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Abstract. Approaches used to assess shallow slides susceptibility at the basin scale are conceptually different depending on 

the use of statistical or physically-based methods. The former are based on the assumption that the same causes are more 

likely to produce the same effects, whereas the latter are based on the comparison between forces which tend to promote 

movement along the slope and the counteracting forces that are resistant to motion. Within this general framework, this work 10 

tests two hypotheses: (i) although conceptually and methodological distinct, the statistic and deterministic methods generate 

similar shallow slides susceptibility results regarding the model’s predictive capacity and spatial agreement; and (ii) the 

combination of shallow slides susceptibility maps obtained with statistical and physically-based methods, for the same study 

area, generate a more reliable susceptibility model for shallow slides occurrence. These hypotheses were tested in a small 

test site (13.9 km2) located north of Lisbon (Portugal) using a statistical method (the Information Value method) and a 15 

physically-based method (the Infinite Slope method). The landslide susceptibility maps produced with the statistic and 

deterministic methods were combined into a new landslide susceptibility map. The latter was based on a set of integration 

rules defined by the cross-tabulation of the susceptibility classes of both maps and analysis of the corresponding contingency 

tables. The results demonstrate a higher predictive capacity of the new shallow slides susceptibility map, which combines the 

independent results obtained with statistical and physically-based models. Moreover, the combination of the two models 20 

allowed the identification of areas where the results of the Information Value and the Infinite Slope methods are 

contradictory. Thus, these areas were classified as uncertain and deserve additional investigation at a more detailed scale. 
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1 Introduction 25 

 

The evaluation of landslide susceptibility has been carried out worldwide based on three fundamental principles (Varnes et 

al., 1984; Carrara et al., 1991; Hutchinson, 1995; Guzzetti, 2005): (i) the landslides can be recognized, classified and 

mapped; (ii) the conditions that cause instability (predisposing factors) can be identified, registered and used to build 
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predictive models; and (iii) the occurrence of landslides can be spatially inferred. Within this conceptual scheme, it is 

assumed that future landslides are more likely to occur in areas where geologic and geomorphologic conditions are similar to 

those that originated the slope instability in the past (Guzzetti et al., 1999). This conceptual scheme has been extended to 

different methods of landslide susceptibility assessment regardless of their nature (Varnes et al., 1984; Hutchinson, 1995; 

Aleotti and Chowdhury, 1999; Carrara et al., 1999; Fell et al., 2008b). This is nonetheless surprising since the conceptual 5 

model is perfectly applied to any statistical method used to assess landslide susceptibility, but the same is not true for the 

physically-based methods. Indeed, the latter methods are based on physical laws and soil mechanics principles where the 

slope is considered as a system where shear stress and shear strength are continually in opposition. Unlike landslide 

susceptibility models based on statistical methods, landslide inventories are not used to assess landslide susceptibility with 

deterministic methods. However, landslide inventories still remain essential to validate the obtained landslide susceptibility 10 

maps.  

The comparison between different methods to assess landslide susceptibility is not a new research topic when performed 

exclusively with different statistical methods (Gorsevski et al., 2003; Süzen and Doyuran, 2004; Brenning, 2005; Davis et 

al., 2006; Lee et al., 2007; Felicísimo et al., 2013; Bui et al., 2016) or with different physically-based methods (Zizioli et al., 

2013; Formetta et al., 2014; Pradham and Kim, 2015; Teixeira et al., 2015). There are a few studies that compare the 15 

predictive capacity between statistical and physically-based methods (Crosta et al., 2006; Carrara et al., 2008; Frattini et al., 

2008; Yilmaz and Keskin, 2009; Cervi et al., 2010; Goetz et al., 2011; Seefelder et al., 2016) and out of those only a limited 

number have combined the results obtained with statistical and physically-based approaches (Chang and Chiang, 2009; 

Goetz et al., 2011). According to Zizioli et al. (2013) the different methods used to assess shallow slides susceptibility are 

not mutually exclusive. The latter authors pointed out that the use of different strategies to assess landslide susceptibility and 20 

the comparison of their predictive capacity can help to: (i) enhance the quality and reliability of each method; (ii) highlight 

and identify the most important factors affecting the slope instability system; (iii) neglect less influential aspects to simplify 

the models; and (iv) select the most appropriate methodology to achieve a specified goal.  

In this study we test two hypotheses: (i) although conceptually and methodologically distinct, the statistic and deterministic 

methods generate similar results for shallow landslides susceptibility regarding the model’s predictive capacity and spatial 25 

agreement; and (ii) the combination of the shallow landslides susceptibility maps obtained with statistical and physically-

based methods, for the same study area, generate a more reliable susceptibility map for shallow slides occurrence. 

2 Study area 

The study area comprises the two small catchments of Monfalim and Louriceira (13.9 km2), which are located 25 km NNW 

of Lisbon, Portugal (Fig. 1). The elevation ranges from 442 m at the West to 134 m in the northeast sector of the study area, 30 

near the confluence of both Monfalim and Louriceira rivers with the Grande da Pipa River (GPR), which is an affluent of the 

Tagus River.  
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The lithological units are mainly sedimentary rocks dated from the Kimmeridgian to the Lower Thitonian (Upper Jurassic). 

There are also alluvium deposits of the Holocene age and a complex of dikes and volcanic masses that cover only 1.1 % of 

the study area. The detailed lithological units map of the study area (Fig. 1) was constructed based on official geological 

maps (Zbyszewski and Assunção, 1965; INETI, 2005) and on the interpretation of aerial photographs and validation of 

lithological units limits through field work. Therefore, it was possible to identify the following eight lithological units in 5 

ascending order of age: (i) alluvium; (ii) Arranhó formation (limestones and marls); (iii) Sobral formation (sandstones and 

limestones); (iv) Sobral formation (mudstones and marls); (v) Amaral formation (limestones); (vi) Amaral formation (marls); 

(vii) Abadia formation (mudstones and marls). The lithological unit (viii) is constituted by dykes and volcanic masses 

(basalt, teschenite, dolerite and weathered rocks).  

