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Abstract. Approaches used to assess shallow slides susceptibility at the basin scale are conceptually different depending on
the use of statistical or physically-based methods. The former are based on the assumption that the same causes are more
likely to produce the same effects, whereas the latter are based on the comparison between forces which tend to promote
movement along the slope and the counteracting forces that are resistant to motion. Within this general framework, this work
tests two hypotheses: (i) although conceptually and methodological distinct, the statistic and deterministic methods generate
similar shallow slides susceptibility results regarding the model’s predictive capacity and spatial agreement; and (ii) the
combination of shallow slides susceptibility maps obtained with statistical and physically-based methods, for the same study
area, generate a more reliable susceptibility model for shallow slides occurrence. These hypotheses were tested in a small
test site (13.9 km?) located north of Lisbon (Portugal) using a statistical method (the Information Value method) and a
physically-based method (the Infinite Slope method). The landslide susceptibility maps produced with the statistic and
deterministic methods were combined into a new landslide susceptibility map. The latter was based on a set of integration
rules defined by the cross-tabulation of the susceptibility classes of both maps and analysis of the corresponding contingency
tables. The results demonstrate a higher predictive capacity of the new shallow slides susceptibility map, which combines the
independent results obtained with statistical and physically-based models. Moreover, the combination of the two models
allowed the identification of arecas where the results of the Information Value and the Infinite Slope methods are

contradictory. Thus, these areas were classified as uncertain and deserve additional investigation at a more detailed scale.

Keywords: Shallow slides, susceptibility, Information Value, Infinite Slope, Factor of Safety, models combination.
1 Introduction

The evaluation of landslide susceptibility has been carried out worldwide based on three fundamental principles (Varnes et
al., 1984; Carrara et al.,, 1991; Hutchinson, 1995; Guzzetti, 2005): (i) the landslides can be recognized, classified and

mapped; (ii) the conditions that cause instability (predisposing factors) can be identified, registered and used to build
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predictive models; and (iii) the occurrence of landslides can be spatially inferred. Within this conceptual scheme, it is
assumed that future landslides are more likely to occur in areas where geologic and geomorphologic conditions are similar to
those that originated the slope instability in the past (Guzzetti et al., 1999). This conceptual scheme has been extended to
different methods of landslide susceptibility assessment regardless of their nature (Varnes et al., 1984; Hutchinson, 1995;
Aleotti and Chowdhury, 1999; Carrara et al., 1999; Fell et al., 2008b). This is nonetheless surprising since the conceptual
model is perfectly applied to any statistical method used to assess landslide susceptibility, but the same is not true for the
physically-based methods. Indeed, the latter methods are based on physical laws and soil mechanics principles where the
slope is considered as a system where shear stress and shear strength are continually in opposition. Unlike landslide
susceptibility models based on statistical methods, landslide inventories are not used to assess landslide susceptibility with
deterministic methods. However, landslide inventories still remain essential to validate the obtained landslide susceptibility
maps.

The comparison between different methods to assess landslide susceptibility is not a new research topic when performed
exclusively with different statistical methods (Gorsevski et al., 2003; Siizen and Doyuran, 2004; Brenning, 2005; Davis et
al., 2006; Lee et al., 2007; Felicisimo et al., 2013; Bui et al., 2016) or with different physically-based methods (Zizioli et al.,
2013; Formetta et al., 2014; Pradham and Kim, 2015; Teixeira et al., 2015). There are a few studies that compare the
predictive capacity between statistical and physically-based methods (Crosta et al., 2006; Carrara et al., 2008; Frattini et al.,
2008; Yilmaz and Keskin, 2009; Cervi et al., 2010; Goetz et al., 2011; Seefelder et al., 2016) and out of those only a limited
number have combined the results obtained with statistical and physically-based approaches (Chang and Chiang, 2009;
Goetz et al., 2011). According to Zizioli et al. (2013) the different methods used to assess shallow slides susceptibility are
not mutually exclusive. The latter authors pointed out that the use of different strategies to assess landslide susceptibility and
the comparison of their predictive capacity can help to: (i) enhance the quality and reliability of each method; (ii) highlight
and identify the most important factors affecting the slope instability system; (iii) neglect less influential aspects to simplify
the models; and (iv) select the most appropriate methodology to achieve a specified goal.

In this study we test two hypotheses: (i) although conceptually and methodologically distinct, the statistic and deterministic
methods generate similar results for shallow landslides susceptibility regarding the model’s predictive capacity and spatial
agreement; and (ii) the combination of the shallow landslides susceptibility maps obtained with statistical and physically-

based methods, for the same study area, generate a more reliable susceptibility map for shallow slides occurrence.

2 Study area

The study area comprises the two small catchments of Monfalim and Louriceira (13.9 km?), which are located 25 km NNW
of Lisbon, Portugal (Fig. 1). The elevation ranges from 442 m at the West to 134 m in the northeast sector of the study area,
near the confluence of both Monfalim and Louriceira rivers with the Grande da Pipa River (GPR), which is an affluent of the

Tagus River.
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The lithological units are mainly sedimentary rocks dated from the Kimmeridgian to the Lower Thitonian (Upper Jurassic).
There are also alluvium deposits of the Holocene age and a complex of dikes and volcanic masses that cover only 1.1 % of
the study area. The detailed lithological units map of the study area (Fig. 1) was constructed based on official geological
maps (Zbyszewski and Assungao, 1965; INETI, 2005) and on the interpretation of aerial photographs and validation of
lithological units limits through field work. Therefore, it was possible to identify the following eight lithological units in
ascending order of age: (i) alluvium; (ii) Arranh6 formation (limestones and marls); (iii) Sobral formation (sandstones and
limestones); (iv) Sobral formation (mudstones and marls); (v) Amaral formation (limestones); (vi) Amaral formation (marls);
(vii) Abadia formation (mudstones and marls). The lithological unit (viii) is constituted by dykes and volcanic masses
(basalt, teschenite, dolerite and weathered rocks).

