
 1 

Process-based modelling to evaluate simulated groundwater levels 1 

and frequencies in a Chalk catchment in Southwest England  2 

Simon Brenner
1
, Gemma Coxon

2,4
, Nicholas J. K. Howden

3,4
, J. Freer

2,4
 and Andreas Hartmann

1,3
  3 

1
Institute of Earth and Environmental Sciences, Freiburg University, Germany 4 

2
School of Geographical Sciences, University of Bristol, Bristol, UK 5 

3
Department of Civil Engineering, University of Bristol, Bristol, UK 6 

4
Cabot Institute, University of Bristol, Bristol, UK 7 

Correspondence to: S. Brenner (simon.brenner@hydrology.uni-freiburg.de)  8 

Abstract  9 

Chalk aquifers are an important source of drinking water in the UK. Due to their properties, they are particularly vulnerable 10 

to groundwater related hazards like floods and droughts. Understanding and predicting groundwater levels is therefore 11 

important for effective and safe water management. Chalk is known for its high porosity and, due to its dissolvability, 12 

exposed to karstification and strong subsurface heterogeneity. To cope with the karstic heterogeneity and limited data 13 

availability, specialised modelling approaches are required that balance model complexity and data availability. In this study, 14 

we present a novel approach to evaluate simulated groundwater level frequencies derived from a semi-distributed karst 15 

model that represents subsurface heterogeneity by distribution functions. Simulated groundwater storages are transferred into 16 

groundwater levels using evidence from different observations wells. Using a percentile approach we can assess the number 17 

of days exceeding or falling below selected groundwater level percentiles. Firstly, we evaluate the performance of the model 18 

to simulate groundwater level time series by a spilt sample test and parameter identifiability analysis. Secondly, we apply a 19 

split sample test on the simulated groundwater level percentiles to explore the performance in predicting groundwater level 20 

exceedances. We show that the model provides robust simulations of discharge and groundwater levels at three observation 21 

wells at a test site in chalk dominated catchment in Southwest England. The second split sample test also indicates that 22 

percentile approach is able to reliably predict groundwater level exceedances across all considered time scales up to their 23 

75th percentile. However, when looking at the 90th percentile, it only provides acceptable predictions for the long time 24 

periods and it fails when the 95th percentile of groundwater exceedance levels is considered. Modifying the historic forcings 25 

of our model according to expected future climate changes, we create simple climate scenarios and we show that the 26 

projected climate changes may lead to generally lower groundwater levels and a reduction of exceedances of high 27 

groundwater level percentiles. 28 

1 Introduction 29 

The English Chalk aquifer region extends over large parts of south-east England and is an important water resource aquifer, 30 

providing about 55 % of all groundwater-abstracted drinking water in the UK (Lloyd, 1993). As a carbonate rock the English 31 

Chalk is exposed to karstification, i.e. the chemical weathering (Ford and Williams, 2013), resulting in particular surface and 32 

subsurface features such as dollies, river sinks, caves and conduits (Goldscheider and Drew, 2007). Consequently, 33 

karstification also produces strong hydrological subsurface heterogeneity (Bakalowicz, 2005). The interplay between diffuse 34 

and concentrated infiltration and recharge processes, as well as fast flow through karstic conduits and diffuse matrix flow, 35 

result in complex flow and storage dynamics (Hartmann et al., 2014a). Even though Chalk tends to less intense 36 

karstification, for instance compared to limestone, its karstic behaviour has increasingly been recognised (Fitzpatrick, 2011; 37 

Maurice et al., 2006, 2012).  38 
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 2 

Apart from the good water quality, favourable infiltration and storage dynamics which make chalk aquifers a preferred 1 

source of drinking water in the UK, their karstic behaviour also increases the risk of fast drainage of their storages by karstic 2 

conduit flow during dry years. This also increases the risk of groundwater flooding as a result of fast responses of 3 

groundwater levels to intense rainfalls due to fast infiltration and groundwater recharge processes. Groundwater flooding, i.e. 4 

when groundwater levels emerge at the ground surface due to intense rainfall (Macdonald et al., 2008), tend to be more 5 

severe in areas of permeable outcrop like the English Chalk (Macdonald et al., 2012). Groundwater drought indices tend to 6 

be more related to recharge conditions in Cretaceous Chalk aquifers than in granular aquifers (Bloomfield and Marchant, 7 

2013). Due to the fast transfer of water from the soil surface to the main groundwater system, chalk aquifers tend to be more 8 

sensitive to external changes, for instance shown by Jackson et al. (2015) who found significant groundwater level declines 9 

in 4 out of 7 chalk boreholes in a UK-wide study using historic groundwater level observations. 10 

Climate projections suggest that the UK will experience increasing temperatures, with less rainfall during the summer but 11 

warmer and wetter winters (Jenkins et al., 2008). This may stress these groundwater resources, and increase the risk of 12 

groundwater droughts and potentially winter groundwater flooding. For those reasons, assessment of potential future changes 13 

in groundwater dynamics, concerning groundwater droughts, median groundwater levels as well as groundwater flooding is 14 

broadly recommended and is subject of current research around the world (von Freyberg et al., 2015; Jackson et al., 2015; 15 

Jimenez-Martinez et al., 2016; Moutahir et al., 2017; Naughton et al., 2015; Perrone and Jasechko, 2017). 16 

However, present approaches mostly rely on statistical distribution functions to express groundwater dynamics and 17 

groundwater level exceedance probabilities (e.g., Bloomfield et al., 2015; Kumar et al., 2016) and it is questionable whether 18 

the shapes of these distribution functions remain the same when climate or land use change. Physics based hydrological 19 

simulation models that incorporate hydrological processes in a relatively high detail can be considered to potentially provide 20 

the most reliable predictions, especially under a changing environment. However, there are considerable limitations in 21 

obtaining the necessary information to estimate the structure and the model parameters, especially for subsurface processes, 22 

and this inevitably increases modelling uncertainties (Beven, 2006; Perrin et al., 2003).  23 

The definition of appropriate model structures and parameters from limited information becomes problematic when 24 

modelling karst aquifers. In order to achieve acceptable simulation performance they have to include representations of 25 

karstic heterogeneity in their structures. Distributed karst modelling approaches are able simulate groundwater levels on a 26 

spatial grid but their data requirements mostly limit them to theoretical studies (e.g., Birk et al., 2006; Reimann et al., 2011) 27 

or well explored study sites (e.g., Hill et al., 2010; Jackson et al., 2011; Oehlmann et al., 2014). Lumped karst modelling 28 

approaches consider physical processes at the scale of the entire karst system. Although they are strongly simplified, they 29 

can include karst peculiarities such as different conduit and matrix systems (Fleury et al., 2009; Geyer et al., 2008; 30 

