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Abstract. A super-ensemble methodology is proposed to improve the quality of short-term ocean analyses for Sea Surface

Temperature (SST) in the Mediterranean Sea. The methodology consists in a multi-linear regression technique applied to a

Multi-Physics Multi-Model Super-Ensemble (MMSE) dataset. This is a collection of different operational forecasting analyses

together with ad-hoc simulations, created by modifying selected numerical model parameterizations. A new linear regression

algorithm based on Empirical Orthogonal Function filtering techniques is shown to be efficient in preventing overfitting prob-5

lems, although the best performance is achieved when a simple spatial filter is applied after the linear regression.Our results

show that the MMSE methodology improves the ocean analysis SST estimates with respect to the Best Ensemble Member

(BEM) and that the performance is dependent on the selection of an unbiased operator and the length of training. The quality

of the MMSE dataset has the largest impact on the MMSE analysis Root Mean Square Error (RMSE) evaluated with respect

to observed satellite SST. The MMSE analysis estimates are also affected by changing the training period with the longest10

period leading to the smoothest estimates. Finally, lower RMSE analysis estimates result from the following: a 15 days training

period, an overconfident MMSE dataset (a subset with the higher quality ensemble members), and the least square algorithm

being filtered a posteriori.

Keywords. Ocean analysis skill - Superensemble - Dataset composition - Overfitting

1 Introduction15

The limiting factors to short-term ocean forecasting predictability are the uncertainties in ocean initial conditions, atmospheric

forcing Pinardi et al. (2011), lateral boundary conditions tighter with numerical model representation and numerical inaccura-

cies. To assess and control these uncertainties, an ensemble approach can be used as shown, for example, by Kalnay and Ham

(1989) where the simple ensemble mean is shown to have a smaller Root Mean Square Error (RMSE) than each contribut-

ing member. The assumption that different models may have complementary forecasting and analysis skills emerged from20

the pioneering work of Lorenz (1963), when the notion of an ensemble forecast was first described, which was obtained by
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factorizing all the members‘ performances. Most common ensemble forecasts came from a single model running with a set

of perturbed initial, lateral or vertical boundary conditions. Hence the implicit hypothesis is that forecast errors arise from

inaccurate initial/boundary conditions, while the model is considered as being perfect. Accounting for the model error was the

first step in multi-model ensemble forecasting. Feddersen et al. (1999) reported that the low ensemble spread is likely to be

produced by correlated models, hence only a set of different models is expected to reduce the model systematic error. Shukla5

et al. (2000) proposed a combination of member predictions with similar forecast skills in order to further reduce the posterior

forecast error calculated from the multi-model ensemble. The optimal combination of several model outputs (each with its own

strengths and weaknesses) that can sample the forecast uncertainty space is the underlying idea behind Super Ensemble (SE)

estimates. In this paper we used the heuristic SE concept of Krishnamurti et al. (1999) where different and independent model

forecast members are merged using a multiple linear regression algorithm. This method led to a reduced forecast RMSE for10

the 850-hPa meridional wind and hurricane tracking in the Northern Hemisphere. The Multi-Model Super Ensemble (MMSE)

approach was then subsequently (Evans et al., 2000; Krishnamurti et al., 2000; Stensrud et al., 2000). While ensemble tech-

niques are routinely used in operational weather forecasting (Toth and Kalnay, 1997; Stephenson and Doblas-Reyes, 2000), SE

and MMSE approaches have mostly been applied in seasonal studies (Krishnamurti et al., 1999; Stefanova and Krishnamurti,

2002; Pavan and Doblas-Reyes, 2000; Kharin and Zwiers, 2002) . Only preliminary work has been carried out in ocean fore-15

casting. The work of Rixen et al. (2009) is a reference for temperature predictions, simulated ocean trajectory SE methods are

described in Vandenbulcke et al. (2009), while Lenartz et al. (2010) presents a SE technique with a Kalman filter to adjust three

dimensional model weights. Rixen et al. (2008) introduced the concept of a hyper-ensemble, which combines atmospheric and

oceanographic model outputs. In this paper we develop a new MMSE method to estimate Sea Surface Temperature (SST) as

this is an important product of ocean analysis systems with multiple users. Accurate knowledge of SST is fundamental both20

for climate and meteorological forecasting, therefore increasing the capacity of SST analyses is crucial for the uptake of op-

erational products. A MMSE dataset is constructed to sample the major error sources for the SST forecast and a new linear

regression algorithm is developed and calibrated. After a description of the multi-model data set in Section 2, a comprehensive

explanation of the super-ensemble technique is reported in Section 3. Sensitivity studies on SE algorithm choices are proposed

in Section 4. Finally, conclusions are drawn in Section 525

2 Multi-Model Multi-Physics Dataset

The MMSE dataset includes the collection of daily mean outputs from five operational analysis systems in the Mediterranean