The study area has undergone a wide curvature angle tectonic rebound since the Miocene (Zbyszewski and Assungdo, 1965)
and the layers dip typically to SE/SW. This structural setting, together with the alternation of soft rocks such as marls, clays
and mudstones with more resistant rocks as the limestones, has allowed the development of cuesta-like landforms resulting
from differential erosional processes (Ferreira, 1984; Ferreira et al., 1987; Zézere, 1991). Therefore, gentle reverse slopes are
found over the lithologic units of Sobral and Arranh6 formations, whereas abrupt cutting slopes are seen along the Amaral
limestones lithological unit that outcrops over the erosive depression developed on the Abadia marls and mudstones
formation (Ferreira, 1984). The slopes within the study area are typically moderate: 78.1 % of the total area has slopes in the
range of 5° to 20°. The gentle slopes (0° — 5°) represent only 12.9 % and the steepest slopes (> 20°) occur only in 9 % of the
study area.

Landslides in the study area have been triggered by rainfall (Zézere et al., 1999, 2005, 2015; Zézere and Rodrigues, 2002;
Oliveira, 2012). The climate is Mediterranean and the Mean Annual Precipitation (MAP) is 730 mm (at S@o Julido do Tojal
gauge located 20 km south from the study area) (Zézere et al., 2015). Shallow slides have been triggered mainly by intense
short duration rainfall episodes, of typically 1 to 15 days maximum (Z€zere and Trigo, 2011; Zézere et al., 2015). These
rainfall events generate increments of pore water pressures and the reduction of the soil shear strength, including the loss of
cohesion on fine sediments, which promote the failure along the superficial soil formations or along the contact between the

soil and the impermeable bedrock (Trigo et al., 2005).

3 Methods and data

The methodological procedures for assessing shallow slides susceptibility based on the application and combination of
statistical and physically-based approaches are summarized in Fig. 2. Two commonly used methods were chosen: the
bivariate statistical Information Value method (IV) (Yin and Yan, 1988) and the Infinite Slope method (IS) (Sharma, 2002)
based on the calculation of the Factor of Safety (FS). Both methods are in line with the experts panel recommendations to
assess landslide susceptibility (Cascini, 2008; Fell et al., 2008a, 2008b; Corominas et al., 2014) and have been applied

successfully in similar geological and geomorphological context in the region north of Lisbon (Zézere, 2002; Pimenta, 2011;
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Guillard and Zézere, 2012; Oliveira et al., 2015).In order to model the shallow slides susceptibility, the dependent variables
(shallow slides modelling and validation groups), the independent dataset of variables used as predisposing factors, and the

maps representing geotechnical and hydraulic parameters were rasterized using a pixel of S m x 5 m.

3.1 Landslide inventory

The landslide inventory was used twice in this study: (i) to establish the statistical relationships between shallow slides and
the data-set of environmental factors assumed as shallow slides predisposing factors in the statistical approach; and (ii) to
validate the shallow slides susceptibility models obtained with both statistical and physically-based models. The landslide
inventory of the study area (Fig.1) includes 111 shallow slides (translational and rotational slides with high curvature angle
of the slip surface) that were classified following the Cruden and Varnes (1996) proposal. The depth of the slip surface is
typically less than 1.5 m. The shallow slides inventory was extracted from (Oliveira, 2012) and was based on the
interpretation of aerial photographs (1983, 1989) and orthophotomaps (2003, 2004, 2007), as well as on extensive field work
carried out during the 2006-2010 period.

The inventory of shallow slides was further subjected to a partition based on a temporal criterion (Fig.1, Table 1). The
landslide training group includes the shallow slides that occurred until the end of 1983 (51 cases, 0.027 km?, and 0.19 % of
the study area). The landslide validation group includes all landslides that occurred between 1984 and the end of 2010 (60
cases, 0.03 km?, 0.22 % of the study area. The training group was used to weigh classes of shallow slides predisposing
factors in the statistical model using the IV method and to calibrate the shear strength parameters (cohesion and friction
angle) of the lithological formations in the IS model. The validation group was used for the independent validation of both

statistical and physically-based shallow slides susceptibility models.
3.2 Statistical approach to assess landslide susceptibility

3.2.1. The Information Value method

The Information Value (IV) (Yin and Yan, 1988) was used to compute the susceptibility score for each class of each variable
considered as a landslide predisposing factor based on the log normalization of the ratio between the conditional probability
to find a shallow slide in a certain class of a predisposing factor and the a priori probability to find a shallow slide in the

study area, following Eq. (1).

Ii = logss"jxi , (1)

where: /i is the Information Value of class Xi belonging to an independent variable (landslide predisposing factor); Si is the
number of pixels with shallow slides belonging to the training group and the presence of the variable class Xi; Ni is the

number of pixels with variable class Xi; S is the total number pixels with shallow slides belonging to the training group; and
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N is the total number of pixels of the study area. Due to the logarithmic normalization /i is not calculated when Si = 0. In
these cases /i was determined as the lowest information value considering the complete data set of landslide predisposing

factors. The final IV scores /j for each terrain unit j was obtained using Eq. (2).

= TP, Xijli , )

where: m is the total number of variable classes; and Xij is either O if the variable class is not present in the pixel j, or 1 if the

variable class is present.

3.2.2 Landslide predisposing factors

We selected the following seven landslide predisposing factors as independent variables (Fig. 3, Fig. 1 and Table 4 for the
description of classes) that have successfully been used in previous studies in the region north of Lisbon (e.g., Oliveira et al.,
2015): lithology, slope angle, slope aspect, slope curvature, topographic position index (TPI), slope over area ratio and land
use.