Maloszewski et al., 2002). Since they are easy to implement and do not require spatial information, they are widely used in 31 

karst modelling (Jukić and Denić-Jukić, 2009). Simple rainfall-runoff models with more than 5-6 parameters are often 32 

regarded to end up in equifinality (Jakeman and Hornberger, 1993; Wheater et al., 1986; Ye et al., 1997), i.e. their 33 

parameters lose their identifiability (Beven, 2006; Wagener et al., 2002). For that reason, recent research took advantage of 34 

auxiliary data, such as water quality data or tracer experiments (Hartmann et al., 2013b; Oehlmann et al., 2015a). These 35 

studies showed that adding such information allows identifying the necessary model parameters, therefore enabling the 36 

model to reflect the relevant processes.  37 

Up to now, most lumped karst models have been applied for rainfall-runoff simulations. Groundwater levels were simulated 38 

in quite a few studies (Adams et al., 2010; Jimenez-Martinez et al., 2016; Ladouche et al., 2014), however mostly relying on 39 

very simple representation of karst hydrological processes and disregarding the scale discrepancy between borehole (point 40 

scale) and modelling domain (catchment scale) at which they were applied. 41 
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 3 

In this study, we present a novel approach to predict and evaluate groundwater level frequencies in chalk dominated 1 

catchments. This uses a previously developed semi-distributed process-based model (VarKarst, Hartmann et al., 2013b) that 2 

we further developed to simulate groundwater levels. To assess groundwater level frequencies we formulated a percentile of 3 

groundwater based approach that quantifies the probability of exceeding or falling below selected groundwater levels. We 4 

exemplify and evaluate our new approach on a Chalk catchment in Southwest England that had to cope with several flooding 5 

events in the past. Finally we apply the approach on simple climate scenarios that we create by modifying our historic model 6 

forcings to show how changes in evapotranspiration and precipitation can affect groundwater level frequencies. 7 

2 Study site and data availability 8 

Located in West Dorset in the south-west of England the river Frome drains a rural catchment with an area approximately 9 

414 km² (Figure 1). The catchment elevation varies from over 200 m above sea level (a.s.l.) in the north-west to sea level in 10 

the south-east. The topography is very flat with a mean slope of 3.9 % and a mean height of approximately 111 m a.s.l.. The 11 

climate can be defined as oceanic with mild winters and warm summers (Dorset County Council, 2009). Howden (2006) 12 

characterised the Frome as highly groundwater-dominated. During the summer months, discharge of the Frome typically is 13 

very low, hardly reaching 5 m³/s (Brunner et al., 2010). The geology is predominated by the Cretaceous Chalk outcrop which 14 

underlays around 65 % of the catchment. The headwaters of the Frome include outcrops of the Upper Greensand, often 15 

overlain by the rather impermeable Zig-Zag Chalk (Howden, 2006). The middle reaches of the Frome traverse the 16 

Cretaceous Chalk outcrop followed by Palaeogene strata in the lower reaches, eventually draining into Poole Harbour. The 17 

major aquifer Chalk appears mainly unconfined. However, in the lower reaches it is overlain by Palaeogene strata, resulting 18 

in confined aquifer conditions. The region around the Frome catchment is known for the highest density of solution features 19 

in the UK (Edmonds, 1983) which can be mainly observed in the interfluve between the Frome and Piddle (Adams et al., 20 

2003). Loams over chalk, shallow silts, deep loamy, sandy and shallow clays constitute the primary types of soils occurring 21 

in the study area (Brunner et al., 2010). The soils of the upper parts of the catchment are mainly shallow and well drained 22 

(NRA, 1995). In the middle and lower reaches the soils are becoming more sandy and acidic due to waterlogged conditions 23 

caused by either groundwater or winter flooding (Brunner et al., 2010; NRA, 1995). Due to its geological setting, the area is 24 

prone to groundwater flooding. It has occurred several times at different locations, for example in Maiden Newton during 25 

winter 2000/2001 (Environment Agency, 2012) and in Winterbourne Abbas during summer 2012 (Bennett, 2013). 26 

  27 

Figure 1: Overview on the Frome catchment 28 

3 Methodology 29 

In order to consider karstic process behaviour in our simulations we use the process-based karst model VarKarst introduced 30 

by Hartmann et al. (2013b). VarKarst includes the karstic heterogeneity and the complex behaviour of karst processes using 31 

distribution functions that represent the variability of soil, epikarst and groundwater and was applied successfully at different 32 

karst regions over Europe (Hartmann et al., 2013a, 2014b, 2016). We use a simple linear relationship that takes into account 33 

effective porosities and base level of the groundwater wells (see Eq. 1) enabling the model to simulate groundwater levels 34 

based on the groundwater storage in VarKarst. Finally, a newly developed evaluation approach is used by transferring 35 

simulated groundwater level time series into groundwater level frequency distributions and comparing them to observed 36 

behaviour at a number of monitored wells. 37 
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 4 

3.1 The model 1 

The VarKarst model operates on a daily time step. Similar to other karst models, it distinguishes between three subroutines 2 

representing the soil system, the epikarst system and the groundwater system but it also includes their spatial variability , 3 

which is expressed by distribution functions that are applied to a set of N=15 model compartments (Figure 2). Pareto 4 

functions as distribution functions have shown to perform best in previous work (Hartmann et al., 2013a, 2013b), as well as 5 

the number of 15 model compartments (Hartmann et al., 2012). Including the spatial variability of subsurface properties in 6 

this manner, the VarKarst model can be seen as a hybrid or semi-distributed model. All relevant model parameters are 7 

provided in Table 1. For a detailed description of VarKarst see the appendix or Hartmann et al. (2013b). 8 

 9 

Figure 2: The VarKarst model structure 10 

 11 

The model was driven by two input time series (Precipitation and Potential Evapotranspiration (PET)), and the 13 variable 12 

model parameters (see Table 2) were calibrated and evaluated by four observed time series (discharge and the three 13 

boreholes, see subsection 3.3). Similar to Kuczera and Mroczkowski (1998) we use a simple linear homogeneous 14 

relationship which translates the groundwater storage [mm] into a groundwater level [m a.s.l.]: 15 