Sea and four outputs from the same operational forecasting model but with different physical parameterization choices. The

study period lasts from 1 January 2008 to 31 December 2008. The main differences between the MMSE members are mainly

due to the different numerical schemes used, the data assimilation scheme and the model physical parameterizations. Optimally30

Interpolated satellite SST observations (OI-SST) (Marullo et al., 2007) are used as the truth estimator and the model outputs

are compared with the satellite OI-SST to assess their quality. The main characteristics of MMSE members are listed in Table

1, while a more detailed description of the originating analysis and forecasting systems can be found in Appendix A. Our aim
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is to estimate the most accurate daily SST for a 10-day analysis period that took place after a training period defined in the past.

The resulting MMSE estimate is also called a posterior analysis. The similarities and differences between MMSE members

and the OI-SST data set is quantified in terms of the anomaly correlation coefficient (ACC), root-mean-square error (RMSE)

and normalized standard deviation (STD). These statistical scores are listed in Table 2 for each MMSE member for the whole

of 2008, with the seasonal cycle removed. MercatorV0 best reproduces the STD of the observations, while INGV-SYS4a35

analysis has a higher ACC and lower RMSE. Thus hereafter INGV-SYS4a3 will be called the Best Ensemble Member (BEM).

3 Super Ensemble Methodology

Our SE methodology is based on Krishnamurti et al. (1999). Let us call S1t the SE estimate of a model state variable, Fi,t the

model state at time ‘t‘ and for the ‘i-th‘model. Let us define two different periods, the training and analysis periods, the former

period preceding the target analysis period. A S1t estimator is then defined as:10

S1t =O+
∑N

i=1 ai

(
Fi,t−Fi

)

O = 1
M

∑M
t=1Ot

(1)

where Fi and O are the time mean over the training period, as defined in Appendix B, ai are the regression coefficients, N

is the number of SE members and M is the number of training period days. The regression is unbiased because the time mean

of the dataset is removed and only model field anomalies are used. The regression coefficients are computed as a classical

multilinear ordinary least squares problem. Let us define the covariances of the model ensemble members as:15

M∑

t=1

(
Fi,t−Fi

)(
Fj,t−Fj

)
≡ Γi,j (2)

and the covariance between observations and model anomalies

M∑

t=1

(
Fj,t−Fj

)(
Ot−O

)
≡ φj (3)

The regression coefficients are then written as:

ai = (Γi,j)−1 ·φj =
M∑

t=1

((
Fi,t−Fi

)(
Fj,t−Fj

))−1 ((
Fj,t−Fj

)(
Ot−O

))
(4)20

Yun et al. (2003) reported a skill improvement in the SE algorithm when the seasonal signal is removed prior to the regression

procedure. The second SE method, called S2t , uses the same regression algorithm of Eq.4, but with the seasonal cycle

subtracted instead of the training period time mean. The definition of the new unbiased estimator is presented in Appendix B.

Kharin and Zwiers (2002) suggested that the poor performance of MMSE algorithms is due to overfitting i.e. biased estimates

of the regression coefficients. This means that not all the model members and the observations used in the estimation are really25

independent and the matrix inversion in Eq. 4 is near to being singular. In order to reduce overfitting, several methods have

been proposed. Following Boria et al. (2014) who used a spatial filter to reduce overfitting in ecological niche models, we
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developed a new method, called S3, which filters the S2 estimates with a simple spatial median filter with a radius of 12km.

