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Abstract. The Weather Research and Forecasting (WRF) model is used in this study to simulate six storm events in two 

semi-humid catchments of Northern China. The six storm events are classified into four types based on the rainfall evenness 10 

in the spatial and temporal dimensions. Two microphysics, two planetary boundary layers (PBL) and three cumulus 

parameterizations are combined to develop an ensemble containing 16 members for rainfall generation. The WRF model 

performs the best for Type 1 event with relatively even distributions of rainfall in both space and time. The average relative 

error (ARE) for the cumulative rainfall amount is 15.82%. For the spatial rainfall simulation, the lowest root mean square 

error (RMSE) is found with event II (0.4007) which has the most even spatial distribution, and for the temporal simulation 15 

the lowest RMSE is found with event I (1.0218) which has the most even temporal distribution. It is found to be the most 

difficult to reproduce the very convective storm with uneven spatiotemporal distributions (Type 4 event) and the average 

relative error (ARE) for the cumulative rainfall amounts is up to 66.37%. The RMSE results of Event III with the most 

uneven spatial and temporal distribution are 0.9688 for the spatial simulation and 2.5327 for the temporal simulation, which 

are much higher than the other storms. The general performance of the current WRF physical parameterizations is discussed. 20 

The Betts-Miller-Janjic (BMJ) is found to be unsuitable for rainfall simulation in the study sites. For Type 1, 2, and 4 storms, 

member 4 performs the best. For Type 3 storms, member 5 and 7 are the better choice. More guidance is provided for 

choosing among the physical parameterizations for accurate rainfall simulations of different storm types in the study area.  

1 Introduction 

Precipitation is a crucial element in the hydrological cycle at regional or global scales. With the characteristics of high 25 

intensity, short duration, uneven distribution and sudden occurrence, the precipitation easily causes flood with high peak in 

semi-humid region, which is tricky for forecasting accurately (Nikolopoulo et al., 2010). Quantitative precipitation forecast 

(QPF) is an effective method to avoid flood disasters and help flood risk management (Kryza et al., 2013). With the 

development of computer technology and atmospheric physics, numerical weather prediction (NWP) has become an efficient 

method for QPF (Yang et al., 2012). 30 
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As the latest generation mesoscale NWP system, the Weather Research and Forecasting (WRF) model can apply to the 

regions across scales from tens of meters to thousands of kilometers. Not only the rainfall quantity but also the spatial and 

temporal patterns of rainfall can be captured by WRF model with high resolution. Though it has been confirmed by many 

studies that the WRF model performs better than the Fifth Generation Penn State/NCAR Mesoscale Model (MM5), rainfall 

is still one of the most difficult variables to simulate and predict (Collischonn et al., 2005; Bruno et al., 2014; Junhong et al., 5 

2015). Because of the complicated processes of storm formation and development, the WRF model provides various 

physical parameterizations to be applied in different cases. Each physical parameterization emphasizes on different physical 

processes and has its unique structure and complexity, which may have great influence on the rainfall simulations. That is 

why numerous sensitivity studies of the WRF parameterizations are carried out in different regions of the world (Klein et al., 

2015). Three categories of the parameterizations have been mostly discussed and identified as the main influencing factors 10 

for rainfall simulation, i.e., microphysics, planetary boundary layer (PBL) and cumulus parameterization. Different physical 

parameterizations are found to be efficient for different rainfall event in different region (Jankov et al., 2011; Madala et al., 

2014; Pennelly et al., 2014). 

It is an increasingly difficult task to determine the optimal combination of physical parameterizations as the development of 

the WRF model with more and more choices of parameterizations. Although many studies show that the best physical 15 

parameterization combination can be found by a lot of simulations for a certain rainfall event, it is difficult to tell the 

characteristics of the future rainfall events for real-time rainfall prediction. In order to consider the uncertainties associated 

with the selection of physical parameterizations, it has become a common method to use the ensemble in numerical rainfall 

prediction (Evans et al., 2011). Flaounas et al. (2011) studied an ensemble with six members over the west Africa, which 

was produced by two PBL and three cumulus parameterizations. An ensemble containing 18 members was investigated in 20 

south-central United States, which was created by three microphysics, three PBL and two cumulus parameterizations 

(Jankov et al., 2005). And an ensemble with 36 members was tested for a series of rainfall events at the south-east coast of 

Australia, which contained two PBL, two cumulus, three microphysics and three radiation parameterizations (Flaounas et al., 

2011). These studies show that no single physical parameterization combination performs the best for all rainfall events. 

In this study, 16 physical parameterization combinations are designed from two microphysics of Purdue-Lin (Lin) and WRF 25 

Single-Moment 6 (WSM6), two PBLs of Yonsei University (YSU) and Mellor-Yamada-Janjic (MYJ), and three cumulus 

parameterizations of Kain-Fritsch (KF), Grell-Devenyi (GD) and Betts-Miller-Janjic (BMJ). Lin is a sophisticated 

parameterization which contains five classes of hydrometeors, and it is suitable for high-resolution simulations (Lin et al., 

1983). WSM6 reveals an improvement in the high cloud amount and surface precipitation, which adds graupel microphysics 

based on the works of Lin et al. (1983) and Rutledge and Hobbs (1983). MYJ PBL is appropriate for all stable or slightly 30 

unstable flows (Janjic, 1994). YSU PBL improves the performance of intense convection based on the Medium Range 

Forecast (MRF) PBL (Hong et al., 2006). KF is a classic cumulus parameterization and has been used successfully for years 

in many scientific institutions (Kain, 2004). GD is an ensemble cumulus parameterization and can be used in high resolution 
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models (Grell and Freitas, 2014). BMJ can adjust instabilities in the environment by generating deep convection and has 

been used extensively throughout the globe (Janjic, 2000). 

