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Abstract. Landslides morphology is influenced by the slide/flow of the material downslope. Usually, the distance of the 

movement of the material is greater than the width of the displaced material (especially for flows, but also the majority of 

slides), the resulting landslides having a greater length than width. In some specific geomorphologic environments (monoclinic 10 

regions, with cuesta landforms type) or the case of some types of landslides (translational slides, bank failures, complex 

landslides), for the majority of the landslides the distance of the movement of the displaced material can be smaller than its 

width, thus the landslides having a smaller length than width. When working with landslides inventories containing both types 

of landslides presented above, the analysis of the length and width of the landslides computed with usual GIS techniques (like 

bounding boxes) can be flawed. To overcome this flaw, I present an algorithm which uses both the geometry of the landslide 15 

polygon minimum oriented bounding box and a DEM of the landslide topography for identifying the long versus wide 

landslides. I tested the proposed algorithm for a landslide inventory which covers 131.1 km2 in Moldavian Plateau, Eastern 

Romania. This inventory contains 1327 landslides, from which 518 were manually classified as long and 809 as wide. In a 

first step, the difference in elevation of the length and width of the minimum oriented bounding box is used to separate long 

from wide landslides (long landslides having the greatest elevation difference along the length of the bounding box). In a 20 

second step, the long landslides are checked if their length is greater than the length of flow downslope (estimated with a flow 

routing algorithm), in which case the landslide is classified as wide. By using this approach, the AUC value for the 

classification of the long versus wide landslides is 87.8%. An intensive review of the misclassified cases and the challenges of 

the proposed algorithm is made, and discussions are included about the prospects of improving with further steps the approach, 

to reduce the number of misclassifications.  25 

 

1 Introduction 

Landslides are a natural phenomenon which has an important impact on human society and environment (Geertsema et al., 

2009; Kjekstad and Highland, 2009; Petley, 2012). The topographic imprint of these geomorphologic processes is given by 
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the slide/flow of the material downslope, and it is highly characteristic (Pike, 1988; Berti et al., 2013; Rossi et al., 2013; 

Marchesini et al., 2014), especially on high resolution DEMs (Schulz, 2004; McKean and Roering, 2004; Van den Eeckhaut 

et al., 2005; Glenn et al., 2006; Schulz, 2007; Kasai et al., 2009; Jaboyedoff et al., 2012; Berti at al., 2013). In the last decades, 

big improvements were made in landslide delineation (Cararra and Merenda, 1976; Brunsden, 1993; Keaton and DeGraff, 

1996; Ardizzone et al., 2002; Ardizzone et al., 2007; Guzzetti et al., 2012) and landslide inventories analysis (Malamud et al., 5 

2004; Guzzetti et al., 2012; Van den Eeckhaut et al., 2012). A landslide inventory is usually a collection of polygon shapes 

which represent the boundary of a single event or a complex landslide, generated by multiple events (Van Westen, 1993; 

Guzzetti et al., 2012). Landslides are delineated manually, nowadays digitally in a GIS environment (Carrara et al., 1991; Van 

Westen, 1993; Van den Eeckhaut and Hervás, 2012), but in several environments (forested areas with frequent debris or earth 

flows, triggered by earthquakes or typhoons) where certain geospatial data is available (high-resolution imagery, LiDAR) 10 

semi-automatic procedures were used (Petley et al., 2002; Barlow et al., 2003; Nichols and Wong, 2004; Martin and Franklin, 

2005; Barlow et al., 2006; Borghuis et al., 2007; Van den Eeckhaut et al., 2009; Martha et al., 2010; Mondini et al., 2011; 

Martha et al., 2012; Van den Eeckhaut et al., 2011; Lyons et al., 2014). Since these automatic methods can delineate a big 

number of landslides, an automatic method for length and width estimation can be helpful for analyzing the resulted 

inventories. 15 

The sliding/flowing of the material downslope produces a scarp and a displaced mass, which are usually longer than wide (Fig. 

