 2.1. The 83 

horizontal resolution is 1/20° in both zonal and meridional directions with a total 84 

horizontal grid points of 1098×1084 . In vertical, there are 30σ layers. The maximum 85 

depth is set to 7000 m to keep the pattern stable. The bathymetry used here is derived 86 

from GEBCO (General Bathymetric Chart of the Oceans), a global 30 arc-second 87 

gridded bathymetry, which was supplied by the Intergovernmental Oceanographic 88 

Commission and International Hydrographic Organization. To reduce the influence of 89 

the seamount on model stability, the bathymetry is smoothed appropriately. 90 

Considering the effects of an open boundary on simulation, southern, western and 91 
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northern boundaries are set as open boundaries, of which water level and velocity are 92 

also obtained from SODA. The internal model time step is 300s and the external 93 

model time step is 10s. The Yangtze River, Pearl River and Mekong River use 94 

monthly mean runoff values in the model.  95 

The model is spined-up for 10 years with the COADS (Comprehensive 96 

Ocean-Atmosphere Data Set) monthly climatological mean air-sea flux to get an 97 

initial state. From this initial condition, the model is forced by the NCEP/NCAR 98 

Reanalysis2 4× daily data to simulate condition for the period of 1990-2005. The 99 

initial conditions for both the control and the assimilation runs are provided by the 100 

simulated ocean state at the end of 2005. In additional, the control test for 2006 101 

without data assimilation provides a basis for comparison. 102 

  103 

Fig.2.1. Bathymetry of the North-west Pacific in the numerical model (depths in 104 

meters) 105 

2.2. Assimilation algorithms 106 

In recent years, progress in ocean data assimilation has been enabled along with the 107 

advances in computing machinery and mathematical roots. The basic goal of the 108 

ROMS 3DVAR system is to provide an “optimal” estimate of the true oceanic state at 109 

analysis time through solving the assimilation problem by minimizing the prescribed 110 
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cost function (Ide et al. 1997) 111 

																ࣤ ൌ ࣤୠ  ࣤ୭ 

																				ൌ ଵ

ଶ
ሺݔ െ ݔሻ۰ିଵሺݔ െ ሻݔ  ଵ

ଶ
ሾܪሺݔሻ െ ሻݔሺܪଵሾି܀ሿݕ െ  ሿ      (2.1) 112ݕ

Where x is the unknown ocean state, equal to the analysis xୟ	at the minimum of ࣤ; 113 

xୠ	is the background, which is ana priori estimate of the state of the ocean; y୭ is the 114 

vector of the observations; y ൌ Hሺxሻ  is transform the gridded analysis x  to 115 

observation space, with H is the linear observation operator; and B and R are the 116 

covariance matrices of the backgroundand observational errors, respectively. The Eq. 117 

(2.1) is linearized around the background state (e.g. Lorenc, 1997) into the following 118 

form: 119 

ࣤ ൌ ଵ

ଶ
δxBିଵδx  ଵ

ଶ
ሺHδx െ dሻRିଵሺHδx െ dሻ               (2.2) 120 

Where d ൌ ሾy୭ െ Hሺxୠሻሿ is the misfit, H is the linearized observations operator 121 

evaluated at x ൌ xୠ and	δx ൌ x െ xୠ	are the increments. The minimization problem 122 

is defined on the field of increments in Eq. (2.2) which has a single minimum. 123 

The 3DVAR system uses vertical Empirical Orthogonal Functions (v-EOFs) to 124 

represent vertical modes of the background-error correlation matrix. The new v-EOFs 125 

are considered time with monthly timescales. 126 

The use of adjoint operations, which can be regarded as a multidimensional 127 

application of the chain-rule for partial differentiation, permits efficient calculation of 128 

the gradient of the cost function. The Quasi-Newton L-BFGS (Limited-memory 129 

Broyden-Fletcher-Goldfarb-Shanno, Byrd et al., 1995) is used to efficiently combine 130 

cost function, gradient and the analysis information to produce the “Optimal” 131 

analysis. 132 

The data assimilation systems, such as OI, EnKF, and 3DVAR, have led to improved 133 

forecast scores relatively quickly. The practical advantages of VAR system over other 134 

methods are listed below. Firstly, the VAR solution uses all observations 135 

simultaneously, compared to the OI technique for which the process of data selection 136 

into artificial sub-domains is required; secondly, asynoptic data, such as satellite and 137 

radar observations, can be assimilated near its validity time; Thirdly, balance, for 138 

Nat. Hazards Earth Syst. Sci. Discuss., doi:10.5194/nhess-2016-53, 2016
Manuscript under review for journal Nat. Hazards Earth Syst. Sci.
Published: 10 March 2016
c© Author(s) 2016. CC-BY 3.0 License.



