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Abstract. The increasing number and severity of floods, driven by phenomena such as urbanization, deforestation, 

subsidence and climate change, creates a growing need for accurate and timely flood maps. This research focussed on 10 

creating flood maps using user generated content from Twitter. Twitter data has added value over traditional methods such 

as remote sensing and hydraulic models, since the data is available almost instantly, in contrast to remote sensing and 

requires less detail than hydraulic models. In this manuscript we present and evaluate a method to create deterministic and 

probabilistic flood maps from Twitter messages that mention locations of flooding. A Ddeterministic flood maps created 

using these datafor the December 2015 flood in the city of York (UK) showed good performance (F
(2)

 = 0.69; a statistic 15 

ranging from 0-1, with 1 expressing a perfect fit with validation data) for a case study in York (UK). The probabilistic flood 

maps we created showed that, For in the York case study, the main source of uncertainty in flood extent the probabilistic 

flood maps was mainly induced byfound to be the  errors in of the precise locations of flood observations as derived from the 

Twitter data. Errors in the terrain elevation data and or in the parameters of the applied algorithm contributed less to flood 

extent uncertainty. Although these generated probabilistic maps tended to overestimate the actual probability of flooding, 20 

they gave a reasonable representation of flood extent uncertainty in the area. This study illustrates that inherently uncertain 

data from social media can be used to derive information about flooding. 

 

Keywords: User generated content, Social media, Twitter, Flood extent estimation, Uncertainty analysis, Probabilistic flood 

mapping 25 

1 Introduction 

Between 1995 and 2015 2.3 billion people were affected by floods (UN, 2015), which is about one third of the world’s 

population. Worldwide developments such as urbanization, deforestation, subsidence and climate change are expected to 

increase the occurrence of floods and number of people affected by them. This creates a growing need for timely and 

accurate information about the locations and severity of flooding. In multiple phases of the disaster management cycle 30 
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(Carter, 2008), this information is useful. In the mitigation phase, data about previous flood events can be used to evaluate 

the probability of flooding and prevent urban expansion into flood prone areas. If flood prone areas are already inhabited, 

information about flood risk can also be used to improve disaster preparedness. In the response phase, information about the 

current flood situation is useful, for example for rescue workers who want to identify affected areas and assess the 

accessibility of roads. Finally, in the recovery phase, flood information can help insurance companies in evaluating flood 5 

damages and aid organizations in targeting rebuilding efforts. 

 

Traditionally, flood information in the form of flood maps has been produced using either hydraulic models or remote 

sensing. Applying these in real-time however, may be problematic. Hydraulic models require a detailed schematization of 

the study area, knowledge about the cause of a flood and may require considerable computational time. Also forecasts of 10 

input data, such as discharge or precipitation may not be readily available. Remotely sensed data may take several hours to 

become available (Mason et al., 2012) and its temporal resolution is often limited (Schumann et al., 2009). 

 

Applying user generated content, which is content generatedData created by users of online platforms such as blogs, wikis 

and social media, has recently gained momentum in flood mappingoften referred to as ‘user generated content’, offers an 15 

additional source of information about natural disasters. Recent studies focussedfocused specifically on using social media 

content. P, since platforms such as Twitter, Facebook and Flickr produce large amounts of real-time data that may be used to 

derive information about flooding. In coarse scale applications for example, these data can be used to detect the occurrence 

of a natural disaster (Earle et al., 2011). On a more detailed level these data can also behave also been used to assess the 

geographic extent of the a disaster. In the context of flood mapping, some investigations merely used these data as auxiliary 20 

data. Examples include the assessment of the accuracy of remote sensing derived flood maps using Flickr data (Sun et al., 

2015) and the selection of the most realistic result of a series of hydraulic model runs based on Twitter data (Smith et al., 

2015). Others actually created flood maps directly from the data. Schnebele et al. (2014) used the density of flood related 

Twitter messages (Tweets) to get an indication of flood extent and in the PetaJakarta project, the number of Tweets in an 

area is used to indicate flood severity (Holderness & Turpin, 2015). Fohringer et al. (2015) created flood maps by 25 

interpolating water levels which were manually derived from photographs posted on social mediaon Flickr and Twitter. 

Eilander et al. (2016) on the other hand used an automatic method to derive water depths and locations from Tweets, and 

created flood maps using a flood fill algorithm. To our knowledge, no flood-related studies have used data from Facebook 

until now, which is likely due to Facebook being a more closed network. Flickr and Twitter allow for all public data to be 

found and extracted using their ‘Application Programming Interfaces’ (APIs; Interfaces to extract data from online 30 

platforms). The Facebook API however, is much more restrictive and cannot be used to retrieve large amounts of public 

data. 
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The aforementioned studies all focussedfocused on obtaining flood extents from social media content. These flood extents, 

however, did not relay contain information about uncertainty, even though uncertainty is an inherent characteristic of 

information derived from social media content. Locational information of Tweets for example can be uncertain, because geo-

tags are available for only a very small number of Tweets and may deviate from the actual location of the observation 

(Hahmann et al., 2014). McClanahan & Gokhale (2015), who derived locations from the text in Tweets, indicate that the 5 

locations they derived from messages in New York City had an average error of 1.72 km. Eilander et al. (2016) were the first 

to give an estimate of the likelihood of areas being flooded, by harvesting Tweets. This likelihood was based on the number 

of Tweets found for individual administrative areas, rather than knowledge about the actual errors in the data used. 

 

Information about uncertainties can help in assessing the quality of generated flood maps. In addition, it can also serve as an 10 

information source of its own. This was for example the case in the search for Air France flight 447, which disappeared over 

the Atlantic Ocean in 2009. Probabilistic maps of the location of the wreckage were successfully used to find the wreckage 

in 2011, while previous attempts, spanning a two-year period, all failed (Stone et al., 2014). More specific to flood mapping, 

information about uncertainties can be used to direct surveys to areas in which the flood extent is highly uncertain. The 

information can also be used by rescue workers navigating an affected area, to choose the most optimal route by weighing 15 

the length of a route against the probability of it being flooded. 