1d). While generalized for flows (Fig. 1d) (Cruden and Varnes, 1996), this mechanism is also quite frequent for rotational 

(Fig. 1a) and translational slides, falls, topples and spreads (Cruden and Varnes, 1996). I will call this type of landslides, long 

landslides. Long landslides appear either as single events or as complex landslides (Fig. 1a, d). 

While not characteristic for flows, falls and rotational slides, cases when the length of the displacement does not exceed the 20 

width of the displaced mass, are relatively common for translational slides and spreads (Fig. 1c, e). These type of landslides 

appear in almost every landslide inventory, in different proportions (such cases are visible in landslide inventory snapshots 

from Dewitte and Demoulin, 2005; Schulz, 2007; Galli et al., 2008; Baldo et al., 2009; Hattanji et al., 2009; Guzzetti et al., 

2012; Van den Eeckhaut et al., 2012; Mondini et al., 2013). I will call this type of landslides, wide landslides (Fig. 1b, c, e). 

Wide landslide most commonly appears along gully and river banks (Fig. 1b, 1e), but also on hillslopes (Fig. 1c) especially in 25 

regions with monoclinic structure along the scarps of cuesta landforms. Such a situation is found in the Moldavian Plateau 

(Niculiță, 2015; Mărgărint and Niculiță, 2016) where the monoclinic structure favored cuesta escarpments which extend in 

width on long distances without being fragmented (Fig. 2, 3). 

In both scenarios of landslide delineation (manual or automatic), the landslide length and width can be computed automatically 

in a GIS environment, using the dimensions of the minimum bounding box of the polygons representing the landslides (Taylor 30 

and Malamud, 2012). While for long landslides, the length of the bounding box is a reasonable approximation of the length of 

the landslide, for wide landslides, the length is actually the width of the bounding box. 

To overcome the above-mentioned flaw, which can bias the analysis of landslide length and width (Taylor and Malamud, 

2012; Taylor et al., 2015; Niculiță, 2015; Mărgărint and Niculiță, 2016), an automatic algorithm for the estimation of landslide 
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flow direction is proposed. The algorithm uses the processing of the oriented bounding box, and the elevation and slope length 

computed from the DEM, for deriving the length along the landslide slide/flow direction and the associated width. The method 

is validated on a landslide inventory were the long and wide character was assessed during landslide mapping.  

 

2 Materials 5 

For testing the proposed method I have used a landslide inventory (Fig. 2, 3), created and described by Niculiță and Mărgărint 

(2015), for a small area (131.1 km2) from the Moldavian Plateau (Eastern Romania), where single event and complex landslides 

were delineated. This inventory contains 1327 polygons, representing landslides, with area ranging from 94 m2 to 800 00 m2. 

The delineation of polygon landslides was made using aerial imagery, high-resolution LiDAR DEM and field validation. For 

every landslide, the long or wide type was recorded in the attribute table, during inventory creation. The long and wide type 10 

was assessed trough expert opinion, during landslide delineation, also using 3D views to better assess the slide/flow direction. 

Landslide typology in the study area is dominated by translational and rotational slides, with very few flows. A five meters 

resolution LiDAR DEM was available for the study area. 

3 Methods 

The proposed method was implemented using R software application (R Core Team, 2015) and several users contributed 15 

packages, as a script, which is available at http://www.geomorphologyonline.com/LandslideFlowDirection.R (Fig. 4). 

Oriented bounding boxes are in fact minimum-area enclosing rectangles for convex polygons (Fig. 5). Besides the rectangular 

minimum bounding box (whose sides are parallel to the coordinate axes), the oriented minimum bounding box can be defined 

as the bounding box which has the sides along the orientation of the polygon (Freeman and Shapira, 1975).  The rotating 

calipers algorithm (Toussaint, 1983) is used to create these bounding boxes in the majority of GIS implementations. Its 20 

implementation in the R shotGroups package (Wollschläger, 2016) was used in the present approach, through the getMinBBox 

function. This function uses the coordinates of the polygon vertices, stored in an object of the sp package, called 