 16 
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  18 

The related parameters are hgw [m] and pgw [-]. hgw is the difference of the base of the contributing groundwater storage (that 19 

is simulated by the model) and the base of the well that is used for calibration and evaluation. pgw represents the average 20 

porosity of the rock that is intersected by the well.  21 

3.2 Data availability 22 

The daily discharge data for gauge East Stoke was obtained from the Centre for Ecology & Hydrology (CEH, 23 

http://nrfa.ceh.ac.uk/ ) and dates back to the 1960s. The borehole data was provided by the Environment Agency (EA) and 24 

obtained via the University of Bristol. The total data used for modelling in this study can be seen in Table 1. The three 25 

boreholes (Ashton Farm, Ridgeway and Black House) comprised high resolution raw data which had been collected at a 15-26 

minute interval. For further analysis, the data was aggregated to daily time averages. The potential evapotranspiration has a 27 

strong annual cycle. Since most recent data from years 2009-2012 was missing, representative PET-years were calculated on 28 

the basis of the last fifty years. Climate projections were obtained from the UK Climate Projections User Interface (UKCP09 29 

UI, http://ukclimateprojections-ui.metoffice.gov.uk/ ). For more information about the UKCP see Murphy et al. (2010). 30 

3.3 Model calibration and evaluation 31 

We use the Shuffled Complex Evolution Method (SCEM) for our calibration, which is based on the Metropolis-Hastings 32 

algorithm (Hastings, 1970; Metropolis et al., 1953) and the Shuffled Complex Evolution algorithm (SCE, Duan et al., 1992). 33 

The Metropolis-Hastings algorithm uses a formal likelihood measure and calculates the ratio of the posterior probability 34 

densities of a “candidate” parameter set that is drawn from a proposal distribution and a given parameter set. If this ratio is 35 

larger or equal than a number randomly drawn from a uniform distribution between 0 and 1, the “candidate” parameter set is 36 

accepted. This procedure is repeated for a large number of iterations. If the proposal distribution is properly chosen, the 37 

Markov Chain will rapidly explore the parameter space and it will converge to the target distribution of interest (Vrugt et al., 38 
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 5 

2003). In the SCEM algorithm, “candidate” parameter sets are drawn from a self-adapting proposal distribution for each of a 1 

predefined number of clusters. Again a random number [0,1] is used to accept or discard “candidate” parameter sets. The 2 

SCEM algorithm was applied in default mode using the Gelman-Rubin convergence criteria (Vrugt et al., 2003). In our 3 

study, we use the Kling-Gupta efficiency KGE (Gupta et al., 2009) as objective function, which can be regarded as an 4 

informal likelihood measure, or more generally a monotonically increasing performance metric of model skill (Smith et al., 5 

2008). It was chosen by trial and error comparing the simulation performances during calibration and validation obtained 6 

with different objective functions (RMSE and other). We found that we obtain the most robust results with the KGE. To 7 

decide whether to accept or discard a parameters set, we compare the KGEs of the “candidate” and the given parameter sets. 8 

Such procedure was already applied in various studies (Blasone et al., 2008; Engeland et al., 2005; McMillan and Clark, 9 

2009) and is possible if the error functions are monotonically increasing with improved performance. We achieved this in the 10 

SCEM algorithm by defining KGE as: 11 

 12 

222 1)(β1)(α1)(r   KGE          (2) 13 

o

s

o

s

μ

μ
β;

σ

σ
α   14 

 15 

With r as the linear correlation coefficient between simulations and observations, and σs σo and μs μo as the means and 16 

standard deviations of simulations and observations, respectively.  17 

The posterior parameter distributions derived from SCEM provide information about the identifiability of the parameters. 18 

The more they differ from a uniform posterior distribution the higher the identifiability of a model parameter. We present 19 

different calibration distributions to show the use of auxiliary data for parameter identifiability.  20 

Parameter ranges were chosen following previous experience with the VarKarst model (Hartmann et al., 2013a, 2013b, 21 

2014b, 2016). Besides the quantitative measure of efficiency, a split sample test (Klemeš, 1986) was carried out. Our data 22 

covered precipitation, evapotranspiration, discharge and groundwater levels from 2000 to the end of 2012. We calibrated the 23 

model on the period 2008-2012 and used the period 2003-2007 for validation. We chose this reversed order to be able 24 

including the information of 3 boreholes that was only available for 2008-2012. Three years were used as warm-up for 25 

calibration and validation, respectively. During calibration, the most appropriate of the N=15 groundwater compartments to 26 

represent each groundwater well was found by choosing the compartment with the best correlation to the groundwater 27 

dynamics of the well.  28 

This procedure was repeated for each well and each Monte Carlo run and finally provides the three model compartment 29 

numbers that produce the best simulations of groundwater levels at the three operation wells and the best catchment 30 

discharge according to our selected weighting scheme. During calibration, we used a weighting scheme which was found by 31 

trial and error, as we stepwise added borehole data to our discharge observations. Discharge and the borehole at Ashton 32 

Farm were both weighted as one third as Ashton farm is located in the lower parts within the catchment while the other two 33 

boreholes were located at higher elevation at the catchment’s edge and weighted one sixth each. In order to explore to 34 

contribution of the different observed discharge and groundwater time series during the calibration, we use SCEM to derive 35 

the posterior parameter distributions using (1) the final weighting scheme, (2) only discharge, (3) only Ashton farm, and (4) 36 

only the other two boreholes (equally weighted). Posterior parameter distributions are plotted as cumulative distributions. 37 

The more parameters that show sensitivity, the more information is contained in the selected calibration scheme. 38 
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 6 

3.4 The percentile approach 1 

Even though the VarKarst model includes spatial variability of system properties by its distribution functions, its semi-2 

distributed structure does not allow for an explicit consideration of the locations of ground water wells. Its model structure 3 

allowed for an acceptable and stable simulation of groundwater level time series of the three wells (see subsection 4.1) but 4 

for groundwater management, frequency distributions of groundwater levels, calculated over the time scale of interest, are 5 

commonly preferred. For that reason we introduced a groundwater level percentile based approach. Other than Westerberg et 6 

al. (2016) that transferred discharge time series into signatures derived from flow duration curves, we calibrate directly with 7 

the discharge and groundwater time series in order to evaluate the performance of our approach for selected time periods 8 