 

In the present manuscript we investigate the applicability of using social media content from Twitter to generate probabilistic 

flood maps. We explicitly address uncertainties in the data and assess the added value of probabilistic maps over 

deterministic maps. The analyses presented in this manuscript give insight into the magnitude of errors in flood observations 20 

derived from Tweets and improve understanding of how these errors affect the flood extent estimates. Furthermore, we 

investigate how the uncertainty caused by errors in the Twitter data relates to the uncertainty caused by other sources of 

error. 

 

This manuscript starts with a description of the case study (Sect. 2). This is followed by an overview of the methods and data 25 

used (Sect. 3). Section 4 subsequently presents the research results and Sect. 5 includes an in depth discussion thereof. 

Finally, the conclusions of the research are given in Sect. 6. 

2 Case study 

On the 27
th
 of December 2015 peak water levels on the river Ouse, caused by large amounts of rainfall over the month 

December, led to the flooding of a considerable area within the City of York in the North of England. Up to 120 mm of rain 30 

fell in Yorkshire over a 48 hr period between the 25
th

 and 27
th
 of December (Met Office, 2016). These large rainfall amounts 

resulted in the flooding of York and other places in the north of England. The 2015Within York, floods were widespread and 
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inundated almost 600 homes and businesses (Stott, 2016). 453 residences as well as 174 businesses were flooded (Pidd, 

2016). Detailed information about damages within York is yet to be published, since one year after the floods a report by the 

York City Council is still being written. 

 

The flooding of the City of York in December 2015 was selected as a case study, since both high resolution terrain elevation 5 

data, as well as recorded flood extents were available for this event. In Fig. 1 an Environment Agency (EA) digital terrain 

model (DTM) of the city of York is given (EA, 2014). This manuscript focusses on Central York, delineated by the central 

administrative areas of York. In most of the study area terrain slopes are moderate, although some higher ridges are found in 

the south and south-west of the area. North of these ridges tThe inner-city of York is located to the north of these ridges. At 

this location there is a confluence of several rivers, of which the River Ouse is the largest. 10 

3 Data and Methods 

Data from Twitter were used to derive flood information, since these data are openly and freely available. The research was 

comprised of several phases. First we extracted useful informationlocations where flooding was observed from flood-related 

Tweets. This information was subsequently used to create a deterministic flood extent estimate. After this, based on 

information about the magnitude of errors in the data, probabilistic flood extent estimates were derived. In this section we 15 

discuss the setup of these three phases along with the methods used to evaluate the accuracy of the deterministic and 

probabilistic flood maps. This section starts with a discussion of the datasets used in this study. In the subsequent paragraphs, 

each of the three phases of the research is discussed separately. We conclude this chapter by explaining the methods we used 

to evaluate both the deterministic and probabilistic flood extent estimates. 

3.1 Data 20 

An overview of the data we used in this study is provided in Table 1. Elevation data was used throughout all phases of the 

research. We used a 2 m DTM, which is disseminated by the EA and has a vertical accuracy of ±15 cm (EA, 2016). To 

reduce the computational time required to create the flood maps, but preserve sufficient detail, we resampled this data to 20 

m resolution using the average of the underlying data. 

 25 

Tweets from between the 25
th

 and 30
th
 of December 2015, were collected using the Twitter streaming API. From these data 

flood observations were extracted. Google Maps and Google StreetView were used to find locations mentioned by the 

Tweets and the locations of photographs attached to the Tweets respectively (Sect. 3.2). From OpenStreetMap we 

downloaded the line-data belonging to the street names that Tweets mentioned, which were used to simulate locational errors 

along the streets (Sect. 3.4). 30 
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Recorded flood extents were used to validate the flood maps (Sect 3.5). A draft version of the fluvial flood extents of the 

City of York was supplied by the EA. These flood extents only identified areas that were directly affected by flooding from 

the rivers. However, areas separated from the river around Knavemire Road, Water Lane and Shipton Road were also known 

to be flooded based on news articles. The flood extents around these locations were approximated by using the EA dataset of 

recorded flood extents (EA, 2015) from between the years 1991 – 2012. These were merged with the recorded fluvial flood 5 

extent from 2016 into one validation dataset. 

3.1 2 Twitter data extraction 

We performed several stepsThe process used to create a database of Twitter based flood observations consisted of several 

steps (Fig. 2). First of all, we collected all Tweets that contained a number of common flood-related keywords such as 

‘flood’ or ‘inundation’, using the Twitter streaming API. From this database we selected the Tweets that were sent between 10 

the 25
th
 and 30

th
 of December 2015. To ensure purely Tweets regarding York were found, only Tweets that mentioned 

‘York’ or ‘#YorkFloods’ were included and messages referring to ‘New York’ or ‘York County’ (both in the USA) were 

excluded. As a last selection step, we only kept Tweets that contained explicit references to locations, such as streets or 

points of interest (POIs), by looking for common keywords such as ‘street’, ‘lane’, ‘museum’ or ‘school’. Some other minor 

filters were applied to ensure only relevant Tweets were found, for example by excluding Tweets related to flood barriers 15 

and flood warnings. 

 

We derived locations from the Tweets in the remaining dataset by manually identifying the section of the Tweet that 

contained a locational reference. Based on this reference, X and Y coordinates were assigned to the Tweets. To illustrate this 

process, the following Tweet is used as an example: 20 

 

“Cumberland Street in York - say they're used to flooding here but only 2000 was worse” (By: @jimtaylor1984) 

 

The locational reference in this Tweet is “Cumberland Street”. These locational references were used directly to search 

Google Maps. The message above however did not refer to a point location, which would be the case for a POI, but to a line 25 

element. We derived exact spatial coordinates from such Tweets by using the location of the street from Google Maps in 

combination with the DTM of the EA (EA, 2014). If topographical depressions were present found along the street, the 

deepest depression, identified by filling the sinks in the DTM, was used as the location of the observation. In case no 

depressions were found, the point of lowest elevation was used, which was the case for the Tweet above (Seein Fig. 3). 