This radius is related to the first baroclinic Rossby radius of deformation in the Mediterranean Sea (e.g., Robinson et al., 1987;

Pinardi and Masetti, 2000). A principal component regression coefficient technique defined by von Storch and Navarra (1995)

offers an alternative way of performing the regression ensuring more uncorrelated variables. In our formulation it is suggested

that the Fi,t are decomposed into horizontal Empirical Orthogonal Function (EOF) mode singular vectors of a data matrix5

which contains the training period model and observed fields. Thus we form a state variable vector Θ that contains model and

observation anomalies for the training period:

Θ =
[
O′tF

′
i,t

]
(5)

Here the variables O′tF
′
i,t indicate anomalies with respect to the seasonal and the training period. Decomposing the matrix Θ

into a horizontal EOF, called eof(x,y), and temporal amplitudes, Θ we can write the least square solution of Eq. 4 computed10

for the amplitudes of the spatial EOFs. The O′t and F ′i,t fields will be projected into the retained eof(x,y) to obtain:

F ′i,m =
p∑

k=1

αk,m (ti)eofk (x,y) ; O′i =
p∑

k=1

βk (ti)eofk (x,y) (6)

M∑

t=1

αj,tαj,t = Γeof
i,j (7)

15

M∑

t=1

αi,tβj,t = φeof
j (8)

The regression coefficients are now written for each eof component as follows:

aeof
i =

(
Γeof

i,j

)−1

·φeof
j =

(
M∑

t=1

αi,tαj,t

)−1 M∑

t=1

αj,tβj,t (9)

A new SE estimate, S4, is now defined as:

S4t =O′+
N∑

i=1

aeof
i ·

(
F ′i,t−F

′
i

)
(10)20

The different statistical regression algorithms are summarized in Table 3.

4 MMSE experiments

In this section we describe the MMSE experiments carried out to test the four regression algorithms. For all our regression

algorithms, we selected a test analysis period from 25 April to 4 May 2008, while the related training period was chosen

as a number n of days before April 25, depending on the different experiments in order to test sensitivity on the selected25

training period length. Our results refer to the whole of 2008, where ten days analyses were performed twice a week after the

computation of weights during the training period.
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4.1 Classical SE method experiments

On the basis of a 15-day training period, Figure 1 shows the S1 and S2 posterior estimates for the first day of the test analysis

period. S1 and S2 reconstructed SST fields are very noisy compared to observations and both S1 and S2 are clearly worse than

the BEM estimate. The two estimates at the end of the test analysis period are shown Figure 2, where the overfitting problem

is even more evident. The field noise can be reduced by lengthening the training period to 35 days, as shown in Figure 3 and in5

Figure 4. Both S1 and S2 predictions show a reduction in the warm bias with respect to the BEM in the eastern Mediterranean

(Figure 1 and Figure 2). However S1 does not show any improvement in terms of RMSE and ACC (data not shown). In order

to examine the effect of the specific MMSE members on the S1 estimation performance, we create three different MMSE

datasets (Table 4). Dataset A corresponds to an overconfident (Weigel et al., 2008) dataset or correlated ensemble members.

We consider dataset B, which is well-dispersed, to be the best and the worst ensemble member, together with other correlated10

members i.e. with similar RMSE standard deviation (STD) and ACC (see Table 4), while dataset C, which is poorly-dispersed,

considers worst members together with correlated members.

To quantify the differences between the three data sets, a bias indicator d is estimated. This value corresponds to the domain

averaged SST difference as follows:

d= 〈Ft (x,y)−Ot (x,y)
Ot (x,y)

〉 (11)15

where the triangular parentheses indicate the domain average. If d is close to 0, this means a small data set bias, while a

positive (negative) d means a SST positive (negative) bias. Figure 5 shows the distributions of d for different MMSE datasets.

The distributions are bimodal with two maxima, the first around 0oC and the second around 0.05oC, which means that the

dataset statistically tends to overestimate the spatial mean SST. From these distributions we can also observe that:

– dataset A has the smallest bias because the d=0oC peak is larger than the peak at 0.05oC;20

– for dataset B, which is constructed from well-dispersed model ensemble members, the two peaks become of equivalent

amplitude and

– for dataset C, which is constructed from badly-dispersed model ensemble members, the estimate enhances the positive

bias.