6 

weak geostrophy and hydrostatic, constraints can be built into the preconditioning of 139 

the coast function minimization. Even with such practical advantages, VAR system 140 

still shows some weaknesses in real practice. Firstly, given both imperfect 141 

observations and prior (e.g. background) information as inputs to the assimilation 142 

system, the quality of the output analysis depends crucially on the accuracy of 143 

prescribed errors. Secondly, although the variational method allows for the inclusion 144 

of linearized dynamical/physical processes, in reality, real errors in the prediction 145 

system may be highly nonlinear, which limits the usefulness of variational data 146 

assimilation in highly nonlinear regimes, e.g. the convective scale or in the tropics. 147 

3. Model Validation 148 

In this section, we show the results of the assimilation of in situ data from January 149 

2006 to March 2007. We discuss the validation of the analysis to evaluated the 150 

performance of the assimilated model, wherein the simulated fields and the analysis 151 

fields are called SF and AF, respectively. 152 

3.1. Consistency 153 

Consistency checks were carried out by comparing the AF monthly mean SST with 154 

the Merged satellite and in situ data Global Daily Sea Surface Temperatures 155 

(MGDSST).  156 

Fig. 3.1 shows monthly mean average SST in January, April, July and October of 157 

2006 from simulation and MGDSST respectively. The model SST (Fig. 3.1(b)) is 158 

consistent with that derived from MGDSST (Fig. 3.1(a)). In subtropical basins, 159 

temperature is generally high near the western boundary. While in sub-polar basins, 160 

the zonal temperature gradient reverses sign, with low temperature in the western 161 

basin. In addition, SST is reduced in pole-ward direction, with high temperature in the 162 

equatorial Pacific and low temperature in the polar Pacific. Simulated SST is higher in 163 

summer and lower in winter, compared to MGDSST (Fig. 3.1(d)). SST is generally 164 

similar to the MGDSST in subtropical basins, meanwhile shows the pattern of high in 165 

summer and low in winter, to the north of 40°N. The ocean model at high spatial 166 

resolution can reasonably simulate the distribution of the warm pool.  167 

In order to understand the effect of data assimilation for temperature, Fig. 3.1(b) and 168 
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Fig. 3.1(c) show the differences between the observation and analysis or simulation, 169 

respectively. First of all, the AF SST errors are generally smaller than the 170 

corresponding SF, thus closer to the MGDSST observations. The SST has substantial 171 

improvement in the South China Sea, the East China Sea and the Subtropics Pacific 172 

after data assimilation. The SST error in Kuroshio Extension also has improvement in 173 

the AF in agreement with the in-situ and satellite observations. 174 

Fig. 3.2 shows the salinity profiles of simulations and observations, which are derived 175 

from the EN4.0.2 dataset at 150 m (1°×1°, Good et al., 2013). Although the AF 176 

salinity for the tropic Pacific is less saline than the observation, the AF salinity for the 177 

sub-tropic Pacific is very similar with the observation, which means that AF salinity 178 

can catch main characteristics of actual salinity patterns.  179 

Temperature section of 136°E is presented in Fig. 3.3, which shows some significant 180 

qualitative differences. Fig. 3.3(b) shows the section with the AF and Fig 3.3(a) shows 181 

the corresponding observation of EN4.0.2. Fig. 3.4(a) and Fig. 3.4(b) show the 182 

salinity section with AF and EN4, respectively. The assimilation is capable of 183 

modifying the vertical extension of Pacific. 184 
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 185 

Fig. 3.1. Monthly mean temperature at 150 m depth (℃) for January, April, July and October 186 

2006.(a)The SST of AF; (b)difference between MGDSST and AF; (c) difference between 187 

MGDSST and SF. 188 

 189 

Fig. 3.2. Monthly mean salinity at 150 m depth (in psu) in January, April, July and October 190 

2006.(a) EN4, (b) AF 191 
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 192 

Fig. 3.3. Temperature (in℃) section of 136°E for(a) EN4 and (b) AF 193 

 194 
Fig. 3.4. Salinity (in psu) section of 136°E for(a) EN4 And (b) AF 195 

Finally, a qualitative analysis of the impact of the assimilation in the modeling region 196 

is shown as follow. In Fig. 3.5(a), (b), (c), and (d), the differences in the study region 197 

of before and after assimilation profiles are shown together with the observed profiles. 198 

As shown, the profiles after assimilation are between the SF profiles and the 199 
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observations. The comparison results show that the data assimilation system is 200 

capable of correcting the model, with an effect of bringing the model closer to the 201 

observations. 202 

 203 
Fig. 3.5. The vertical profiles for temperature (in℃) and salinity (in psu), where, red line 204 

stands for AF, black line stands for SF and blue line stands for observation; vertical and 205 

horizontal axes are depth (m) and temperature or salinity, respectively. 206 

3.2 Accuracy 207 

Some quantitative information on the analysis quality can be obtained by comparing 208 

the analyses with the observations at the observation locations. We use the misfit error 209 

which is the difference between the observation and the SF or AF to analyze the 210 

improvement of the model solution due to the regular data assimilation, although the 211 

data isn’t independent. The Root Mean Square (RMS) between the SF or AF values 212 

and the observation values is defined as: 213 

RMS ൌ ටଵ

୬
∑ ሺφ୫ െ φ୭ሻଶ୬
୧ୀଵ                       (3.1) 214 

where, φ୫  and φ୭  stand for model and observation values of temperature or 215 

salinity respectively, n is the number of observation during the assimilation cycle. 216 
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Fig. 3.6 shows the RMS of temperature and salinity misfits which calculated as Argo 217 

observation minus background value. The experiment with 3DVAR analyses has a 218 

lower RMS of misfits than the experiment without assimilation. Furthermore, the 219 