SpatialPolygonsDataFrame (Bivand et al., 2013), which is created from a shapefile containing the landslide polygons and a 

unique ordered sequence of autoincrement IDs, by import with the rgdal package (Fig. 4). Further, sp package functions are 

used to manipulate the bounding boxes. 25 

The getMinBBox function creates the x, y coordinates of the corners (CP1 to CP4 – Fig. 5) of the minimum oriented bounding 

box in the counter-clockwise order (CP1, CP2, CP3, CP4), which allows the creation of the rectangle with the help of the sp 

package functions. While the majority of the resulting rectangles have sides CP1-CP2 and CP3-CP4 (Fig. 4) as the long sides 

(length) and sides CP1-CP4 and CP2-CP3 as short sides (width), there are some cases where the situation is vice versa. Since 

the algorithm needs a consistent approach, the coordinates of the four corner points of the minimum oriented bounding box, 30 



4 
 

were introduced in a data table, and using the length of the sides, as a rule, all the corner points were assigned to correspond 

to the above notation (Fig. 5 left). 

The coordinates of the corner points were used, to compute the midpoints of the sides (MP1 to MP4), using the Midpoint 

Formula, in such a way that MP1 and MP3 are on the long sides, and MP2 and MP4 are on the short sides of the minimum 

oriented bounding box (Fig. 5 left). Using these four midpoints, the algorithm defines the length of the minimum oriented 5 

bounding box (line connecting MP2 and MP4) and the width of the minimum oriented bounding box (line connecting MP1 

and MP3) (Fig. 5). Using the elevations of the four corners (MP1 to MP4), taken from the DEM, the square root of the elevation 

difference between MP1 to MP3 and MP2 to Mp4 raised to the power of two (for obtaining only positive values) is computed. 

These values are used to classify the landslides as long or wide according to the following rules:  

- The landslides which have the elevation difference along the length of the minimum oriented bounding box (line 10 

connecting MP2 and MP4) bigger than along the width (line connecting MP1 and MP3) are classified as long; 

- The landslides which have the elevation difference along the width of the minimum oriented bounding box (line 

connecting MP1 and MP3) bigger than along the length (line connecting MP2 and MP4) are classified as wide. 

At this step, some wide landslides are classified as long because they are located on short hillslopes but which span on a certain 

relative elevation along the valley (as the sides of small valleys incised on cuesta escarpments – Fig. 6 c). In this morphologic 15 

setting the difference in elevation along the width of the landslides can be the same as the difference in elevation along the 

length. This is characteristic for the landslides developed on the short (under 500/800 m in length) and laterally extended (2 to 

6 km) hillslopes of cuesta escarpments of the Moldavian Plateau (Mărgărint and Niculiță, 2016), and along the banks of gullies 

which dissect these hillslopes (Fig. 2, 3). 

For these cases, a further step of processing is required. This step involves the cropping of the DEM for every landslide 20 

polygon, the hydrological pre-processing to enforce drainage flow routing and the computation of the slope length (Fig. 6). 

The slope length estimation requires the use of RSAGA (Brenning and Bangs, 2016) R package, which links SAGA GIS 

(Conrad et al., 2015). The DEM is preprocessed with the functions Sink Drainage Route Detection and Sink Removal from 

the Terrain Analysis – Preprocessing module library. The hydrological enforcement is done using the Deepen Drainage Routes 

method and the flow path length was computed using the function Flow Path Length from the Terrain Analysis – Hydrology 25 

module library. Both flow routing methods implemented in this tool: Deterministic 8 (O’Callaghan and Mark, 1984) and 

Multiple Flow Direction (Freeman, 1991; Quinn et al., 1991) are computed (Fig. 6). The maximum slope length for every 

landslide polygon is computed using the function Grid Statistics for Polygons from Shapes – Grid Tools tool library. 

Using the following rules, only the long landslides class is reclassified: 

- The landslides which have the length greater than the slope length are reclassified to wide; 30 

- The landslides which have the length smaller than the slope length remain classified as long. 