Two medium sized catchments Fuping and Zijingguan are chosen as the study sites, which respectively locates in the south 

and the north reaches of Daqinghe catchment in North China. With the characteristics of high intensity, short duration, 

uneven distribution and sudden occurrence, the storm events in the study sites are representative for the semi-humid region 5 

with temperate continental monsoon climates. The aim of this study is to find out the potential performance of the WRF 

model for different types of storm events in semi-humid regions. Six storm events are chosen from the study sites and 

classified into four different types based on the rainfall evenness in the spatial and the temporal dimensions. The 16 designed 

combinations of physical parameterizations are treated as the ensemble for rainfall simulation and the results are verified 

regarding both the cumulative rainfall amounts and the spatiotemporal patterns. 10 

2 WRF model configuration and designed physical ensemble 

The 3.6 version of the WRF model is used in this study. WRF is a fully compressible, nonhydrostatic, meteorological model 

and it features physics, numerics, advanced dynamics and data assimilation. The model manual (Skamarock and Klemp, 

2008) shows more detailed information of the WRF model. Two-way nesting is allowed for the communication between 

multiple domains at different grid resolutions, and three nested domains are centred over the Fuping and Zijingguan 15 

catchments respectively. In general, high-resolution rainfall products downscaled by the WRF model are more appropriate to 

be used as the input of the hydrological models (Cardoso et al., 2013; Chambon et al., 2014). So horizontal grid spacing of 

the WRF innermost domain is set to be 1km and the downscaling radio is set to be 1:3 (Givati et al., 2012; Yang et al., 2012). 

The centre of the domain is at lat 39°04′15′′N and long 113°59′26′′E, and the nested domains sizes are 252×234, 144×126 

and 96×84 km2 for Fuping catchment. The centre of the domain is lat 39°25′59′′N and long 114°46′01′′E, and the nested 20 

domains sizes are 216×198, 108×90 and 72×42 km2 for Zijingguan catchment. The nested domains and the orography of the 

two catchment are showed in Fig.1. There are 40 vertical levels for three domains and the top level is set at 50hPa (Aligo et 

al, 2009; Qie et al, 2014). The WRF model is initialized from the six-hourly global analysis data provided by the 1°×1° grids 

of the NCEP Final (FNL) operational model. The integration step of WRF follows the ‘6×dx’ rule where dx is the grid 

spacing, and the integration step is 6s for innermost domain (Skamarock and Klemp, 2008). The time step of WRF model 25 

output is set to one hour. The spin-up period is necessary for WRF model to develop the smaller scale convective features 

and the widely used lengths are 6 hours (Givati et al, 2012), 12 hours (Hu et al, 2010) and 24 hours (Wang et al, 2012). 

Different spin-up lengths were tried for the six storm events in this study, whereas results did not show obvious differences 

regarding the simulated rainfall. In order to improve the calculation efficiency for further hydrological use (i.e., flood 

warning), a 6h period is chosen to spin-up the model. That is to say the start of the model integration is 6 h earlier than the 30 

storm start time and the end time of the model integration is consistent with the storm end time. 
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The setting of the WRF model is very important before it is used to simulate the meteorological factors, especially the 

physical parameterizations. As shown by Table 1, a WRF physical ensemble is constructed by combining different choices 

of the physical parameterizations to simulate the storm events in the study areas. The selection of the parameterizations is 

based on their good performance in semi-humid region of China (Givati et al., 2012; Qie et al., 2014; Di et al., 2015). In 

order to learn the physical parameterizations more comprehensively, the different complexity and mechanism are also 5 

considered. WSM6 is the most complex in the series of WSM schemes, which is revised based on Lin (Hong and Lim, 2006). 

YSU is a non-local closure scheme whilst while MYJ is a local-closure scheme (Evans et al., 2011). The KF has a simple 

cloud model which can be triggered when air parcels temperature at its lifting condensation level is larger than the 

environmental air (Pennelly et al., 2014). The GD can run effectively within each high resolution grid (Grell and Freitas, 

2014). The BMJ scheme is more suitable for convective weather because it can adjust the model profile of temperature and 10 

moisture (Janjic, 2000). Some studies indicated that the cumulus parameterizations may be invalid with fine horizontal 

resolutions, while the threshold of the resolution is unknown (Argüeso et al, 2011; Evans et al, 2012; Pei et al, 2014). Many 

studies use cumulus parameterizations with the about 1km resolution for weather simulation. For example, Shepherd et al 

(2016) explored the sensitivity of hurricane track to four cumulus parameterizations, including KF, BMJ, G-3 and TD, with 

the nested domains 1.33km, 4km and 12km. Remesan et al (2015) studied the WRF model sensitivity to the choice of 15 

parameterizations: 4 nested domains (1km, 3km, 9km and 27km) are used and the cumulus parameterizations of GD, BMJ, 

KF1 and KF2 are investigated. In order to make the study more rigorous, member 13, 14, 15 and 16 are also tested and 

compared with the members containing cumulus parameterizations. Many studies indicate that the simulation of 

precipitation is insensitive to the land-surface model (LSM), short and long-wave radiation parameterizations, so Noah for 

LSM, RRTM/Dudhia for long/short radiation are used in this study, which are most frequently applied to precipitation 20 

simulation (Guo et al., 2013; Chen et al., 2014). 