 30 

To review the accuracy of the spatial coordinates derived from the Tweets, we looked at the photographs attached to some of 

the Tweets and compared them to Google StreetView. If we found the specific location of a photograph, we compared it to 

the spatial coordinates derived from the Tweets text to determine the locational error (example: Fig. 3). 
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3.2 3 Flood extent mapping 

Flood extents were derived at 20 m resolution using the locations derived from the Twitter messages and a the DTM from 

the EA (EA, 2014). We applied an interpolation method to derive flood maps from the observations, similarly to Fohringer et 

al. (2015). Before interpolation, two processing steps were applied to guarantee more realistic flood extent maps. Firstly, we 

derived water levels relative to the nearest drainage channel from each observation. Since none of the Tweets about York 5 

mentioned water depths, water levels were derived by assuming the same default water depth (DWD) for all observations. 

We calculated these water levels relative to the nearest drainage channel by using a height above nearest drainage (HAND) 

elevation model (Rennó et al., 2008; Norbre et al., 2011). Secondly, observations were grouped based on the local drainage 

directions (LDDs) to interpolate only hydrologically 'connected' observations. Instead of using the bilinear spline 

interpolation of Fohringer et al. (2015), wWe used inverse distance weighting (IDW) interpolation to determine the flood 10 

extent. Figure 4 gives an overview of this process. These steps are further explained in this section. 

 

Norbre et al. (2016) applied the HAND concept to derive inundation extents for fluvial floods. In contrast to a DTM, which 

contains elevation values relative to one single reference level, such as mean sea level, elevation values in a HAND map are 

relative to the nearest drainage channel. This drainage-normalized representation of the topography has a clear advantage for 15 

riverine flood extent mapping, as water depths over land can easily be related to water levels in the river. By using a HAND 

map instead of a DTM, river slopes are filtered from the dataset. This means that HAND values in an area are directly related 

to river stage and HAND contour lines describe the flood extent at a specific river stage. Since river slopes are filtered, 

upstream observations are also less likely to cause overestimations of water levels downstream. We constructed a HAND 

map from the DTM by deriving the LDDs and using these to determine the elevation value of each grid cell in the study area, 20 

relative to the nearest drainage channel. Grid cells were identified as being on a drainage channel if they had an upstream 

area of 6 km
2
 or more, which gave the best representation of drainage channels in the study area. Topographical depressions 

were filtered to derive the LDDs used to construct the HAND map. To also account for pluvial flooding of local 

topographical depressions, these depressions were reintroduced in the final HAND map. This map was then used to translate 

the DWD assigned to each observation to a water level with respect to the nearest drainage channel. 25 

 

We assumed that the water levels of flooded areas that are separated, are independent of each other. Therefore, we grouped 

observations to identify to which flooded area each observation belonged. The water levels of each group of observations 

were then interpolated separatelyIn order to only interpolate observations belonging to the same continuously flooded area, 

we grouped observations prior to interpolating the water levels. This was doneWe grouped observations by calculating the 30 

LDDs in the area using the DTMcombining information about the LDDs in the area, which were derived from the DTM, 

with the locations of observations. These LDDs were used to determine which cells are downstream of an observation. If the 

location of the observation is flooded, it is assumed its downstream cells are also flooded, since these are located lower than 
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the observation and are directly connected to it. Therefore, all observations of which the flow paths intersect downstreamthat 

have downstream cells in common, are located within the same continuously flooded area. 

 

The water levels (relative to the nearest drainage channel) of each group of observations were subsequently interpolated 

using IDW interpolation as given by Eq. (1) and Eq. (2): 5 
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 10 

Where Zx,y (m) is the interpolated water level at spatial coordinates x and y, Zi (m) is the observed water level of observation 

i, n is the total number of observations, Wi is the interpolation weight of observation i, dx,y,i (m) is the distance to observation 

i measured along the flow paths downstream of observations, s (m) is the smoothing parameter and p is the power parameter. 

 

Previous studies applied both IDW (Werner, 2001) and bilinear spline interpolation (Fohringer et al., 2015) to calculate flood 15 

extents from irregularly spaced flood observations. We used IDW interpolation since it allows for smoothing, which is useful 

in averaging the errors inwater levels of clusters of uncertain flood observations from social media content. In case of 

certain flood observations, which should be followed exactly by the interpolated water surface, bilinear spline interpolation 

may be more appropriate. Also An additional advantage of IDW interpolation is that the nominator and denominator of Eq. 

(1) can be updated with new observations, meaning the additional computational time in real-time applications is limited. 20 

We slightly modified the method proposed by Werner (2001) to improve the realism of the interpolated water surface. 

Firstly, water levels were expressed relative to the elevation of the nearest drain instead of mean sea level. Secondly,Water 

levels of observations were interpolated along their downstream flow paths and subsequently projected. The water levels 

along these flow paths were subsequently given to the grid cells upstream of these flow paths, which producedto create a 

grid of water levels. From this grid we subtracted the HAND map, to create an initial grids of water depths in the area. Since 25 

water depths were calculated inthe water surface might be extrapolated to areas which were separated from the observations 

by small ridgesbarriers, flooded areas that were not connected to any of the observations were removed., similar to the 

method suggested by Werner (2001). This procedure produced the deterministic flood maps. 

3.3 4 Uncertainty analysis 

The uncertainties in the flood extent maps were investigated using a Monte Carlo analysis. We evaluated the uncertainty 30 

originating from errors in the locations derived from Tweets, errors in the elevation data, uncertainty in the parameters of the 
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IDW equation and uncertainty in the DWD. The characteristics of the error distributions used to simulate these errors are 

given in Table 12. 