Figure 6 presents the histogram of d for the S1 estimates on the first day of analysis for the whole of 2008 as a function of the25

full and subsampled MMSE datasets. It is evident that all the MMSE datasets give a S1 distribution peak around d=0 oC with

a strong reduction in the distribution width. This means that the algorithm is capable of neglecting the information from biased

members. The small S1 bias remains the same till the fifth day of the analysis period (not shown) after which the performance

of the algorithm starts to deteriorate. On the last day, there is a nearly flat histogram (Figure 7 ). This means that unbiased

analyses can be produced for up to five days with a 15 days training period, no matter which MMSE data set is used. With30

respect to RMSE, different MMSE datasets and training period lengths give different results already on day 1 of the analysis

period, as shown in Table 5, both for S1 and S2 posterior analysis estimates. It is now evident that the overconfident dataset and
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the longest training period (35 days) produce on average the lowest RMSE values during the analysis period. In conclusion,

the Krishnamurti et al. (1999) method can be applied relatively successfully to the oceanic multi-model state estimation case,

using at least a 14 (and up to 35) day training period and with only a 5-member ensemble dataset if the quality of the chosen

members is high. However, the S1 and S2 estimates are both affected by noise and only a modification in the regression method

will lead to a low RMSE posterior analysis noiseless estimate.5

4.2 New SE method experiments

In order to reduce the overfitting of the SE estimate, here we show the results of the S3 and S4 algorithms. Both proposed

methodologies are used with the overconfident dataset (dataset A) and a 15-day training period. In S4, the number of retained

EOFs is changed for each experiment and this number is chosen in order to account for 99.5% of the system variance. Figure

8 shows the number of retained EOFs as a function of seasons and for different training period lengths. The minimum number10

of retained EOFs is 46 with a 15-day training period, while the maximum number is 164 obtained with 35 days. As expected,

the number of EOFs retained increases when we extend the training period, with some variability during the year. Usually the

minimum number of EOFs was found in the summer. The S3 and S4 posterior estimates are shown in Figure 9 and Figure

10 for the first day of the test analysis period. Both estimates are much smoother than the equivalent S1 and S2 estimates in

Figure 1. The S3 also seems to be less biased with respect to observations. A map of the differences between the truth and the15

SE estimates highlights the better performances of S3 compared to S4 for the whole test analysis period (not shown). Error

statistics for the various methods were computed for all of 2008, we again produced a 10-day analysis from the overconfident

training dataset A every 4 days with a variable training period from 15 to 35 days. The RMSE is shown Figure 11. The best SE

method is given by S3 which has about half of the RMSE value of the BEM for the whole of 2008. This is due to the fact that

filtering acts as a smoother by keeping the large-scale bias small, while EOFs do not control bias at the large scale. Following20

Murphy (1993) we evaluate the ACC in order to assess the “consistency” of the proposed SuperEnsemble estimate. ACC values

are listed in Table 6. As a result of this skill, S3 decreased its consistency in relation to an increase of the length of the training

period. On the other hand, S4 had a constant ACC irrespectively of the chosen training period. However B.E.M was the most

“consistent” member. This means that although our SE can be used as a statistical tool, physical constraints are needed in order

to have more consistent maps too. Nevertheless it should be highlighted that S1 and S2 are even less consistent compared to25

the worst contributing member. BIAS skills were also evaluated for the proposed methodologies, however as expected due to

their construction, all the SE estimates were unbiased. Thus no inference can be drawn from the BIAS skills.

5 Conclusions

We developed a Multi-Model Multi-Physics Super-Ensemble (MMSE) methodology to estimate the best SST from different

oceanic analysis systems. Several regression algorithms were analyzed for a test period and the whole of 2008. We examined30

different conditions when the MMSE estimate outperforms the BEM of the generating ensemble. The target was to obtain

10-day posterior analyses using a training period in the past for the regression algorithm and to generate the lowest bias and

6
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RMSE for the MMSE estimates. The results show that the ensemble size, quality and type of members, and the training period

length are all-important elements of the MMSE methodology and require careful calibration. Almost 2000 posterior analyses

were produced for 2008 with different training periods. The classical SE approach, as proposed by Krishnamurti et al. (1999)