The study area has undergone a wide curvature angle tectonic rebound since the Miocene (Zbyszewski and Assunção, 1965) 10 

and the layers dip typically to SE/SW. This structural setting, together with the alternation of soft rocks such as marls, clays 

and mudstones with more resistant rocks as the limestones, has allowed the development of cuesta-like landforms resulting 

from differential erosional processes (Ferreira, 1984; Ferreira et al., 1987; Zêzere, 1991). Therefore, gentle reverse slopes are 

found over the lithologic units of Sobral and Arranhó formations, whereas abrupt cutting slopes are seen along the Amaral 

limestones lithological unit that outcrops over the erosive depression developed on the Abadia marls and mudstones 15 

formation (Ferreira, 1984). The slopes within the study area are typically moderate: 78.1 % of the total area has slopes in the 

range of 5º to 20º. The gentle slopes (0º – 5º) represent only 12.9 % and the steepest slopes (> 20º) occur only in 9 % of the 

study area. 

Landslides in the study area have been triggered by rainfall (Zêzere et al., 1999, 2005, 2015; Zêzere and Rodrigues, 2002; 

Oliveira, 2012). The climate is Mediterranean and the Mean Annual Precipitation (MAP) is 730 mm (at São Julião do Tojal 20 

gauge located 20 km south from the study area) (Zêzere et al., 2015). Shallow slides have been triggered mainly by intense 

short duration rainfall episodes, of typically 1 to 15 days maximum (Zêzere and Trigo, 2011; Zêzere et al., 2015). These 

rainfall events generate increments of pore water pressures and the reduction of the soil shear strength, including the loss of 

cohesion on fine sediments, which promote the failure along the superficial soil formations or along the contact between the 

soil and the impermeable bedrock (Trigo et al., 2005). 25 

3 Methods and data 

The methodological procedures for assessing shallow slides susceptibility based on the application and combination of 

statistical and physically-based approaches are summarized in Fig. 2. Two commonly used methods were chosen: the 

bivariate statistical Information Value method (IV) (Yin and Yan, 1988) and the Infinite Slope method (IS) (Sharma, 2002) 

based on the calculation of the Factor of Safety (FS). Both methods are in line with the experts panel recommendations to 30 

assess landslide susceptibility (Cascini, 2008; Fell et al., 2008a, 2008b; Corominas et al., 2014) and have been applied 

successfully in similar geological and geomorphological context in the region north of Lisbon (Zêzere, 2002; Pimenta, 2011; 
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Guillard and Zêzere, 2012; Oliveira et al., 2015).In order to model the shallow slides susceptibility, the dependent variables 

(shallow slides modelling and validation groups), the independent dataset of variables used as predisposing factors, and the 

maps representing geotechnical and hydraulic parameters were rasterized using a pixel of 5 m x 5 m. 

3.1 Landslide inventory 

The landslide inventory was used twice in this study: (i) to establish the statistical relationships between shallow slides and 5 

the data-set of environmental factors assumed as shallow slides predisposing factors in the statistical approach; and (ii) to 

validate the shallow slides susceptibility models obtained with both statistical and physically-based models. The landslide 

inventory of the study area (Fig.1) includes 111 shallow slides (translational and rotational slides with high curvature angle 

of the slip surface) that were classified following the Cruden and Varnes (1996) proposal. The depth of the slip surface is 

typically less than 1.5 m. The shallow slides inventory was extracted from (Oliveira, 2012) and was based on the 10 

interpretation of aerial photographs (1983, 1989) and orthophotomaps (2003, 2004, 2007), as well as on extensive field work 

carried out during the 2006-2010 period.  

The inventory of shallow slides was further subjected to a partition based on a temporal criterion (Fig.1, Table 1). The 

landslide training group includes the shallow slides that occurred until the end of 1983 (51 cases, 0.027 km2, and 0.19 % of 

the study area). The landslide validation group includes all landslides that occurred between 1984 and the end of 2010 (60 15 

cases, 0.03 km2, 0.22 % of the study area. The training group was used to weigh classes of shallow slides predisposing 

factors in the statistical model using the IV method and to calibrate the shear strength parameters (cohesion and friction 

angle) of the lithological formations in the IS model. The validation group was used for the independent validation of both 

statistical and physically-based shallow slides susceptibility models. 

3.2 Statistical approach to assess landslide susceptibility 20 

3.2.1. The Information Value method 

The Information Value (IV) (Yin and Yan, 1988) was used to compute the susceptibility score for each class of each variable 

considered as a landslide predisposing factor based on the log normalization of the ratio between the conditional probability 

to find a shallow slide in a certain class of a predisposing factor and the a priori probability to find a shallow slide in the 

study area, following Eq. (1).  25 

݅ܫ  = ݃݋݈ ௌ௜/ே௜ௌ/ே   ,            (1) 

 

where: Ii is the Information Value of class Xi belonging to an independent variable (landslide predisposing factor); Si is the 

number of pixels with shallow slides belonging to the training group and the presence of the variable class Xi; Ni is the 30 

number of pixels with variable class Xi; S is the total number pixels with shallow slides belonging to the training group; and 
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N is the total number of pixels of the study area. Due to the logarithmic normalization Ii is not calculated when Si = 0. In 

these cases Ii was determined as the lowest information value considering the complete data set of landslide predisposing 

factors. The final IV scores Ij for each terrain unit j was obtained using Eq. (2). 

 Ij =  ∑ Xij Ii ୧ౣୀଵ  ,           (2) 5 

 

where: m is the total number of variable classes; and Xij is either 0 if the variable class is not present in the pixel j, or 1 if the 

variable class is present.  

3.2.2 Landslide predisposing factors 

We selected the following seven landslide predisposing factors as independent variables (Fig. 3, Fig. 1 and Table 4 for the 10 

description of classes) that have successfully been used in previous studies in the region north of Lisbon (e.g., Oliveira et al., 

2015): lithology, slope angle, slope aspect, slope curvature, topographic position index (TPI), slope over area ratio and land 

use. 