(see evaluation below). Similar to the calculation of standardised precipitation or groundwater indices (e.g., Bloomfield and 9 

Marchant, 2013; Lloyd-Hughes and Saunders, 2002), we create cumulative frequency distributions of observed groundwater 10 

levels and the simulated groundwater levels from the previously evaluated model. Now, the exceedance probability or 11 

percentile for a selected observed groundwater level (for instance, the groundwater level above which groundwater flooding 12 

can be expected) can be used to define the corresponding simulated groundwater level and the number of days exceeding or 13 

falling below the chosen groundwater level can directly be extracted from the frequency distributions (Figure 3). Note that 14 

this procedure is performed after the model is calibrated and validated with KGE as described in the previous subsection. We 15 

avoided a calibration directly to the flow percentiles, as temporal information would have been removed, which would have 16 

resulted in a lower prediction performance of the model. 17 

 18 

Figure 3: schematic description of the percentile approach 19 

 20 

As the approach is meant to be applied in combination with climate change scenarios, we perform an evaluation on multiple 21 

time scales and flow percentiles. We assess the 5
th

, 10
th

, 25
th
, 50

th
, 75

th
, 90

th
 and 95

th
 percentiles on temporal resolutions of 22 

years, seasons, months, weeks and days. The deviation between modelled and observed number of exceedance days of these 23 

different percentiles is quantified by the mean absolute deviation (MAD) between simulated exceedances (SE) and observed 24 

exceedances (OE): 25 

 26 

    xixip OESEabsmeanMAD ,,   [d]       (3) 27 

 28 

Where x stands for the time scale (years, months, weeks, days) and p is the respective percentile. To better compare the 29 

deviation for different percentiles we normalize the MAD to a percentage of mean absolute deviation (PAD) with the total 30 

number of days of the chosen time scale: 31 

 32 

100
x

p

p
dp

MAD
PAD   [%]         (4) 33 

 34 

where dpx is a normalizing constant standing for total the number of days of the respective time scale and percentile. For 35 

example, if we take the time scale months and the 75
th

 percentile of exceedances we got a dpx of (100-75) % x (365.25 / 12) 36 

days. To evaluate the prediction performance of the approach, percentiles are derived from the daily data of the calibration 37 

period and then applied on the validation period similar to the split sample test in subsection 3.3. That way we are able to 38 

evaluate our model over different thresholds and in terms of temporal resolution.  39 
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 7 

3.5 Establishment of simple climate scenarios and assessment of groundwater level frequency distributions 1 

Given the model performance assessment above, we then use our approach to assess future changes of groundwater level 2 

frequencies at our study site. We derive projections of future precipitation and potential evapotranspiration by manipulating 3 

our observed ‘baseline’ climate data. We extract distributional samples of percentage changes of precipitation and 4 

evaporation from the UK probabilistic projections of climate change over land (UKCP09) for (1) a low emission scenario 5 

and (2) a high emission scenario for the time period of 2070-2099. This enables us to capture, in a pragmatic and 6 

computationally efficient approach, for the two emission scenarios the general range of changes for the most pertinent 7 

variables that we think will most impact changes to monthly-seasonal GW responses. We focus on projected median delta 8 

values for change in mean temperature (°C) and precipitation (%) as well as the respective 25
th

 and 75
th

 percentile from the 9 

probabilistic projections and apply them on our input data. For our model input we transfer projected temperatures into 10 

evapotranspiration via the Thornthwaite equation (Thornthwaite, 1948). In this way, we obtain 3 x 3 projections (3x 11 

precipitation and 3x evapotranspiration) for each of the emission scenarios that also address the uncertainty associated with 12 

the projections. The resulting simulations will provide an estimate of possible future changes of groundwater level 13 

frequencies for the two emission scenarios including an assessment of their uncertainty.  14 

4 Results 15 

4.1 Model calibration and evaluation 16 

Table 2 shows the optimised parameter values as well as the model performance. The simulation of the discharge shows 17 

KGE values of 0.73 and 0.58 in the calibration and validation period, respectively. The borehole simulations show high KGE 18 

values and only slight deteriorations in the validation period. The parameters are located well within their pre-defined 19 

ranges. Mean soil storage Vmean,S and mean epikarst storage Vmean,E are 2015.6 mm and 1011.7 mm, respectively. The 20 

porosity parameter at Ashton Farm is the highest, followed by the borehole at Black House. Ridgeway shows the smallest 21 

porosity value. For Ashton Farm and Blackhouse the calibration chose the groundwater storage compartment 7, for 22 

Ridgeway it chose the compartment number 8. 23 

Figure 4 plots the observations against simulations for the calibration and validation period. Modelled discharge generally 24 

matches the seasonal behaviour of the observations. However, some low-flow peaks are not depicted well in the simulation. 25 

When looking at the groundwater levels, the simulation of Ashton Farm appears to be most adequate. However, there are 26 

considerable periods when differences from the observations can be found for all wells. Simulations at Ridgeway and Black 27 

House show moderate performance in capturing peak groundwater levels. Notably the simulation at Black House is slightly 28 

better in the validation period. The cumulative parameter distributions derived by SCEM indicate that the model parameters 29 

were well identifiable when we use all available data (Figure 5), while some parameters remain hardly identifiable when 30 

only parts of the available data were used for calibration. Here identifiability of parameters is simply the extent that the 31 

cumulative parameter distributions span the sampled parameter limits, where highly constrained or near optimal is classed as 32 

identifiable. For instance, when only discharge was used for calibration (green lines), the parameters related to groundwater 33 

(porosity pGW and groundwater level offset Δh) happen to be unidentifiable. In addition, the groundwater parameters are only 34 

identifiable when their respective time series is considered (i.e. the yellow and blue lines at pGW,A and ΔhGW,A). In turn, the 35 

epikarst storage VmeanE is not identifiable when only the groundwater well data is used (yellow and red lines). We also note, 36 

as we would expect, that the final cumulative parameter distributions occur in different parts of the parameter space 37 

depending on the combination of performance metrics from different observations. 38 

 39 
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Figure 4: Modelled discharge [m³/s] of the Frome at East Stoke and groundwater levels [m a.s.l.] at the boreholes 1 