 

[Figure 1 and Table 1] 

 

3 Storm events and evaluation statistics 25 

3.1 Study area and storm events 

Fuping and Zijingguan catchments are the study areas, which respectively belong to the south and north reaches of the 

Daqinghe catchment, located in Northern China with semi-humid climatic conditions. The drainage area of Fuping (from lat 

39°22′ to lat 38°47′N and from long 113°40′ to long 114°18′E) is 2210km2 and the area of Zijingguan (from lat 39°13′ to lat 

39°40′N and from long 114°28′ to long 115°11′E) is 1760km2 (shown by Fig. 2). The average annual rainfall is about 600 30 

mm at the study sites and the majority of rain focuses in the flood season. As shown by Fig. 2, there are 8 rain gauges in 

Fuping catchment and 11 rain gauges in Zijingguan catchment. The observed hourly rainfall data from rain gauges are 
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treated as the ground truth. Six 24-h storm events are selected from the recent 10 years (2006 to 2015) with respective 

rainfall characteristics of the study sites. The encounter between the western pacific subtropical high and the cold vortex of 

westerlies, and strong upward motion caused by Taihang Mountain are the main factors of rain formation in the study area. 

While the six storm events have quite different spatial and temporal evenness. Table 2 shows the duration and accumulative 

rainfall amounts of the six storm events.  5 

 

[Figure 2 and Table 2] 

 

The six storm events are categorized into four types based on the rainfall evenness of the spatiotemporal distribution (Liu et 

al, 2012). The variation coefficient Cv is used to evaluate the uneven level: 10 
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For the spatial distribution, xi is the 24-h rainfall accumulation at rain gauge i, and x  is the average of xi. N is the number of 

rain gauges. For the temporal distribution, xi is the hourly areal rainfall at time i, and x   is the average of xi. N is the number 

of hours. 

The higher of Cv, the more uneven for rainfall. In order to learn the spatial and temporal evenness of the rainfall in the two 15 

catchments, both spatial and temporal Cv of the storm events from 1985 to 2015 are all calculated. In reality, rainfall in 

Northern China is much more uneven than the south and it is impossible to find absolute even rainfall in both space and time. 

So we chose a threshold of 5%, which is also considered in other statistical analyses in the same area, as the critical value to 

separate even and uneven rainfall events. With the threshold, we found the two critical values of 0.4 for the spatial Cv and 0.6 

for the temporal Cv. That is to say, the storm events with the spatial Cv below 0.4 or with the temporal Cv below 1.0 account 20 

for 5% of the total storm events from 1985 to 2015 in the study area. Table 3 shows the spatial and temporal Cv of 

observations for the six storm events. Storm type 1 is characterized by even spatiotemporal distribution of rainfall. For storm 

type 2, rainfall is even for spatial distribution, but the temporal distribution is uneven. Storm type 3 and type 4 are 

characterized by an uneven distribution of rainfall in both space and time, while the rainfall of type 4 is highly concentrated 

in space and time. Due to the temperate continental monsoon climate in the study sites, there is no storm event with rainfall 25 

even and continuous in time but unevenly distributed in space. 

 

[Table 3] 
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3.2 Verification indices for rainfall simulations 

For evaluating the accuracy of rainfall simulation, both the accumulated areal rainfall and the spatiotemporal distribution of 

the rainfall are important. The accumulated areal rainfall is evaluated by the relative error (RE): 

( )
%100×=

Q

QP
RE

-
               (2) 

where P is the simulated value, which is the average value of all the grids inside the study area; Q is the observed value, 5 

which is calculated by the Thiessen polygon method based on the observations of the rain gauges (Sivapalan and Blöschl, 

1998; Jarvis et al, 2013). 

The spatial and temporal distributions of the rainfall are evaluated by a two-dimensional verification scheme. Both in spatial 

and temporal dimensions, some categorical and continuous indices are selected and calculated (Liu et al., 2012). The 

categorical verification indices are chosen as the probability of detection (POD), the frequency bias index (FBI), the false 10 

alarm ratio (FAR) and the critical success index (CSI). The calculation of the categorical indices depends on whether it rains 

or not, as shown in Table 4. It should be mentioned that the insignificant precipitation (less than 0.1 mm/h) is regarded as no 

rain. For verification in the spatial dimension, the comparison is made between the observations of the rain gauges and the 

simulations of WRF model at each time step i, and then the average values are calculated by the categorical indices at all the 

time steps as the final results. As shown by the Eq. (3)-(6), N is the total number of time steps of the WRF model output, 15 

which is 24 in this study. For the temporal dimension, the time series data of simulation and observation are used to calculate 

the four indices at each rain gauge i, then the average values are calculated by the indices at all the rain gauges as the final 

results. This time N is the number of the rain gauges of Fuping and Zijingguan catchments respectively in Eq. (3)-(6). 