, here called the S1 estimate, cannot be successfully applied to estimate oceanic MMSE SST. An initial improvement to S1,

named S2, is the subtraction of the seasonal signal in the ensemble members and the unbiased estimator. This leads to a5

strong reduction in RMSE (more than 20%) but the resulting field is noisy compared to observations. This is the well-known

overfitting problem of the technique described in Kharin and Zwiers (2002). The further modification of S2 using a simple

spatial filter, names S3, can give lower RMSE values than the BEM for the entire 10-day analysis period. A new methodology,

based on EOFs, named S4, also reduces the RMSE. However S3 outperforms S4 and could represent a practical technique for

applications in operational oceanographic analyses for up to 10 days on the basis of the previous 15 days of analyses. This is10

only a starting point. MMSE techniques for ocean state estimation problems require further study before optimal methods can

be found. In this paper we show that with a rather limited but overconfident dataset (with a low bias of the starting ensemble

members), the RMSE analysis can be improved. This posterior value added estimation could, for example, be used to produce

a more accurate MMSE analysis dataset. Future developments could involve the addition of physical constraints during the

regression, considering for example cross-correlations with atmospheric forcing. MMSE should also be applied to the ocean15

forecast problem instead of the analysis problem. The difference for MMSE forecast estimates is that atmospheric forecast

uncertainties are not contained in training period analyses, and the size of the ensemble members required could increase

considerably, as well as the complexity of the estimation problem.
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Appendix A: Dataset description

The analysis systems that generated the ensemble members of the experiments used in this paper are briefly described below:

– SYS3a2: System composed of the numerical code of OPA8.2 implemented in the Mediterranean Sea (Tonani et al., 2008) and 3DVAR

assimilation scheme (Dobricic and Pinardi, 2008);

– SYS4a3: uses NEMO 2.3 (Oddo et al., 2009) as a numerical model and also 3DVAR for the assimilation. Other differences are due5

to the different boundary conditions, since here the model is nested within the monthly mean climatological field computed from the

daily output of the MERCATOR 1
4

o resolution global model;

– Mercator V0 (PSY2V3R1): The numerical code is based on NEMO 1.09 and it is implemented in the North Atlantic and Mediterranean

Sea with a horizontal resolution of 1
12

o and 50 vertical levels. Real time system from 2008 to 2010, was initialized for a calibration

phase in 2006. ECMWF analysis and forecasts are coupled daily. The data assimilation scheme is based on a local Singular Evolutive10

Extended Kalman Filter (Pham et al., 1998) and the observation assimilated are in situ Temperature and Salinity profiles in the

CORIOLIS database, together with SST and along track SLA. Further details are described in Brasseur et al. (2005) .

– Mercator V1(PSY2V4R1): The numerical code is based on NEMO 3.1 version and it is implemented in the North Atlantic and

Mediterranean Sea with a horizontal resolution of 1
12

o and 50 vertical levels. The real time system was initialized in October 2006

from a 3D climatology of temperature and salinity (Levitus et al., 2005) providind analysis and forecast from 2010 to 2013. The code15

includes several improvement in the model configuration as open boundary condition (from the global system) and higher frequency

atmospheric forcing (each 3hours). The data assimilation scheme it’s pretty closer to the previous version plus a bias correction based

on 3Dvar assimilation scheme (Lellouche et al., 2013)

– HCMR: Hellenic Centre for Marine Research (Korres et al., 2009). The Mediterranean Sea model is based on Princeton Ocean

Model (POM) code a primitive equations 3-D model using Mellor-Yamada 2.5 turbulence closure scheme. The model has a bottom20

- following vertical sigma coordinate system, a free surface and a split mode time step. Potential temperature, salinity, velocity and

surface elevation, are prognostic variables. The model has a horizontal resolution of 1
10

o and 25 sigma layers along the vertical with a

logarithmic distribution near the surface and the bottom. The model includes parameterization of the main Mediterranean rivers while

the inflow/outflow at the Dardanelles is treated with open boundary techniques. The Mediterranean model is forced with hourly surface

fluxes of momentum, heat and water provided by the Poseidon - ETA high resolution ( 1
20

o) regional atmospheric model (A. and P.,25

2009) issuing forecasts for 5 days ahead. The assimilation system for the Mediterranean Sea hydrodynamic model is very similar to

the one presented in the work of Korres et al. (2010). It is based on the SEEK filter with covariance localization and partial evolution

of the correction directions. The error covariance matrix is approximated with 60 EOF modes (correction directions) where the first

18 (the most dominant ones) are evolved with the model dynamics while the rest are kept invariant in time. The localization technique

adopted for the Mediterranean Sea forecasting system is explained in (Korres et al., 2010). The method localizes the covariance matrix30

by neglecting observations beyond a cut-off radius which is selected upon sensitivity studies to be equal to 200 km.

– NEMO Multi-Physics: This is the same as SYS4a3 NEMO 2.3 code without assimilation but with different model physical parame-

terizations.

