Response to author comments and list of other changes made in "Probabilistic Flood Extent Estimates from Social Media Flood Observations" by Tom Brouwer et al."

5

The authors would like to thank the anonymous referees for their reviews of our article. It is clear both referees have read the article thoroughly, which has led to useful feedback. We are convinced that the changes we made based on their feedback, have greatly improved the quality of the article.

This document contains a list of our responses to the comments of the first (RC1) and second (RC2) anonymous referees.

10 Our responses to the referee comments and the changes we made based on these comments, as well as some additional improvements we made are listed below.

All changes to the article discussed below, can be found in the 'track-changes' version of the document, which can be found at the end of this pdf.

Response to RC1

"page 2; line 10-23. The authors said that social media content gained much attention in flood mapping. For this reason it could be useful to add a sentence on the use of Facebook and Flickr (with references) in this context since only Twitter based studies are addressed."

- 15 In two of the studies that are included in this paragraph, Flickr data was used. We found no studies that used data from Facebook. This is likely a result of Facebook's restrictive policies, due to which only a very limited amount of data can be accessed through its API. On Facebook, a user of the API can only retrieve data about himself or his friends, whereas the APIs of Twitter and Flickr allow users to retrieve all public data from the platform. To clarify this, we made the following changes to the article:
- We added information about the data sources used in each of the studies mentioned
 - We appended the following to the paragraph: "To our knowledge, no flood-related studies have used data from Facebook until now, which is likely due to Facebook being a more closed network. Flickr and Twitter allow for all public data to be found and extracted using their 'Application Programming Interfaces' (APIs; Interfaces to extract data from online platforms). The Facebook API however, is much more restrictive and cannot be used to retrieve large amounts of public data."
- 25

"page 2; line 10-11: please rephrase."

"User generated content" is a general term, often used in studies related to data from social media. In the remainder of the article, we have used the more specific term "social media content", since it was unclear to some readers who was meant by

the "user" in "user generated content". In order to make the article clear to both readers who are familiar with 'user generated content' as well as more novice readers, both terms are included. The first two sentences of the paragraph are used to link both. In order to clarify the first sentence, we made the following change:

5

We replaced *"Applying user generated content, which is content generated by users of online platforms such as blogs, wikis and social media, has recently gained momentum in flood mapping"* by "Data created by users of online platforms such as blogs, wikis and social media, often referred to as 'user generated content', offers an additional source of information about natural disasters."

"page 2; line11: "focus" at the past participle can take either double or single s, with the single option being highly preferred. Please consider changing it throughout the text."

We changed all three mentions of "focussed" to "focused".

"page 2; line14: The authors could be more precise when citing that "these data can be used to assess the extent of the disasters"? Can you provide some citation? In addition it would be useful to differentiate extent of the area, extent of damage and extent of human losses."

10 This sentence is meant to build up to subsequent lines in which references are provided. By extent, we specifically mean the

geographic extent of a disaster. To clarify this, we have changed the following:

• We replaced *"On a more detailed level these data can also be used to assess the extent of the disaster."* by *"On a more detailed level these data have also been used to assess the geographic extent of a disaster."*

"page 2, line 15: I would delete the world "merely" since it seems give a negative connotation to the sentence."

We have deleted the word "merely".

15

"page 2; line 25: relay or rely? Please revise it carefully"

We have made the following change to clarify that the flood maps created until now, did not include information about uncertainty:

• We changed *"...did not relay information about uncertainty..."* to "...did not contain information about uncertainty..."

"page 3; line 17: can you be more precise on the amount of rainfall?"

- 20 We have added information from the Met Office, about the amount of rainfall that fell over the two days prior to the flood, to the article. This involved the following change:
 - We replaced "...caused by large amounts of rainfall over the month December, led to the flooding of a considerable area within the City of York in the North of England" by "...caused by large amounts of rainfall, led to the flooding of a considerable area within the City of York in the North of England. Up to 120 mm of rain fell in Yorkshire over a 48 hr period between the 25th and 27th of December (Met Office, 2016)"

25

"page 3; line 17: over the month "of" December. Please consider adding the preposition "of"."

This part of the sentence was removed in light of the previous comment.

"page 3: line 18-19: "The 2015 floods" mentioned by Scott (2016) were registered all over UK or within the study area? Please consider rearranging this part by adding more information of the flood event considered (27th of December), adding some information about the damages and the area involved."

Around the 27th of December, flooding occurred at multiple places in the North of England. The specifics about damages, other than that 453 homes and 174 businesses were flooded (Pidd, 2016), are vet to be published. One year after the floods,

- 5 the report by the York City Council is still being written (Pidd, 2016). To clarify this, we made the following change:
 - We replaced "The 2015 floods were widespread and inundated almost 600 homes and businesses (Stott, 2016)." by "These large rainfall amounts resulted in the flooding of York and other places in the north of England. Within York, 453 residences as well as 174 businesses were flooded (Pidd, 2016). Detailed information about damages within York is yet to be published, since one year after the floods a report by the York City Council is still being written." This made the reference to Stott (2016) obsolete.

10

15

"page 3; line 25: "North of these ridges..", please rephrase this sentence"

To improve readability we have changed the order of the words in this sentence:

- From "North of these ridges the inner city of York is located." to "The inner-city of York is located to the north of these ridges."

"According to the methodology some issues need to be fixed, but first of all a general rearranging of the information in the sub-chapters needs to be done. Some details of the data are not concentrated together but are distributed on several chapters that make the reading a difficult process."

To provide readers with an overview of all datasets used in the research, and the processing applied to the elevation data, we added the following table to the article:

Data	Source	Purpose	
2 m LIDAR DTM	EA (2014)	To group observations (Sect. 3.3)	
		To calculate water levels (Sect 3.3)	
		To estimate flood depth & extent (Sect 3.3)	
		To pinpoint Tweets referring to streets (Sect 3.2)	
Twitter	Twitter streaming API	To extract flood observations (Sect. 3.2)	
Google Maps	Used online	To find locations with Tweets (Sect. 3.2)	

Google StreetView	Used online	To find exact locations of photographs (Sect. 3.2)	
OpenStreetMap	Exported from osm.org	To simulate locational errors along streets (Sect 3.4)	
Recorded historic flood	EA (2015)	To evaluate flood extent in areas affected by non-	
outlines		fluvial flooding (Sect 3.5)	
Recorded 2015 fluvial	EA (Personal	To evaluate flood extent in areas affected by fluvial	
flood outline York (draft)	communication)	flooding (Sect. 3.5)	

Along with this, we added a separate paragraph about the data to the beginning of section 3, and removing some of the then duplicate information in the subsequent paragraphs.

"In addition, it is not clear how many tweets have been considered and/or point of interest have been derived."

Since this is a result of the methods that are discussed in section 3.1 (Twitter data extraction), the number of Tweets that were found are reported in the results chapter (chapter four). However, the exact numbers of Tweets with each type of

- 5 locational reference (POI/Street) is not reported. Therefore we changed the following at the beginning of the fourth chapter
 - We replaced <u>"Although 56 of these Tweets had photographs attached, we could only match 26 of them to a location</u> on Google StreetView." by "17 Tweets mentioned a point location (an address, intersection or POI) and 70 Tweets mentioned a street name, for which the elevation data was used to derive a point location. Although 56 Tweets from which locations were derived, had photographs attached, we could only match 26 of them to a location on Google StreetView."
- 10

"Secondly, it misses to mention the vertical accuracy of the DTM"

We added information about the vertical accuracy of the DTM, originating from a report by the EA, in the new section about the data at the beginning of chapter 3 (Also see comment two comments above)

"I think that the resampling method from 2 m to 20 m resolution should be stated before (please explain why)."

15 We have included this information in the new section about the data at the beginning of chapter three. (Also see comment three comments above).

"Moreover, when the observations have been grouped based on the LDDs have been based on the DEM or have been calculated by flow directions or by POI (point of interest) connected with flow directions?"

The grouping was indeed done by combining the locations derived from the Tweets with the LDDs. We have clarified this by changing the following:

• We replaced *"This was done by calculating the LDDs in the area using the DTM. These LDDs were used to determine which cells are downstream of an observation."* by *"We grouped observations by combining information*

about the LDDs in the area, which were derived from the DTM, with the locations of observations. The LDDs were used to determine which cells are downstream of an observation."

"In addition the authors need to justify the use of the IDW technique to determine the flood extent at this stage."

We decided to use the IDW technique, instead of for example, the bilinear spline used by Fohringer et al. (2015), since we can apply smoothing using this technique. There is uncertainty in the water levels that are derived from Tweets, and by

- 5 applying smoothing, the water levels of different observations that are in close vicinity, can be averaged. To clarify this, and put it in context with other studies, we have replaced the last paragraph of section 3.2 by:
 - "Previous studies applied both IDW (Werner, 2001) and bilinear spline interpolation (Fohringer et al., 2015) to calculate flood extents from irregularly spaced flood observations. We used IDW interpolation since it allows for smoothing, which is useful in averaging the water levels of clusters of uncertain flood observations from social media content. In case of certain flood observations, which should be followed exactly by the interpolated water surface, bilinear spline interpolation may be more appropriate. An additional advantage of IDW interpolation is that the nominator and denominator of Eq. (1) can be updated with new observations, meaning the additional computational time in real-time applications is limited. We slightly modified the method proposed by Werner (2001) to improve the realism of the interpolated water surface. Firstly, water levels were expressed relative to the elevation of the nearest drain instead of mean sea level. Secondly, observations were interpolated along their downstream flow paths and subsequently projected to the grid cells upstream of these flow paths, to create a grid of water levels. From this grid we subtracted the HAND map, to create an initial grid of water depths in the area. Since the water surface might be extrapolated to areas which were separated from the observations by small barriers, flooded areas that were not connected to any of the observations were removed, similar to the method suggested by Werner (2001). This procedure produced the deterministic flood maps."

"In addition try to explain the HAND map with few sentences for non-expert users. Some minor changes are listed as follows."