 

[Table 4] 20 
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For the four categorical indices, POD indicates the percentage of correct simulation for the observed rainfall. FBI shows 

whether the WRF model has a tendency to overestimate (FBI>1) or underestimate (FBI<1) rainfall occurrences, while FBI 

cannot show closeness of the simulation and the observation. FAR represents the ratio of false alarms, and CSI indicates the 
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percentage of correct simulation between the simulated and observed rainfall. The perfect scores of POD, FBI, FAR and CSI 

are 1, 1, 0 and 1, respectively. 

Besides the categorical indices, three continuous indices including the root mean square error (RMSE), the mean bias error 

(MBE) and the standard deviation (SD) are adopted for more quantitative evaluation of the simulated rainfall distributions in 

space and time. The calculations of the three continuous indices are expressed by Eq. (7)-(9). 5 
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For the spatial dimension, Pj and Qj are the simulation and observation of 24 h rainfall accumulations at each rain gauges j. 

M is the number of the rain gauges, which is 8 for Fuping catchment and 11 for Zijingguan catchment. For the temporal 10 

dimension, Pj and Qj are the average areal rainfall simulation and observation at each time step j. This time M is 24 which 

represents the number of the time steps. The final values of the three indices represent the mean magnitude of error, the 

average cumulative error and the variation of the simulation error of MBE, respectively. The perfect score of all the three 

indices is 0. In order to compare the simulations for different storm events, the final values of the three continuous indices in 

both two dimensions are represented as percentages of the corresponding average observations. 15 

4 Results 

4.1 Simulations of the 24h rainfall accumulations 

The simulation results of the cumulative rainfall amounts from the 16 members of the physical ensemble are shown in Table 

5 and ranked according to REs. The member 5, 4 and 2 rank in the top 3 for event I (storm type 1) with relatively lower REs. 

For type 2 events, the member 4 and 12 show more stable performances, ranking in the top 5 for both event II and VI. For 20 

type 3 events, the member 5 and 7 are better choices with top 5 rankings for event IV and V. The top 4 members for event III 

(type 4) are member 4, 2, 16 and 3. It can be seen that the performances of the 16 members are quite distinct for different 

types of storm events. In addition, the difference among the 16 members varies a lot for a certain storm event. For example, 

the difference of REs for the member 8 (18.44%) and member 9 (-37.69%) reaches up to 56.13% for event I. While for event 
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V, the largest difference of RE among all the 16 members is only 9.10%. There are great uncertainties for the simulation of 

the different storm events using WRF model with different combinations of the physical parameterizations. It’s hard to tell 

which parameterization combination is the best, but only to find the one with the best general performance. In this study, 

member 4 could be the best choice considering its stable top-rankings for storm type 1, 2 and 4, while member 9, 10, 11 and 

12 have worse performance for storm type 1 and 4. For type 3 event, member 5 and 7 are better choices. However, in real-5 

time rainfall prediction, there is a necessity to use physical ensemble since it is always tricky to tell the exact characteristics 

of the future storm before it happens, and the use of a determined combination of parameterizations which performs 

generally well cannot always lead to the best results. According to Table 5, the four members without cumulus 

parameterization have quite different performance for different event. For example, member 15 performs the best for event 

IV, nevertheless, it performs the worst for event V. Comparing with the members containing cumulus parameterization, 10 

member 13, 14, 15 and 16 have no significant advantages or significant disadvantages for rainfall simulation. Taking event I 

as an example, the best one (member 16) in the four members without cumulus parameterization ranks fourth in the 16 

members, whereas the worst one (member 13) ranks twelfth. However, few members without cumulus parameterization rank 

in the top 4, which means that it is necessary to use cumulus parameterization for the simulation of rainfall accumulation. 

 15 

[Table 5] 

 

In order to measure the magnitude of error for different storm types, all the REs use absolute values in the following analysis 

to calculate the average relative error (ARE) of the 16 members of the physical ensemble. The AREs of the 16 members for 

the four storm types are shown in Table 6. It’s interesting to note that the ranking of the model performance is type 1 > type 20 

2 > type 3 > type 4, from the best to the worst. It means that the WRF model performs best for the storm event with even 

spatiotemporal distribution, while the type of storm event with highly uneven spatiotemporal distribution is hard for WRF to 

handle. The cumulative curves of the simulated and observed rainfall for the 6 storm events are shown in Fig. 3. Except for 

event I, the cumulative curves of the members are all below the observed ones for the other storm events. The shapes of 16 

simulated cumulative curves are consistent with the observed ones for event I, II and VI (type 1 and type 2 events), 25 

indicating that the simulated rainfall occurrences always keep step with the observations. While for event IV, V and III (type 

3 and type 4 events), the simulated starting and ending times of the rainfall durations are quite different from the 

observations.  It can be found that type 1 and type 2 events have even rainfall distributions in space, while the spatial rainfall 

is unevenly distributed in space for type 3 and type 4 events. It seems that storms with rainfall evenly distributed in space 

tend to have better simulation results in the temporal patterns of rainfall accumulations. 30 

 

[Table 6 and Figure 3] 
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4.2 Simulations of the spatial rainfall distributions 

In order to compare the simulation results of the different storm types in detail, seven verification indices are first calculated 

to evaluate the simulated rainfall distributions in space. Figure 4 and 5 respectively shows the values of the categorical 

indices and continuous indices for the 6 storm events with the 16 members of the physical ensemble. 