8
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Appendix B: Algorithm time averages and projection on EOFs

Here we show how the observed and model fields are decomposed into different temporal signals. Let us consider to be the daily OI-SST and

one of the model members daily mean SST. We decompose the signal into seasonal mean, training mean and anomaly. Considering the two

time average operators:

〈f (x,y)〉s =
1

q

q∑
t=1

f (x,y, t)) (B1)5

〈f (x,y)〉TR =
1

N

N∑
t=1

f (x,y, t)) (B2)

where “q” is the number of days in the month of the year with a value evaluated over a long time-series mean from 2001 to 2007. and N is

the number of training days, we write:

O (x,y, t) = 〈O (x,y)〉S + 〈O (x,y)〉TR + O′ (x,y, t)

F (x,y, t) = 〈F (x,y)〉S + 〈F (x,y)〉TR + F ′ (x,y, t)
(B3)

The last term on the right of B3 is the anomaly term used in Eq. 4 and 910
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MMSE

member

name

CODE Vertical mix-

ing scheme

Horizontal

Diffusion

Horizontal

Viscosity

Assimilation

scheme

INGV-

SYS3a2

OPA 8.2

(Madec

et al., 1998)

(Pacanowski

and Philan-

der, 1981)

Bilaplacian Bilaplacian 3Dvar (Do-

bricic and

Pinardi,

2008)

INGV-

SYS4a3

NEMO 2.3

(Madec,

2008)

(Pacanowski

and Philan-

der, 1981)

Bilaplacian Bilaplacian 3Dvar (Do-

bricic and

Pinardi,

2008)

Mercator-V0 NEMO 1.09

(Madec,

2008)

k-espsilon

(Gaspar

et al., 1990)

Bilaplacian Isopycnal

laplacian

SAM2

(Brasseur

et al., 2005)

Mercator-V1 NEMO 3.1

(Madec,

2008)

k-espsilon

(Gaspar

et al., 1990)

Bilaplacian Isopycnal

laplacian

SAM2 +

3DVAR

(Lellouche

et al., 2013)

HCMR Princeton

Ocean Model

(Mellor and

Blumberg,

1985)

k-l (Mellor

and Yamada,

1982)

Laplacian Bilaplacian Seek filter

(Pham et al.,

1998)

INGV MP 1 NEMO 2.3

(Madec,

2008)

(Pacanowski

and Philan-

der, 1981)

Bilaplacian Bilaplacian no

INGV MP 2 NEMO 2.3

(Madec,

2008)

k-espsilon

(Gaspar

et al., 1990)

Bilaplacian Bilaplacian no

INGV MP 3 NEMO 2.3

(Madec,

2008)

(Pacanowski

and Philan-

der, 1981)

Laplacian Bilaplacian no

INGV MP 4 NEMO 2.3

(Madec,

2008)

(Pacanowski

and Philan-

der, 1981)

Laplacian Laplacian no

Table 1. Multi-Physisc Multi-Model SE members model and data assimilation characteristics: the column list the most significant differences

between the models in term of code and model physical parameterizations
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MMSE mem-

ber

STD/STD(OI-

SST)

RMSE ACC

OI-SST 1.00 0.00 1.00

INGV-SYS3a2 1.16 0.16 0.91

INGV-SYS4a3 1.08 0.15 0.91

Mercator-V0 0.96 0.17 0.87

Mercator-V1 0.81 0.19 0.81

HCMR 0.81 0.20 0.80

INGV MP 1 0.82 0.17 0.87

INGV MP 2 0.83 0.16 0.87

INGV MP 3 0.86 0.17 0.86

INGV MP 4 0.87 0.17 0.86
Table 2. Dataset statistics, from left to right: Standard Deviation (STD) (with monthly mean seasonal signal removed) normalized by STD

of OI-SST , Centered Root Mean Square Error (RMSE) between Members and OI-SST and Anomaly Correlation Coefficient (ACC). All the

values were evaluated over the year 2008

MMSE methods Extended Name Main Characteristics

S1 Classical SE Krishnamurti et al. (1999) re-

gression

S2 Classical SE Modified Seasonal signal removal before

the regression

S3 Spatially filtered SE Seasonal signal removal before

the regression and spatial filter

applied to the regression esti-

mate

S4 EOFs based SE EOFs evaluated from observa-

tions and members and regres-

sion performed on the EOF co-

efficients.
Table 3. Nomenclature and characteristics of the four MMSE algorithms used
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MMSE data set A (Overconfi-

dent Dataset)