RMS with the assimilation becomes practically insignificant in deeper layer of the 220 

ocean. As shown in the left panel of Fig. 3.6, the RMS of temperature misfits has the 221 

maximum at ~100 m depth which approximately corresponds to the depth of the 222 

mixed layer. The RMS of temperature misfits is relatively small close to the surface, 223 

probably due to the fact that surface temperature is relaxed towards MGDSST 224 

observations in both experiments. As shown in the right panel of Fig. 3.6, the RMS of 225 

salinity misfits is significantly reduced after assimilation, especially at the depths 226 

between ~200 m and ~400 m. However, the RMS of misfits increases towards the 227 

surface in both experiments. The reason can be explained by the surface water and salt 228 

flux, which is computed by relaxing the surface salinity towards climatology in the 229 

model.  230 

 231 

Fig. 3.6. The vertical RMS for temperature (a) and salinity (b),where red line is the RMS of 232 

misfits from AF, and blue line is the RMS of misfits from SF  233 

To show how the assimilation impacts the quality of temperature and salinity in the 234 

North-west Pacific, the RMS differences between AF and SF for the 1-year 235 
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assimilation interval are displayed in Fig. 3.7 and 3.8. The statistics are divided into 236 

two regions, the tropics (the south of 23.5°N, Fig. 3.7) and outside the tropics (the 237 

north of 23.5°N, Fig. 3.8). The red line and blue line stand for the RMS of AF and SF 238 

respectively in both figures ,. 239 

In the tropics, the AF performs better and better than the SF over time. As shown in 240 

the upper panel of Fig. 3.7, the RMS of AF and SF temperature misfits approximately 241 

fit the observation equally well, only with the AF slightly closer to the observation 242 

data. The RMS of AF is ~0.83 °C in 2006, which is improved by ~ 23.2% compared 243 

to ~1.08 °C of SF. As shown in the lower panel of Fig. 3.7, the RMS of AF salinity 244 

misfits performs better than the RMS of SF, with ~0.112 (PSU) of AF compared to 245 

~0.138 (PSU) of SF. 246 

 247 

Fig. 3.7.The RMS misfits for temperature ((a), in ℃) and salinity ((b), in psu) in tropic during 248 

assimilation year (2006), where red line stands for RMS misfits with data assimilation and 249 

blue line stands for RMS misfits without data assimilation. 250 

In the sub-tropic, the RMS of AF also performs a greater improvement than SF. As 251 

shown in the upper panel of Fig. 3.8, the RMS of AF is ~1.43 °C in 2006, which is 252 

improved by ~ 25.1% compared to ~1.91 °C of SF. As shown in the lower panel of 253 

Fig. 3.8, the RMS of AF salinity misfits performs better than the RMS of SF, with 254 

~0.135 (PSU) of AF compared to ~0.173 (PSU) of SF, which is improved by ~ 22.0%. 255 
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 256 

Fig. 3.8. The RMS misfits for temperature ((a), in ℃) and salinity ((b), in psu) in sub-tropic 257 

during assimilation year (2006), where red line stand for RMS misfits with data assimilation 258 

and blue line stand for RMS misfits without data assimilation. 259 

4. Summary 260 

In this paper, we implement 3DVAR on ROMS with the ability to assimilate the T&S 261 

Argos profiles. The data assimilation system is tested on an eddy-resolving model of 262 

the North-west Pacific. A specific feature of ROMS 3DVAR system is separating the 263 

background error covariance matrix into vertical and horizontal modes in order to 264 

reduce the order of the data assimilation. Horizontal covariance is modeled as 265 

Gaussian function, whilst vertical covariance which is calculated from a long-term 266 

model simulation is represented by Empirical Orthogonal Functions (EOFs). 267 

The T&S of Argos profiles are assimilated into the North-west Pacific model for the 268 

period of 2006. Results show that the assimilation system can get a beneficial effect in 269 

the model region. 270 

The analysis produced by the data assimilation has been validated by the monthly 271 

means SST from satellite, which is an independent observation. In the model region, 272 

the data assimilation system has the capability of “bringing” the model closer to the 273 

observations.  274 

Statistical indexes indicate that the RMS of misfits for temperature is less than 1.0 °C 275 

in the tropics domain and less than 1.5 °C in the subtropics domain with the main 276 
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error from the Kuroshio Extension region. The RMS misfit salinity error is less than 277 

0.15 PSU in the model region. 278 
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