The confusion matrix and the associated statistics from Table 1 were computed in R stat. 
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4 Results and Discussions 

The results of the proposed algorithm need to be validated against the reality identified in the landslide inventory, to prove its 

efficiency. The long and wide type was assessed during landslide delineation. Beside field validation, the use of 3D views of 

LiDAR shading and oriented bounding box (similar to the 3D views from Fig. 6 and 7), allowed correct identification of the 

direction of slide/flow and the comparison of length and width. Since the long versus wide type was correctly assessed, I call 5 

the length and width derived from the oriented bounding box along the slide/flow direction, the correct length and width (Fig. 

5, 8). The width and length computed using the oriented bounding box without taking in consideration the slide/flow direction 

are called bounding box length and width (Fig. 5, 8). These two variables will be biased if the wide landslide type appears in 

a landslide inventory. The length and width obtained using the proposed algorithms are called estimated length and width 

because the algorithm fails to classify correctly certain types of wide landslides (false negatives – type II error) and certain 10 

types of long landslides (false positive – type I error) (Table 1). I argument that although some landslides are misclassified, 

from a pure morphometric point of view, the impact is minimized by the algorithm. This can be seen in Figure 8. All four plots 

from this figure show that estimated length and width are closer to correct length and width than bounding box length and 

width. These plots show the scatter (Fig. 8a, b) of the difference between the correct landslide dimensions and 

estimated/bounding box dimensions and the frequency (Fig. 8c, d) of landslide dimensions. From the scatter plots it appears 15 

that bounding box dimensions are bigger than the correct dimensions since length is switched with width, the biggest impact 

being registered for elongated/elliptic landslides (flows). In the case of round landslides (rotational and translational slides), 

switching the length with width has a smaller impact. The histograms show better the impact of changing the length with the 

width and that the results of the proposed algorithm resemble with fidelity the shape of the real dimensions distributions. The 

use of the dimensions of the bounding box has instead a huge impact not essentially on the shape but the magnitude of the 20 

distribution (since the wide type of landslides is dominant, 61% – Table 1). 

While the interpretation of the differences of the dimensions are instructive and argument the quality of the proposed algorithm 

in producing results which can be used in geomorphometric analyses, the assessment of the accuracy to predict the correct 

class is made using the confusion matrix (Stehman, 1997; Powers, 2011) and the ROC graphs (Fawcett, 2006; Powers, 2011). 

The confusion matrix is presented in Table 1, and its graphic synthesis is presented in the folded plots from Figure 9. 25 

In the first step of the proposed method, from 1327 landslides, 518 (39%) long and 809 wide (61%), 642 landslides (48.4%) 

are classified as long, of which 478 (36%) are indeed long (true positives - TP). The other 40 (3%) long landslides are 

misclassified as wide (false negative – FN – type II error). Although wide, 164 (12.4%) landslides are misclassified as long 

(false positives – FP – type I error). The other 645 (48.6%) wide landslides are correctly classified (true negative - TN). 

The wide landslides wrongly classified as long in the first step (FP – type I error), are mainly developed along the banks of 30 

incised rivers and gullies, landslide scarps, landslide toes, and cuesta scarps, in situations where there a greater difference in 

elevation between the flanks than between the scarp and the toe (Fig. 5c). The long landslides misclassified as wide (FN – type 

II error) are almost round, rhombic, hexagonal or elongated landslides, which are diagonal to the minimum enclosed bounding 
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box and the downslope direction of the hillslope, which in general is gentle sloped (Fig. 5a). This diagonal position generates 

a difference of elevation along the width which is greater than the difference along the length. 