To clarify what the HAND map is, we have added the following sentence after "... inundation extents for fluvial floods.":

• "In contrast to a DTM, which contains elevation values relative to one single reference level, such as mean sea level, elevation values in a HAND map are relative to the nearest drainage channel. This drainage-normalized representation of the topography has a clear advantage for riverine flood extent mapping, as water depths over land can easily be related to water levels in the river."

25

30

10

15

20

"page 3; line 29: Which "useful information" have been extracted to create a deterministic flood extent estimate?"

Since none of the Tweets about the floods in York gave an estimate of water depth, we only derived information about which locations were flooded from the Tweets. To clarify this, we have made the following change:

• We have replaced *"First we extracted useful information from flood related Tweets."* by *"First we extracted locations where flooding was observed from flood-related Tweets"*.

"page 4; line 4: It is correct "to perform a step"? Please consider revising this sentence"

We have changed the following:

We have replaced "We performed several step to create a database of Twitter based flood observations" by "The ٠ process used to create a database of Twitter based flood observations consisted of several steps"

"page 5; line 20-21: Please rephrase the sentence"

To clarify this sentence, we have made the following change:

We have replaced "In order to only interpolate observations belonging to the same continuously flooded area, we 5 grouped observations prior to interpolating the water levels" by "We assumed that the water levels of flooded areas that are separated, are independent of each other. Therefore, we grouped observations to identify to which flooded area each observation belonged. The water levels of each group of observations were then interpolated separately"

"The chapter 3.4 "Evaluation of results" needs to be better contextualized and explained. The information inside this part seems to include limitation, problems, methodologies and expected results. I suggest rearranging this chapter."

- At the moment this paragraph contains both a discussion of the data, the methods and guidance on how to interpret the 10 results. We have changed the following:
 - We have moved the information about the validation data to a separate 'Data' paragraph at the beginning of the ٠ chapter: "Recorded flood extents were used to validate the flood maps (Sect 3.5). A draft version of the fluvial flood extents of the City of York was supplied by the EA. These flood extents only identified areas that were directly affected by flooding from the rivers. However, areas separated from the river around Knavemire Road, Water Lane and Shipton Road were also known to be flooded based on news articles. The flood extents around these locations were approximated by using the EA dataset of recorded flood extents (EA, 2015) from between the years 1991 – 2012. These were merged with the recorded fluvial flood extent from 2016 into one validation dataset."
 - We have removed the sentences about the interpretation of the reliability diagram, since this becomes clear in the results chapter.

20

15

"In addition try to better explain the F(2) statistic expressed at page 7; line 20."

A long textual explanation of the F(2) statistic will impact the readability of the article. Therefore we have removed the sentence that textually explains the F(2) statistic, and instead introduce the equation for the F(2) statistic, with a short explanation of the terms in this equation (for the revised paragraph: see 'track-changes' supplement).

"The discussion, should provide some interpretation of the results emerged without wasting entire sentences restating the results (ex, page 12; line 11-12 among others). Please, try to verify it and do not repeat same concepts."

Some concepts are indeed repeated in the current discussion section, making the section unnecessarily lengthy and reducing

25 the readability. To improve the readability of the discussion and remove the duplications from the discussion paragraph, we have completely rewritten the discussion chapter (5).

"In addition, you might relate your work to the findings of other studies by finding crucial information in someone else's study that helps you interpret your own data, or perhaps you will be able to reinterpret others' findings in light of yours. In either case you should discuss reasons for similarities and differences between yours and others' findings."

We found only very little studies regarding probabilistic flood inundation maps that used a validation method similar to ours.

We have changed the following:

5

• We added to the discussion chapter: "A comparison to the work of Giustarini et al. (2016), who produced probabilistic flood maps from synthetic aperture radar (SAR) data and used the same validation technique, indicates that results are similar. It illustrates that probabilistic flood maps from SAR data provide a degree of accuracy comparable to the ones in our study, with probability-error values up 0.38. Although their reliability diagrams differed among case studies, none of them had a consistent overestimation of flood probability in all bins of the reliability diagram, like the ones from social media content. This indicates that the method presented in this paper still has some limitations."

"In addition, please rephrase page 12; lines 2-4"

10 In light of a previous comment (two comments above), the discussion was rewritten.

"Please, cite in the text the authors of the script just mentioned with a doi at page 13; line 15."

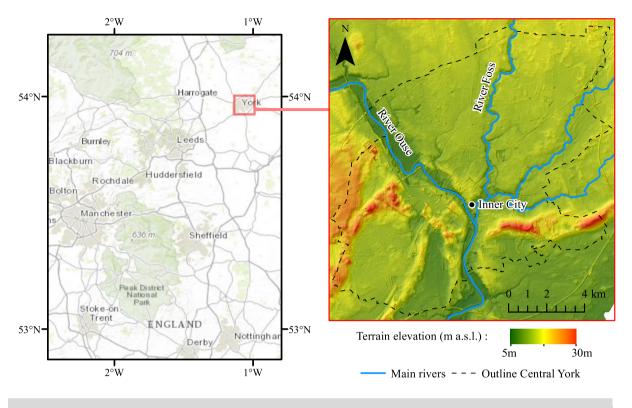
We created the scripts we used for the analyses in this paper ourselves. To clarify this we have made the following change:

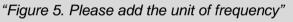
• Add a reference to the text (and in the list of references): replace "...code used for the different analyses is..." by "...code used for the different analyses (Brouwer, 2016) is..."

"Figure 1 needs more details of where the study area is located. A smaller map of UK where the study area is highlighted is highly suggested to help readers in locating the area. Terrain elevation needs "m (a. s. l.)"."

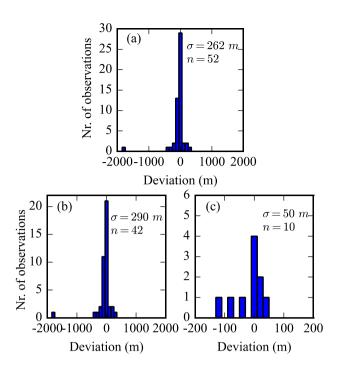
This indeed makes the location of the study area more clear, for readers who are not familiar with the UK. We have replaced

15 Figure 1 with the following figure:





Since this is not strictly speaking a frequency (like s^{-1} for example), but a number of observations, we propose to replace Figure 5 with the following figure:



"Figure 6. What's the confusion matrix? Please add in the caption what represent the numbers in square brackets."

- 5 It is indeed unclear what the confusion matrix is. The concept 'confusion matrix' is however not important for understanding figure 6, since the meaning of the colours in the map can be derived from the legend. Also, it is not completely clear that the numbers in brackets are used to indicate locations in the map. Therefore, we have made the following changes:
 - We removed in section 4.2: "...data, by classifying all grid cells based on the four quadrants of a confusion matrix."
- 10
- We changed the caption of Figure 6 to: "Comparison between the deterministic flood map (modelled) and validation data (observed). The locations denoted by the numbers [1] to [4] are referred to in text."

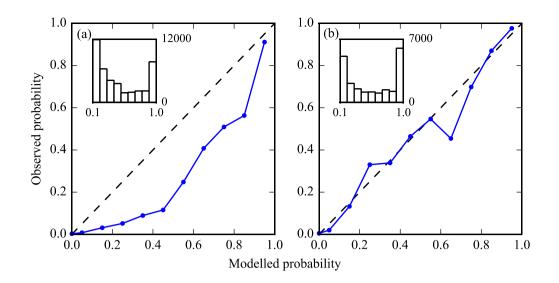
"Figure 7. Please add in the caption what represent the numbers in square brackets."

We have appended the following to the figure caption:

• "The locations denoted by the numbers [1] to [3] are referred to in text."

"Figure 8. I suggest enlarging this figure to be able to appreciate the details."

We have replaced figure 8 with the following figure:



Response to RC2

"What is the F(2) statistic is explained in the text (section 3.4), but not in the abstract. Please add a definition when mentioning F(2) in the abstract."

A full explanation of the F(2) statistic within the abstract is not feasible, since it would involve multiple lines of text. This

full description is included in chapter 3 of the paper. To indicate the relevance of the $F^{(2)}$ value in the abstract, we have made

- 5 the following change:
 - We have replaced " $\dots(F^{(2)} = 0.69)\dots$ " by " $\dots(F^{(2)} = 0.69; a \text{ statistic ranging from } 0-1, \text{ with } 1 \text{ expressing a perfect}$ fit with validation data)..."

"Explain why the DWD has been estimated to range between 20 cm and 80 cm (section 3.3)"

This is indeed unclear. The decision to use this range was mainly based on photographs that were found in news articles of the floods. Therefore, we have replaced lines 6&7 on page 7 with:

- 10 "Based on photographs in news articles about the flooding in York, the water depth in most places was estimated to be between 20 and 80 cm. Therefore, the DWD was varied between 20 and 80 cm. For the smoothing and power parameter, no clear information about the range was available. Errors in these parameters were simulated using the rather conservative ranges of 0-2000m and 2-5 respectively. A uniform distribution was used to simulate errors in the DWD, range- and power- parameters, since there was no specific information available regarding their error distributions."
- 15

"I understand that the (potentially large) uncertainties of the validation data were ignored when building the reliability diagrams. I therefore feel that the uncertainties of the probabilistic maps may be even more overestimated than claimed in the paper. Please

discuss this issue, the possible consequences of neglecting the validation data uncertainties, and how they could be included in the analysis."

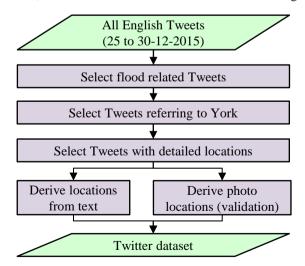
We did not mention the uncertainties of the validation data in the article, although these might be important in evaluating probabilistic flood inundation maps. Therefore, we have made the following change to the article:

• We have replaced lines 13-16 on page 11 with: "Furthermore, the results of the analysis could have been affected by the quality of the maps used for validation. The data for validating the river flood extents was created from a combination of ground observations and aerial photography. In places flooded separately from the river however, recorded historic flood extents were used, which might have been in accurate. However, actual observed flood extents for 2015 were used for the majority of the area. Therefore, we have no reason to believe that there are large uncertainties in the validation data."