Ashton Farm, Ridgeway and Black House 2 

 3 

Figure 5: Cumulative parameter distributions (blue) of all model parameters; strong deviation from the 1:1 (dark 4 

grey) indicate good identifiability 5 

4.2 The percentile approach 6 

When simulated peak values of groundwater levels are compared to the observations, we find a rather moderate agreement. 7 

Using the percentile approach we find different thresholds to exceed our selected groundwater level percentiles. This is 8 

elaborated for 90
th

 percentile of simulated and observed groundwater levels of Ashton farm (Figure 6). 9 

 10 

Figure 6: Illustration of the percentile approach. Time series of the observed (grey dots) and modelled (green line) 11 

groundwater level at Ashton Farm. The dotted lines represent the respective 90th percentile 12 

 13 

Table 3 shows the mean observed and modelled exceedances of all selected thresholds (the 5
th

, 10
th

, 25
th

, 50
th

, 75
th

, 90
th

, and 14 

95
th

 percentiles) at all temporal resolutions in the validation period. By comparing matches in the number days of 15 

exceedance we evaluate our model at different percentiles and time scales. The left value is the mean absolute deviation 16 

(MAD) and the right value is the percentage of absolute deviation (PAD). We can see that the higher the percentile the larger 17 

is the deviation between observed and modelled exceedances. The same is true for the PAD when moving from lower to 18 

higher temporal resolutions. The MAD gets lower with higher temporal resolution. 19 

 20 

Table 4: Deviations of simulated to observed exceedances of different percentiles in the validation period (borehole: 21 

Ashton Farm). The left value is the mean absolute deviation MAD [d], the right value is the deviation percentage 22 

PAD [%] 23 

 24 

4.3 Impact of simulated climate changes on groundwater level distributions 25 

The results of applying the two climate projections to the model can be found at Table 4 and in Figure 7. They display the 26 

mean model outputs (Qsim, AET) and mean exceedances per year, calculated on the basis of our modelled time series. Both 27 

emission scenarios (low & high) lead to an increased modelled actual evapotranspiration and to decreased discharge 28 

simulations. In addition, both emission scenarios show a substantial reduction in exceedances of high percentiles. We also 29 

find that the standard error of the exceedances and non-exceedances of high emission scenario tends to be higher than the 30 

standard error of the low emission scenario.  31 

 32 

Figure 7: Mean model input (mm/a), mean modelled output (mm/a) and mean (non-)exceeded percentiles (number/a) 33 

in the reference period and both scenarios (borehole: Ashton Farm; future period: 2070-2099). The circles indicate 34 

the spread among the 9 realisations for each of the two scenarios 35 

 36 

Table 4: Model output and (non-)exceedances of percentiles in the reference period and the two scenarios (borehole: 37 

Ashton Farm, time period 2070-2099) 38 
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5 Discussion 1 

5.1 Reliability of the simulations 2 

A decrease of simulation performance in the validation period is normally to be expected because there is always a tendency 3 

to compensate for structural limitations and observational uncertainties during the calibration. The low decrease in model 4 

performance from 11% (groundwater prediction at Black House, KGEGW,B) to 21% (discharge prediction, KGEQ) during the 5 

validation period indicates a certain robustness of the calibrated parameters and is comparable to split sample tests in other 6 

studies (e.g., Parajka et al., 2007; Perrin et al., 2001) although we have to acknowledge that for other applications a higher 7 

degree of robustness may be required. In addition, it is corroborated by their generally mainly high identifiability derived by 8 

SCEM for the final calibration scheme that used all 4 available observed discharge and ground water level time series. 9 

Applying the Shuffled Complex Evolution Metropolis algorithm and step wise increasing the calibration data (only 10 

discharge, only groundwater, all together), we show that discharge data alone, as well as groundwater data alone, do not 11 

provide enough information to identify all of our model parameters as the posteriors of some of the model parameters remain 12 

close to a uniform distribution. This is similar to the work of Schoups and Vrugt (2010) who found unidentifiable parameter 13 

values with their models calibrating only against discharge. The different calibration schemes visualised in the cumulative 14 

parameter distributions show that initially unidentifiable parameters become identifiable when the related time series is 15 

considered. Using all information, all model parameters are identifiable, which is in accordance with preceding research that 16 

showed the usefulness of multi-objective approaches. For instance, Kuczera and Mroczkowski (1998) demonstrated that a 17 

combination of groundwater and discharge observations can reduce parameter uncertainty. As we were mostly focussing on 18 

the difference among the calibration steps with increasing data, the use of KGE as an informal likelihood measure seems 19 

justifiable.  20 

A look at the parameter values reveals an adequate reflection of the reality. However, Vmean,S and Vmean,E are quite high 21 

considering that initial ranges for these parameters were 0-250/0-500 mm (Hartmann et al., 2013a, 2013c). As previous 22 

studies took place in fairly dry catchments, the ranges were extended substantially to deal with the wetter climate in southern 23 

England. A high aSE indicates a high variability of soil and epikarst thicknesses favouring lateral karstic flow concentration 24 

(Ford and Williams, 2007). Butler et al. (2012) notes that the unsaturated zone of the Chalk is highly variable, ranging from 25 

almost zero near the rivers to over 100 m in interfluves. 26 

Additionally, the mean epikarst storage coefficient Kmean,E is quite low, indicating fast water transport from the epikarst to the 27 

groundwater storage which is in accordance to other studies (e.g., Aquilina et al., 2006). The value of parameter afsep 28 

indicates that a significant part of the recharge is diffuse. A moderately high conduit storage coefficient KC and a high aGW 29 

indicate that there is a significant contribution of slow pathways by the matrix system. A rather low value but sensitive of KC 30 

was found when calibrating only by discharge operations indicating some interactions of KC with other model parameters 31 

(Saltelli et al., 2008). This is in accordance with the findings of Jones and Cooper (1998) as well as Reeves (1979) who 32 

reported 30 % and 10-20 % of the recharge occurring through (macro-) fissures in Chalk catchments, respectively. Although 33 

groundwater flow in the chalk is dominated by the matrix, given antecedent wet conditions, fracture flow can increase 34 

significantly (Butler et al., 2012b; Ireson and Butler, 2011; Lee et al., 2006). Overall, split-sample test, parameter 35 

identifiability analysis, realistic values of parameters and plausible simulation results provide strong indication for a reliable 36 

model functioning.  37 

5.2 Performance of the percentile approach 38 

Based on the idea of the standardised precipitation or groundwater indices (Bloomfield and Marchant, 2013; Lloyd-Hughes 39 

and Saunders, 2002) our percentile approach permits to improve the performance of the model to reflect observed 40 
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groundwater level exceedances. It yields acceptable performance for years to days up to the 90
th

 percentile. A reduction of 1 

precision with the time scale is obvious but in an acceptable order of magnitude when the validation period is considered. 2 