MMSE data set B (Well dis-

persed Dataset)

MMSE data set C (Bad Dis-

persed Dataset)

INGV-SYS3a2 INGV-SYS3a2 Mercator V1

INGV-SYS4a3 HCMR HCMR

Mercator V0 INGV MP1 INGV MP1

Mercator V1 INGV MP2 INGV MP2

HCMR INGV MP3 INGV MP3

INGV MP1 INGV MP4 INGV MP4
Table 4. MMSE data sets : members are detailed in Table 1

SE members

Training periods

15 days 25 days 35 days

S1 S2 S1 S2 S1 S2

Full 1.99 1.59 1.07 0.86 0.79 0.68

dataset A 1.19 0.96 0.77 0.65 0.62 0.56

dataset B 1.21 0.98 0.81 0.67 0.64 0.57

dataset C 1.30 1.05 0.86 0.71 0.68 0.59
Table 5. RMSE mean value throughout the Analysis Period for the full dataset (see Table 1 ) and the three datasets of Table 4 as a function

of the training period length and the S1 and S2

Training Period Length(Days) S1 S2 S3 S4 BEM

15 0.35 0.56 0.89 0.77 0.91

25 0.62 0.72 0.86 0.78 0.91

35 0.68 0.75 0.84 0.77 0.91
Table 6. ACC mean value throughout the Analysis Period for the dataset A (see Table 1) as a function of the training period length for the

proposed SE methodologies
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Figure 1. MMSE estimates for the first day of the test period (25th of April 2008) using a training period of 15 days, S1 (top panel, left)

and the corresponding estimate for S2 (top panel, right), SST from satellite (bottom panel , left ) and Best Ensemble member (bottom panel,

right)
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Figure 2. MMSE estimates for the last day of test period , the 4th of May 2008, S1 (top panel, left) and the corresponding estimate for S2

(top panel, right), SST from satellite (bottom panel , left ) and Best Ensemble member (bottom panel, right)

Figure 3. MMSE estimates for the first day of the test period (25th of April 2008) using a training period of 35 days, S1 (left panel) and the

corresponding estimate for S2 (right panel)
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Figure 4. MMSE estimates with 35 days training period and for the last day of test period (4th of May2008) S1 (left panel) and the

corresponding estimate for S2 (right panel).

Figure 5. Distributions of d in equation 11 for the full dataset (panel a), overconfident dataset B (panel b), well dispersed dataset C (panel

c) and badly dispersed dataset D (panel d). The bin-width is 0.05o C. Area under the curve equals the total number of models per day in the

year 2008.
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Figure 6. the effect of multi-model composition in the distributions of d for the full dataset (panel a), overconfident dataset B (panel b), well

dispersed dataset C (panel c) and badly dispersed dataset D(panel d). The bin-width is 0.05oC.The effect of multi-model combination of

proposed subsample on the SE estimates valid for 1st day of test period with a training period of 14 days

Figure 7. the effect of multi-model composition in the distributions of d for the full dataset (panel a), overconfident dataset B (panel b), well

dispersed dataset C (panel c) and badly dispersed dataset D(panel d). The bin-width is 0.05oC.The effect of multi-model combination of

proposed subsample on the SE estimates valid for 10th(last) day of test period with a training period of 14 days
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Figure 8. Number of retained EOFs histogram, on ordinates the length of the training period, color bar proportioned to the day of the

experiments
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Figure 9. S3 and S4 estimate for the first day of the test period (25th of April 2008) using a training period of 15 days, SE3 (top panel, left)

and the corresponding estimate for S4 (top panel, right), difference between SST from satellite and S3(bottom panel, left) and difference

between SST from satellite and S4(bottom panel, right)
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Figure 10. S3 and S4 estimates valid the last day of the test period (4th May 2008) using a training period of 15 days, S3 (top panel, left) and

the corresponding estimate for S4 (top panel, right), difference between SST from satellite and S3(bottom panel, left) and difference between

SST from satellite and S4(bottom panel, right)
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Figure 11. Domain average (over the Mediterranean) and time mean over year 2008 of the RMSE for 15 days training period for the

overconfident dataset B . Error bar stands for the standard deviation of the RMSE during the year.
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