 

The analysis of the locational errors of Tweets indicated that the locations derived from Tweets that refer to point locations 

contain less error than those derived from Tweets that refer to streets (see Sect. 4.1). The locational errors of both types of 5 

Tweets were therefore simulated differently. We simulated the locational errors of Tweets that referred to point locations by 

adding random errors to the spatial coordinates of the Tweets. The locational errors of Tweets that referred to streets were 

simulated along these streets. We did this by extracting the streets to which the Tweets referred from OpenStreetMap. The 

locational error was modelled using a normal distribution. To generate each realization, the observations were moved a 

distance along the street, which was drawn from this distribution. As some streets are shorter than six standard deviations, 10 

effectively reducing the modelled error, the standard deviation used for modelling these errors was modified so that the 

resulting errors matched the observed locational errors. 

 

Since no reference accurate information was available regarding the accuracy and errors in the EA DTM, these errors were 

simulated using typical values from literature. Since using independent normally distributed errors does not accurately reflect 15 

errors in the elevation data (Heuvelink et al., 2007; Raaflaub & Collins, 2006), spatially auto correlated errors were added 

using the method described by Dullof & Doucette (2014). Based on typical values of standard deviations and auto 

correlation distances of errors in LIDAR elevation data found in literature (Leon et al., 2014; Mudron et al., 2013; Li et al., 

2011; Livne & Svoray, 2011; Hodgson & Bresnahan, 2004) a standard deviation of 20 cm and correlation distance of 100 m 

was used. These errors were added to the original 2 m resolution DTM, before resampling it to 20 m resolution and creating 20 

the corresponding HAND map. 

 

The uncertainty caused by the input parameters, being the power and smoothing parameters (Eq. 2) and the DWD, was also 

evaluated. Since no specific information is available about the distribution of errors in these parameters, we used a uniform 

distribution. The power parameter was varied between 2 and 5, the smoothing between 0 and 2000 m and the DWD between 25 

20 and 80 cm.Based on photographs in news articles about the flooding in York, the water depth in most places was 

estimated to be between 20 and 80 cm. Therefore, the DWD was varied between 20 and 80 cm. For the smoothing and 

power parameter, no clear information about the range was available. Errors in these parameters were simulated using the 

rather conservative ranges of 0-2000m and 2-5 respectively. A uniform distribution was used to simulate errors in the DWD, 

range- and power- parameters, since there was no specific information available regarding their error distributions. 30 

 

To determine the number of Monte Carlo simulations required to produce the probabilistic flood maps, multiple maps were 

created using the same input uncertainties. It was found that using 1000 Monte Carlo simulations, two probabilistic flood 

maps generated using the same input error distributions were nearly identical. 
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3.4 5 Evaluation of results 

We evaluated the accuracy of both the deterministic and probabilistic flood maps, by comparing these to the validation data 

discussed in Sect 3.1 using recorded flood extents. In addition, we reviewed the relative importance of the different error 

sources for the probabilistic flood maps. A draft version of the fluvial flood extents for the City of York was supplied by the 

EA. These flood extents however only identified areas that were directly affected by flooding from the rivers. Areas 5 

separated from the river around Knavemire Road, Water Lane and Shipton Road were also known to be flooded based on 

photographical evidence in some Tweets. This was confirmed by news articles about these three locations. The flood extents 

around these locations were approximated by using the EA dataset of historic flood extents (EA, 2015) from between the 

years 1991 – 2012. The flood extent specific to fluvial flooding during the December 2015 event and the historical flood 

extents were merged into one flood extent map for validation. Using these data, we evaluated tThe accuracy of the 10 

deterministic flood maps was evaluated by calculating the F
(2)

 statistic of Aronica et al. (2002). This statistic gives the 

percentage of correctly modelled flooded area, relative to the total area that is either in the modelled or observed flood 

extents.: 

 

     
         

         
,            (3) 15 

Where Aobs ∩ Amod is the area that is both modelled and observed flooded (true positive area) and Aobs   Amod is the area 

that is either modelled or observed flooded (true positive, false positive and false negative area). 

 

We evaluated the accuracy of the probabilistic flood maps using reliability diagrams. These diagrams offer a comparison 

between the modelled probability (on the horizontal axis) and the observed probability (vertical axis) of flooding (Wilks, 20 

2006). If the probabilistic flood map is correct, it is expected that of all cells on the map that have for example a 10 % 

probability of being flooded, only 1 out of 10 cells is actually flooded in reality. To create construct the reliability diagrams, 

we first binned the modelled probabilities were first binned in 10% intervals. For each probability bin, the cells on the 

probabilistic map that fell within that bin range10% interval were compared to the map with actual flood extents (the 

validation map)same cells in the validation data. The observed probability was calculated by dividing the number of selected 25 

cells that were flooded in the validation data by the total number of cells in the bin.The number of times the selected cells 

were indeed flooded in reality were counted and divided by the total number of cells in this bin. For each binned probability 

interval, the central value was taken as the modelled probability value that should be compared to the observed probability.  

We assumed that the central value of each 10% interval was the modelled probability, which we plotted along with the 

calculated observed probability. Note that the first probability bin ranged from 0.01% to 10%, and the 0% probability of 30 

flooding value in the diagram included all cells having less than 0.01% probability of flooding. In case the line that is 

constructed this way is exactly on the diagonal of the graph, the probabilistic flood map gives an accurate representation of 
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the actual probability of flooding. In case the line is above the diagonal, flood probabilities are underestimated and in case it 

is under, flood probabilities are overestimated. 