The lithologic map includes 8 classes described above (cf. Sect. 2. Study area). The Land use map was obtained from the 

official map representing the land use in 1990. Although it does not match the current land use in the study area, it is the one 15 

that best fits the time span of shallow landslides included in the present landslide inventory and the temporal land use frame 

closer to the age of the landslides in the training group. The remaining variables (slope, aspect, curvature, topographic 

position index and slope over area ratio) were derived from a Digital Elevation Model based on elevation data interpolated 

from a topographic contours map (equidistance 10 m). Regarding the curvature map, a DEM generalization based on a 50 m 

pixel size grid was considered to calculate the profile of the slopes, as it provides the best fit to the morphology of slopes in 20 

the study area (Oliveira et al., 2015). The Topographic Position Index (TPI) was calculated based on the Facet Corridor 

Designer tool for ArcGIS (Jenness et al., 2011). This index is heavily dependent on the scale (Piacentini et al., 2015) an the 

neighbourhood radius of 25 meters proved to be the most appropriate for the index calculation at the work reference scale. 

The Slope Over Area Ratio (SOAR) was used to express the importance of the topography in hydrological processes through 

the relationship between the slope and the contribution area (Sørensen et al., 2006), which allow to infer the areas prone to 25 

surface saturation (Fonseca, 2005). The calculation of the SOAR was made using the TauDEM 5.2 (Terrain Analysis Using 

Digital Elevation Models) tool and the algorithm D8 (O’Callagham and Mark, 1984) to minimize the dispersion of 

accumulation flow.  



6 
 

3.3 Physically-based approach to assess landslide susceptibility 

3.3.1 The Infinite Slope method (IS) 

The most popular formulations of the Infinite Slope method consider a subsurface flow/water table level parallel to the 

topographic surface, whose maximum depth is equivalent to the maximum thickness of the saturated soil. In this context, the 

development of a steady-state hydraulic model in static conditions can be related to the ratio between the thickness of 5 

saturated soil and the thickness of the potentially unstable soil, as provided in the formulation of SHALSTAB model 

(Dietrich and Montegomery, 1998). The FS for each terrain unit (pixel) was thus calculated based on the Infinite Slope 

method, incorporating a soil thickness model and an hydraulic model for the study area, following Eq. (3) (Sharma, 2002): 

 

FS =  ୡᇲା୦∗ୡ୭ୱమஒ[(ଵି୫)Ƴౣା ୫ Ƴ౩౫ౘሿ∗ ୲ୟ୬ மᇱ ୦∗ୱ୧୬ஒ∗ୡ୭ୱஒ[(ଵି୫)Ƴౣା୫ Ƴ౩౗౪)  ,   (3) 10 

 

Where: c′ is the effective cohesion (kN/m²); h is the potentially unstable soil depth; β is the slope of the terrain unit; m is the 

equation component of the hydraulic model, considered as the ratio between the saturated soil depth and the potentially 

unstable soil depth; ϕ′ is the internal friction angle (°); ߛ௠ is the specific soil weight (kN/m³); ߛ௦௔௧ is the saturated soil weight 

(kN/m³) and ߛ௦௨௕ is the submerged soil weight (kN/m³). The FS values can be interpreted in two ways. In the more restrict 15 

sense it is assumed that all terrain units with FS values ≤ 1 are unstable. In a broader interpretation the FS results are 

compared with results obtained using the statistical approach; in other words each terrain unit within a study area can be 

ranked according to its FS value, where the lowest FS value indicates the highest landslide susceptibility. 

The development of the IS model was supported by the following parameters: (i) topographical variables (slope and 

catchment area), (ii) soil thickness, (iii) hydrologic parameters (hydraulic conductivity, soil transmissivity and daily rainfall 20 

threshold), (iv) geotechnical parameters (natural, saturated and submerged specific soil weights; cohesion; and internal 

friction angle). Most geotechnical parameters were deduced from references with regional validity that were summarized by 

(Pimenta, 2011).  

3.3.2 Soil thickness model 

The depth of the potentially unstable soil is a critical parameter that strongly influences the stability of slopes. The soil depth 25 

model for the study area was obtained using Eq. (4), as proposed by (Catani et al., 2010): 

 h = −Kୡ. C. Ƞ. Ψିଵ ,           (4) 

 

Where: h is the soil thickness, Kc is a constant calibration parameter, C is an index based on the slope profile curvature, η is 30 

the relative soil depth dependent on the topographic position; ψ-1 is the critical slope angle associated to landslide 
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occurrence. The three parameters C, η and ψ-1 were expressed in a scale ranging between 0 and 1. For each parameter, the 

value 1 was assigned to the maximum observed value, 0 to the minimum observed value and the remaining observed values 

were assigned numbers between 0 and 1 by linear normalization. The constant Kc was estimated independently for each 

lithological unit based on trial and error estimation to obtain the best possible fit of the soil thickness values obtained by Eq. 

4 to the soil thickness values measured in 110 sampling field points. These sampling field measurements, subject to the 5 

existence of slope cuts where the soil depth was measured, were spatial distributed in order to guarantee a reasonable number 

of soil thickness measurements in each lithological unit but also along different geomorphological units (interfluve areas, 

slopes, valley floors) The calibration of the Kc constant for any lithological unit requires that the differences between the 

maximum estimated soil thickness and the maximum soil thickness measured in the field does not exceed 1 m. Table 2 

summarizes the Kc constant calibration values obtained for each lithological unit in the study area. Soil profiles were not 10 

found in LU1, LU3 and LU8 during the field work. In the case of LU3, we adopted a Kc value equal to the one estimated for 

the other lithologic unit belonging to the Sobral formation (LU4, Kc = 3.6). In the case of alluvium (LU1) and complex of 

dikes and masses (LU9) we adopted a Kc = 2.9, which is the arithmetic mean of all Kc values obtained for lithological units 

where it was possible to measure soil thickness during field sampling. Fig. 4 shows the final soil thickness map of the study 

area. 15 

3.3.3 Hydraulic model 

The adopted hydraulic model was developed using SHALSTAB (Dietrich and Montegomery, 1998), that follows a model 

developed by O’ Loughlin (1986). According to Sharma (2002), the hydraulic model is the ratio between the thickness of 

saturated soil and the thickness of the potentially unstable soil given by Eq. (5). 