Overall, the first step has an accuracy of 0.85 (Table 1). The receiver operating characteristic (ROC) curve is used to visually 

assess the performance of a classification (Fawcett, 2006). The curve plots the true positive rate (benefits, sensitivity) versus 

the false positive rates (costs, specificity) of the classification (Fawcett, 2006; Powers, 2011). The diagonal line is equivalent 5 

with randomly guessing the outcome of the classification (Fawcett, 2006; Powers, 2011). In this first step of the classification, 

the TP and FP rates are higher, showing that the long type is better classified. Overall, the area under the ROC curve (AUC - 

Fig. 10), shows that 84.3% landslides are correctly classified. The 95% confidence interval was computed using 2000 stratified 

bootstrap replicates in pROC sp package (Robin et al., 2011). This interval is in the proximity of the ROC curve, the range of 

the AUC being of ±1.93, which shows the stability of the curve.  10 

In the second step, the best performance was acquired by the multiple flow algorithm for computing slope length. This 

algorithm computes flow distance which is more similar to hillslope length, because flow is modeled as a diffusion process, 

while the Deterministic 8 algorithm creates a pattern of interrupted flows, although the DEM was preprocessed hydrologically 

(Fig. 5). Using D8, in the second step 1268 landslides classify as wide and only 59 as long. The Multiple Flow Direction 

algorithm classify 837 as wide and 478 landslides as long.  15 

In the first step of the proposed method, 685 landslides (51.6%) are classified as long, of which 425 (32%) are indeed long 

(true positives - TP). The other 93 (7%) long landslides are misclassified as wide (false negative – FN – type II error). Although 

wide, 65 (4.9%) landslides are misclassified as long (false positives – FP – type I error). The other 744 (56.1%) wide landslides 

are correctly classified (true negative - TN). 

The majority of the wide landslides classified as long in the second step (FP – type I error) are almost round, rhombic or 20 

hexagonal, and diagonal to the downslope direction, and only a few are developed along the gully banks or scarps (Fig. 5d). 

The long landslides classified as wide (FN – type II error) are related to areas where the slope length computed by the flow 

algorithm fails to model the length of the hillslope, and in step two their length is greater than the slope length (Fig. 5b). These 

landslides have gullies or mounds, which interrupts the diffusion of the flow, and the flow algorithms do not route the flow 

from the crown to the toe of the landslide. 25 

Overall, the second step has an accuracy of 0.88 (Table 1). All the statistics associated with the confusion matrix (Table 1) 

show that in the second step the classification performs slightly better. In this second step, the ROC curve shows that the TP 

rate is lower, and FP rate is higher, meaning that the wide type is better classified. Overall, 87.8% landslides are correctly 

classified (AUC value – Fig. 10). The confidence interval is lower, ±1.85, showing an increase in the stability of the 

classification. 30 

Although the proposed algorithm performs well, any inconsistency between the shape of the earth portrayed by the DEM and 

the delineated landslide morphology will give misclassification cases. This scenario is to be expected from inventories where 

the landslides are delineated from high-resolution aerial/satellite imagery, but the DEM has not the same resolution, a frequent 

scenario in the case of automatically delineated landslides. Normally if all the data has the same resolution, the proposed 
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algorithm can provide good results. We also tested the SRTM 1 elevation data with the proposed method for the landslide 

inventory, and the AUROC values decreased to 86.6%. 

The quality of the landslide inventory is also of great importance since any geomorphologic topologic inconsistency can 

introduce wrong identification cases: 

- Amalgamation of landslides by crossing channels; 5 

- Shifting of landslides and touching channels; 

- Landslides spread across several hillslopes. 

In specific topographic situations, the midpoints will not be on the edge of the landslide, and not even the same hillslope as 

the landslide (Fig. 5c), but we believe that in general, this situation will not introduce errors since we have not met any such 

cases. 10 

Inconsistencies of the type described above are to be expected in a substantial proportion for landslide inventories based on 

topographic maps and metric aerial imagery/DEM, their proportion decreasing in landslide inventories based on centimeter 

resolution aerial imagery/DEM. The proposed methodology could also be used for checking landslide inventories for 

geomorphological topologic inconsistencies. 

The main challenges of the method are: 15 

- The inability to separate wide from long landslides based on the flow (mainly related to the false positive cases, long 

landslides classified as wide); 

- The failure to separate long from wide landslides because of their diagonal position (mainly related to the false 

negative cases, wide landslides classified as long). 