Other changes

5

- 10 In addition to the changes that were made in response to the referee comments, we have also implemented the following changes:
 - We changed a substantial part of the abstract, to improve readability.
 - In addition to the change made in response to a comment of anonymous referee 1, a part of the paragraph about the grouping of observations (section 3.3, formerly 3.2) was rewritten.
- In rewriting the discussion paragraph, in response to some of the comments in RC1, we have made the following sections
 - 1. Potential: Discussing the potential of the method
 - 2. Limitations: Discussing the current limitations of the method
 - 3. Recommendations: Discussing the recommendations for future research
- In light of the restructuring of paragraph 3, following comments of anonymous referee 1, figure 2 was slightly modified, and does not include the filtering based on dates as a separate step now:



- All mentions of 'manuscript' were changed to 'paper'
- We have implemented some minor text changes, to improve readability.

Probabilistic Flood Extent Estimates from Social Media Flood Observations

Tom Brouwer^{1,2}, Dirk Eilander¹, Arnejan van Loenen¹, Martijn J. Booij², Kathelijne M. Wijnberg², Jan 5 S. Verkade¹, Jurjen Wagemaker³

¹Deltares, Delft, Boussinesqueg 1, 2629 HV, The Netherlands

²Dept. of Water Engineering and Management, University of Twente, Enschede, Drienerlolaan 5, 7522NB, The Netherlands ³FloodTags, The Hague, Binckhorstlaan 36, 2511 BE, The Netherlands

Correspondence to: Dirk Eilander (Dirk.Eilander@deltares.nl)

- 10 Abstract. The increasing number and severity of floods, driven by phenomena such as urbanization, deforestation, subsidence and climate change, creates a growing need for accurate and timely flood maps. This research focussed on creating flood maps using user generated content from Twitter. Twitter data has added value over traditional methods such as remote sensing and hydraulic models, since the data is available almost instantly, in contrast to remote sensing and requires less detail than hydraulic models. In this paper we present and evaluate a method to create deterministic and
- 15 probabilistic flood maps from Twitter messages that mention locations of flooding. A Deterministic flood maps created using these data for the December 2015 flood in the city of York (UK) showed good performance ($F^{(2)} = 0.69$; a statistic ranging from 0-1, with 1 expressing a perfect fit with validation data) for a case study in York (UK). The probabilistic flood maps we created showed that, For-in the York case study, the main source of uncertainty in flood extent the probabilistic flood maps was mainly induced byfound to be the errors in of the precise locations of flood observations as derived from the
- 20 Twitter data. Errors in the <u>terrain</u> elevation data <u>and-or in the</u> parameters of the applied algorithm contributed less to flood extent uncertainty. Although the<u>se</u> generated probabilistic maps tended to overestimate the actual probability of flooding, they gave a reasonable representation of flood extent uncertainty in the area. This study illustrates that inherently uncertain data from social media can be used to derive information about flooding.
- 25 Keywords: User generated content, Social media, Twitter, Flood extent estimation, Uncertainty analysis, Probabilistic flood mapping

1 Introduction

30

Between 1995 and 2015 2.3 billion people were affected by floods (UN, 2015), which is about one third of the world's population. Worldwide developments such as urbanization, deforestation, subsidence and climate change are expected to increase the occurrence of floods and number of people affected by them. This creates a growing need for timely and

accurate information about the locations and severity of flooding. In multiple phases of the disaster management cycle (Carter, 2008), this information is useful. In the mitigation phase, data about previous flood events can be used to evaluate the probability of flooding and prevent urban expansion into flood prone areas. If flood prone areas are already inhabited, information about flood risk can also be used to improve disaster preparedness. In the response phase, information about the

5 current flood situation is useful, for example for rescue workers who want to identify affected areas and assess the accessibility of roads. Finally, in the recovery phase, flood information can help insurance companies in evaluating flood damages and aid organizations in targeting rebuilding efforts.

Traditionally, flood information in the form of flood maps has been produced using either hydraulic models or remote sensing. Applying these in real-time however, may be problematic. Hydraulic models require a detailed schematization of the study area, knowledge about the cause of a flood and may require considerable computational time. Also forecasts of input data, such as discharge or precipitation may not be readily available. Remotely sensed data may take several hours to become available (Mason et al., 2012) and its temporal resolution is often limited (Schumann et al., 2009).

- Applying user generated content, which is content generated Data created by users of online platforms such as blogs, wikis and social media, has recently gained momentum in flood mappingoften referred to as 'user generated content', offers an additional source of information about natural disasters. Recent studies focussed focused specifically on using social media content. P, since platforms such as Twitter, Facebook and Flickr produce large amounts of real-time data that may be used to derive information about flooding. In coarse scale applications for example, these data can be used to detect the occurrence of a natural disaster (Earle et al., 2011). On a more detailed level these data can also behave also been used to assess the geographic extent of the a disaster. In the context of flood mapping, some investigations merely-used these data as auxiliary
- data. Examples include the assessment of the accuracy of remote sensing derived flood maps<u>using Flickr data</u> (Sun et al., 2015) and the selection of the most realistic result of a series of hydraulic model runs<u>based on Twitter data</u> (Smith et al., 2015). Others actually created flood maps directly from the data. Schnebele et al. (2014) used the density of flood related
- 25 Twitter messages (Tweets) to get an indication of flood extent and in the PetaJakarta project, the number of Tweets in an area is used to indicate flood severity (Holderness & Turpin, 2015). Fohringer et al. (2015) created flood maps by interpolating water levels which were manually derived from photographs posted on social mediaon Flickr and Twitter. Eilander et al. (2016) on the other hand used an automatic method to derive water depths and locations from Tweets, and created flood maps using a flood fill algorithm. To our knowledge, no flood-related studies have used data from Facebook
- 30 <u>until now, which is likely due to Facebook being a more closed network. Flickr and Twitter allow for all public data to be</u> found and extracted using their 'Application Programming Interfaces' (APIs; Interfaces to extract data from online platforms). The Facebook API however, is much more restrictive and cannot be used to retrieve large amounts of public data.

The aforementioned studies all <u>focussedfocused</u> on obtaining flood extents from social media content. These flood extents, however, did not <u>relay_contain_</u>information about uncertainty, even though uncertainty is an inherent characteristic of information derived from social media content. Locational information of Tweets for example can be uncertain, because geo-tags are available for only a very small number of Tweets and may deviate from the actual location of the observation

- 5 (Hahmann et al., 2014). McClanahan & Gokhale (2015), who derived locations from the text in Tweets, indicate that the locations they derived from messages in New York City had an average error of 1.72 km. Eilander et al. (2016) were the first to give an estimate of the likelihood of areas being flooded, by harvesting Tweets. This likelihood was based on the number of Tweets found for individual administrative areas, rather than knowledge about the actual errors in the data used.
- 10 Information about uncertainties can help in assessing the quality of generated flood maps. In addition, it can also serve as an information source of its own. This was for example the case in the search for Air France flight 447, which disappeared over the Atlantic Ocean in 2009. Probabilistic maps of the location of the wreckage were successfully used to find the wreckage in 2011, while previous attempts, spanning a two-year period, all failed (Stone et al., 2014). More specific to flood mapping, information about uncertainties can be used to direct surveys to areas in which the flood extent is highly uncertain. The
- 15 information can also be used by rescue workers navigating an affected area, to choose the most optimal route by weighing the length of a route against the probability of it being flooded.

In the present manuscript paper we investigate the applicability of using social media content from Twitter to generate probabilistic flood maps. We explicitly address uncertainties in the data and assess the added value of probabilistic maps

- 20 over deterministic maps. The analyses presented in this manuscript-paper give insight into the magnitude of errors in flood observations derived from Tweets and improve understanding of how these errors affect the flood extent estimates. Furthermore, we investigate how the uncertainty caused by errors in the Twitter data relates to the uncertainty caused by other sources of error.
- This <u>manuscript-paper</u> starts with a description of the case study (Sect. 2). This is followed by an overview of the methods <u>and data</u> used (Sect. 3). Section 4 subsequently presents the research results and Sect. 5 includes an in depth discussion thereof. Finally, the conclusions of the research are given in Sect. 6.

2 Case study

On the 27th of December 2015 peak water levels on the river Ouse, caused by large amounts of rainfall-over the month December, led to the flooding of a considerable area within the City of York in the North of England. <u>Up to 120 mm of rain</u> fell in Yorkshire over a 48 hr period between the 25th and 27th of December (Met Office, 2016). These large rainfall amounts resulted in the flooding of York and other places in the north of England. <u>The 2015Within York</u>, floods were widespread and inundated almost 600 homes and businesses (Stott, 2016). 453 residences as well as 174 businesses were flooded (Pidd, 2016). Detailed information about damages within York is yet to be published, since one year after the floods a report by the York City Council is still being written.

5 The flooding of the City of York in December 2015 was selected as a case study, since both high resolution terrain elevation data, as well as recorded flood extents were available for this event. In Fig. 1 an Environment Agency (EA) digital terrain model (DTM) of the city of York is given (EA, 2014). This manuscript paper focusses on Central York, delineated by the central administrative areas of York. In most of the study area terrain slopes are moderate, although some higher ridges are found in the south and south-west of the area. North of these ridges t The inner-city of York is located to the north of these ridges. At this location there is a confluence of several rivers, of which the River Ouse is the largest.

10

3 Data and Methods

Data from Twitter were used to derive flood information, since these data are openly and freely available. The research was comprised of several phases. First we extracted useful information locations where flooding was observed from flood-related Tweets. This information was subsequently used to create a deterministic flood extent estimate. After this, based on

15 information about the magnitude of errors in the data, probabilistic flood extent estimates were derived. In this section we discuss the setup of these three phases along with the methods used to evaluate the accuracy of the deterministic and probabilistic flood maps. This section starts with a discussion of the datasets used in this study. In the subsequent paragraphs, each of the three phases of the research is discussed separately. We conclude this chapter by explaining the methods we used to evaluate both the deterministic and probabilistic flood extent estimates.