It can be seen in Fig. 4 that PODs of storm type 1 and 2 (event I, II and VI) are all above 0.70 for the 16 members, which 5 

means that the events with even distributions can be accurately simulated regarding the rainfall occurrences in space. For the 

other two storm types, event IV with relatively lower Cv performs better than event V and III. However, PODs of the 16 

members for type 4 event (event III) are all close to zero, indicating that the WRF model can hardly to capture the storm 

occurrence in space. Event I and IV have nearly perfect scores of FBI, which are close to 1.0. For event II, III and VI, WRF 

tends to overestimate the rainfall occurrences; while for event V, the model tends to have underestimations. Storm type 1 has 10 

the lowest FARs and the values are all under 0.20 in the 16 members, which means the WRF model has little false alarm 

possibility in space. While storm type 4 (event III) fails to be regenerated by the model in space because of the highest FARs 

(near 1.0). Storm type 3 outperforms storm type 2 with relatively lower FARs. CSI can be considered as a comprehensive 

description of accuracy. Storm type 1 with the highest CSIs performs the best in all the 16 members, while CSIs of storm 

type 4 are all close to 0 showing that the simulation results are unreliable. CSIs of the other two storm types have little 15 

difference as a whole, but the index values are a little bit higher for events with more evenly-distributed rainfall in space. 

Figure 5 shows that the values of RMSE have great change in different members for a certain event. RMSE is always 

regarded as the key quantitative index to estimate errors. Storm event II with the lowest Cv always has the lowest RMSE for 

the 16 members, which means that the WRF model performs the best for storm event II in simulating the spatial rainfall 

distributions. Except for member 1 and 4, the event III has the highest RMSE, and the values of 8 members exceed 100%. 20 

For the other four events, there is little difference of RMSEs in the 16 members. The MBE index contains the directions of 

errors, but in Fig. 5 absolute values of MBE are used. Storm type 1 has the lowest MBEs in the 16 members, and the MBEs 

of storm type 3 and 4 are higher than storm type 2. The values of SD also show variations for a certain storm type in 

different members. As a whole, SD and RMSE have similar patterns for different types of storm events. From Fig. 4 and 5, it 

can be easily found that few values of the indices for member 13, 14, 15 and 16 are out of the range of the values for other 25 

12 members, which indicates that there are always some members performing better than the four members without cumulus 

parameterization. It is helpful to use appropriate cumulus parameterization for the simulation of the spatial rainfall 

distribution. 

 

[Figure 4 and Figure 5] 30 

 

The average values of the 16 members for all the 7 indices are calculated to quantitative analysis the performance of the 

WRF model in spatial dimension for the four storm types. As shown in Table 7, the value of POD for storm type 1 is higher 
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than storm type 3 and 4. In addition, the value of CSI for storm type 1 is the highest and the value of FAR is the lowest in the 

four storm types. The lower values of RMSE and MBE for storm type 1 also indicate that the WRF model performs well for 

storm type 1. The simulations of type 3 events are worse than type 2 events, showing lower POD and higher RMSE values, 

though the FARs of the type 2 events are a little higher than type 3 events. The lowest POD, CSI and the highest FAR, 

RMSE can be found with storm type 4, which indicates the WRF model can hardly capture this kind of storm accurately in 5 

space. Since the index of RMSE shows the actual magnitude of errors without cancelling out the positive and negative errors, 

a correlation analysis is further carried out between RMSE and the spatial evenness indicator Cv. It’s interesting to find that 

RMSE and Cv have a good linear relationship and the correlation coefficient of the linear regression (R2) can reach up to 

0.8899 (shown by Fig. 6). This means that the WRF simulation error increases with the increase of the spatial rainfall 

unevenness in the study sites. 10 

 

[Table 7 and Figure 6] 

 

4.3 Simulations of the temporal rainfall patterns 

The seven indices are also calculated in the temporal dimension to evaluate the simulated rainfall patterns in time. The 15 

values are respectively shown in Fig. 7 and 8. In Fig. 7, PODs of storm type 1 and 2 are all above 0.70 and much higher than 

storm type 3 and 4 in the 16 members. It indicates that storm type 1 and 2 can be accurately simulated regarding the rainfall 

occurrence in the temporal dimension. While the WRF model fails with storm type 4, with all PODs of the 16 members close 

to 0. For FBI, the scores of event I and IV are nearly perfect, but the other four events show tendencies of overestimating the 

rainfall occurrences in time, especially event VI. The lowest FAR values are also found with storm type 1 with all the values 20 

less than 0.20 in the 16 members. Storm type 4 has the highest FARs which are close to 1.0 in some members. Based on the 

FAR index, the ranking of the WRF performance in simulating temporal rainfall occurrences is type 1 > type 3 > type 2 > 

type 4, from the best to the worst. In the 16 members, CSIs of storm type 1 are always the highest, while CSIs of storm type 

4 are always the lowest. It should be mentioned that the CSI is 0 in member 7, 11, 14 and 15 in storm event III, indicating 

bad simulation of the temporal rainfall occurrences for this type 4 event. 25 

In Fig. 8, type 1 event has the lowest RMSEs in the 16 members, but the values are nearly 100%. Type 4 event has the 

highest RMSEs which are all above 250%. The other two types of storm events also have high RMSE values between 100% 

and 180%. We can say that the WRF model cannot perform well in simulating the temporal rainfall patterns for all the storm 

types. Storm type 1 has the lowest MBEs, and the MBE values of storm type 3 and 4 are relatively higher than storm type 2 

in most members. All SDs are above 100% in the 16 members for the six events, with the lowest values found with event II. 30 

From Fig. 7 and 8, the same as the conclusions in the spatial dimension, most values of the indices for member 13, 14, 15 

and 16 are in the range of the values for other 12 members, which indicates that there are always some members performing 
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better than the four members without cumulus parameterization. It is also necessary to use cumulus parameterization for the 

simulation of the temporal rainfall distribution. 