 

We assessed the relative importance of the different sources of error on the uncertainties in flood extent by creating three 

different uncertainty estimates: one by only simulating locational error, one by only simulating errors in the DTM and one by 5 

only simulating errors in the parameters. For every uncertainty estimate, the F
(2)

 statistic of each random simulation was 

calculated. We used these values to derive three empirical cumulative distributions of the F
(2)

 statistic for the uncertainty 

estimates generated by simulating the individual sources of error. These were used to review the relative importance of the 

different types of errors for the accuracy of the maps. 

4 Results 10 

During the York floods, 8,000 unique flood related Tweets, posted between the 25
th
 and 30

th
 of December 2015, were 

harvested. Using the process discussed in Sect. 3.1 a database of 160 Tweets was constructed. Only from 87 of these could a 

location be derived from the text of the message. 17 Tweets mentioned a point location (an address, intersection or POI) and 

70 Tweets mentioned a street name, for which the elevation data was used to derive a point location. Although 56 Tweets 

from which locations were derived, had photographs attached,of these Tweets had photographs attached, we could only 15 

match 26 of them to a location on Google StreetView. These were used to assess the quality of the locational references 

derived from the text of Tweets. 

4.1 Locational errors 

We compared the locations that were derived from the text in the Tweets and used to create the flood maps to locations 

derived from attached photographs, in order to evaluate the magnitude of locational errors. Figure 5a gives the result of this 20 

comparison. The magnitude of locational errors depends heavily on the type of locational references in the Tweets. If point 

locations such as POIs or intersections are mentioned in the Tweets, the locational error is limited (Fig. 5c). If streets are 

mentioned in the Tweets however, locational errors are considerably larger (Fig. 5b). The difference is likely caused by the 

fact that the locations of point references were directly extracted from Google Maps, whereas an additional procedure was 

necessary to derive exact spatial coordinates from Tweets referring to streets. The large outlier in Fig. 5b is for example a 25 

Tweet that refers to Huntington Road, which is a long street that is located alongside the River Foss (see Fig. 1). The 

photograph was made at the northern end of Huntington Road, whereas the Tweet was pinpointed to the deepest depression 

along the road, in the south. There were however photographs attached to other Tweets which indicated that this southern 

location was also flooded. Without this outlier, the standard deviation in locational errors of Tweets referring to streets 

reduced to 118 m. 30 
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4.2 Flood Extent mapping 

We created deterministic flood extent estimates by interpolating the locations and water levels derived from the Tweets. The 

parameters of the IDW interpolation were calibrated using the F
(2)

 value based on the EA recorded flood extents. A power 

parameter of 4 in combination with a smoothing of 600 m (Eq. 2) and a DWD of 50 cm gave the best results. Figure 6 gives 

a comparison between the flood extent generated using information harvested from the Tweets and the validation data, by 5 

classifying all grid cells based on the four quadrants of a confusion matrix. An F
(2)

 value of 0.69 was found, indicating that 

the modelled area of the flood extent that is correct, makes up 69% of the total flood extent either in the modelled or 

observed data. 

 

The flood extent estimate is correct for a large part of the inner-city (location [1]). Even at smaller flooded areas, such as the 10 

ones north-west and south-east of location [2] a good estimate of flood extent is generated. The added value of separating 

groups of observations that are not in the same flooded area is seen at area [3]. Without separating observations, the 

underestimation of flood extent in this area would be considerable, whereas separating the observations results in a much 

better flood extent estimate for this area. Although at some locations minor underestimations of flood extent are seen, there 

is only one large area missing at location [4]. However, no observations of flooding close to, or in this area were found in the 15 

Twitter dataset. This underestimation is therefore a result of the lack of data rather than an error of the interpolation method. 

4.3 Uncertainty Analysis 

We created probabilistic flood extent estimates by varying the input parameters as well as simulating the locational errors 

and errors in the DTM in a Monte Carlo analysis. Based on the results in Sect. 4.1 the error distance along streets was 

modelled using a normal distribution with a standard deviation of 200 m. This modelled error effectively translates into a 20 

standard deviation in spatial coordinates of 100 m as some streets were too short to reproduce the full error distribution. 

Given the results from Fig. 5c errors in point locations were simulated using a normal distribution with a standard deviation 

of 50 m. The uncertainty resulting from simulating these locational errors along with errors in the DTM and parameters is 

given in figure 7a. 

 25 

The uncertainty in flood extent is considerable (i.e.: the flood probability is around 50%). However, near the inner-city, at 

location [1], the uncertainty is limited. This is only partly caused by the high density of observations in this area and is 

mostly a result of the fact that the inner-city of York is situated lower than its surroundings, effectively limiting flood 

extents. For the areas within York that are more flat, the uncertainty in flood extent was generally larger. The density of 

observations is not well represented in the uncertainty estimates. Generally speaking, one would expect an area that has a 30 

high probability of flooding to have multiple observations in it, since a single observation can be placed there due to the 

Tweet being misinterpreted. At location [3] however, there is a large area with a high probability of flooding, even though 
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only one observation is pinpointed to it. Location [3], as well as location [2] had high probabilities of flooding, although they 

were not flooded in reality. 

 

We assessed the performance of the probabilistic flood extent map in Fig. 7a by comparing it to the validation data and 

constructing a reliability diagram (Fig. 8a). Probabilities between roughly 15 to 85% are mostly overestimated, although the 5 

most important probabilities close to 0 and 100% are accurately represented in the map. Comparing this map of all 

uncertainties to a map created by simulating only the errors in the elevation data and the parameters (Fig. 7b) indicates that 

locational errors are likely responsible for a considerable amount of uncertainty in the flood extent estimates. This is further 

confirmed by the results in Fig. 9, which shows the empirical cumulative distribution functions of the F
(2)

 measure of 

accuracy.  This was calculated by using the result of each random simulation of the Monte Carlo Analyses of different types 10 

of errors separately. It can be clearly seen that locational errors cause most variation in the accuracy of the maps. 