20 **3.1 Data**

An overview of the data we used in this study is provided in Table 1. Elevation data was used throughout all phases of the research. We used a 2 m DTM, which is disseminated by the EA and has a vertical accuracy of ±15 cm (EA, 2016). To reduce the computational time required to create the flood maps, but preserve sufficient detail, we resampled this data to 20 m resolution using the average of the underlying data.

25

Tweets from between the 25th and 30th of December 2015, were collected using the Twitter streaming API. From these data flood observations were extracted. Google Maps and Google StreetView were used to find locations mentioned by the Tweets and the locations of photographs attached to the Tweets respectively (Sect. 3.2). From OpenStreetMap we downloaded the line-data belonging to the street names that Tweets mentioned, which were used to simulate locational errors along the streets (Sect. 3.4).

30

Recorded flood extents were used to validate the flood maps (Sect 3.5). A draft version of the fluvial flood extents of the City of York was supplied by the EA. These flood extents only identified areas that were directly affected by flooding from the rivers. However, areas separated from the river around Knavemire Road, Water Lane and Shipton Road were also known to be flooded based on news articles. The flood extents around these locations were approximated by using the EA dataset of recorded flood extents (EA, 2015) from between the years 1991 – 2012. These were merged with the recorded fluvial flood

5

10

3.1-2 Twitter data extraction

extent from 2016 into one validation dataset.

We performed several steps The process used to create a database of Twitter based flood observations consisted of several steps (Fig. 2). First of all, we collected all Tweets that contained a number of common flood-related keywords such as 'flood' or 'inundation', using the Twitter streaming API. From this database we selected the Tweets that were sent between the 25th and 30th of December 2015. To ensure purely Tweets regarding York were found, only Tweets that mentioned 'York' or '#YorkFloods' were included and messages referring to 'New York' or 'York County' (both in the USA) were excluded. As a last selection step, we only kept Tweets that contained explicit references to locations, such as streets or points of interest (POIs), by looking for common keywords such as 'street', 'lane', 'museum' or 'school'. Some other minor

15 filters were applied to ensure only relevant Tweets were found, for example by excluding Tweets related to flood barriers and flood warnings.

We derived locations from the Tweets in the remaining dataset by manually identifying the section of the Tweet that contained a locational reference. Based on this reference, X and Y coordinates were assigned to the Tweets. To illustrate this

20 process, the following Tweet is used as an example:

"Cumberland Street in York - say they're used to flooding here but only 2000 was worse" (By: @jimtaylor1984)

The locational reference in this Tweet is "*Cumberland Street*". These locational references were used directly to search Google Maps. The message above however did not refer to a point location, which would be the case for a POI, but to a line element. We derived exact spatial coordinates from such Tweets by using the location of the street from Google Maps in combination with the DTM of the EA (EA, 2014). If topographical depressions were <u>present_found_along</u> the street, the deepest depression, identified by filling the sinks in the DTM, was used as the location of the observation. In case no depressions were found, the point of lowest elevation was used, which was the case for the Tweet above (Seein Fig. 3).

To review the accuracy of the spatial coordinates derived from the Tweets, we looked at the photographs attached to some of the Tweets and compared them to Google StreetView. If we found the specific location of a photograph, we compared it to the spatial coordinates derived from the Tweets text to determine the locational error (example: Fig. 3).

³⁰

3.2-3 Flood extent mapping

Flood extents were derived at 20 m resolution-using the locations derived from the Twitter messages and a-the_DTM-from the EA (EA, 2014). We applied an interpolation method to derive flood maps from the observations, similarly to Fohringer et al. (2015). Before interpolation, two processing steps were applied to guarantee more realistic flood extent maps. Firstly, we

- 5 derived water levels relative to the nearest drainage channel from each observation. Since none of the Tweets about York mentioned water depths, water levels were derived by assuming the same default water depth (DWD) for all observations. We calculated these water levels relative to the nearest drainage channel by using a height above nearest drainage (HAND) elevation model (Rennó et al., 2008; Norbre et al., 2011). Secondly, observations were grouped based on the local drainage directions (LDDs) to interpolate only hydrologically 'connected' observations. Instead of using the bilinear spline interpolate only hydrologically interpolate meighting (IDW) interpolation to determine the fload
- 10 interpolation of Fohringer et al. (2015), wWe used inverse distance weighting (IDW) interpolation to determine the flood extent. Figure 4 gives an overview of this process. These steps are further explained in this section.

Norbre et al. (2016) applied the HAND concept to derive inundation extents for fluvial floods. In contrast to a DTM, which contains elevation values relative to one single reference level, such as mean sea level, elevation values in a HAND map are

- 15 relative to the nearest drainage channel. This drainage-normalized representation of the topography has a clear advantage for riverine flood extent mapping, as water depths over land can easily be related to water levels in the river. By using a HAND map instead of a DTM, river slopes are filtered from the dataset. This means that HAND values in an area are directly related to river stage and HAND contour lines describe the flood extent at a specific river stage. Since river slopes are filtered, upstream observations are also less likely to cause overestimations of water levels downstream. We constructed a HAND
- 20 map from the DTM by deriving the LDDs and using these to determine the elevation value of each grid cell in the study area, relative to the nearest drainage channel. Grid cells were identified as being on a drainage channel if they had an upstream area of 6 km² or more, which gave the best representation of drainage channels in the study area. Topographical depressions were filtered to derive the LDDs used to construct the HAND map. To also account for pluvial flooding of local topographical depressions, these depressions were reintroduced in the final HAND map. This map was then used to translate
- the DWD assigned to each observation to a water level with respect to the nearest drainage channel.

We assumed that the water levels of flooded areas that are separated, are independent of each other. Therefore, we grouped observations to identify to which flooded area each observation belonged. The water levels of each group of observations were then interpolated separately. In order to only interpolate observations belonging to the same continuously flooded area,

30 we grouped observations prior to interpolating the water levels. This was done<u>We grouped observations</u> by calculating the LDDs in the area using the DTMcombining information about the LDDs in the area, which were derived from the DTM, with the locations of observations. These LDDs were used to determine which cells are downstream of an observation. If the location of the observation is flooded, it is assumed its downstream cells are also flooded, since these are located lower than

the observation and are directly connected to it. Therefore, all observations of which the flow paths intersect downstream that have downstream cells in common, are located within the same continuously flooded area.

The water levels (relative to the nearest drainage channel) of each group of observations were subsequently interpolated 5 using IDW interpolation as given by Eq. (1) and Eq. (2):

$$Z_{x,y} = \frac{\sum_{i=1}^{n} Z_{i} * W_{i}}{\sum_{i=1}^{n} W_{i}},$$
(1)

$$W_i = \frac{1}{\left(d_{x,y,i} + s\right)^p},\tag{2}$$

10

Where $Z_{x,y}$ (m) is the interpolated water level at spatial coordinates x and y, Z_i (m) is the observed water level of observation *i*, n is the total number of observations, W_i is the interpolation weight of observation *i*, $d_{x,y,i}$ (m) is the distance to observation *i* measured along the flow paths downstream of observations, s (m) is the smoothing parameter and p is the power parameter.

- 15 Previous studies applied both IDW (Werner, 2001) and bilinear spline interpolation (Fohringer et al., 2015) to calculate flood extents from irregularly spaced flood observations. We used IDW interpolation since it allows for smoothing, which is useful in averaging the errors inwater levels of clusters of *uncertain* flood observations from social media content. In case of *certain* flood observations, which should be followed exactly by the interpolated water surface, bilinear spline interpolation may be more appropriate. Also An additional advantage of IDW interpolation is that the nominator and denominator of Eq.
- (1) can be updated with new observations, meaning the additional computational time in real-time applications is limited.
 We slightly modified the method proposed by Werner (2001) to improve the realism of the interpolated water surface. Firstly, water levels were expressed relative to the elevation of the nearest drain instead of mean sea level. Secondly, Water levels of observations were interpolated along their downstream flow paths and subsequently projected. The water levels along these flow paths were subsequently given to the grid cells upstream of these flow paths, which produced to create a grid of water levels. From this grid we subtracted the HAND map, to create an initial grids of water depths in the area. Since water depths were calculated in the water surface might be extrapolated to areas which were separated from the observations by small ridgesbarriers, flooded areas that were not connected to any of the observations were removed, similar to the method suggested by Werner (2001). This procedure produced the deterministic flood maps.

3.<u>34</u>Uncertainty analysis

30 The uncertainties in the flood extent maps were investigated using a Monte Carlo analysis. We evaluated the uncertainty originating from errors in the locations derived from Tweets, errors in the elevation data, uncertainty in the parameters of the

IDW equation and uncertainty in the DWD. The characteristics of the error distributions used to simulate these errors are given in Table 12.

The analysis of the locational errors of Tweets indicated that the locations derived from Tweets that refer to point locations 5 contain less error than those derived from Tweets that refer to streets (see Sect. 4.1). The locational errors of both types of Tweets were therefore simulated differently. We simulated the locational errors of Tweets that referred to point locations by adding random errors to the spatial coordinates of the Tweets. The locational errors of Tweets that referred to streets were simulated along these streets. We did this by extracting the streets to which the Tweets referred from OpenStreetMap. The locational error was modelled using a normal distribution. To generate each realization, the observations were moved a 10 distance along the street, which was drawn from this distribution. As some streets are shorter than six standard deviations, effectively reducing the modelled error, the standard deviation used for modelling these errors was modified so that the

resulting errors matched the observed locational errors.