Possibilities to resolve the failure to separate between long and wide landslides based on the flow length estimation require a 20 

new approach in slope length computation. I have tried the use in the second step, of the slope length estimated as the slope 

compensated along the length side of the bounding box, but this approach gave results worse than the hydrologically slope 

length estimation one. 

Possibilities to resolve the failure to separate between long and wide landslides because of their diagonal position are related 

to the computation of the bounding box. Probably, using a 3D approach in computing the bounding box, from a 3D vector of 25 

the landslide boundary (vertex of the polygon with elevation altitude from the DEM) could resolve this, but research is needed. 

For resolving the flow length estimation, responsible for the type II error, better methods for slope length estimation are needed.  

5 Conclusions 

The proposed method can discern between long and wide landslides in 87.8% of cases. The misclassified cases have a specific 

geometry and geomorphologic topology, and the algorithm fails to identify them in the right class. The majority of these 30 

landslides are round, rhombic or hexagonal, and oriented diagonally to the downslope direction of the hillslope. The slide/flow 

direction of these landslides is diagonal to the bounding box. Although the algorithms fail to recognize them as long or wide, 
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the errors are minimal when their lengths and widths are used, because the difference between them is not big. Of course, if 

the direction of flow is needed (as aspect value), the algorithm fails to identify the right direction. The minority of misclassified 

landslides is represented by the elongated landslides, which are either long (similar to flows) or wide (developed along gully 

banks and landslide scarps). For these landslides, the proposed method fails, because of the slope length estimation does not 

exceed the oriented bounding box length, a situation which requires further investigations on the possibilities of using other 5 

methods to estimate slope length. Overall, the presented approach managed to identify the majority of the long versus wide 

landslides from a landslide inventory and represents a starting point in deriving algorithms for automatic geomorphometric 

analysis of landslides. 
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Table 1 The confusion matrix for the classification performed in the two steps of the algorithm and the associated statistics 
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Figure 1: Schematic drawings of long and wide cases of landslides: a) rotational slide – long type, b) gully bank slides – wide type, 
c) translational slide – wide type, d) flow – long type, e) river bank slide – wide type. 
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Figure 2: Geomorphologic cases of long (L) and wide (W) type of landslides from the study area (top is a 3D view Google Earth 
capture; bottom is a 3D view of the LiDAR DEM shading; both views have the landslide polygons in red, overlayed). 
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Figure 3: The study area and the landslide inventory overlayed on shaded LiDAR DEM (upper-left is an inset showing the position 
of the study area in Romania; under the inset is displayed a set of 3D views of the study area landforms from north and south; the 
red boxes from the right map indicate the insets from Fig. 6 and Fig. 7). 
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Figure 4: Workflow of the proposed algorithm implemented as an R script. 
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Figure 5: Geometry of the minimum oriented bounding box (left is the geometry of the oriented bounding box; center is the geometry 
of a long landslide bounding box; right is the geometry of a wide landslide box geometry). 

  



19 
 

 

Figure 6: 3D views of different types of long vs wide landslide classifications: a) false positive cases (long landslides classified as wide 
landslides) in step 1, b) false positives in step 2, c) false negative cases (wide landslides classified as long landslides) in step 1, d) false 
negative cases in step 2. 
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Figure 7: 3D view of a long landslide (left) and the flow lengths for it (right) (MFD is the flow length computed with the Multiple 
Flow Direction algorithm and D8 is the flow length computed with the Deterministic 8).  
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Figure 8: Plots of the difference between the real length/width, length/width of the oriented bounding box and length/width 
estimated with the proposed algorithm: a) scatter plot of the difference between correct length and the bbox/estimated length, b) 
scatter plot of the difference between correct width and the bbox/estimated width, c) histograms of the three types of lengths, d) 
histograms of the three types of widths.  5 
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Figure 9: Four folded plots of the confusion matrices for the two steps of the algorithm (TP = true positive, TN = true negative, FP 
= false positive, FN = false negative).  
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Figure 10: ROC curves for the two steps of the algorithm, their 95% confidence interval and the AUC values.  
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