 

However, the reliability diagram that was constructed using the map generated without simulating errors in location (Fig. 

8b), shows that by omitting the simulation of locational error, the uncertainty calculated using the Monte Carlo analysis more 

accurately describes the real uncertainty in flood extent. This indicates that either the probability distributions used to 15 

simulate these errors or the way these errors are propagated cause the flood probability to be overestimated. 

5 Discussion and recommendations 

This study shows the potential of using inherently uncertain social media content to create deterministic and probabilistic 

flood maps (Sect. 5.1), although the methods used in this study still contain some limitations (Sect. 5.2). Therefore, 

recommendations for future research are presented in the last section of this chapter (Sect. 5.3). 20 

5.1 Potential 

We showed that a deterministic flood map can be created from social media content. However, large uncertainties, mainly 

related to the locations derived from the content, still remain. Therefore, the probabilistic maps proved to be a useful addition 

to the deterministic map. Firstly, they are a source of information in itself. For example, where the deterministic map 

contained an underestimation of flooded area at location [4] (Fig. 5), the uncertainty estimate showed that flooding was 25 

highly uncertain at this location. This information can be used to send staff into the area, to verify if the area is actually 

flooded and thereby reduce the uncertainty at this location. Similarly, the probabilistic map confirmed the accuracy of the 

deterministic map near the inner city of York. Furthermore, the probabilistic maps provide information about the flood 

extent without the need for prior calibration of the model parameters. Therefore, these maps can potentially provide real-time 

flood extent information, without having to calibrate the method to that particular event or location first. However, to 30 
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understand how the modelled uncertainty relates to the observed flood extent for a particular area or event, some validation 

might still be required. 

 

A comparison to the work of Giustarini et al. (2016), who produced probabilistic flood maps from synthetic aperture radar 

(SAR) data and used the same validation technique, indicates that results are similar. It illustrates that probabilistic flood 5 

maps from SAR data provide a degree of accuracy comparable to the ones in our study, with probability-error values up 

0.38. Although their reliability diagrams differed among case studies, none of them had a consistent overestimation of flood 

probability in all bins of the reliability diagram, like the ones from social media content. This indicates that the method 

presented in this paper still has some limitations. 

5.2 Limitations 10 

A possible reason for the overestimation of flood probability may be the fact that photographs were used to evaluate 

locational errors. A photograph can be taken at a location different from the one in text, for example because that location 

was too severely flooded, causing the locational error to be overestimated. In addition, the method used to derive locations 

from Tweets that referred to streets could only identify a single location of flooding along a street, causing others to be 

omitted. The outlier, mentioned in Sect. 4.1, illustrates this. Although it was pinpointed to a location that actually flooded, a 15 

large error was calculated, because the photograph was of a second flooded location along the same street. Since this is an 

error of omission, rather than a locational error, the exclusion of the outlier is believed to have given a better estimate of the 

standard deviation in locational errors. 

 

The probability distributions used to simulate locational errors might also have contributed to the overestimation of flood 20 

probability. The normal distribution that was used does not reflect the sharp peaks seen at 0m in the graphs of Fig. 6. Using a 

conventional error distribution also does not give a correct representation of the actual errors in location. In reality, it is more 

likely that an observation originates from a lower location or a topographical depression, whereas purely using random errors 

can place observations on top of hills, which are unlikely to be flooded.  

 25 

Furthermore, the results of the analysis could have been affected by the quality of the maps used for validation. The data for 

validating the river flood extents was created from a combination of ground observations and aerial photography. In places 

flooded separately from the river however, recorded historic flood extents were used, which might have been in accurate. 

However, actual observed flood extents for 2015 were used for the majority of the area. Therefore, we have no reason to 

believe that there are large uncertainties in the validation data. 30 

 

We expect that an overestimation of either the errors in the DTM or the parameters is one of the main reasons for the 

overestimation of flood probabilities. Both the quantification of these errors as well as the methods used to simulate them 
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could have caused this. It is likely that the quantification of parameter errors contributed most, since these were quantified 

conservatively in absence of accurate information about their error distribution. 

 

Another important reason for the overestimation may lie in the 20 m resolution used for the maps. This resolution was 

chosen as a compromise between accuracy and computational time, though the results indicate that some barriers in the area 5 

were not accurately represented at this resolution. This caused some areas to erroneously be assigned a high probability of 

flooding. 

 

The probabilistic maps generated in this study also did not consider the density of observations. Although all errors were 

drawn from the same error distributions in the Monte Carlo simulation, observations that belong to large clusters are more 10 

certain than observations that are completely isolated. Because we did not consider this, the maps contained areas with a 

high probability of flooding even though these areas contained very few observations. 

5.3 Recommendations 

Besides resolving the issues related to the quantification and simulation of errors discussed above, a way to include 

important barriers in the coarse resolution DTM should be investigated. Although using higher resolution data can provide a 15 

similar improvement, it will seriously affect computational time and therefore affect the potential of real-time application of 

the maps. Additionally the inclusion of observation density in the uncertainty analysis should be reviewed. 

 

To guide further improvements, it should be investigated whether it is useful to invest in optimizing the simulation of the 

different types of errors, or whether large improvements can be made by post-processing the results. Investigating more case 20 

studies can show whether flood probability is consistently underestimated, or if the reliability diagram differs by case. 

Reviewing more case studies can also show the effect of area topography on the resulting maps. We expect that uncertainties 

in flood extent are less for hilly areas than for flatter areas. By testing the method on multiple floods at the same location, as 

well as floods at different locations, also the (in)dependency of model parameters can be further investigated. 

 25 

Where current methods for flood extent mapping such as hydraulic models and remote sensing have shortcomings in real-

time application, this is where the real value of using social media content lies. The methods used in this report can 

potentially be applied in real-time. Random simulations for the York case were generated at a pace of about 100 simulations 

per minute, and the fact that calculations for single observations can just be added to the nominator and denominator of Eq. 