 

[Figure 7 and Figure 8] 

 5 

The average ensemble values for the 7 indices are also calculated for evaluating the performance of WRF model in 

simulating the temporal rainfall patterns. The results are shown in Table 8. The values of POD and CSI for storm type 1 are 

the highest and the values of FAR and RMSE are the lowest in the four storm types, which indicate that the WRF model 

performs best for storm type 1. The model performs the worst for storm type 4 with the lowest POD and CSI and the highest 

FAR and RMSE. In general, the simulation results of the temporal rainfall patterns are unsatisfactory for all the four storm 10 

types. The linear relationship between RMSE and the temporal Cv is also significant and the correlation coefficient of linear 

regression (R2) is 0.7524 (shown by Fig. 9). It indicates that the simulation error also increases with the increase of the 

rainfall unevenness in the temporal dimension. 

 

[Table 8 and Figure 9] 15 

 

5 Discussion 

In this study, the performances of 16 WRF physical members are estimated firstly by AREs for cumulative rainfall amounts 

and then by a two-dimensional verification scheme for spatiotemporal rainfall distributions. According to the spatiotemporal 

evenness, six storm events are classified into four storm types. Storm type 1 has two-dimensional evenness of the rainfall 20 

which is even in spatiotemporal distribution. The WRF model performs best for simulating this storm type, not only for the 

cumulative rainfall amounts but also for the spatiotemporal distributions. Storm type 2 is only even in space, and the 

simulation results from the WRF ensemble are better than storm type 3 and 4. But compared with type 1, the cumulative 

rainfall amounts of type 2 events are seriously underestimated. Storm type 3 and 4 are both uneven in spatiotemporal 

distribution, and the unevenness is especially remarkable for type 4 event. The simulations of WRF model are unsatisfactory 25 

for the spatiotemporal patterns of the two storm types. The simulation results of type 4 event are the worst among the four 

storm types. Some of the members even miss the whole storm duration in space and time. It is interesting to find that the 

WRF model tends to underestimate the rainfall amounts except for storm type 1. With more events being investigated in the 

study sites, the general simulation errors of the WRF model can be learnt by statistical analysis, which can help to build a 

correction model to further improve the rainfall products of the WRF model. 30 

For rainfall forecast operation, it is hard to identify the storm type before the storm occurs. Therefore it is important to find 

out the physical parameterizations which generally perform well. According to the REs of the 16 members for the six storm 
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events showed in Table 5, the AREs of the six storm events for one certain member are calculated. It is interesting to find 

that members containing BMJ have relatively higher AREs, which are 52.49% (member 9), 48.30% (member 10), 48.35% 

(member 11) and 49.05% (member 12) respectively. The relative lower AREs (34.02~39.50%) can be found in members 

which contain KF. The members containing GD perform better than members with BMJ while worse than members with KF. 

The range of the AREs is 42.32~44.53%. The members without cumulus parameterization also perform better than members 5 

with BMJ while worse than members with KF and the range of the AREs is 39.55~49.16%. That is to say, the cumulus 

parameterizations have significant effect on the performance of the WRF model and BMJ performs the worst in the three 

cumulus parameterizations. Janjić (2000) indicated that BMJ had the poor performance in accurately reproducing the range 

and the intensity of the low-level jet. The strong ability of BMJ in simulating the upward transportation of vapor always 

results in underestimation of the rainfall amount. That is the main reason why BMJ is not a good choice in the study area. 10 

Additionally, it is necessary to use cumulus parameterization for the simulation of the rainfall accumulation and 

spatiotemporal rainfall distribution in the study area. However, the threshold of the horizontal resolution need to be further 

discussed for whether to use the cumulus parameterization. 

The uncertainties of the rainfall processes affect the choice of the physical parameterizations in a certain area. It is necessary 

to select the most appropriate physical parameterizations to design the physical ensemble for rainfall simulation and 15 

prediction. In this study, the 16 members of the physical ensemble are constituted from two microphysics, two PBLs and 

three cumulus parameterizations, which are proved to be appropriate and widely used in the neighboring areas of the study 

sites (Hong et al, 2006; Miao et al, 2011; Pan et al, 2014). With the development of the WRF model, more sophisticated and 

realistic physical parameterizations could be developed and should be tested in the study area. 

The verification of the WRF model has always been recognized as a worthy issue to be explored. In this study, a verification 20 

method which can estimate the rainfall simulations in both the spatial and the temporal dimension. It is assumed that the 

observations from rain gauges are accurate and representative for the two study sites. However, it brings uncertainties to use 

point-based observations to evaluate grid-based simulations. More grid-based observational data should be involved to 

improve the reliability of evaluation, especially those from weather radar and remote sensing. 