 20 ୦୸ = ୘୕ ∗ ୟୠ∗ୗ୧୬ஒ ,            (5) 

 

Where: h/z is the ratio between the thickness of the saturated soil above the impermeable layer and the thickness of the 

potentially unstable soil; Q is the effective precipitation (m/day); T is the transmissivity of the soil (m²/day); a is the 

upstream contribution area (m2); b is the cell length (m); and β is the slope gradient (°). The increase of the hydrologic ratio 25 

(Q/T) indicates that soil saturation will be faster and more extensive. The topographic ratio (a/(b * Sinβ)) describes the 

topography effect on runoff (Dietrich and Montegomery, 1998; Montgomery et al., 1998). The transmissivity of the soil was 

estimated using Eq. (6) (Lencastre and Franco, 2006): 

 T = k + z ,            (6) 30 

 

Where: T is the soil transmissivity (m²/day); k is the saturated hydraulic conductivity (m/day); and z is the soil thickness (m). 
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As the hydraulic conductivity based on field measurements was not available for the study area, this parameter was 

estimated for the identified soil types based on the work developed by Rawls et al. (1982), which summarized the typical 

hydraulic conductivities for different soil types starting from the respective textural properties. The national digital soil map 

at 1: 25,000 scale (DGADR, 1999) was used to extract the clay, silt + sand, and coarse sand fractions for the different soils 

types in the study area. The soil taxonomy of the US Department of Agriculture was used to distinguish between soil types, 5 

through the Soil Texture Triangle Bulk Density. Rocky outcrops and urban areas were assigned the value -1 value, thus 

corresponding to 0 (absence of water) in the hydraulic model. The castanozems soils were also assigned the value -1 value 

because the typical pedological stage of castanozem soils within the study area is a stony soil phase. Finally, 55 types of soils 

were identified, in addition to social areas and rocky outcrops.  

The effective precipitation was estimated based on the Eq. (7) proposed by Trigo et al. (2005) that defines the rainfall 10 

threshold for triggering translational and rotational landslides in the region north of Lisbon that includes the study area. 

 Cr = 7.4D + 107 ,           (7) 

 

Where: Cr is the rainfall threshold that is associated to landslides occurrence (mm), and D is the number of consecutive 15 

rainfall days. 

As most landslide events occur in the study area during the Winter season we believe that the effect of evapotranspiration 

can be neglected; therefore the effective precipitation can be assumed to equal the total precipitation, namely for short 

rainfall periods. Using Eq. (7) we obtained a critical daily rainfall for failure of 114.4 mm. The rainfall concentrated in a 

single day is a feasible scenario for triggering shallow landslide events, such as the ones that occurred in the Lisbon Region 20 

in 1967 and 1983 (Zêzere et al., 2005, 2015). 

The hydraulic conductivity was estimated based on the critical precipitation for failure and the soil texture. In the study area 

k ranges from 5.05 m/day in the luvisols with dominantly sandy texture, to 0.0144 m/day in vertisols with dominantly clayey 

texture. The computed transmissivity ranges between 0 and 13.45 m2/day (Fig. 5A). The final hydraulic model is shown in 

Fig. 5B.  25 

3.3.4 Geotechnical parameters of superficial soils 

All geotechnical parameters mentioned in this section, related to soil weight (Υm, Υsat, Υsub) cohesion (c’) and friction angle 

(ϕ’), were based on literature and were defined for the superficial soils above the bedrock within each lithological unit. The 

specific (Υm), saturated (Υsat) and submerged (Υsub) soil weights values were provided by Pimenta (2011) and are summarized 

in Table 3. 30 

The strength parameters of the lithological units obtained in laboratory with direct shear tests Pimenta (2011) proved to be 

too high to explain the observed slope instability. Therefore, the optimal combinations of cohesion and effective internal 

friction angle values for each lithological unit were defined iteratively through back analysis. Different combinations of 
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cohesion and effective internal friction angles were tested with the Infinite Slope method and validated with the landslide 

training group (landslide area), using as reference the maximum and minimum friction angles suggested by Geotechdata 

(2013). Critical pairs of cohesion and internal friction angle were selected for each lithological unit by combining two 

criteria: (i) the susceptibility class with FS ≤ 1 must include at least 50 % of landslide area of the landslide training group 

located on the lithological unit; and (ii) the susceptibility class with FS ≤ 1 must have the highest effective ratio, which is 5 

expressed by the ratio between the percentage of landslide area predicted in the class and the percentage of the class area in 

the study area (Chung and Fabbri, 2003). In the cases of LU2 and LU5 it was not possible to comply with the criterion (i), 

but the corresponding critical pair cohesion / internal friction angle were selected respecting criterion (ii). In addition, 

strength parameters of LU1 and LU8 could not be estimated with this method due to the absence of landslides in these 

lithological units. In these cases, the cohesion and effective internal friction angle were derived directly from Pimenta 10 

(2011), that gathered information from technical reports, geotechnical laboratory tests and standard values reported in the 

literature (Baptista, 2004; Cernica, 1995; Fernandes, 1994; Jeremias, 2000; Vallejo et al., 2002). Table 3 summarizes the 

geotechnical parameters of the lithological units used to implement the physically-based model. 

3.4. Validation, comparison and combination of shallow slides susceptibility models 

The validation of susceptibility maps produced by statistical and physically-based models was made independently using the 15 

landslide validation group. ROC (Receiver Operating Characteristic) curves were computed and the corresponding Area 

Under the Curve (AUC) was calculated. Additionally, the landslide susceptibility maps were classified and the effective ratio 

of each class was estimated. Both statistical and physically-based susceptibility maps were classified considering the same 

fraction of study area in each equivalent landslide susceptibility class. First, the IS map was ranked into 5 classes based on 

the Factor of Safety values (≤ 1, 1 to 1.25; 1.25 to 1.5, 1.5 to 2, and > 2), which correspond respectively to the following 20 

descriptive classification of susceptibility (Very high; High; Moderate, Low; and Very low). Next, the IV map was organized 

into 5 classes (Very high; High; Moderate, Low; Very low) ensuring that equivalent susceptibility classes cover the same 

fraction of the study area in both maps. The evaluation of the spatial agreement between landslide susceptibility maps based 

on statistical and physically-based approaches was made using the Rank Difference Tool included in ArcSDM (Sawatzky et 

al., 2008). 25 

Lastly, statistical and physically-based susceptibility maps were combined into a final shallow slides susceptibility map 

based on the intersection of the susceptibility classes in a contingency table, using the Map Comparison Kit tool (Visser and 