The lithologic map includes 8 classes described above (cf. Sect. 2. Study area). The Land use map was obtained from the
official map representing the land use in 1990. Although it does not match the current land use in the study area, it is the one
that best fits the time span of shallow landslides included in the present landslide inventory and the temporal land use frame
closer to the age of the landslides in the training group. The remaining variables (slope, aspect, curvature, topographic
position index and slope over area ratio) were derived from a Digital Elevation Model based on elevation data interpolated
from a topographic contours map (equidistance 10 m). Regarding the curvature map, a DEM generalization based on a 50 m
pixel size grid was considered to calculate the profile of the slopes, as it provides the best fit to the morphology of slopes in
the study area (Oliveira et al., 2015). The Topographic Position Index (TPI) was calculated based on the Facet Corridor
Designer tool for ArcGIS (Jenness et al., 2011). This index is heavily dependent on the scale (Piacentini et al., 2015) an the
neighbourhood radius of 25 meters proved to be the most appropriate for the index calculation at the work reference scale.
The Slope Over Area Ratio (SOAR) was used to express the importance of the topography in hydrological processes through
the relationship between the slope and the contribution area (Serensen et al., 2006), which allow to infer the areas prone to
surface saturation (Fonseca, 2005). The calculation of the SOAR was made using the TauDEM 5.2 (Terrain Analysis Using
Digital Elevation Models) tool and the algorithm D8 (O’Callagham and Mark, 1984) to minimize the dispersion of

accumulation flow.
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3.3 Physically-based approach to assess landslide susceptibility
3.3.1 The Infinite Slope method (IS)

The most popular formulations of the Infinite Slope method consider a subsurface flow/water table level parallel to the
topographic surface, whose maximum depth is equivalent to the maximum thickness of the saturated soil. In this context, the
development of a steady-state hydraulic model in static conditions can be related to the ratio between the thickness of
saturated soil and the thickness of the potentially unstable soil, as provided in the formulation of SHALSTAB model
(Dietrich and Montegomery, 1998). The FS for each terrain unit (pixel) was thus calculated based on the Infinite Slope
method, incorporating a soil thickness model and an hydraulic model for the study area, following Eq. (3) (Sharma, 2002):

¢’ +h*cos?B[(1-m) Y+ m Ygyup ]+ tan ¢r
hxsinB*cosB[(1-m)Yy+m Ysatr)

FS = 3)

Where: ¢’ is the effective cohesion (kN/m?); 4 is the potentially unstable soil depth; £ is the slope of the terrain unit; m is the
equation component of the hydraulic model, considered as the ratio between the saturated soil depth and the potentially
unstable soil depth; ¢’ is the internal friction angle (°); ¥, is the specific soil weight (kN/m?); y, is the saturated soil weight
(kKN/m®) and yg,;, is the submerged soil weight (kN/m?). The FS values can be interpreted in two ways. In the more restrict
sense it is assumed that all terrain units with FS values < 1 are unstable. In a broader interpretation the FS results are
compared with results obtained using the statistical approach; in other words each terrain unit within a study area can be
ranked according to its FS value, where the lowest FS value indicates the highest landslide susceptibility.

The development of the IS model was supported by the following parameters: (i) topographical variables (slope and
catchment area), (ii) soil thickness, (iii) hydrologic parameters (hydraulic conductivity, soil transmissivity and daily rainfall
threshold), (iv) geotechnical parameters (natural, saturated and submerged specific soil weights; cohesion; and internal
friction angle). Most geotechnical parameters were deduced from references with regional validity that were summarized by

(Pimenta, 2011).

3.3.2 Soil thickness model

The depth of the potentially unstable soil is a critical parameter that strongly influences the stability of slopes. The soil depth
model for the study area was obtained using Eq. (4), as proposed by (Catani et al., 2010):

h=-K.CI.¥?, (4)

Where: / is the soil thickness, K. is a constant calibration parameter, C is an index based on the slope profile curvature, 7 is

the relative soil depth dependent on the topographic position; y” is the critical slope angle associated to landslide
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occurrence. The three parameters C, 7 and y were expressed in a scale ranging between 0 and 1. For each parameter, the
value 1 was assigned to the maximum observed value, 0 to the minimum observed value and the remaining observed values
were assigned numbers between 0 and 1 by linear normalization. The constant K. was estimated independently for each
lithological unit based on trial and error estimation to obtain the best possible fit of the soil thickness values obtained by Eq.
4 to the soil thickness values measured in 110 sampling field points. These sampling field measurements, subject to the
existence of slope cuts where the soil depth was measured, were spatial distributed in order to guarantee a reasonable number
of soil thickness measurements in each lithological unit but also along different geomorphological units (interfluve areas,
slopes, valley floors) The calibration of the K, constant for any lithological unit requires that the differences between the
maximum estimated soil thickness and the maximum soil thickness measured in the field does not exceed 1 m. Table 2
summarizes the K, constant calibration values obtained for each lithological unit in the study area. Soil profiles were not
found in LUI1, LU3 and LUS during the field work. In the case of LU3, we adopted a K, value equal to the one estimated for
the other lithologic unit belonging to the Sobral formation (LU4, K. = 3.6). In the case of alluvium (LU1) and complex of
dikes and masses (LU9) we adopted a K, = 2.9, which is the arithmetic mean of all K, values obtained for lithological units
where it was possible to measure soil thickness during field sampling. Fig. 4 shows the final soil thickness map of the study

arca.