Since no reference accurate information was available regarding the accuracy and errors in the EA DTM, these errors were 15 simulated using typical values from literature. Since using independent normally distributed errors does not accurately reflect errors in the elevation data (Heuvelink et al., 2007; Raaflaub & Collins, 2006), spatially auto correlated errors were added using the method described by Dullof & Doucette (2014). Based on typical values of standard deviations and auto correlation distances of errors in LIDAR elevation data found in literature (Leon et al., 2014; Mudron et al., 2013; Li et al., 2011; Livne & Svoray, 2011; Hodgson & Bresnahan, 2004) a standard deviation of 20 cm and correlation distance of 100 m 20 was used. These errors were added to the original 2 m resolution DTM, before resampling it to 20 m resolution and creating

the corresponding HAND map.

The uncertainty caused by the input parameters, being the power and smoothing parameters (Eq. 2) and the DWD, was also evaluated. Since no specific information is available about the distribution of errors in these parameters, we used a uniform 25 distribution. The power parameter was varied between 2 and 5, the smoothing between 0 and 2000 m and the DWD between 20 and 80 cm. Based on photographs in news articles about the flooding in York, the water depth in most places was estimated to be between 20 and 80 cm. Therefore, the DWD was varied between 20 and 80 cm. For the smoothing and power parameter, no clear information about the range was available. Errors in these parameters were simulated using the rather conservative ranges of 0-2000m and 2-5 respectively. A uniform distribution was used to simulate errors in the DWD, range- and power- parameters, since there was no specific information available regarding their error distributions.

30

To determine the number of Monte Carlo simulations required to produce the probabilistic flood maps, multiple maps were created using the same input uncertainties. It was found that using 1000 Monte Carlo simulations, two probabilistic flood maps generated using the same input error distributions were nearly identical.

3.4-5 Evaluation of results

We evaluated the accuracy of both the deterministic and probabilistic flood maps, by comparing these to the validation data discussed in Sect 3.1-using recorded flood extents. In addition, we reviewed the relative importance of the different error sources for the probabilistic flood maps. A draft version of the fluvial flood extents for the City of York was supplied by the

- 5 EA. These flood extents however only identified areas that were directly affected by flooding from the rivers. Areas separated from the river around Knavemire Road, Water Lane and Shipton Road were also known to be flooded based on photographical evidence in some Tweets. This was confirmed by news articles about these three locations. The flood extents around these locations were approximated by using the EA dataset of historic flood extents (EA, 2015) from between the years 1991 2012. The flood extent specific to fluvial flooding during the December 2015 event and the historical flood
- 10 extents were merged into one flood extent map for validation. Using these data, we evaluated t<u>T</u>he accuracy of the deterministic flood maps was evaluated by calculating the $F^{(2)}$ statistic of Aronica et al. (2002). This statistic gives the percentage of correctly modelled flooded area, relative to the total area that is either in the modelled or observed flood extents.:

15 $F^{(2)} = \frac{A_{obs} \cap A_{mod}}{A_{obs} \cup A_{mod}}$

(3)

Where $A_{obs} \cap A_{mod}$ is the area that is both modelled and observed flooded (true positive area) and $A_{obs} \cup A_{mod}$ is the area that is either modelled or observed flooded (true positive, false positive and false negative area).

- We evaluated the <u>accuracy of the</u> probabilistic flood maps using reliability diagrams. These diagrams offer a comparison between the modelled probability (on the horizontal axis) and the observed probability (vertical axis) of flooding (Wilks, 2006). If the probabilistic flood map is correct, it is expected that of all cells on the map that have for example a 10 % probability of being flooded, only 1 out of 10 cells is actually flooded in reality. To create <u>construct</u> the reliability diagrams, we first binned the modelled probabilities were first binned in 10% intervals. For each probability bin, the cells on the probabilistic map that fell within that <u>bin range10% interval</u> were compared to the <u>map with actual flood extents</u> (the validation map)same cells in the validation data. The observed probability was calculated by dividing the number of selected cells that were flooded in reality were counted and divided by the total number of cells in this bin. For each binned probability interval, the central value was taken as the modelled probability value that should be compared to the observed probability. We assumed that the central value of each 10% interval was the modelled probability, which we plotted along with the
- 30 <u>calculated observed probability</u>. Note that the first probability bin ranged from 0.01% to 10%, and the 0% probability of flooding value in the diagram included all cells having less than 0.01% probability of flooding. In case the line that is constructed this way is exactly on the diagonal of the graph, the probabilistic flood map gives an accurate representation of

the actual probability of flooding. In case the line is above the diagonal, flood probabilities are underestimated and in case it is under, flood probabilities are overestimated.

We assessed the relative importance of the different sources of error on the uncertainties in flood extent by creating three

5 different uncertainty estimates: one by only simulating locational error, one by only simulating errors in the DTM and one by only simulating errors in the parameters. For every uncertainty estimate, the $F^{(2)}$ statistic of each random simulation was calculated. We used these values to derive three empirical cumulative distributions of the $F^{(2)}$ statistic for the uncertainty estimates generated by simulating the individual sources of error. These were used to review the relative importance of the different types of errors for the accuracy of the maps.

10 4 Results

During the York floods, 8,000 unique flood related Tweets, posted between the 25th and 30th of December 2015, were harvested. Using the process discussed in Sect. 3.1 a database of 160 Tweets was constructed. Only from 87 of these could a location be derived from the text of the message. <u>17 Tweets mentioned a point location (an address, intersection or POI) and</u> <u>70 Tweets mentioned a street name, for which the elevation data was used to derive a point location.</u> Although 56 <u>Tweets</u>

15 from which locations were derived, had photographs attached, of these Tweets had photographs attached, we could only match 26 of them to a location on Google StreetView. These were used to assess the quality of the locational references derived from the text of Tweets.

4.1 Locational errors

We compared the locations that were derived from the text in the Tweets and used to create the flood maps to locations derived from attached photographs, in order to evaluate the magnitude of locational errors. Figure 5a gives the result of this comparison. The magnitude of locational errors depends heavily on the type of locational references in the Tweets. If point locations such as POIs or intersections are mentioned in the Tweets, the locational error is limited (Fig. 5c). If streets are mentioned in the Tweets however, locational errors are considerably larger (Fig. 5b). The difference is likely caused by the fact that the locations of point references were directly extracted from Google Maps, whereas an additional procedure was

- 25 necessary to derive exact spatial coordinates from Tweets referring to streets. The large outlier in Fig. 5b is for example a Tweet that refers to Huntington Road, which is a long street that is located alongside the River Foss (see Fig. 1). The photograph was made at the northern end of Huntington Road, whereas the Tweet was pinpointed to the deepest depression along the road, in the south. There were however photographs attached to other Tweets which indicated that this southern location was also flooded. Without this outlier, the standard deviation in locational errors of Tweets referring to streets
- 30 reduced to 118 m.

4.2 Flood Extent mapping

We created deterministic flood extent estimates by interpolating the locations and water levels derived from the Tweets. The parameters of the IDW interpolation were calibrated using the $F^{(2)}$ value based on the EA recorded flood extents. A power parameter of 4 in combination with a smoothing of 600 m (Eq. 2) and a DWD of 50 cm gave the best results. Figure 6 gives

- 5 a comparison between the flood extent generated using information harvested from the Tweets and the validation data, by elassifying all grid cells based on the four quadrants of a confusion matrix. An $F^{(2)}$ value of 0.69 was found, indicating that the modelled area of the flood extent that is correct, makes up 69% of the total flood extent either in the modelled or observed data.
- 10 The flood extent estimate is correct for a large part of the inner-city (location [1]). Even at smaller flooded areas, such as the ones north-west and south-east of location [2] a good estimate of flood extent is generated. The added value of separating groups of observations that are not in the same flooded area is seen at area [3]. Without separating observations, the underestimation of flood extent in this area would be considerable, whereas separating the observations results in a much better flood extent estimate for this area. Although at some locations minor underestimations of flood extent are seen, there
- 15 is only one large area missing at location [4]. However, no observations of flooding close to, or in this area were found in the Twitter dataset. This underestimation is therefore a result of the lack of data rather than an error of the interpolation method.

4.3 Uncertainty Analysis

We created probabilistic flood extent estimates by varying the input parameters as well as simulating the locational errors and errors in the DTM in a Monte Carlo analysis. Based on the results in Sect. 4.1 the error distance along streets was 20 modelled using a normal distribution with a standard deviation of 200 m. This modelled error effectively translates into a standard deviation in spatial coordinates of 100 m as some streets were too short to reproduce the full error distribution. Given the results from Fig. 5c errors in point locations were simulated using a normal distribution with a standard deviation of 50 m. The uncertainty resulting from simulating these locational errors along with errors in the DTM and parameters is given in figure 7a.

25

30

The uncertainty in flood extent is considerable (i.e.: the flood probability is around 50%). However, near the inner-city, at location [1], the uncertainty is limited. This is only partly caused by the high density of observations in this area and is mostly a result of the fact that the inner-city of York is situated lower than its surroundings, effectively limiting flood extents. For the areas within York that are more flat, the uncertainty in flood extent was generally larger. The density of observations is not well represented in the uncertainty estimates. Generally speaking, one would expect an area that has a high probability of flooding to have multiple observations in it, since a single observation can be placed there due to the

Tweet being misinterpreted. At location [3] however, there is a large area with a high probability of flooding, even though

only one observation is pinpointed to it. Location [3], as well as location [2] had high probabilities of flooding, although they were not flooded in reality.

We assessed the performance of the probabilistic flood extent map in Fig. 7a by comparing it to the validation data and constructing a reliability diagram (Fig. 8a). Probabilities between roughly 15 to 85% are mostly overestimated, although the most important probabilities close to 0 and 100% are accurately represented in the map. Comparing this map of all uncertainties to a map created by simulating only the errors in the elevation data and the parameters (Fig. 7b) indicates that locational errors are likely responsible for a considerable amount of uncertainty in the flood extent estimates. This is further confirmed by the results in Fig. 9, which shows the empirical cumulative distribution functions of the F⁽²⁾ measure of accuracy. This was calculated by using the result of each random simulation of the Monte Carlo Analyses of different types

of errors separately. It can be clearly seen that locational errors cause most variation in the accuracy of the maps.