Nijs, 2006) on a cell by cell comparison and Kappa statistics. 
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4 Results and discussion 

4.1 Statistical landslide susceptibility assessment 

The Information Value scores calculated for each class of predisposing factors based on the landslide training group are 

summarized in Table 4 and the corresponding shallow slides susceptibility map is shown in Fig. 6. The spatial distribution of 

susceptibility shows a clear contrast between the northern/north-eastern sectors of the study area in which the susceptibility 5 

is predominantly classified as low to very low, whereas in the central/southern part of the study area the susceptibility to 

shallow slides is typically higher. This contrast is mainly justified by the lithological differentiation. In fact the LU7 (Abadia 

formation: marls and clays) and LU5 (Amaral formation: limestones) are found in the northern part of the study area, and 

they apparently have a low predisposition to shallow slide occurrence (Table 4). By opposition, lithological units more prone 

to slope instability (LU2 - Arranhó formation: limestones and marls; and LU3 - Sobral formation: sandstones and 10 

limestones) occur as outcrops in the central and southern part of the study area. In addition, the slope angle tends to be higher 

in the latter part of the study area, thus contributing to the higher landslide susceptibility. 

The ROC curve of the landslide susceptibility model is shown in Fig. 7. The model predictive capacity is reasonable/good, as 

expressed by the AUC ROC of 0.75. 

4.2 Physically based landslide susceptibility assessment 15 

The shallow slides susceptibility map computed with the IS method is shown in Fig. 8A. The susceptibility class with FS ≤1 

(Very high susceptibility) covers 17.9 % of the total study area and validates 53.4 % of the shallow slides belonging to the 

landslide validation group, which explains the higher effective ratio (2.98) of this susceptibility class (Table 5). By 

comparison with the IV susceptibility map the increment of area classified with very high/high susceptibility is clear in the 

northern sector of the study area where LU7 outcrops, whereas the spatial expression of the two highest landslide 20 

susceptibility classes decreases in the southwestern/southern sector where the LU2 outcrops. The ROC curve of the model 

based on the landslide validation group is shown in Fig. 7. The ROC curve is closer to the upper left corner of the ROC 

curve graphic, which confirms the best predictive capacity of the IS susceptibility map when compared with the IV 

susceptibility map. The AUC of 0.81 also supports the better predictive capacity of the IS model. 

As mentioned above, shallow landslides have been triggered by rainfall in the study area, typically during intense short 25 

duration rainfall events (Zêzere et al., 2005, 2015; Zêzere and Trigo, 2011). Additionally, extensive field work in the study 

area (Oliveira, 2012) has shown a total absence of instability signs during the summer, which is consistent with the dryness 

that characterizes this season. Therefore, a typical situation of superficial absence of water in the soil during summer, i.e., m 

= 0, is implicit; accordingly, an additional physically-based shallow slides susceptibility map was prepared considering no 

water in the soil (m = 0). Figure 8B shows the model results. Given the assumed boundary conditions, it was expected that 30 

the model would not generate FS ≤ 1. However, Fig. 8B shows a small fraction of the study area classified with Very high 

susceptibility (FS ≤ 1, 2.25 % of study area) under conditions of absence of water into the soil, which is interpreted as an 
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error of the IS model. It is worth mentioning that most of the model errors occur over the LU2 (Arranhó formation) 

indicating that the corresponding resistance parameters (cohesion, internal friction angle) may be underestimated. The 

cohesion and internal friction angle values that guarantee FS>1 for any LU in the absence of water into the soil (m = 0) are 

summarized in Table 3 (in brackets). These geotechnical parameters were tested in a new model (susceptibility map not 

showed) considering the existence of water into the soil and the obtained result is not reliable: the area classified as unstable 5 

(with FS ≤ 1) corresponds to only 1.3% of the total study area and validates only 8.1% of the landslides belonging to the 

training group. Therefore, we conclude that the geotechnical parameters that guarantee the absence of cells with FS ≤1 when 

m = 0 are too high to correctly express the landslide susceptibility in the study area.  

4.3 Comparison of landslide susceptibility models 

The comparison of the susceptibility maps produced with IV and IS methods demonstrates that spatially the 10 

susceptibility ranking differs substantially depending on the method used. Indeed, the Kappa coefficient is only 0.23, which 

means that spatial correlation is moderate, although the reasonable/good predictive capacity of both models was attested by 

the AUC ROC (Fig.7).  

The two highest classes in the IV landslide susceptibility map spread over 34.1 % of the total study area and the 

corresponding percentage of predicted shallow slides approaches 69.4 %. The performance of the predictive model is weaker 15 

for the intermediate susceptibility classes (moderate and low), in particular for the low susceptibility class that includes a 

relevant portion (15.7 %) of shallow slides belonging to the landslide validation group. The IS landslide susceptibility model 

reveals a better predictive capacity confirmed by the fact that 83.1 % of the landslide validation group fall into the two 

highest susceptibility classes. 

The effective ratios calculated for landslide susceptibility classes of both models are summarized in Table 5. The 20 

effective ratios for the IS model are higher for the Very high and High susceptibility classes and lower for the Low and Very 

low susceptibility classes than the effective ratios of the IV model for the same classes, which indicate a better predictive 

capacity of the IS model. 

The spatial comparison of the two susceptibility maps is shown in Fig. 9. The value zero means spatial agreement 

between landslide susceptibility classes, whereas values other than zero mean disagreement. Negative values indicate that 25 

landslide susceptibility obtained with IV is lower when compared with the map obtained with IS, with the difference 

increasing from -1 to -4. For example, a grid cell with a score -4 means this terrain unit was classified as very high 

susceptibility in the IS susceptibility map and as very low susceptibility in the IV susceptibility map. Positive values indicate 

the opposite relationship between map classes. The perfect spatial agreement between susceptibility classes in both maps 

occurs in 39.9 % of the study area (Table 6). However, adding the minimum mismatch classification (-1 and +1 in Fig. 9) the 30 

previous feature rises to 73 % of the total study area. The major discrepancy between the two susceptibility maps (-4, -3, 3 

and 4 in Fig. 9) occurs along 10.5 % of the study area, namely where the Abadia formation (LU7) and the Arranhó formation 

(LU2) outcrop. In the northern part of the study area where the LU7 is present, the landslide susceptibility obtained with the 
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IV method is lower than the one obtained with the IS method, whereas the opposite occurs in the central and southern part of 

the study area where the LU2 is present.  