Ultimately, the main goal of rainfall forecasts is to obtain efficient flood forecasts. The peak flood, flood peak appearance 25 

time, flood process are all significantly influenced by the rainfall accumulations and the spatiotemporal distribution of the 

rainfall (Schellekens et al, 2011; Cane et al, 2013; Fan et al, 2015). Event V which occurred on 21 July 2012 has caused the 

greatest flood during the past 10 year in Jing-Jin-Ji (Beijing-Tianjin-Hebei) area and received widespread attention in China. 

The 24 h rainfall accumulation was 155.43 mm in Zijingguan catchment and the peak flow reached 2580 m3/s at the 

catchment outlet. In such cases, accurate rainfall simulations and predictions can do great help to flood warning. However, to 30 

analyze the usefulness of the WRF simulations to flood warning, the rainfall-runoff transformation processes should be 

further considered. This will involve many uncertainties, such as the choice of the rainfall-runoff model, the data used for 

model calibration, and the involvement of a real-time updating scheme, etc., which also have considerable impact on the 
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accuracy of the flood forecasting results. The exploration of different parameterizations from the flood warning purposes is 

an important issue and worthy to be discussed in further study. 

6 Conclusion 

In this study, the FNL data from NCAR provide the initial and boundary conditions for the WRF model, which is used for 

rainfall simulation of six representative storm events with the duration of 24h in Fuping and Zijingguan catchments, locating 5 

in the south and the north reaches of Daqinghe Basin in semi-humid area of North China. Two microphysics, two PBLs and 

three cumulus parameterizations are selected to develop 16 members of the physical ensemble of the WRF model. Both the 

cumulative amount and the spatiotemporal patterns of the simulated rainfall are analysed and verified. The relative error is 

used to evaluate the 24 h accumulated areal rainfall. The spatial rainfall distributions and temporal rainfall patterns are 

verified by a two-dimensional verification scheme including 4 categorical and 3 continuous indices. The six storm events are 10 

classified into four types based on the spatiotemporal evenness of the rainfall. In general, the ranking of the average model 

performance for different storm types is type 1 > type 2 > type 3 > type 4, from the best to the worst regarding both the 

cumulative rainfall amounts and the spatiotemporal rainfall patterns. Negative correlation is found between the simulation 

error and the rainfall evenness in both spatial and temporal dimensions. Storm events with more evenly-distributed rainfall 

tend to have better simulation results in space and time. In addition, for the small catchment scale, accumulated areal rainfall 15 

is more important than the spatiotemporal rainfall distributions. According to the REs of rainfall accumulations, member 4 is 

the better choice for storm type 1, 2 and 4, while member 9, 10, 11 and 12 have the worse performance for storm type 1 and 

4. For type 3 event, member 5 and 7 are the better choices. It provides a reference for choosing the optimal ensemble in the 

study area for different storm types. 

This study provides a reference for ensemble simulation of different rainfall types in semi-humid area of China the WRF 20 

model. However, the simulated rainfall has relatively large errors and the simulation results of the temporal rainfall patterns 

are always unreliable, especially the results of event III and V which cannot be used directly in hydrological studies. Data 

assimilation has been proved to be an effective method in improving the rainfall simulation results of the WRF model by 

many studies (Ha and Lee, 2012; Liu et al, 2012; Routray et al., 2012). Data assimilation can ingest various sources of 

observations (surface observed data, radar data, satellite data and sounding data, etc.) into the WRF model products and then 25 

use the respective error statistics to update and correct the WRF model products (Wan and Xu, 2011; Ha et al., 2014; Xie et 

al., 2016). More studies should be carried out in the study sites with the assistance of data assimilation so that the rainfall 

products from WRF model can be further improved. 
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Figure captions 

 

Figure 1: The nested domains and the orography of the Fuping catchment and Zijingguan catchment. 

Figure 2: The location of Daqinghe catchment in the Northern China (light shading) and the locations of the two study sites in 

Daqinghe catchment. 5 

Figure 3: Cumulative curves of the observed and simulated areal rainfall for the six storm events. 

Figure 4: Spatial values of the four categorical indices for different storm events with the 16 members of the physical ensemble. 

Figure 5: Spatial values of the three continuous indices for different storm events with the 16 members of the physical ensemble. 

Figure 6: The relationship between RMSE and Cv in the spatial dimension. 

Figure 7: Temporal values of the four categorical indices for different storm events with the 16 members of the physical ensemble. 10 

Figure 8: Temporal values of the three continuous indices for different storm events with the 16 members of the physical ensemble. 

Figure 9: The relationship between RMSE and Cv in the temporal dimension. 

 

Table captions 

 15 

Table 2: The constitution of the WRF physical ensembles. 

Table 2: Durations and rainfall accumulations of the six selected 24-h storm events. 

Table 3: Spatial and temporal Cv of the observed rainfall for the six storm events. 

Table 4: Rain/ no rain contingency table for the WRF simulation against observation. 

Table 5: Rankings of the 16 members of the physical ensemble according to RE (%) of the simulated rainfall accumulations for the 20 
storm events. 

Table 6: AREs of the 16 members of the physical ensemble for the four types of storm events (%). 

Table 7: Average index values of the 16 members of the physical ensemble for the simulations of the spatial rainfall distributions. 