However, the reliability diagram that was constructed using the map generated without simulating errors in location (Fig. 8b), shows that by omitting the simulation of locational error, the uncertainty calculated using the Monte Carlo analysis more

15 accurately describes the real uncertainty in flood extent. This indicates that either the probability distributions used to simulate these errors or the way these errors are propagated cause the flood probability to be overestimated.

5 Discussion and recommendations

This study shows the potential of using inherently uncertain social media content to create deterministic and probabilistic flood maps (Sect. 5.1), although the methods used in this study still contain some limitations (Sect. 5.2). Therefore, recommendations for future research are presented in the last section of this chapter (Sect. 5.3).

5.1 Potential

20

We showed that a deterministic flood map can be created from social media content. However, large uncertainties, mainly related to the locations derived from the content, still remain. Therefore, the probabilistic maps proved to be a useful addition to the deterministic map. Firstly, they are a source of information in itself. For example, where the deterministic map

25 contained an underestimation of flooded area at location [4] (Fig. 5), the uncertainty estimate showed that flooding was highly uncertain at this location. This information can be used to send staff into the area, to verify if the area is actually flooded and thereby reduce the uncertainty at this location. Similarly, the probabilistic map confirmed the accuracy of the deterministic map near the inner city of York. Furthermore, the probabilistic maps provide information about the flood extent without the need for prior calibration of the model parameters. Therefore, these maps can potentially provide real-time

30 flood extent information, without having to calibrate the method to that particular event or location first. However, to

understand how the modelled uncertainty relates to the observed flood extent for a particular area or event, some validation might still be required.

A comparison to the work of Giustarini et al. (2016), who produced probabilistic flood maps from synthetic aperture radar

5 (SAR) data and used the same validation technique, indicates that results are similar. It illustrates that probabilistic flood maps from SAR data provide a degree of accuracy comparable to the ones in our study, with probability-error values up 0.38. Although their reliability diagrams differed among case studies, none of them had a consistent overestimation of flood probability in all bins of the reliability diagram, like the ones from social media content. This indicates that the method presented in this paper still has some limitations.

10 5.2 Limitations

A possible reason for the overestimation of flood probability may be the fact that photographs were used to evaluate locational errors. A photograph can be taken at a location different from the one in text, for example because that location was too severely flooded, causing the locational error to be overestimated. In addition, the method used to derive locations from Tweets that referred to streets could only identify a single location of flooding along a street, causing others to be

- 15 omitted. The outlier, mentioned in Sect. 4.1, illustrates this. Although it was pinpointed to a location that actually flooded, a large error was calculated, because the photograph was of a second flooded location along the same street. Since this is an error of omission, rather than a locational error, the exclusion of the outlier is believed to have given a better estimate of the standard deviation in locational errors.
- 20 The probability distributions used to simulate locational errors might also have contributed to the overestimation of flood probability. The normal distribution that was used does not reflect the sharp peaks seen at 0m in the graphs of Fig. 6. Using a conventional error distribution also does not give a correct representation of the actual errors in location. In reality, it is more likely that an observation originates from a lower location or a topographical depression, whereas purely using random errors can place observations on top of hills, which are unlikely to be flooded.
- 25

30

Furthermore, the results of the analysis could have been affected by the quality of the maps used for validation. The data for validating the river flood extents was created from a combination of ground observations and aerial photography. In places flooded separately from the river however, recorded historic flood extents were used, which might have been in accurate. However, actual observed flood extents for 2015 were used for the majority of the area. Therefore, we have no reason to believe that there are large uncertainties in the validation data.

We expect that an overestimation of either the errors in the DTM or the parameters is one of the main reasons for the overestimation of flood probabilities. Both the quantification of these errors as well as the methods used to simulate them

could have caused this. It is likely that the quantification of parameter errors contributed most, since these were quantified conservatively in absence of accurate information about their error distribution.

Another important reason for the overestimation may lie in the 20 m resolution used for the maps. This resolution was

5 chosen as a compromise between accuracy and computational time, though the results indicate that some barriers in the area were not accurately represented at this resolution. This caused some areas to erroneously be assigned a high probability of flooding.

The probabilistic maps generated in this study also did not consider the density of observations. Although all errors were

10 drawn from the same error distributions in the Monte Carlo simulation, observations that belong to large clusters are more certain than observations that are completely isolated. Because we did not consider this, the maps contained areas with a high probability of flooding even though these areas contained very few observations.

5.3 Recommendations

Besides resolving the issues related to the quantification and simulation of errors discussed above, a way to include important barriers in the coarse resolution DTM should be investigated. Although using higher resolution data can provide a similar improvement, it will seriously affect computational time and therefore affect the potential of real-time application of the maps. Additionally the inclusion of observation density in the uncertainty analysis should be reviewed.

To guide further improvements, it should be investigated whether it is useful to invest in optimizing the simulation of the different types of errors, or whether large improvements can be made by post-processing the results. Investigating more case studies can show whether flood probability is consistently underestimated, or if the reliability diagram differs by case. Reviewing more case studies can also show the effect of area topography on the resulting maps. We expect that uncertainties in flood extent are less for hilly areas than for flatter areas. By testing the method on multiple floods at the same location, as well as floods at different locations, also the (in)dependency of model parameters can be further investigated.

25

Where current methods for flood extent mapping such as hydraulic models and remote sensing have shortcomings in realtime application, this is where the real value of using social media content lies. The methods used in this report can potentially be applied in real-time. Random simulations for the York case were generated at a pace of about 100 simulations per minute, and the fact that calculations for single observations can just be added to the nominator and denominator of Eq.

30 <u>1, ensures that adding new observations does not call for a complete recalculation of the results. To further improve computational time, alternative sampling techniques should be reviewed, since this can reduce the number of Monte Carlo simulations necessary.</u>

Besides optimizing computational time, a further look into the gathering of observations is required. For real-time applications, it is vital to collect a high number of observations to ensure an accurate and up to date map can be produced at any point in time. The selection techniques used in this paper were only able to find a small number of tweets. It should be reviewed whether using different search techniques, additional sources of data, or techniques such as crowd interaction can increase the number of observations available for creating the maps.

This study gives insight into the potential of using inherently uncertain social media content to create flood maps. The deterministic flood map created using social media content already gave a reliable estimate of flood extent. However, the magnitude of locational errors was considerable, and the analyses presented in this manuscript indicate that these locational errors cause considerable uncertainty in flood extent.

10

5

This uncertainty in flood extent seems to be strongly related to the topography of the study area. Especially at locations with moderate terrain slopes, flood extent uncertainty was limited. Flat areas tend to have a larger uncertainty in flood extent, since the differences in water levels caused by the different sources of error, cause larger horizontal changes in flood extent at these locations.

15

By simulating all sources of errors however, the uncertainty in flood extent was overestimated, which can have a variety of reasons. Firstly, the magnitude of locational errors may have been overestimated by calculating the errors based on attached photographs. For example, photographs can be taken at a different location, because the location that is mentioned in the text is too severely flooded. Also in places where locations of flooding were omitted, locational errors were overestimated. The outlier, mentioned in Sect. 4.1, illustrates this. This Tweet referred to a street being flooded. The location that was derived 20 from the Tweet, was known to have flooded based on photographs attached to other Tweets. Nevertheless, a large locational error was calculated, because the photograph attached to the Tweet showed that a second location along the street had also flooded. The procedure used to derive locations from Tweets referring to streets was only able to identify one location along the street, causing the second location of flooding to be omitted. Since this is an error of omission, rather than a locational error, the exclusion of the outlier is believed to have given a better estimate of the standard deviation in locational errors.

25

Another cause of the overestimation of uncertainty might be found in the empirical probability distribution used to simulate locational errors. The normal distribution used does not reflect the sharp peaks seen at 0m in the graphs of Fig. 6. Also, using a conventional error distribution to simulate errors might not give a correct representation of the actual errors in location. In reality it is more likely that an observation originated from a lower location or a topographical depression, whereas purely

using random errors can place observations on top of hills, which are unlikely to be flooded.

30

We expect however that the main reason for the overestimation of total uncertainty is caused by an overestimation of the errors in either the DTM or parameters. This can both be a result of the quantification of these sources of errors or the methods used to assess their impact. It is likely the quantification of parameter errors contributed most to this overestimation of uncertainty, since these were quantified conservatively in absence of accurate information about their error distribution.

In addition to improving on the quantification and simulation of the different types of errors, the uncertainty maps can be further improved by including information about the density of observations. By default, the errors of all observations are drawn from the same error distribution in the Monte Carlo simulation, although observations that belong to large clusters are likely more certain than observations that are completely isolated. That the density of observations was not accurately represented caused large areas to have a high probability of flooding, although they contained only very few observations.

- 10 The probabilistic maps proved to be a useful addition to the deterministic map. Firstly, the uncertainty estimates are a source of information in itself. For example, where the deterministic map contained an underestimation of flooded area at location [4] (Fig. 5), the uncertainty estimate showed that flooding was highly uncertain at this location. This information can be used to send personnel into the area, to find out if the area is really flooded and thereby reduce the uncertainty at that location. Similarly, the probabilistic map confirmed the accuracy of the deterministic map near the inner city of York. Furthermore, the probabilistic maps provide information about the flood extent without the need for prior calibration of the model
- parameters. Therefore, these maps can potentially provide real-time flood extent information, without having to calibrate the method to that particular event or location first. However, to understand how the modelled uncertainty relates to the observed flood extent for a particular area or event, some validation might still be required.
- 20 Further research is necessary to explore the full potential of the uncertainty estimates of flood extents derived from social media. First of all, the consistency of the results for other events or locations should be further reviewed. By reviewing more case studies, the effect of topography on flood extent uncertainty and the (in)dependency of the model parameters for a specific event can also be further investigated.
- 25 Such additional studies can also guide further optimization of the uncertainty estimates. If the results of further case studies indicate that the probability of flooding is consistently overestimated by the same amount, post processing of the maps, by using the information from the reliability diagram, can be an easy way to improve the uncertainty estimates. If this is not the case, improving the maps by improving the process of simulating locational uncertainties might lead to better results. The overestimation of uncertainty caused by errors in the elevation data and parameters should then also be further reviewed.
- 30 One element that must be improved, regardless of the results of executing multiple case studies, is the inclusion of the density of observations in the uncertainty estimates. Also methods to include important barriers in the area in the coarse resolution DTM should be investigated, since it was observed that some areas were erroneously assigned a high probability of flooding. Although such improvements can also be achieved by using actual higher resolution data, this will seriously affect computational time and thereby the potential of real time application of the maps.