These results can be explained by the particular specifications associated with the physically-based and statistical 

methods. The resistance parameters estimated for the superficial soil over LU7 (c '= 2 kPa, φ' = 19 °) are higher than those 

estimated for LU2 (c '= 0.5 kPa φ '= 17 °). However, the landslide susceptibility computed using the IS tends to be higher 5 

over LU7, which is related to the soil water content and eventually to the presence of thicker soils, particularly along the 

lower part of slopes where topographic conditions are more prone to soil saturation. On the other hand, the statistical 

approach generated IV scores of 0.494 and -0.857, respectively for LU2 and LU7. The positive IV score for LU2 clearly 

indicates a higher likelihood of shallow slides occurrence. We acknowledge that shallow slides inventory may be incomplete 

in the area corresponding to LU7, which could justify the negative IV score. Indeed, the LU7 clays and marls are associated 10 

with gentle slopes and are characterized by intense agricultural use; thus, the footprint of small shallow slides is easily erased 

on the landscape, as the “original” slope profile is recovered for agricultural activities. On the contrary, the LU2 is 

constituted by sequences of marl and limestone layers, which induce larger topographic irregularities and less productive 

soils on steep to moderate slopes. These geological and geomorphological conditions favoured a land use mainly associated 

to forest and annual crop cultures. In this context, the landslide footprint over slopes tends to last longer, which justifies a 15 

more complete shallow slides inventory, and consequently, the higher IV score. 

4.4. Combination of landslide susceptibility models 

The results of the cross-tabulation between landslide susceptibility classes of both susceptibility maps (statistical and 

physically-based) are summarized in a contingency table (Table 6). The distribution of shallow slides belonging to the 

validation group on the same contingency table is summarized in Table 7. Table 6 shows the combinations considered within 20 

the contingency table to classify the final landslide susceptibility map resulting from the integration of statistical and 

physically-based predictive models; the colours (red, orange, yellow, light green, green and grey) represent the final 

susceptibility classes (Very high, High, Moderate, Low, Very low, and uncertain, respectively). The corresponding final 

shallow slides susceptibility map is shown in Fig. 10 and information about final landslide susceptibility classes is detailed in 

Table 8. 25 

The Very high susceptibility class covers 16.4 % of the study area and includes 55.6 % of the shallow slides 

validation group and the High susceptibility class covers 14.3 % of the study area and includes 18.6 % of the shallow slides. 

In opposition, the Very low and Low susceptibility classes cover 33.4 % and 10.6 % of the study area, respectively, and 

include only a small fraction of the landslide validation group (1.4 % each class). 

Terrain units classified as Very high or High susceptibility by one method and simultaneously as Very low or Low 30 

susceptibility by the other method were considered as uncertain regarding susceptibility to shallow slides occurrence in the 

final map. The ‘grey’ class, although classified as Uncertain, is potentially High or Very high landslide susceptible and 

covers 16.3 % of the study area and includes 16.0 % of the shallow slides belonging to the validation group. However, the 
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distribution of landslide validation group in the Uncertain susceptibility class is different in the upper right corner and in the 

lower left corner of the contingency table (see Tables 6 and 7). Terrain units classified as Very high or High susceptibility by 

the IS susceptibility map and as Very low or Low susceptibility by the VI method (upper right corner in Tables 6 and 7) 

include 14.7 % of shallow slides belonging to the validation group, whereas terrain units with inverse classification (lower 

left corner in Tables 6 and 7) only contain 1.2 % of the shallow slides validation group. These values, once more, reflect the 5 

higher quality of the physically-based susceptibility model in comparison with the statistical model. 

The predictive quality of susceptibility classes that make up the final landslide susceptibility map is confirmed by 

the estimated effective ratios (Table 8). The effective ratio of the Very high susceptibility class (3.39) is higher than those 

obtained for the equivalent susceptibility class with the statistical and physically-based methods (cf. Table 5). In addition, 

effective ratios corresponding to the Very low and Low susceptibility classes (0.04 and 0.12, respectively) are lower than 10 

those obtained with statistical and physically-based methods (cf. Table 5), which indicates a better predictive performance of 

the combination of the two landslide susceptibility models. Moreover, the effective ratio is higher for the Uncertain class 

than for the Moderate class (Table 8), which is consistent with the potential for high or very high susceptibility considered 

for the Uncertain class. 

5 Conclusion 15 

Statistical and physically-based methods used to assess landslide susceptibility at the basin scale are conceptually 

distinct as the former are based on weighing environment predisposing factors, whereas the latter are supported by the 

computation of shearing and resistance forces along potential slip surfaces. The existence of a landslide inventory is crucial 

to weigh predictive variables within statistical methods, which is not the case of physically-based methods that can be 

computed independently on the landslide inventory. Both types of methods have advantages and drawbacks. The major 20 

constrains associated to statistical approaches have been summarized in previous works (Corominas et al., 2014; Fell et al., 

2008a) and result from: (i) the difficulty of establishing causal (cause-effect) relationships between variables; (ii) problems 

arising from self-correlation between variables; (iii) the typically not normal statistical distribution of predictor variables; 

(iv) the limitations related to the quality of data, in particular the completion of the landslide inventory; and (v) the difficulty 

in transferring the results from the study area to other areas, even with similar characteristics. In the case of physically-based 25 

methods, the major constrains were listed as follow (Corominas et al., 2014; Fell et al., 2008a): (i) the high level of 

generalization and/or simplification regarding the spatial distribution of geotechnical or hydrological parameters; (ii) the 

feasibility of model application is limited to areas with relatively homogeneous ground conditions (e.g., geology and 

geomorphology); (iii) the uncertainties about the depth of the soil and of the slip surface; and (iv) the difficulties in 

predicting groundwater pore pressures and their relationship with rainfall. Additionally, although the infinite slope stability 30 

model remains physically-based, the used geotechnical parameters lose, to some extent, their direct physical meaning since 

critical cohesion and internal friction angle combination were determined statistically assuming the highest effective ratio. 
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In this work we tested two hypotheses: (i) although conceptually distinct, statistical and physically-based methods 

generate similar results concerning susceptibility to shallow slide occurrence; and (ii) a reliable landslide susceptibility map 

can be obtained for a single study area by combining two landslide susceptibility models (statistical vs physically-based). 