3.3.3 Hydraulic model

The adopted hydraulic model was developed using SHALSTAB (Dietrich and Montegomery, 1998), that follows a model
developed by O’ Loughlin (1986). According to Sharma (2002), the hydraulic model is the ratio between the thickness of
saturated soil and the thickness of the potentially unstable soil given by Eq. (5).

a

b*Sinp ’ (5)

-,
Where: //z is the ratio between the thickness of the saturated soil above the impermeable layer and the thickness of the
potentially unstable soil; Q is the effective precipitation (m/day); 7 is the transmissivity of the soil (m?/day); a is the
upstream contribution area (m?); b is the cell length (m); and /3 is the slope gradient (°). The increase of the hydrologic ratio
(O/T) indicates that soil saturation will be faster and more extensive. The topographic ratio (a/(b * Sinf)) describes the
topography effect on runoft (Dietrich and Montegomery, 1998; Montgomery et al., 1998). The transmissivity of the soil was
estimated using Eq. (6) (Lencastre and Franco, 2006):

T=k+z, (6)

Where: T is the soil transmissivity (m%day); k is the saturated hydraulic conductivity (m/day); and z is the soil thickness (m).
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As the hydraulic conductivity based on field measurements was not available for the study area, this parameter was
estimated for the identified soil types based on the work developed by Rawls et al. (1982), which summarized the typical
hydraulic conductivities for different soil types starting from the respective textural properties. The national digital soil map
at 1: 25,000 scale (DGADR, 1999) was used to extract the clay, silt + sand, and coarse sand fractions for the different soils
types in the study area. The soil taxonomy of the US Department of Agriculture was used to distinguish between soil types,
through the Soil Texture Triangle Bulk Density. Rocky outcrops and urban areas were assigned the value -1 value, thus
corresponding to 0 (absence of water) in the hydraulic model. The castanozems soils were also assigned the value -1 value
because the typical pedological stage of castanozem soils within the study area is a stony soil phase. Finally, 55 types of soils
were identified, in addition to social areas and rocky outcrops.

The effective precipitation was estimated based on the Eq. (7) proposed by Trigo et al. (2005) that defines the rainfall

threshold for triggering translational and rotational landslides in the region north of Lisbon that includes the study area.

Cr=7.4D + 107 , (7)

Where: Cr is the rainfall threshold that is associated to landslides occurrence (mm), and D is the number of consecutive
rainfall days.

As most landslide events occur in the study area during the Winter season we believe that the effect of evapotranspiration
can be neglected; therefore the effective precipitation can be assumed to equal the total precipitation, namely for short
rainfall periods. Using Eq. (7) we obtained a critical daily rainfall for failure of 114.4 mm. The rainfall concentrated in a
single day is a feasible scenario for triggering shallow landslide events, such as the ones that occurred in the Lisbon Region
in 1967 and 1983 (Zézere et al., 2005, 2015).

The hydraulic conductivity was estimated based on the critical precipitation for failure and the soil texture. In the study area
k ranges from 5.05 m/day in the luvisols with dominantly sandy texture, to 0.0144 m/day in vertisols with dominantly clayey
texture. The computed transmissivity ranges between 0 and 13.45 m*/day (Fig. 5A). The final hydraulic model is shown in
Fig. 5B.

3.3.4 Geotechnical parameters of superficial soils

All geotechnical parameters mentioned in this section, related to soil weight (Ym, Ysat, Ysub) cohesion (c’) and friction angle
(¢"), were based on literature and were defined for the superficial soils above the bedrock within each lithological unit. The
specific (Y,,), saturated (Yy,) and submerged (¥,,;) soil weights values were provided by Pimenta (2011) and are summarized
in Table 3.

The strength parameters of the lithological units obtained in laboratory with direct shear tests Pimenta (2011) proved to be
too high to explain the observed slope instability. Therefore, the optimal combinations of cohesion and effective internal

friction angle values for each lithological unit were defined iteratively through back analysis. Different combinations of
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cohesion and effective internal friction angles were tested with the Infinite Slope method and validated with the landslide
training group (landslide area), using as reference the maximum and minimum friction angles suggested by Geotechdata
(2013). Critical pairs of cohesion and internal friction angle were selected for each lithological unit by combining two
criteria: (i) the susceptibility class with FS < 1 must include at least 50 % of landslide area of the landslide training group
located on the lithological unit; and (ii) the susceptibility class with FS < 1 must have the highest effective ratio, which is
expressed by the ratio between the percentage of landslide area predicted in the class and the percentage of the class area in
the study area (Chung and Fabbri, 2003). In the cases of LU2 and LUS it was not possible to comply with the criterion (i),
but the corresponding critical pair cohesion / internal friction angle were selected respecting criterion (ii). In addition,
strength parameters of LU1 and LU8 could not be estimated with this method due to the absence of landslides in these
lithological units. In these cases, the cohesion and effective internal friction angle were derived directly from Pimenta
(2011), that gathered information from technical reports, geotechnical laboratory tests and standard values reported in the
literature (Baptista, 2004; Cernica, 1995; Fernandes, 1994; Jeremias, 2000; Vallejo et al., 2002). Table 3 summarizes the

geotechnical parameters of the lithological units used to implement the physically-based model.

3.4. Validation, comparison and combination of shallow slides susceptibility models

The validation of susceptibility maps produced by statistical and physically-based models was made independently using the
landslide validation group. ROC (Receiver Operating Characteristic) curves were computed and the corresponding Area
Under the Curve (AUC) was calculated. Additionally, the landslide susceptibility maps were classified and the effective ratio
of each class was estimated. Both statistical and physically-based susceptibility maps were classified considering the same
fraction of study area in each equivalent landslide susceptibility class. First, the IS map was ranked into 5 classes based on
the Factor of Safety values (< 1, 1 to 1.25; 1.25 to 1.5, 1.5 to 2, and > 2), which correspond respectively to the following
descriptive classification of susceptibility (Very high; High; Moderate, Low; and Very low). Next, the IV map was organized
into 5 classes (Very high; High; Moderate, Low; Very low) ensuring that equivalent susceptibility classes cover the same
fraction of the study area in both maps. The evaluation of the spatial agreement between landslide susceptibility maps based
on statistical and physically-based approaches was made using the Rank Difference Tool included in ArcSDM (Sawatzky et
al., 2008).