Although deviations are considerable both in the calibration and validation period, they are stable demonstrating certain 3 

robustness but also the limitations of our approach. Although the variable model structure of the VarKarst model was shown 4 

to provide more realistic results than commonly used lumped models (Hartmann et al., 2013b) it still simplifies a karst 5 

system’s natural complexity. This can be seen in the simulated time series at Ashton Farm and Black House, which indicate 6 

an over-estimation of high levels and under-estimation of low levels. The reason for this behaviour might be due to the 7 

modelling assumption of a constant vertical porosity, despite the knowledge that there can be a strongly non-linear relation 8 

between chalk transmissivity and depth. Several studies acknowledge that hydraulic conductivity in the Chalk follows a non-9 

linear decreasing trend with depth (Allen et al., 1997; Butler et al., 2009; Wheater et al., 2007). This is mainly attributed to 10 

the decrease of fractures because of the increasing overburden and absence of water level fluctuations (Butler et al., 2012a; 11 

Williams et al., 2006). Hydraulic conductivities in the Chalk can span several orders of magnitude (Butler et al., 2009) and 12 

are particularly enhanced at the zone of water table fluctuations (Williams et al., 2006). In addition, cross-flows occurring in 13 

the aquifer can lead to complicated system responses in the Chalk (Butler et al., 2009). For the sake of a parsimonious model 14 

structure, these characteristics were omitted in this study but their future consideration could help to improve the simulations 15 

if information about the depth profile of permeability is available. Such decrease of performance was also found for 16 

standardised indices that use probability distributions instead of a simulation model (Van Lanen et al., 2016; Núñez et al., 17 

2014; Vicente-Serrano et al., 2012). To improve the approach’s reliability for higher groundwater level percentiles, a model 18 

calibration that is more focussed on the high groundwater level percentiles may be a promising direction. A consideration of 19 

the time spans above the 90
th

 percentile will allow for a better simulation quality. This could be further evaluated by using 20 

different percentile weighting schemes, stepwise increasing the weight on the target percentile. 21 

5.3 Applicability and transferability of our approach 22 

We prepared two scenarios by manipulating our input data using probabilistic projections of annual changes of precipitation 23 

and potential evaporation at 2070-2099 for a low and a high emission scenario. This may neglect some of the changes on 24 

climate patterns predicted by climate projections but it is based on local and real meteorological values of the reference 25 

period therefore avoiding problems that arise when historic and climate projection data show pronounced mismatches during 26 

their overlapping periods. Our results revealed that both scenarios lead to less exceedances over higher percentiles and more 27 

non-exceedances of lower percentiles indicating a higher risk of groundwater drought at our study site. However, one 28 

problem that arises from our approach is that we do not consider changes in the seasonal patterns of our input variable, for 29 

example the increase of winter precipitation. If this increase was considered the results would probably yield more 30 

exceedances of higher percentiles, as for instance found by Jimenez-Martinez et al. (2015). The purpose of the simple 31 

climate scenarios was to provide an application example of the new methodology, which is rather hypothetical considering 32 

the large uncertainties of current climate projections. We believe that our 9 realisations are sufficient to show that different 33 

possible future changes have a non-linear impact on groundwater level frequencies. Although quite simplistic our results are 34 

qualitatively in accordance with previous studies indicating increased occurrence of droughts in the UK (Burke et al., 2010; 35 

Prudhomme et al., 2014). The risk of drought occurrences might increase depending on the magnitude of change in 36 

evapotranspiration. However, more research and the application of more elaborated scenarios is necessary to completely 37 

understand the consequences of the change in groundwater frequency patterns in the UK chalk regions.  38 

As the VarKarst model is a process-based model that includes the relevant characteristics of karst systems over range of 39 

climatic settings (Hartmann et al., 2013b) our approach can to some extent be used to assess future changes of groundwater 40 

level distributions and also be applied in other regions. This may bring some advantage concerning approaches that used 41 
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transfer functions (Jimenez-Martinez et al., 2016) or regression models (Adams et al., 2010) for estimating groundwater 1 

levels, if enough data for model calibration and evaluation is available. 2 

As has been noted by Cobby et al. (2009), the likelihood and depth of groundwater inundations is one of the major 3 

challenges for future research of groundwater flooding. Since it is a lumped approach it may provide, after Butler et al. 4 

(2012), "a good indication of the likelihood of groundwater flooding, but do[es] not indicate where the flooding will take 5 

place". A spatial determination of the groundwater table as in Upton and Jackson (2011) would be possible but only in 6 

catchments where the borehole network is extensive. Thereby, the possibility to model several boreholes with one single 7 

calibration, due to compartment structure in VarKarst, might be also an advantage. Butler et al. (2012) noted that the 8 

parameterization of the unsaturated zone is a major difficulty in the Chalk. Since this study struggles also with the porosity, 9 

future work should take a closer look at this subject.  10 

6 Conclusions 11 

We used an existing process-based lumped karst model to simulate groundwater levels in a chalk catchment in Southwest 12 

England. Groundwater levels were simulated by translating the modelled groundwater storage into groundwater levels with a 13 

simple linear relationship. To evaluate our approach we analysed the agreement of observed and simulated groundwater 14 

level exceedances for different percentiles. Finally, a simple scenario analysis was undertaken to investigate the potential 15 

future changes of groundwater level frequencies that affect the risk of groundwater flooding as well as the risk of 16 

groundwater droughts. The model performance for discharge and the groundwater levels was satisfying showing the general 17 

adequacy of the model to simulate groundwater levels in the chalk. It also revealed shortcomings concerning higher 18 

groundwater levels. This was corroborated by the percentile approach that showed a robust performance up to the 90
th
 19 

percentile. A scenario analysis using UKCP projections on expected regional climate changes showed that expected changes 20 

may lead to an increased occurrence of low groundwater levels due to increasing actual evaporation. Overall, our study 21 

shows that semi-distributed process-based modelling can be a valuable tool to simulate and predict groundwater frequencies 22 

in Chalk regions where information is too limited for the application of distributed models. Here, a thorough model 23 

evaluation is essential to obtain reliable and consistent results. In order to obtain more reliable results we recommend 24 

collecting more data about the hydrogeological properties of our study site to improve the structure of our model regarding 25 

the porosity and the unsaturated zone. In addition, longer time series and an adapted calibration approach which, in 26 

particular, emphasizes on the >90
th

 percentiles of groundwater levels could significantly improve our simulations. In addition 27 

we propose to apply the method on other catchments to test the transferability of our approach and to quantify the variability 28 

of climate change impacts over a wide range of Chalk catchments across the UK. 29 
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7 Appendix 37 