Where current methods for flood extent mapping such as hydraulic models and remote sensing have shortcomings in realtime application, this is where the real potential of using social media content lies. The methods used in this report can potentially be applied in real-time. Random simulations for the York case were generated at a pace of about 100 simulations per minute, and the fact that calculations for single observations can just be added to the nominator and denominator of Eq. 1 makes that time can be gained if only the effect of an additional observation has to be added. To further reduce computational time, also the use of different sampling techniques, that can potentially reduce the number of random simulations necessary, can be reviewed. Besides computational time, a further look into the gathering of observations is required for a real time implementation. Especially in real time application, a high number of observations is necessary to ensure an up to date map can be made at any point in time. Using the selection techniques or additional sources of data can improve the number of observations, or if techniques such as crowd interaction have more potential in increasing the number of observations available for creating the maps.

6 Conclusions

- 15 This study illustrates that social media content has real potential in generating flood extent estimates. Although errors in locations derived from the Tweets were considerable, the deterministic flood extent map presented in this manuscript-paper showed good agreement with validation data. The deterministic flood maps therefore can therefore be used to gain insight into the current situation of flooding.
- 20 Using information about the errors in the Tweets, DTM and parameter settings, we managed to constructed a probabilistic flood extent map. The uncertainty in flood extent mainly originated from the locational errors of Tweets, whereas DTM and parameter errors contributed less to flood extent uncertainty. A comparison of the probabilistic map to validation data showed that by simulating errors in the Tweets, DTM and parameters, a reasonable estimate of flood extent uncertainty is generated, which provides users with additional information on top of the deterministic flood map.

25

5

10

These results illustrate that social media content can be used to derive information about floods, regardless of even more so when exploiting the uncertainties in this <u>data source</u>content. If further improvements are made, so that the methods used in this report can be applied in real-time, these maps have the potential of filling in the gap where hydraulic models and remote sensing are lacking.

Code Availability

The analyses in this manuscript paper were performed using Python 2 scripts. The code used for the different analyses (Brouwer, 2016) is publically available on GitHub and published in the Zenodo research data repository (doi: 10.5281/zenodo.165818).

5 Data Availability

In the study data from downloaded from the Twitter API as well as data from the Environment Agency was used. The filtered subset of Tweets used in the research, the information about streets extracted from OpenStreetMap as well as the 20m resolution DTM and HAND map can be found in the aforementioned GitHub project (doi: 10.5281/zenodo.165818). Also the data used to create the plots and maps are available at this location.

10 Competing Interests

The authors declare that they have no conflict of interest.

References

25

Aronica, G., Bates, P. D. and Horrit, M. S.:- Assessing the uncertainty in distributed model predictions using observed binary pattern information within GLUE, Hydrol. Process., 16, 2001-2016, doi:10.1002/hyp.398, 2002

15 Brouwer, T.: Twitter Flood Mapping Scripts: First Release [Data set], doi: 10.5281/zenodo.165818, 2016

Carter, W.N.: Disaster Management: A Disaster Manager's Handbook, Asian Development Bank, Mandaluyong City, Philippines, 2008

Dullof, J. and Doucette, P.: The Sequential Generation of Gaussian Random Fields for Applications in the Geospatial Sciences. Int. J. Geo-Inf., 3, 817-852. doi:10.3390/ijgi3020817, 2014

20 Environment Agency, LIDAR Composite DTM – 2 m: <u>https://data.gov.uk/dataset/lidar-composite-dtm-2m1</u>, 2014
 Environment Agency, Recorded Flood Outlines: <u>https://data.gov.uk/dataset/recorded-flood-outlines1</u>, 2015
 <u>Environment Agency, Environment Agency LIDAR data Technical Note: http://www.geostore.com/environment-agency/docs/Environment Agency LIDAR Open Data FAQ v5.pdf, 2016</u>

Earle, P. S., Bowden, D. C. and Guy, M.: Twitter earthquake detection: earthquake monitoring in a social world, Ann. Geophys-Italy., 54(6), 708-715, doi:10.4401/ag-5364, 2011

Eilander D., Trambauer P., Wagemaker J. and Van Loenen A.: Havesting Social Media for Generation of Near Real-time Flood Maps, Procedia Engineering, 154, 176-183, doi: 10.1016/j.proeng.2016.07.441, 2016

Fohringer, J., Dransch, D., Kreibich, H. and Schröter, K.: Social media as an information source for rapid flood inundation mapping. Natural Hazards and Earth System Sciences, 15, 2725-2738, doi:10.5194/nhess-15-2725-2015, 2015
<u>Giustarini, L., Hostache, R., Kavetski, D., Chini, M., Corato, G., Schlaffer, S., Matgen, P.: Probabilistic Flood Mapping</u> Using Synthetic Aperture Radar Data. Ieee T. Geosci. Remote, 54(12), 6958-6969, doi:10.1109/TGRS.2016.2592951, 2016

5 Hahmann, S., Purves, R. S. and Burghardt, D.-: Twitter location (sometimes) matters: Exploring the relationship between georeferenced tweet content and nearby feature classes. Journal of Spatial Information Science, 9, 1-36, doi: 10.5311/JOSIS.2014.9.185, 2014

Heuvelink, G. B. M., Brown, J. D. and Van Loon, E. E.: A probabilistic framework for representing and simulating uncertain environmental variables. Int. J. Geogr. Inf. Sci., 21(5), 497-513, doi:10.1080/13658810601063951, 2007

- Hodgson, M. E. and Bresnahan, P.: Accuracy of Airborne Lidar-Derived Elevation: Empirical Assessment and Error Budget. Photogramm. Eng. Rem. S., 70(3), 331-339, doi:10.14358/PERS.70.3.331, 2004
 Holderness, T. and Turpin, E.: From Social Media to GeoSocial Intelligence: Crowdsourcing Civic Co-management for Flood Response in Jakarta, Indonesia, in: Social Media for Government Services, Nepal S., Paris C. and Georgakopoulos D., Springer International Publishing, Basel, Switzerland, 115-133, 2015
- 15 Leon, X. J., Heuvelink, G. B. M. and Phinn, S. R.: Incorporating DEM Uncertainty in Coastal Inundation Mapping, PLOS ONE, 9(9), doi:10.1371/journal.pone.0108727, 2014 Li, S., MacMillan, R. A., Lobb, D. A., McConkey, B. G., Moulin, A. and Fraser, W. R.: Lidar DEM error analyses and topographic depression identification in a hummocky landscape in the prairie region of Canada. Geomorphology, 129, 263-275, doi:10.1016/j.geomorph.2011.02.020, 2011
- Livne, E. and Svoray, T.: Components of uncertainty in primary production model: the study of DEM, classification and location error. Int. J. Geogr. Inf. Sci., 25(3), 473-488. doi:10.1080/13658816.2010.517752, 2011
 Mason, D. C., Davenport, I. J., Neal, J. C., Schumann, G. J.-P., & Bates, P. D.: Near Real-Time Flood Detection in Urban and Rural Areas Using High-Resolution Synthetic Aperture Radar Images, IEEE T. Geosci. Remote, 50(8), 3041-3052, doi:10.1109/TGRS.2011.2178030, 2012
- 25 McClanahan, B. and Gokhale, S. S.: Location Inference of Social Media Posts at Hyper-Local Scale, 3rd International Conference on Future Internet of Things and Cloud, Rome, 25-26 August 2015, doi:10.1109/FiCloud.2015.71, 2015 Met Office, Further rainfall and flooding across north of the UK: <u>http://www.metoffice.gov.uk/climate/uk/interesting/december2015_further , last access: 27 December 2016</u> Mudron, I., Podhoranyi, M., Cirbus, J., Devecka, B. and Bakay, L.: Modelling The Uncertainty of Slope Estimation from A
- 30 Lidar-Derived Dem: A Case Study from A Large-Scale Area in The Czech Republic, GeoScience Engineering, 59(2), 25-39, doi:10.2478/gse-2014-0051, 2013

Norbre, A. D., Cuartas, L. A., Hodnett, M., Renno, C. D., Rodrigues, G., Silveira, A., Waterloo M. and Saleska, S.: Height Above the Nearest Drainage – a hydrologically relevant new terrain model,. J. Hydrol., 404, 13-29, doi:10.1016/j.jhydrol.2011.03.051, 2011

Norbre, A. D., Cuartas, L. A., Momo, M. R., Severo, D. L., Pinheiro, A. and Norbre, C. A.: HAND contour: a new proxy predictor of inundation extent. Hydrological Processes, 30(2), doi:10.1002/hyp.10581, 2016 Pidd, H., A year after the deluge, York is still counting the cost: https://www.theguardian.com/uk-news/2016/dec/26/a-yearafter-the-deluge-york-is-still-counting-the-cost, last access: 2 February 2017, 2016