Lastly, statistical and physically-based susceptibility maps were combined into a final shallow slides susceptibility map
based on the intersection of the susceptibility classes in a contingency table, using the Map Comparison Kit tool (Visser and

Nijs, 2006) on a cell by cell comparison and Kappa statistics.
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4 Results and discussion
4.1 Statistical landslide susceptibility assessment

The Information Value scores calculated for each class of predisposing factors based on the landslide training group are
summarized in Table 4 and the corresponding shallow slides susceptibility map is shown in Fig. 6. The spatial distribution of
susceptibility shows a clear contrast between the northern/north-eastern sectors of the study area in which the susceptibility
is predominantly classified as low to very low, whereas in the central/southern part of the study area the susceptibility to
shallow slides is typically higher. This contrast is mainly justified by the lithological differentiation. In fact the LU7 (Abadia
formation: marls and clays) and LU5 (Amaral formation: limestones) are found in the northern part of the study area, and
they apparently have a low predisposition to shallow slide occurrence (Table 4). By opposition, lithological units more prone
to slope instability (LU2 - Arranh6 formation: limestones and marls; and LU3 - Sobral formation: sandstones and
limestones) occur as outcrops in the central and southern part of the study area. In addition, the slope angle tends to be higher
in the latter part of the study area, thus contributing to the higher landslide susceptibility.

The ROC curve of the landslide susceptibility model is shown in Fig. 7. The model predictive capacity is reasonable/good, as

expressed by the AUC ROC of 0.75.

4.2 Physically based landslide susceptibility assessment

The shallow slides susceptibility map computed with the IS method is shown in Fig. 8A. The susceptibility class with FS <1
(Very high susceptibility) covers 17.9 % of the total study area and validates 53.4 % of the shallow slides belonging to the
landslide validation group, which explains the higher effective ratio (2.98) of this susceptibility class (Table 5). By
comparison with the IV susceptibility map the increment of area classified with very high/high susceptibility is clear in the
northern sector of the study area where LU7 outcrops, whereas the spatial expression of the two highest landslide
susceptibility classes decreases in the southwestern/southern sector where the LU2 outcrops. The ROC curve of the model
based on the landslide validation group is shown in Fig. 7. The ROC curve is closer to the upper left corner of the ROC
curve graphic, which confirms the best predictive capacity of the IS susceptibility map when compared with the 1V
susceptibility map. The AUC of 0.81 also supports the better predictive capacity of the IS model.

As mentioned above, shallow landslides have been triggered by rainfall in the study area, typically during intense short
duration rainfall events (Z&zere et al., 2005, 2015; Zézere and Trigo, 2011). Additionally, extensive field work in the study
area (Oliveira, 2012) has shown a total absence of instability signs during the summer, which is consistent with the dryness
that characterizes this season. Therefore, a typical situation of superficial absence of water in the soil during summer, i.e., m
= 0, is implicit; accordingly, an additional physically-based shallow slides susceptibility map was prepared considering no
water in the soil (m = 0). Figure 8B shows the model results. Given the assumed boundary conditions, it was expected that
the model would not generate FS < 1. However, Fig. 8B shows a small fraction of the study area classified with Very high

susceptibility (FS < 1, 2.25 % of study area) under conditions of absence of water into the soil, which is interpreted as an
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error of the IS model. It is worth mentioning that most of the model errors occur over the LU2 (Arranho formation)
indicating that the corresponding resistance parameters (cohesion, internal friction angle) may be underestimated. The
cohesion and internal friction angle values that guarantee FS>1 for any LU in the absence of water into the soil (m = 0) are
summarized in Table 3 (in brackets). These geotechnical parameters were tested in a new model (susceptibility map not
showed) considering the existence of water into the soil and the obtained result is not reliable: the area classified as unstable
(with FS < 1) corresponds to only 1.3% of the total study area and validates only 8.1% of the landslides belonging to the
training group. Therefore, we conclude that the geotechnical parameters that guarantee the absence of cells with FS <1 when

m = 0 are too high to correctly express the landslide susceptibility in the study area.

4.3 Comparison of landslide susceptibility models

The comparison of the susceptibility maps produced with IV and IS methods demonstrates that spatially the
susceptibility ranking differs substantially depending on the method used. Indeed, the Kappa coefficient is only 0.23, which
means that spatial correlation is moderate, although the reasonable/good predictive capacity of both models was attested by
the AUC ROC (Fig.7).

The two highest classes in the IV landslide susceptibility map spread over 34.1 % of the total study area and the
corresponding percentage of predicted shallow slides approaches 69.4 %. The performance of the predictive model is weaker
for the intermediate susceptibility classes (moderate and low), in particular for the low susceptibility class that includes a
relevant portion (15.7 %) of shallow slides belonging to the landslide validation group. The IS landslide susceptibility model
reveals a better predictive capacity confirmed by the fact that 83.1 % of the landslide validation group fall into the two
highest susceptibility classes.

The effective ratios calculated for landslide susceptibility classes of both models are summarized in Table 5. The
effective ratios for the IS model are higher for the Very high and High susceptibility classes and lower for the Low and Very
low susceptibility classes than the effective ratios of the IV model for the same classes, which indicate a better predictive
capacity of the IS model.