To achieve the proposed objectives the Information Value method and the Infinite Slope method were chosen to 

build two landslide susceptibility maps. A shallow slides inventory was separated into two independent landslide groups 5 

adopting a temporal criterion. The training group was used twofold to define the statistical relationships between landslides 

and the dataset of variables assumed as landslide predisposing factors by the IV method, and to calibrate the resistance 

parameters (cohesion and internal friction angle) within the IS method. The landslide validation group was used to validate 

both susceptibility maps independently.  

When analysed separately, both methods generated good predictive results, although the physically-based model 10 

revealed to be more effective in the spatial prediction of shallow landslides, which is attested by the AUC ROC and the 

effective ratio of landslide susceptibility classes. In addition, the application of the Kappa statistics showed that the overall 

spatial agreement between susceptibility classes of both maps is only moderate (K = 0.23), so the first hypothesis is only 

partially confirmed. The major differences were registered over two lithological units (LU2 and LU7) and may result from 

the probable incompleteness of the shallow slides inventory over LU7, as a consequence of human interventions related to 15 

agriculture activities. 

The final shallow slides susceptibility map produced by combining the results obtained with the statistical and 

physically-based methods through a contingency table proved to be reliable, as shown by the effective ratio of the extreme 

susceptibility classes (Very high, Low and Very low). Thus, the second hypothesis is confirmed. Although it was possible to 

identify uncertain areas with one single model by varying some input assumptions and parameter combinations, our work 20 

demonstrates that the combination of both methods allowed the identification of areas classified as uncertain regarding 

landslide susceptibility but with potential to be highly/very highly susceptible to shallow slides occurrence, which is not 

possible when using a single landslide susceptibility model. 
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Table 1. Shallow slides inventory characteristics 

 

Study area Training group Validation group Total inventory 

(km²) 
# 

slides 

area 

(km²) 

# 

slides 

area 

(km²) 

# 

slides 

area 

(km²) 

13.9 51 0.027 60 0.030 111 0.057 
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Table 2. Kc constant calibration parameter for each lithological unit 

 

LU Description 
# Field soil measurement 

points 
Kc 

1 Alluvium 0 2.9 

2 Arranhó formation: limestone and marls 57 1.5 

3 Sobral formation: sandstones and limestones 0 3.6 

4 Sobral formation: clays and marls 16 3.6 

5 Amaral formation: limestones 15 2.3 

6 Amaral formation : marls 1 2.9 

7 Abadia formation: clays and marls 21 4.3 

8 Dykes and volcanic mass 0 2.9 
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Table 3. Geotechnical parameters assigned to each lithological unit (LU). In brackets, cohesion and internal friction angle 

for each LU to guarantee FS>1 in the absence of water into the soil (m=0). 

 5 

LU 

Specific soil weight (mean values) 
Cohesion 

Internal friction 

angle 
Saturated soil Natural soil Submerged soil 

(kN/m³) (kN/m³) (kN/m³) (kPa) (°) 

1 17.5 16.5 7.69 3.0 (3.0) 19 (19) 

2 20.9 19.9 11.1 0.5 (1.0) 17 (27) 

3 20.6 19.6 10.8 2.0 (4.0) 16 (22) 

4 20.6 19.6 10.8 2.0 (4.0) 15 (19) 

5 20.9 19.9 11.1 1.5 (3.0) 24 (24) 

6 19.6 18.6 9.8 3.0 (3.0) 19 (21) 

7 19.6 18.6 9.8 2.0 (4.0) 19 (22) 

8 26.0 25.0 16.2 50.0 (50.0) 35 (35) 
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Table 4. Information Value scores for each class of landslide predisposing factor.  

 

Predisposing 
factor ID Description # Pixels # Pixels with 

landslides IV 

Lithology 

1 Alluvium 2064 0 -1,760 
2 Arranhó formation: limestone and marls 217575 17525 0,494 
3 Sobral formation: sandstones and limestones 3771 500 0,993 
4 Sobral formation: clays and marls 95106 3775 -0,213 
5 Amaral formation: limestones 92363 2400 -0,637 
6 Amaral formation : marls 4331 175 -0,196 
7 Abadia formation: clays and marls 131898 2750 -0,857 
8 Dykes and volcanic mass 5911 50 -1,759 

Land Use 

1 Pinus pinaster forest 1803 0 -2,187 
2 Eucalyptus forest 9874 0 -2,187 
3 Mixed forest 39044 2500 0,265 
4 Broadleaf forest 1198 0 -2,187 
5 Poor natural pasturages 223 0 -2,187 
6 Sclerophytic vegetation 9096 0 -2,187 
7 Low shrubs 27172 150 -2,186 

8 High shrubs and degraded or transition 
forest 2792 725 1,665 

9 Forest and annual agricultural areas 114403 6000 0,065 
10 Orchard and annual agricultural areas 5334 0 -2,187 
11 Orchard and vineyards 3014 0 -2,187 
12 Mixed cultures and orchard 765 0 -2,187 
13 Annual agricultural areas and forest 13889 425 -0,474 
14 Annual agricultural areas and vineyards 104697 3600 -0,357 
15 Olive grove 279 0 -2,187 
16 Olive grove and orchard 3 0 -2,187 
17 Vineyards 56424 10000 1,283 
18 Vineyards and orchard 39126 750 -0,941 
19 Vineyards and olive grove 844 0 -2,187 
20 Complex cultural systems 104453 3025 -0,529 
21 Continuous urban areas 521 0 -2,187 
22 Discontinuous urban areas 14954 0 -2,187 
23 Industrial and commercial areas 930 0 -2,187 
24 Other urban infrastructures  1268 0 -2,187 
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25 Degraded areas 489 0 -2,187 