1, ensures that adding new observations does not call for a complete recalculation of the results. To further improve 30 

computational time, alternative sampling techniques should be reviewed, since this can reduce the number of Monte Carlo 

simulations necessary. 
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Besides optimizing computational time, a further look into the gathering of observations is required. For real-time 

applications, it is vital to collect a high number of observations to ensure an accurate and up to date map can be produced at 

any point in time. The selection techniques used in this paper were only able to find a small number of tweets. It should be 

reviewed whether using different search techniques, additional sources of data, or techniques such as crowd interaction can 

increase the number of observations available for creating the maps. 5 

This study gives insight into the potential of using inherently uncertain social media content to create flood maps. The 

deterministic flood map created using social media content already gave a reliable estimate of flood extent. However, the 

magnitude of locational errors was considerable, and the analyses presented in this manuscript indicate that these locational 

errors cause considerable uncertainty in flood extent. 

 10 

This uncertainty in flood extent seems to be strongly related to the topography of the study area. Especially at locations with 

moderate terrain slopes, flood extent uncertainty was limited.  Flat areas tend to have a larger uncertainty in flood extent, 

since the differences in water levels caused by the different sources of error, cause larger horizontal changes in flood extent 

at these locations. 

 15 

By simulating all sources of errors however, the uncertainty in flood extent was overestimated, which can have a variety of 

reasons. Firstly, the magnitude of locational errors may have been overestimated by calculating the errors based on attached 

photographs. For example, photographs can be taken at a different location, because the location that is mentioned in the text 

is too severely flooded. Also in places where locations of flooding were omitted, locational errors were overestimated. The 

outlier, mentioned in Sect. 4.1, illustrates this. This Tweet referred to a street being flooded. The location that was derived 20 

from the Tweet, was known to have flooded based on photographs attached to other Tweets. Nevertheless, a large locational 

error was calculated, because the photograph attached to the Tweet showed that a second location along the street had also 

flooded. The procedure used to derive locations from Tweets referring to streets was only able to identify one location along 

the street, causing the second location of flooding to be omitted. Since this is an error of omission, rather than a locational 

error, the exclusion of the outlier is believed to have given a better estimate of the standard deviation in locational errors. 25 

 

Another cause of the overestimation of uncertainty might be found in the empirical probability distribution used to simulate 

locational errors. The normal distribution used does not reflect the sharp peaks seen at 0m in the graphs of Fig. 6. Also, using 

a conventional error distribution to simulate errors might not give a correct representation of the actual errors in location. In 

reality it is more likely that an observation originated from a lower location or a topographical depression, whereas purely 30 

using random errors can place observations on top of hills, which are unlikely to be flooded. 

 

We expect however that the main reason for the overestimation of total uncertainty is caused by an overestimation of the 

errors in either the DTM or parameters. This can both be a result of the quantification of these sources of errors or the 
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methods used to assess their impact. It is likely the quantification of parameter errors contributed most to this overestimation 

of uncertainty, since these were quantified conservatively in absence of accurate information about their error distribution. 

 

In addition to improving on the quantification and simulation of the different types of errors, the uncertainty maps can be 

further improved by including information about the density of observations. By default, the errors of all observations are 5 

drawn from the same error distribution in the Monte Carlo simulation, although observations that belong to large clusters are 

likely more certain than observations that are completely isolated. That the density of observations was not accurately 

represented caused large areas to have a high probability of flooding, although they contained only very few observations. 

 

The probabilistic maps proved to be a useful addition to the deterministic map. Firstly, the uncertainty estimates are a source 10 

of information in itself. For example, where the deterministic map contained an underestimation of flooded area at location 

[4] (Fig. 5), the uncertainty estimate showed that flooding was highly uncertain at this location. This information can be used 

to send personnel into the area, to find out if the area is really flooded and thereby reduce the uncertainty at that location. 

Similarly, the probabilistic map confirmed the accuracy of the deterministic map near the inner city of York. Furthermore, 

the probabilistic maps provide information about the flood extent without the need for prior calibration of the model 15 

parameters. Therefore, these maps can potentially provide real-time flood extent information, without having to calibrate the 

method to that particular event or location first. However, to understand how the modelled uncertainty relates to the observed 

flood extent for a particular area or event, some validation might still be required. 

 

Further research is necessary to explore the full potential of the uncertainty estimates of flood extents derived from social 20 

media. First of all, the consistency of the results for other events or locations should be further reviewed. By reviewing more 

case studies, the effect of topography on flood extent uncertainty and the (in)dependency of the model parameters for a 

specific event can also be further investigated. 

 

Such additional studies can also guide further optimization of the uncertainty estimates. If the results of further case studies 25 

indicate that the probability of flooding is consistently overestimated by the same amount, post-processing of the maps, by 

using the information from the reliability diagram, can be an easy way to improve the uncertainty estimates. If this is not the 

case, improving the maps by improving the process of simulating locational uncertainties might lead to better results. The 

overestimation of uncertainty caused by errors in the elevation data and parameters should then also be further reviewed. 

One element that must be improved, regardless of the results of executing multiple case studies, is the inclusion of the 30 

density of observations in the uncertainty estimates. Also methods to include important barriers in the area in the coarse 

resolution DTM should be investigated, since it was observed that some areas were erroneously assigned a high probability 

of flooding. Although such improvements can also be achieved by using actual higher resolution data, this will seriously 

affect computational time and thereby the potential of real-time application of the maps. 
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Where current methods for flood extent mapping such as hydraulic models and remote sensing have shortcomings in real-

time application, this is where the real potential of using social media content lies. The methods used in this report can 

potentially be applied in real-time. Random simulations for the York case were generated at a pace of about 100 simulations 

per minute, and the fact that calculations for single observations can just be added to the nominator and denominator of Eq. 1 5 

makes that time can be gained if only the effect of an additional observation has to be added. To further reduce 

computational time, also the use of different sampling techniques, that can potentially reduce the number of random 

simulations necessary, can be reviewed. Besides computational time, a further look into the gathering of observations is 

required for a real-time implementation. Especially in real-time application, a high number of observations is necessary to 

ensure an up to date map can be made at any point in time. Using the selection techniques applied in this paper, only a small 10 

number of Tweets was found. It should be reviewed if using different search techniques or additional sources of data can 

improve the number of observations, or if techniques such as crowd interaction have more potential in increasing the number 

of observations available for creating the maps. 