The spatial comparison of the two susceptibility maps is shown in Fig. 9. The value zero means spatial agreement
between landslide susceptibility classes, whereas values other than zero mean disagreement. Negative values indicate that
landslide susceptibility obtained with IV is lower when compared with the map obtained with IS, with the difference
increasing from -1 to -4. For example, a grid cell with a score -4 means this terrain unit was classified as very high
susceptibility in the IS susceptibility map and as very low susceptibility in the IV susceptibility map. Positive values indicate
the opposite relationship between map classes. The perfect spatial agreement between susceptibility classes in both maps
occurs in 39.9 % of the study area (Table 6). However, adding the minimum mismatch classification (-1 and +1 in Fig. 9) the
previous feature rises to 73 % of the total study area. The major discrepancy between the two susceptibility maps (-4, -3, 3
and 4 in Fig. 9) occurs along 10.5 % of the study area, namely where the Abadia formation (LU7) and the Arranhé formation
(LU2) outcrop. In the northern part of the study area where the LU7 is present, the landslide susceptibility obtained with the
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IV method is lower than the one obtained with the IS method, whereas the opposite occurs in the central and southern part of
the study area where the LU2 is present.

These results can be explained by the particular specifications associated with the physically-based and statistical
methods. The resistance parameters estimated for the superficial soil over LU7 (¢ '= 2 kPa, ¢' = 19 °) are higher than those
estimated for LU2 (¢ '= 0.5 kPa ¢ '= 17 °). However, the landslide susceptibility computed using the IS tends to be higher
over LU7, which is related to the soil water content and eventually to the presence of thicker soils, particularly along the
lower part of slopes where topographic conditions are more prone to soil saturation. On the other hand, the statistical
approach generated IV scores of 0.494 and -0.857, respectively for LU2 and LU7. The positive IV score for LU2 clearly
indicates a higher likelihood of shallow slides occurrence. We acknowledge that shallow slides inventory may be incomplete
in the area corresponding to LU7, which could justify the negative IV score. Indeed, the LU7 clays and marls are associated
with gentle slopes and are characterized by intense agricultural use; thus, the footprint of small shallow slides is easily erased
on the landscape, as the “original” slope profile is recovered for agricultural activities. On the contrary, the LU2 is
constituted by sequences of marl and limestone layers, which induce larger topographic irregularities and less productive
soils on steep to moderate slopes. These geological and geomorphological conditions favoured a land use mainly associated
to forest and annual crop cultures. In this context, the landslide footprint over slopes tends to last longer, which justifies a

more complete shallow slides inventory, and consequently, the higher IV score.

4.4. Combination of landslide susceptibility models

The results of the cross-tabulation between landslide susceptibility classes of both susceptibility maps (statistical and
physically-based) are summarized in a contingency table (Table 6). The distribution of shallow slides belonging to the
validation group on the same contingency table is summarized in Table 7. Table 6 shows the combinations considered within
the contingency table to classify the final landslide susceptibility map resulting from the integration of statistical and
physically-based predictive models; the colours (red, orange, yellow, light green, green and grey) represent the final
susceptibility classes (Very high, High, Moderate, Low, Very low, and uncertain, respectively). The corresponding final
shallow slides susceptibility map is shown in Fig. 10 and information about final landslide susceptibility classes is detailed in
Table 8.

The Very high susceptibility class covers 16.4 % of the study area and includes 55.6 % of the shallow slides
validation group and the High susceptibility class covers 14.3 % of the study area and includes 18.6 % of the shallow slides.
In opposition, the Very low and Low susceptibility classes cover 33.4 % and 10.6 % of the study area, respectively, and
include only a small fraction of the landslide validation group (1.4 % each class).

Terrain units classified as Very high or High susceptibility by one method and simultaneously as Very low or Low
susceptibility by the other method were considered as uncertain regarding susceptibility to shallow slides occurrence in the
final map. The ‘grey’ class, although classified as Uncertain, is potentially High or Very high landslide susceptible and

covers 16.3 % of the study area and includes 16.0 % of the shallow slides belonging to the validation group. However, the
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distribution of landslide validation group in the Uncertain susceptibility class is different in the upper right corner and in the
lower left corner of the contingency table (see Tables 6 and 7). Terrain units classified as Very high or High susceptibility by
the IS susceptibility map and as Very low or Low susceptibility by the VI method (upper right corner in Tables 6 and 7)
include 14.7 % of shallow slides belonging to the validation group, whereas terrain units with inverse classification (lower
left corner in Tables 6 and 7) only contain 1.2 % of the shallow slides validation group. These values, once more, reflect the
higher quality of the physically-based susceptibility model in comparison with the statistical model.

The predictive quality of susceptibility classes that make up the final landslide susceptibility map is confirmed by
the estimated effective ratios (Table 8). The effective ratio of the Very high susceptibility class (3.39) is higher than those
obtained for the equivalent susceptibility class with the statistical and physically-based methods (cf. Table 5). In addition,
effective ratios corresponding to the Very low and Low susceptibility classes (0.04 and 0.12, respectively) are lower than
those obtained with statistical and physically-based methods (cf. Table 5), which indicates a better predictive performance of
the combination of the two landslide susceptibility models. Moreover, the effective ratio is higher for the Uncertain class
than for the Moderate class (Table 8), which is consistent with the potential for high or very high susceptibility considered

for the Uncertain class.

5 Conclusion

Statistical and physically-based methods used to assess landslide susceptibility at the basin scale are conceptually
distinct as the former are based on weighing environment predisposing factors, whereas the latter are supported by the
computation of shearing and resistance forces along potential slip surfaces. The existence of a landslide inventory is crucial
to weigh predictive variables within statistical methods, which is not the case of physically-based methods that can be
computed independently on the landslide inventory. Both types of methods have advantages and drawbacks. The major
constrains associated to statistical approaches have been summarized in previous works (Corominas et al., 2014; Fell et al.,
2008a) and result from: (i) the difficulty of establishing causal (cause-effect) relationships between variables; (ii) problems
arising from self-correlation between variables; (iii) the typically not normal statistical distribution of predictor variables;
(iv) the limitations related to the quality of data, in particular the completion of the landslide inventory; and (v) the difficulty
in transferring the results from the study area to other areas, even with similar characteristics. In the case of physically-based
methods, the major constrains were listed as follow (Corominas et al., 2014; Fell et al., 2008a): (i) the high level of
generalization and/or simplification regarding the spatial distribution of geotechnical or hydrological parameters; (ii) the
feasibility of model application is limited to areas with relatively homogeneous ground conditions (e.g., geology and
geomorphology); (iii) the uncertainties about the depth of the soil and of the slip surface; and (iv) the difficulties in
predicting groundwater pore pressures and their relationship with rainfall. Additionally, although the infinite slope stability
model remains physically-based, the used geotechnical parameters lose, to some extent, their direct physical meaning since