26 Other spaces outside the consolidated urban 
areas 424 0 -2,187 

Slope 
(º) 

1 0 – 5 71241 375 -2,234 
2 5 – 10 207252 4675 -0,779 
3 10 – 15 156344 9525 0,215 
4 15 – 20 67852 3925 0,163 
5 20 – 25 27892 3600 0,966 
6 25 – 30 12284 1850 1,120 
7 30 – 35 5770 1800 1,848 
8 >35 4384 1425 1,889 

Aspect 

1 Flat 986 0 -0,886 
2 North 82435 3450 -0,161 
3 Northeast 66693 8725 0,979 
4 East 99656 5350 0,088 
5 Southeast 69065 1400 -0,885 
6 South 33558 0 -0,886 
7 Southwest 55920 1875 -0,382 
8 West 72192 2350 -0,412 
9 Northwest 72514 4025 0,122 

Profile slope 
curvature 

1 Convex (0,05 – 1,47) 190076 7525 -0,216 
2 Straight/Flat (-0,05 – 0,05) 128858 4025 -0,453 
3 Concave (0,05 – 1,22) 234085 15625 0,306 

Topographic 
Position 

Index (TPI) 

1 -21,23 – -12,49 5718 750 0,982 
2 -12,49 – -7,53 30746 4800 1,156 
3 -7,53 – -2,57 130188 9350 0,379 
4 -2,57 – 2,39 210933 6300 -0,498 
5 2,39 – 7,35 115609 4175 -0,308 
6 7,35 – 31,83 59825 1800 -0,491 

Slope Over 
Area Ratio 

(SOAR) 

1 0  5052 250 0,007 
2 0 – 0,00001 2261 300 0,993 
3 0,00001 – 0,0001 4241 50 -1,427 
4 0,0001 – 0,001 17928 750 -0,161 
5 0,001 – 0,01 167668 6000 -0,317 
6 0,01 – 0,1 298168 14750 0,007 
7 > 0,1  57701 5075 0,582 
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Table 5. Effective ratio of classes defined for the IV and IS shallow slide susceptibility maps 

 

 IV method  IS method 

Susceptibility 

class 

Class 

area 

Landslide 

validation 

group area 

Effective 

ratio 
 

Class 

area 

Landslide 

validation 

group area 

Effective 

ratio 

 (%) (%)   (%) (%)  

Very high 18.00 48.98 2.72  17.93 53.35 2.98 

High 16.15 20.39 1.26  16.05 29.72 1.85 

Moderate 14.02 11.74 0.84  14.06 11.66 0.83 

Low 18.88 15.65 0.83  18.97 3.76 0.20 

Very low 32.94 3.64 0.10  32.99 1.50 0.05 

 5 
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Table 6. Contingence table extracted from the overlay of IV and IS shallow slide susceptibility maps in % of the study area. 

Colours represent the susceptibility classes of the final map: Red – Very high; Orange – High; Yellow – Moderate; Light 

green – Low; Green – Very low; Grey – Uncertain, but with potential for high/very high susceptibility. 5 

 

ISM map\IV map Very high High Moderate Low Very low Total 

Very high 8.0 3.9 2.2 2.0 1.1 17.3 

High 4.5 3.9 3.0 2.9 1.8 16.1 

Moderate 2.3 2.9 2.7 3.3 3.0 14.2 

Low 2.1 2.9 3.1 4.6 6.5 19.2 

Very low 1.2 2.2 3.0 6.2 20.7 33.3 

Total 18.0 15.8 14.0 19.0 33.2 100 
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Table 7. Distribution (%) of shallow slides of the validation group in classes obtained by overlay IV and IS shallow slide 

susceptibility maps. 

 5 

ISM map\IV map Very high High Moderate Low Very low Total 

Very high 24.8 12.0 3.6 9.1 2.6 52.1 

High 18.8 5.7 2.5 2.6 0.4 30.0 

Moderate 4.5 2.3 3.9 1.7 0.2 12.5 

Low 0.9 0.3 1.7 1.0 0.0 3.8 

Very low 0.0 0.0 0.2 1.3 0.1 1.5 

Total 49.0 20.3 11.8 15.7 3.2 100 
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Table 8. Susceptibility classes and correspondent effective ratios of the final shallow slides susceptibility map 

 

Susceptibility class # Pixels 
Unstable 

area 
Study area 

Unstable 

area 

Effective 

ratio 

  (m2) % %  

Very high 90786 18475 16.4 55.6 3.39 

High 78678 6175 14.2 18.6 1.31 

Moderate 50560 2400 9.1 7.2 0.79 

Low 58456 425 10.6 1.3 0.12 

Very low 184528 450 33.4 1.4 0.04 

Uncertain – with potential to high 

or very high 
90011 5300 16.3 16.0 0.98 

Total 553019 33225 100 100 -- 

 5 
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Figure 1: Location of Monfalim – Louriceira study area and spatial distribution of lithological units. 5 
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Figure 2: Methodological framework to compare and to combine statistical and physically-based landslide susceptibility models. 
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Figure 3: Dataset of shallow slides predisposing factors. A) slope, B) aspect, C) profile slope curvature, D) topographic position 5 
index, E) slope over area ratio, F) land use. Lithology is shown in Figure 1 and the description for each class of landslide 
predisposing factor in Table 4. 
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Figure 4: Soil thickness map. 
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 5 
Figure 5: Transmissivity (A) and ratio h/z (B) for the hydraulic model of the study area. 
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Figure 6: IV Shallow slides susceptibility map. 

 

 

 10 

 

 



35 
 

 

 

 

 
 5 

 
Figure 7: ROC curves based on independent validation of IV and IS shallow slides susceptibility models. 
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Figure 8: IS shallow slides susceptibility maps (A) m according to figure 5b; (B) m = 0. 
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Figure 9: Spatial agreement between IV and IS shallow slides susceptibility maps. 0 means full agreement; 4 and -4 means 
maximum disagreement. 
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Figure 10: Final shallow slides susceptibility map resulting from the combination of IV and IS susceptibility maps. 
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