6 Conclusions 

This study illustrates that social media content has real potential in generating flood extent estimates. Although errors in 15 

locations derived from the Tweets were considerable, the deterministic flood extent map presented in this manuscript 

showed good agreement with validation data. The deterministic flood maps therefore can therefore be used to gain insight 

into the current situation of flooding.  

 

Using information about the errors in the Tweets, DTM and parameter settings, we managed to constructed a probabilistic 20 

flood extent map. The uncertainty in flood extent mainly originated from the locational errors of Tweets, whereas DTM and 

parameter errors contributed less to flood extent uncertainty. A comparison of the probabilistic map to validation data 

showed that by simulating errors in the Tweets, DTM and parameters, a reasonable estimate of flood extent uncertainty is 

generated, which provides users with additional information on top of the deterministic flood map. 

 25 

These results illustrate that social media content can be used to derive information about floods, regardless ofeven more so 

when exploiting the uncertainties in this data sourcecontent. If further improvements are made, so that the methods used in 

this report can be applied in real-time, these maps have the potential of filling in the gap where hydraulic models and remote 

sensing are lacking. 
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Code Availability 

The analyses in this manuscript were performed using Python 2 scripts. The code used for the different analyses (Brouwer, 

2016) is publically available on GitHub and published in the Zenodo research data repository (doi: 10.5281/zenodo.165818). 

Data Availability 

In the study data from downloaded from the Twitter API as well as data from the Environment Agency was used. The 5 

filtered subset of Tweets used in the research, the information about streets extracted from OpenStreetMap as well as the 

20m resolution DTM and HAND map can be found in the aforementioned GitHub project (doi: 10.5281/zenodo.165818). 

Also the data used to create the plots and maps are available at this location. 
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Figure 1. Digital Terrain model of the York study area 

 

 

Figure 2. Process of constructing the dataset of Tweets 5 
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Figure 3. Example of determining the error in the spatial coordinates derived from the text of a Tweet, based on an attached photograph. 

The grey dot is the location derived from the text of the Tweet, and the black dot is the location derived from the attached photograph. 

 

Figure 4. Process of creating flood extent maps 5 
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Figure 5. Locational errors in X/Y coordinates of all Tweets (a), only the ones referring to streets (b) and only the ones referring to point 

locations (c) 
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Figure 6. Deterministic flood map classified as the four quadrants in a confusion matrix.A comparison between the deterministic flood 

map (modelled) and validation data (observed). Locations [1] to [4] are discussed in text.The locations denoted by the numbers [1] to [4] 

are referred to in text. 
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Figure 7. Probabilistic flood map generated by simulating locational errors, errors in elevation data and errors in parameters (a) and a 

probabilistic map generated simulating errors in the elevation data and parameters only (b). The locations denoted by the numbers [1] to 

[3] are referred to in text. 

 5 

Figure 8. Reliability diagrams constructed from the probabilistic flood map generated by simulating all errors (a) and by simulating only 

errors in the elevation data and parameters (b). The small histograms give the number of cells within each 10% bin of modelled flood 

probability. 
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Figure 9. Empirical cumulative distribution functions of the F(2) performance statistics derived by simulating purely errors in the elevation 

data (blue), errors in the parameters (red), locational errors (black) and the combination of these errors (dashed green). 

Table 1. Datasets used in this study 

Data Source Purpose 

2 m LIDAR DTM EA (2014) To group observations (Sect. 3.3) 

To calculate water levels (Sect 3.3) 

To estimate flood depth & extent (Sect 3.3) 

To pinpoint Tweets referring to streets (Sect 3.2) 

Twitter Twitter streaming API To extract flood observations (Sect. 3.2) 

Google Maps Used online  To find locations with Tweets (Sect. 3.2) 

Google StreetView
 

Used online  To find exact locations of photographs (Sect. 3.2) 

OpenStreetMap Exported from osm.org To simulate locational errors along streets (Sect 3.4) 

Recorded historic flood 

outlines 

EA (2015) To evaluate flood extent in areas affected by non-fluvial 

flooding (Sect 3.5) 

Recorded 2015 fluvial 

flood outline York (draft) 

EA (Personal 

communication) 

To evaluate flood extent in areas affected by fluvial 

flooding (Sect. 3.5) 

 5 

 

  

https://dev.twitter.com/streaming/overview
https://www.google.com/maps
https://www.google.com/streetview
http://www.openstreetmap.org/export
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Table 12. Quantification of error sources. aSee Sect. 4.23 

Error 

source 

Distribution Parameter Value 

Elevation 

data 

Normal 

(spatially auto 

correlated) 

μ: 

σ: 

Corr. distance: 

0 m 

0.2 m 

100 m 

Tweets 

(point 

location)
a
 

Normal (X/Y 

coordinate) 

μ: 

σ: 

0 m 

50 m 

Tweets 

(Street 

location)
a 

Normal (along 

street) 

μ: 

σ: 

0 m 

200 m 

Power 

parameter 

Uniform 

(integers only) 

Lower bound: 

Upper bound: 

2 

5 

Smoothing 

parameter 

Uniform Lower bound: 

Upper bound: 

0 m 

2000 m 

DWD Uniform Lower bound: 

Upper bound: 

0.2 m 

0.8 m 

 