Within the VarKarst model, the parameter Vmean,S [mm] and the distribution coefficient aSE [-] define the variation of soil 38 

storage capacities across the N model compartments. They are used to calculate the soil storage capacity VS,i [mm] for every 39 
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compartment i by Eqs. (3,4) in Table 5. We apply the same distribution coefficient aSE when we derive the epikarst storage 1 

distribution by the mean epikarst depth Vmean,E [mm] (Eqs. (6,7) in Table 5). We determine actual evapotranspiration from 2 

each soil compartment Eact,i is calculated by reducing potential evapotranspiration, which is found by the Thornthwaite 3 

equation (Thornthwaite, 1948), by the soil saturation deficit (Eq. (1) in Table 5). Surface runoff is found by the excess of soil 4 

and epikarst storage of the previous model compartment (Eq. (2) in Table 5). With surface runoff and actual 5 

evapotranspiration know, the stored water volume at each soil compartment VSoil,i [mm] can be calculated by simply applying 6 

water balance.  7 

The recharge from the soil to the epikarst REpi,i [mm] is calculated by the excess of the soil storage (Eq. (5) in Table 5), while 8 

the epikarst outflow follows a linear storage assumption (Eqs. (8,9) in Table 5). Again, water balance allows determining the 9 

stored water VEpi,i [mm] at each time step t and each epikarst compartment i. The downward flux from the epikarst considers 10 

a diffuse (Rdiff,i [mm]) and concentrated groundwater recharge (Rconc,i [mm]) component that are found by a variable 11 

separation factor fC,i [-] and a distribution coefficient af [-] (Eqs. (10,11,12) in Table 5). The diffuse component recharges the 12 

groundwater compartments beneath the respective epikarst layers (i = 1…N-1). The concentrated component flows laterally 13 

to compartment i = N and therefore recharges the conduit system.  14 

Similar to the epikarst compartment, variable groundwater storage coefficients KGW,i [d] are calculated (Eq. (15) in Table 5) 15 

and applied to calculate the discharges of the matrix system (Eq. (13) in Table 5) and the conduit system (Eq. (14) in Table 16 

5), which together sum up to the entire discharge of the system (Eq. (15) in Table 5). Knowing groundwater recharge and 17 

groundwater discharge for each model compartment i again allows determining the stored volume of water within the 18 

groundwater compartment VGW,i at time step t, which is used to simulate the groundwater levels (Eq. (1) in subsection 3.1). 19 

 20 

Table 5: Model routines, variables and equations solved in the VarKarst model 21 

 22 

  23 
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Figure 1: Overview on the Frome catchment 4 
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Figure 2: The VarKarst model structure 3 

 4 
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Figure 3: Schematic description of the percentile approach 6 
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Figure 4: Modelled discharge [m³/s], and groundwater levels [m a.s.l.] at the boreholes Ashton Farm, Ridgeway and Black House  3 

 4 
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Figure 5: Cumulative parameter distributions (blue) of all model parameters; strong deviation from the 1:1 (dark grey) indicate 3 
good identifiability 4 

 5 

 6 

Figure 6: Illustration of the percentile approach. Time series of the oberved (grey dots) and modelled (green line) groundwater 7 
level at Ashton Farm. The dotted lines represent the respective 90th percentile 8 
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 2 

Figure 7: Mean model input (mm/a), mean modelled output (mm/a) and mean (non-)exceeded percentiles (number/a) in the 3 
reference period and both scenarios (borehole: Ashton Farm; future period: 2070-2099). The circles indicate the spread among the 4 
9 realisations for each of the two scenarios 5 
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Table 1: All available data used in the study 3 

Parameter Station Source Period of time Resolution Unit 

Precipitation Sydling St. Nicolas (44006) CEH 01.01.2000-31.12.2012 daily mm d
-1

 

Discharge East Stoke (44001) CEH 01.01.2000-31.12.2012 daily m
3
s

-1
 

Pot. Evapotranspiration Catchment Cut East Stoke CEH 01.01.2000-31.12.2008 daily mm d
-1

 

Groundwater Levels Ashton Farm, Ridgeway, Black House EA 01.01.2003-31.12.2012 daily m a.s.l. 

Climate Delta values Grid Box Nr. 1698 (25*25 km) UKCP 2070-2099 annual °C, % 
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Table 2: Model parameters, descriptions, ranges and optimised values  2 

Parameter Description Unit Ranges   Weighting Optimised Values 

      Lower Upper    
 

Mean soil storage capacity mm 1000 2500  2015.6 
 

Mean epikarst storage capacity mm 1000 2500  1011.7 
 

Epikarst mean storage coefficient d 0.1 2.5  0.7246 
 

Conduit storage coefficient d 1 100  38.722 
 

Recharge separation variability constant - 0.1 5  1.1864 
 

Groundwater variability constant - 1 10  5.9966 
 

Soil/epikarst depth variability constant - 0.1 6  1.8928 
 

Ashton Farm groundwater level porosity parameter - 0.001 0.5  0.0069 
 

Ashton Farm groundwater level offset parameter m  0 150  64.167 
 

Ridgeway groundwater level porosity parameter - 0.001 0.5  0.0016 
 

Ridgeway groundwater level offset parameter m  0 150  48.718 

 

Black House groundwater level porosity parameter - 0.001 0.5  0.0032 
 

Black House groundwater level offset parameter m 0 150  78.448 

 

      

 

Model performance for discharge - 0 1 0.2 0.73/0.58* 

 

Model performance for groundwater level at Ashton Farm - 0 1 0.4 0.94/0.80* 
 

Model performance for groundwater level at Ridgeway - 0 1 0.2 0.86/ - * 
 

Model performance for groundwater level at Black House - 0 1 0.2 0.83/0.74* 

*Calibration/validation.  

 3 
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Table 3: Deviations of simulated to observed exceedances of different percentiles in the validation period (borehole: Ashton Farm). 