- 5 Raaflaub, L. D. and Collins, M. J.: The effect of error in gridded digital elevation models on the estimation of topographic parameters. Environ. Modell. Softw., 21, 710-732, doi:10.1016/j.envsoft.2005.02.003, 2006 Rennó, C. D., Nobre A. D., Cuartas L. A., Soares J. V., Hodnett M. G., Tomasella J. and Waterloo M.J.: HAND, a new terrain descriptor using SRTM-DEM: Mapping terra-firme rainforest environments in Amazonia, Remote Sensing of Environment, 112(9), 3469-3481, doi: 10.1016/j.rse.2008.03.018, 2008
- Schnebele, E., Cervone, G., Kumar, S. and Waters, N.: Real Time Estimation of the Calgary Floods Using Limited Remote Sensing Data. Water, 6, 381-398. doi:10.3390/w6020381, 2014 Schumann, G., Bates, P. D., Horrit, M. S., Matgen, P. and Pappenberger, F.: Progress in Integration of Remote Sensingderived Flood Extent and Stage Data and Hydraulic Models. Rev. Geophys., 47. doi:10.1029/2008RG000274, 2009 Smith, L., Liang, Q., James, P. and Lin, W.: Assessing the utility of social media as a data source for flood risk management
- using a real-time modelling framework. Journal of Flood Risk Management, doi:10.1111/jfr3.12154, 2015
 Stone, L. D., Keller, C. M., Kratzke, T. M. and Strumpfer, J. P.: Search for the Wreckage of Air France Flight AF 447. Stat. Sci., 29(1), 69-80. doi:10.1214/13-STS420, 2014

Stott, J., After the floods, York's residents try to piece their lives back together: https://www.theguardian.com/money/2016/feb/06/after york floods residents piece lives back together, last access: 20 July 2016

Sun, D., Li, S., Zheng, W., Croitoru, A., Stefanidis, A. and Goldberg, M.: Mapping floods due to Hurricane Sandy using NPP VIIRS and ATMS data and geotagged Flickr imagery. International Journal of Digital Earth, 1753-8947, doi:10.1080/17538947.2015.1040474, 2015

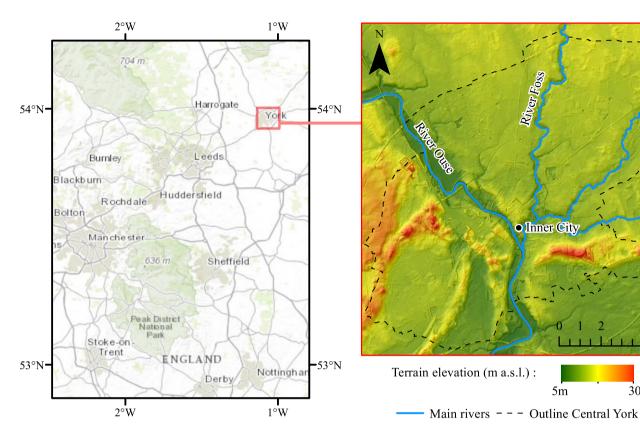
UN: The human cost of weather related disasters 1995 – 2015, United Nations, Geneva, Switzerland, 30 pp., available at: http://www.unisdr.org/files/46796_cop21weatherdisastersreport2015.pdf, 2015

Werner, M.G.F.: Impact of Grid Size in GIS Based Flood Extent Mapping Using a 1D Flow Model, Phys. Chem. Earth Pt. B, 26(7-8), 517-522, doi:10.1016/S1464-1909(01)00043-0, 2001

Wilks, D.S.: Statistical Methods in the Atmospheric Sciences, Elsevier, Oxford, UK, 2006

20

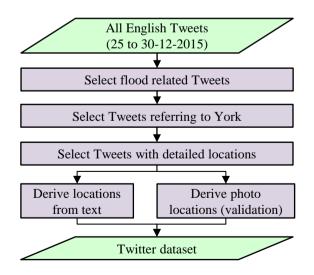
25



4 km

30m

Figure 1. Digital Terrain model of the York study area



5 Figure 2. Process of constructing the dataset of Tweets

"Cumberland Street in York - say they're used to flooding here but only 2000 was worse"

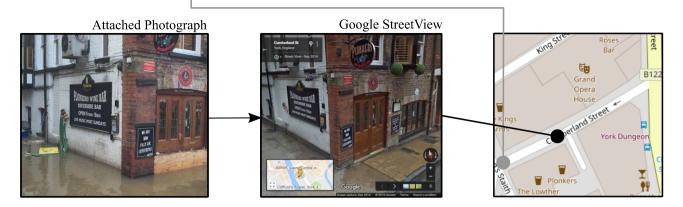
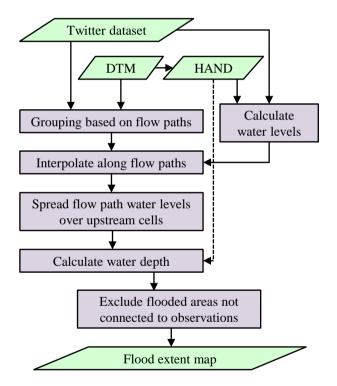


Figure 3. Example of determining the error in the spatial coordinates derived from the text of a Tweet, based on an attached photograph. The grey dot is the location derived from the text of the Tweet, and the black dot is the location derived from the attached photograph.



5 **Figure 4.** Process of creating flood extent maps

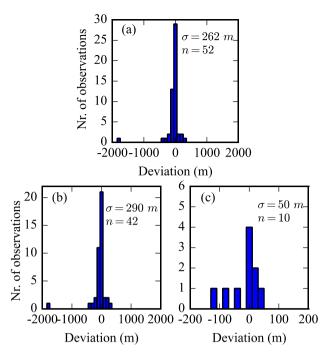


Figure 5. Locational errors in X/Y coordinates of all Tweets (a), only the ones referring to streets (b) and only the ones referring to point locations (c)

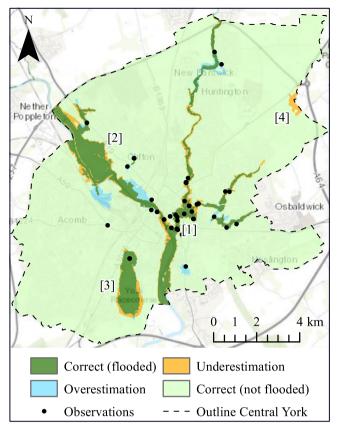


Figure 6. Deterministic flood map classified as the four quadrants in a confusion matrix. A comparison between the deterministic flood map (modelled) and validation data (observed). Locations [1] to [4] are discussed in text. The locations denoted by the numbers [1] to [4] are referred to in text.

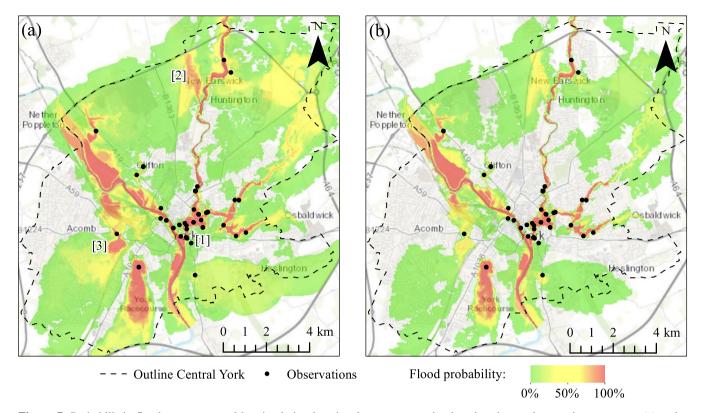
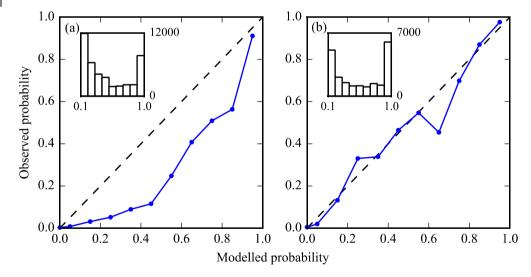
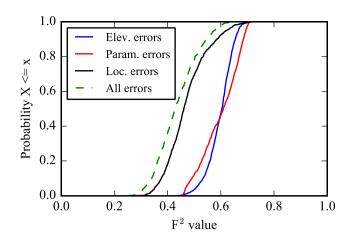


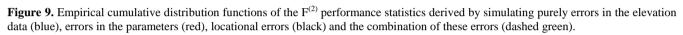
Figure 7. Probabilistic flood map generated by simulating locational errors, errors in elevation data and errors in parameters (a) and a probabilistic map generated simulating errors in the elevation data and parameters only (b). <u>The locations denoted by the numbers [1] to</u> [3] are referred to in text.



5

Figure 8. Reliability diagrams constructed from the probabilistic flood map generated by simulating all errors (a) and by simulating only errors in the elevation data and parameters (b). The small histograms give the number of cells within each 10% bin of modelled flood probability.





Data	Source	Purpose	
2 m LIDAR DTM	<u>EA (2014)</u>	To group observations (Sect. 3.3)	
		To calculate water levels (Sect 3.3)	
		To estimate flood depth & extent (Sect 3.3)	
		To pinpoint Tweets referring to streets (Sect 3.2)	
<u>Twitter</u>	Twitter streaming API	To extract flood observations (Sect. 3.2)	
Google Maps	Used online	To find locations with Tweets (Sect. 3.2)	
Google StreetView	Used online	To find exact locations of photographs (Sect. 3.2)	
<u>OpenStreetMap</u>	Exported from osm.org	To simulate locational errors along streets (Sect 3.4)	
Recorded historic flood	<u>EA (2015)</u>	To evaluate flood extent in areas affected by non-fluvial	
outlines		flooding (Sect 3.5)	
Recorded 2015 fluvial	EA (Personal	To evaluate flood extent in areas affected by fluvial	
flood outline York (draft)	communication)	flooding (Sect. 3.5)	
	I		

Table 1. Datasets used in this study

Error	Distribution	Parameter	Value
source			
Elevation	Normal	μ:	0 m
data	(spatially auto	σ:	0.2 m
	correlated)	Corr. distance:	100 m
Tweets	Normal (X/Y	μ:	0 m
(point	coordinate)	σ:	50 m
location) ^a			
Tweets	Normal (along	μ:	0 m
(Street	street)	σ:	200 m
location) ^a			
Power	Uniform	Lower bound:	2
parameter	(integers only)	Upper bound:	5
Smoothing	Uniform	Lower bound:	0 m
parameter		Upper bound:	2000 m
DWD	Uniform	Lower bound:	0.2 m
		Upper bound:	0.8 m
	I	I	I

 Table 12.
 Quantification of error sources. ^aSee Sect. 4.23