critical cohesion and internal friction angle combination were determined statistically assuming the highest effective ratio.
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In this work we tested two hypotheses: (i) although conceptually distinct, statistical and physically-based methods
generate similar results concerning susceptibility to shallow slide occurrence; and (ii) a reliable landslide susceptibility map
can be obtained for a single study area by combining two landslide susceptibility models (statistical vs physically-based).

To achieve the proposed objectives the Information Value method and the Infinite Slope method were chosen to
build two landslide susceptibility maps. A shallow slides inventory was separated into two independent landslide groups
adopting a temporal criterion. The training group was used twofold to define the statistical relationships between landslides
and the dataset of variables assumed as landslide predisposing factors by the IV method, and to calibrate the resistance
parameters (cohesion and internal friction angle) within the IS method. The landslide validation group was used to validate
both susceptibility maps independently.

When analysed separately, both methods generated good predictive results, although the physically-based model
revealed to be more effective in the spatial prediction of shallow landslides, which is attested by the AUC ROC and the
effective ratio of landslide susceptibility classes. In addition, the application of the Kappa statistics showed that the overall
spatial agreement between susceptibility classes of both maps is only moderate (K = 0.23), so the first hypothesis is only
partially confirmed. The major differences were registered over two lithological units (LU2 and LU7) and may result from
the probable incompleteness of the shallow slides inventory over LU7, as a consequence of human interventions related to
agriculture activities.

The final shallow slides susceptibility map produced by combining the results obtained with the statistical and
physically-based methods through a contingency table proved to be reliable, as shown by the effective ratio of the extreme
susceptibility classes (Very high, Low and Very low). Thus, the second hypothesis is confirmed. Although it was possible to
identify uncertain areas with one single model by varying some input assumptions and parameter combinations, our work
demonstrates that the combination of both methods allowed the identification of areas classified as uncertain regarding
landslide susceptibility but with potential to be highly/very highly susceptible to shallow slides occurrence, which is not

possible when using a single landslide susceptibility model.
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Table 1. Shallow slides inventory characteristics

Study area Training group Validation group Total inventory
area # area # area
(km?)
slides (km?) slides (km?) slides (km?)
13.9 51 0.027 60 0.030 111 0.057
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Table 2. K, constant calibration parameter for each lithological unit

# Field soil measurement

LU Description ) K.
points
1 Alluvium 0 2.9
2 Arranho formation: limestone and marls 57 1.5
3 Sobral formation: sandstones and limestones 0 3.6
4 Sobral formation: clays and marls 16 3.6
5 Amaral formation: limestones 15 23
6 Amaral formation : marls 1 2.9
7 Abadia formation: clays and marls 21 43
8 Dykes and volcanic mass 0 2.9
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Table 3. Geotechnical parameters assigned to each lithological unit (LU). In brackets, cohesion and internal friction angle

for each LU to guarantee FS>1 in the absence of water into the soil (m=0).

Specific soil weight (mean values)

Internal friction

Cohesion
LU angle
Saturated soil ~ Natural soil ~ Submerged soil
(kN/m?) (kKN/m?) (kKN/m?) (kPa) ©)
1 17.5 16.5 7.69 3.0(3.0) 19 (19)
2 20.9 19.9 11.1 0.5 (1.0) 17 (27)
3 20.6 19.6 10.8 2.0 (4.0) 16 (22)
4 20.6 19.6 10.8 2.0 (4.0) 15 (19)
5 20.9 19.9 11.1 1.5(3.0) 24 (24)
6 19.6 18.6 9.8 3.0(3.0) 19 (21)
7 19.6 18.6 9.8 2.0 (4.0) 19 (22)
8 26.0 25.0 16.2 50.0 (50.0) 35(35)
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Table 4. Information Value scores for each class of landslide predisposing factor.

Predisposing

# Pixels with

factor ID Description # Pixels landslides v

1 Alluvium 2064 0 -1,760
2 Arranh¢6 formation: limestone and marls 217575 17525 0,494
3 Sobral formation: sandstones and limestones 3771 500 0,993
4 Sobral formation: clays and marls 95106 3775 -0,213
Lithology 5 Amaral formation: limestones 92363 2400 0,637
6 Amaral formation : marls 4331 175 0,196
7 Abadia formation: clays and marls 131898 2750 -0,857
8 Dykes and volcanic mass 5911 50 -1,759
1 Pinus pinaster forest 1803 0 2,187
2 Eucalyptus forest 9874 0 -2,187
3 Mixed forest 39044 2500 0,265
4 Broadleaf forest 1198 0 -2,187
5 Poor natural pasturages 223 0 -2,187
6 Sclerophytic vegetation 9096 0 -2,187
7 Low shrubs 27172 150 -2,186
] I;;g;t shrubs and degraded or transition 2792 75 1,665
9 Forest and annual agricultural areas 114403 6000 0,065
10 Orchard and annual agricultural areas 5334 0 -2,187
11 Orchard and vineyards 3014 0 -2,187
Land Use 12 Mixed cultures and orchard 765 0 22,187
13 Annual agricultural areas and forest 13889 425 -0,474
14 Annual agricultural areas and vineyards 104697 3600 -0,357
15 Olive grove 279 0 2,187
16 Olive grove and orchard 3 0 -2,187
17 Vineyards 56424 10000 1,283
18 Vineyards and orchard 39126 750 -0,941
19 Vineyards and olive grove 844 0 -2,187
20 Complex cultural systems 104453 3025 -0,529
21 Continuous urban areas 521 0 -2,187
22 Discontinuous urban areas 14954 0 -2,187
23 Industrial and commercial areas 930 0 -2,187
24 Other urban infrastructures 1268 0 -2,187
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25 Degraded areas 489 0 -2,187