The left value is the mean absolute deviation MAD [d], the right value is the deviation percentage PAD [%]  

  Percentiles             

Time period 5 10 25 50 75 90 95 

5 years 5.00 / 0.29 30.00 / 1.83 38.00 / 2.77 16.00 / 1.75 1.26 / 5.04 19.00 / 10.40 90.00 / 98.56 

years 2.60 / 0.75 13.60 / 4.14 14.40 / 5.26 21.20 / 11.61 4.33 / 17.30 19.80 / 54.21 26.00 / 142.37 

year-seasons 0.65 / 0.75 4.10 / 4.99 3.60 / 5.26 6.90 / 15.11 6.74 / 26.94 6.45 / 70.64 6.50 / 142.37 

months 0.22 / 0.75 1.37 / 4.99 1.20 / 5.26 2.73 / 17.96 7.94 / 31.76 2.58 / 84.87 2.23 / 146.75 

weeks 0.05 / 0.74 0.33 / 5.27 0.27 / 5.18 0.61 / 17.36 7.82 / 31.27 0.58 / 83.56 0.54 / 153.10 

days 0.01 / 0.75 0.05 / 5.35 0.04 / 5.26 0.09 / 17.96 7.94 / 31.76 0.08 / 84.88 0.08 / 159.91 

 

 5 

Table 4: Model output and (non-)exceedances of percentiles in the reference period and the two scenarios (borehole: Ashton Farm, 

time period 2070-2099) 

Scenario Qsim AET 5th 10th 25th 50th 75th 90th 95th 

  mm/a mm/a non exc/a non exc/a non exc/a exc/a exc/a exc/a exc/a 

Reference 534 590 17.6 41.3 95.6 172.9 79.7 37.7 25.2 

Low 433 681 31.4 62.8 123.9 132.9 57.6 19.5 10.9 

High 343 718 57.0 92.3 165.3 94.9 37.5 10.9 6.1 
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Table 5: Parameters, descriptions and equations solved in the VarKarst model 

Model routine Variable Description Equation Unit Eq. Nr. 

  
Actual evapotranspiration 

  
mm d

-1
 (1) 

 Surface flow to the next model compartment   mm d
-1

 (2) 

 Maximum soil storage capacity 
  

mm (3) 

 Soil storage distribution 
 

mm (4) 

 Recharge to the epikarst 
  

mm d
-1

 (5) 

 
 Maximum epikarst storage capacity 

  
mm (6) 

 
Epikarst storage distribution 

  
mm (7) 

 
Outflow of the epikarst 

  
mm d

-1
 (8) 

 
Epikarst storage coefficient 

  
d (9) 

 
Diffuse recharge   mm d

-1
 (10) 

 
Concentrated recharge   mm d

-1
 (11) 

 
Recharge separation factor 

  
- (12) 

 

 
Groundwater contributions of the matrix 

  
mm d

-1
 (13) 

 
Groundwater contribution of the conduit system 

  
mm d

-1
 (14) 

 Variable groundwater storage coefficient 
  

d (15) 

 
Discharge 

  
l s

-1
 (16) 

 

= 𝐸𝑝𝑜𝑡(t)
min[VSoil,i(t) + P(t) + QSurface,i(t),  VS,i]

VS,i

 

= 𝑉𝑚𝑎𝑥,𝑆 (
𝑖

𝑁
)

𝑎𝑆𝐸

 

= 𝑉𝑚𝑒𝑎𝑛,𝑆2
(

𝑎𝑆𝐸
𝑎𝑆𝐸+1

)
 

= m𝑎𝑥[VSoil,i(t) + P(t) + QSurface,i(t) − Eact,i(t) − VS,i, ] 

= m𝑎𝑥[VEpi,i(t) + REpi,i(t) − VS,i,  0] 

= 𝑉𝑚𝑎𝑥,𝐸 (
𝑖

𝑁
)

𝑎𝑆𝐸

 

=
min[VEpi,i(t) + REpi,i(t) + QSurface,i(t),  VE,i]

KE,i

∆t 

= 𝐾𝑚𝑎𝑥,𝐸 (
𝑁 − 𝑖 + 1

𝑁
)

𝑎𝑆𝐸

 

= 𝑓𝐶,𝑖𝑄𝐸𝑝𝑖,𝑖(𝑡) 

= (1 − 𝑓𝐶,𝑖) 𝑄𝐸𝑝𝑖,𝑖(𝑡) 

= (
𝑖

𝑁
)

𝑎𝑓𝑠𝑒𝑝

 

= 𝑉𝑚𝑒𝑎𝑛,𝐸2
(

𝑎𝑆𝐸
𝑎𝑆𝐸+1

)
 

=
𝑉𝐺𝑊,𝑖(𝑡) + 𝑅𝑑𝑖𝑓𝑓,𝑖(𝑡)

𝐾𝐺𝑊,𝑖

  

=
min[VGW,𝑁(t) +  ∑ Rconc,i(t) , Vcrit,𝑂𝐹

𝑁
𝑖=1 ]

KC

∆t 

=
Amax

N
∑ 𝑄𝐺𝑊,𝑖(𝑡)

𝑁

𝑖=1

 

𝐸𝑎𝑐𝑡,𝑖(𝑡)⬚ 

𝑉𝑆,𝑖⬚
 

𝑉𝑚𝑎𝑥,𝑆⬚
 

𝑅𝐸𝑝𝑖,𝑖(𝑡)⬚ 

𝑄𝑆𝑢𝑟𝑓,𝑖+1(𝑡)⬚ 

𝑉𝐸,𝑖⬚
 

𝑄𝐸𝑝𝑖,𝑖(𝑡)⬚ 

𝐾𝐸,𝑖⬚
 

𝑅𝑐𝑜𝑛𝑐,𝑖(𝑡)⬚ 

𝑓𝐶,𝑖 

𝑉𝑚𝑎𝑥,𝐸⬚
 

𝑅𝑑𝑖𝑓𝑓,𝑖(𝑡)⬚ 

𝑄𝐺𝑊,𝑖  (𝑡)⬚ 

𝑄𝐺𝑊,𝑁(𝑡) 

𝑄𝑚𝑎𝑖𝑛(𝑡) 

𝐾𝐺𝑊,𝑖 
= 𝐾𝐶 (

𝑁 − 𝑖 + 1

𝑁
)

−𝑎𝐺𝑊
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