26 ;)rtGI;eSr spaces outside the consolidated urban 404 0 2187

1 0-5 71241 375 2,234

2 5-10 207252 4675 -0,779

3 10-15 156344 9525 0,215

Slope 4 15-20 67852 3925 0,163
) 5 20-25 27892 3600 0,966

6 25-30 12284 1850 1,120

7 30-35 5770 1800 1,848

8 >35 4384 1425 1,889

1 Flat 986 0 -0,886

2 North 82435 3450 -0,161

3 Northeast 66693 8725 0,979

4 East 99656 5350 0,088

Aspect 5 Southeast 69065 1400 -0,885

6 South 33558 0 -0,886

7 Southwest 55920 1875 -0,382

8 West 72192 2350 0,412

9 Northwest 72514 4025 0,122

1 Convex (0,05 - 1,47) 190076 7525 -0,216

Pfcif;liz f&?ge 2 Straight/Flat (-0,05 — 0,05) 128858 4025 -0,453
3 Concave (0,05 — 1,22) 234085 15625 0,306

1 21,23 —-12,49 5718 750 0,982

2 -12,49 — -7,53 30746 4800 1,156

Toggf;g?ic 3 7,53 —-2,57 130188 9350 0,379
Index (TPT) 4 -2,57-2,39 210933 6300 -0,498
5 2,39-17,35 115609 4175 -0,308

6 7,35-31,83 59825 1800 0,491

1 0 5052 250 0,007

b 0—0,00001 2261 300 0,993

Slope Over 3 0,00001 — 0,0001 4241 50 -1,427
Area Ratio 4 0,0001 — 0,001 17928 750 -0,161
(SOAR) 5 0,001 — 0,01 167668 6000 0,317
6 0,01-0,1 298168 14750 0,007

7 >0,1 57701 5075 0,582
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Table 5. Effective ratio of classes defined for the IV and IS shallow slide susceptibility maps

IV method IS method
Landslide Landslide )
Susceptibility Class Effective Class Effective
validation validation
class area ratio area ratio
group area group area
(%) (%) (%) (%)
Very high 18.00 48.98 2.72 17.93 53.35 2.98
High 16.15 20.39 1.26 16.05 29.72 1.85
Moderate 14.02 11.74 0.84 14.06 11.66 0.83
Low 18.88 15.65 0.83 18.97 3.76 0.20
Very low 32.94 3.64 0.10 32.99 1.50 0.05
5
10
15
20
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Table 6. Contingence table extracted from the overlay of IV and IS shallow slide susceptibility maps in % of the study area.
Colours represent the susceptibility classes of the final map: Red — Very high; Orange — High; Yellow — Moderate; Light

5 green — Low; Green — Very low; Grey — Uncertain, but with potential for high/very high susceptibility.

10

15

20

25

ISM map\I'V map Very high High Moderate Low Very low Total
Very high 2.2 2.0 1.1 17.3
High H 3.0 2.9 1.8 16.1
Moderate 2.3 2.9 2.7 3.3 3.0 14.2
Low 2.1 2.9 3.1 4.6 19.2

Very low 1.2 2.2 3.0 333
Total 18.0 15.8 14.0 19.0 332 100
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Table 7. Distribution (%) of shallow slides of the validation group in classes obtained by overlay IV and IS shallow slide

susceptibility maps.
5
ISM map\I'V map Very high High Moderate Low Very low Total
Very high 3.6 9.1 2.6 52.1
High 5.7 2.5 2.6 0.4 30.0
Moderate 4.5 2.3 3.9 1.7 0.2 12.5
Low 0.9 0.3 1.7 1.0 3.8
Very low 0.0 0.0 0.2 1.5
Total 49.0 20.3 11.8 15.7 3.2 100
10
15
20
25

27



Table 8. Susceptibility classes and correspondent effective ratios of the final shallow slides susceptibility map

Susceptibility class # Pixels Unstable Study area Unstable Effec.tive
area area ratio
(m2) % %
Very high 90786 18475 16.4 55.6 3.39
High 78678 6175 14.2 18.6 1.31
Moderate 50560 2400 9.1 7.2 0.79
Low 58456 425 10.6 1.3 0.12
Very low 184528 450 334 1.4 0.04
Uncertain — with potential to high
or very high 90011 5300 16.3 16.0 0.98
Total 553019 33225 100 100 --
5
10
15
20
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5 Figure 1: Location of Monfalim — Louriceira study area and spatial distribution of lithological units.
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Figure 2: Methodological framework to compare and to combine statistical and physically-based landslide susceptibility models.
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5 Figure 3: Dataset of shallow slides predisposing factors. A) slope, B) aspect, C) profile slope curvature, D) topographic position
index, E) slope over area ratio, F) land use. Lithology is shown in Figure 1 and the description for each class of landslide
predisposing factor in Table 4.
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Figure 5: Transmissivity (A) and ratio h/z (B) for the hydraulic model of the study area.
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Figure 6: IV Shallow slides susceptibility map.
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Figure 7: ROC curves based on independent validation of IV and IS shallow slides susceptibility models.
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Figure 8: IS shallow slides susceptibility maps (A) m according to figure 5b; (B) m = 0.
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Figure 9: Spatial agreement between IV and IS shallow slides susceptibility maps. 0 means full agreement; 4 and -4 means
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Figure 10: Final shallow slides susceptibility map resulting from the combination of IV and IS susceptibility maps.
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