Table 8: Average index values of the 16 members of the physical ensemble for the simulations of the temporal rainfall patterns. 
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Figure 1. The nested domains and the orography of the Fuping catchment and Zijingguan catchment
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Figure 2. The location of Daqinghe catchment in the Northern China (light shading) and the locations of the two study sites 

in Daqinghe catchment 
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Figure 3. Cumulative curves of the observed and simulated areal rainfall for the six storm events
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Figure 4. Spatial values of the four categorical indices for different storm events with the 16 members of the physical 5 
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Figure 5. Spatial values of the three continuous indices for different storm events with the 16 members of the physical 

ensemble5 
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Figure 6. The relationship between RMSE and Cv in the spatial dimension
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Figure 7. Temporal values of the four categorical indices for different storm events with the 16 members of the physical 5 
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Figure 8. Temporal values of the three continuous indices for different storm events with the 16 members of the physical 

ensemble5 
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Figure 9. The relationship between RMSE and Cv in the temporal dimension
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Table 1. The constitution of the WRF physical ensemble 

Ensemble ID Microphysics PBL Cumulus parameterization 

1 Lin YSU KF 

2 WSM6 YSU KF 

3 Lin MYJ KF 

4 WSM6 MYJ KF 

5 Lin YSU GD 

6 WSM6 YSU GD 

7 Lin MYJ GD 

8 WSM6 MYJ GD 

9 Lin YSU BMJ 

10 WSM6 YSU BMJ 

11 Lin MYJ BMJ 

12 WSM6 MYJ BMJ 

13 Lin YSU / 

14 WSM6 YSU / 

15 Lin MYJ / 

16 WSM6 MYJ / 
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Table 2. Durations and rainfall accumulations of the six selected 24-h storm events 

Event ID Catchment Storm start time Storm end time Accumulated 24-h rainfall (mm) 

I Fuping 29/07/2007 20:00 30/07/2007 20:00 63.38 

II Fuping 30/07/2012 10:00 31/07/2012 10:00 50.48 

III Fuping 11/08/2013 07:00 12/08/2013 07:00 30.82 

IV Zijingguan 10/08/2008 00:00 2008/08/10 24:00 45.53 

V Zijingguan 21/07/2012 04:00 22/07/2012 04:00 155.43 

VI Zijingguan 06/06/2013 22:00 07/06/2013 22:00 52.06 
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Table 3. Spatial and temporal Cv of the observed rainfall for the six storm events 

Indices 
Type 1 Type 2 Type 3 Type 4 

Event I Event II Event VI Event IV Event V Event III 

Spatial Cv 0.3975 0.1927 0.3258 0.4588 0.6098 0.7400 

Temporal Cv 0.6011 1.0823 1.8865 1.3779 1.8865 2.3925 
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Table 4. Rain/ no rain contingency table for the WRF simulation against observation 

WRF/observations Rain No rain 

Rain NA (hit) NB (false alarm) 

No rain NC (failure) ND (correct negative) 
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Table 5. Rankings of the 16 members of the physical ensemble according to RE (%) of the simulated rainfall accumulations 

for the storm events 

Ranking 
Type 1 Type 2 Type 3 Type 4 

I II VI IV V III 

1 
Member 5 

(-0.17) 

Member 8 

(-24.05) 

Member 3 

(-16.32) 

Member 15 

(-21.89) 

Member 10 

(-57.89) 

Member 4 

(-42.41) 

2 
Member 4 

(3.85) 

Member 12 

(-25.12) 

Member 4 

(-17.03) 

Member 5 

(-25.77) 

Member 2 

(-58.91) 

Member 2 

(-45.35) 

3 
Member 2 

(7.23) 

Member 4 

(-29.12) 

Member 1 

(-33.05) 

Member 7 

(-27.03) 

Member 7 

(-59.22) 

Member 16 

(-46.55) 

4 
Member 16 

(-7.47) 

Member 10 

(-30.09) 

Member 2 

(-38.87) 

Member 16 

(-27.13) 

Member 1 

(-59.31) 

Member 3 

(-46.93) 

5 
Member 6 

(10.17) 

Member 6 

(-30.72) 

Member 12 

(-45.79) 

Member 6 

(-32.19) 

Member 5 

(-59.54) 

Member 15 

(-47.59) 

6 
Member 1 

(10.55) 

Member 14 

(-32.10) 

Member 11 

(-46.60) 

Member 13 

(-32.43) 

Member 12 

(-59.57) 

Member 1 

(-48.59) 

7 
Member 15 

(-10.99) 

Member 7 

(-32.23) 

Member 7 

(-51.66) 

Member 9 

(-33.17) 

Member 4 

(-60.15) 

Member 7 

(-69.79) 

8 
Member 14 

(-10.83) 

Member 2 

(-33.27) 

Member 5 

(-52.76) 

Member 8 

(-33.90) 

Member 11 

(-60.20) 

Member 8 

(-70.95) 

9 
Member 7 

(13.96) 

Member 15 

(-33.36) 

Member 8 

(-53.12) 

Member 11 

(-36.23) 

Member 9 

(-60.24) 

Member 13 

(-73.88) 

10 
Member 3 

(17.54) 

Member 16 

(-34.03) 

Member 6 

(-54.57) 

Member 1 

(-37.53) 

Member 6 

(-60.81) 

Member 14 

(-77.06) 

11 
Member 8 

(18.44) 

Member 11 

(-34.59) 

Member 15 

(-56.48) 

Member 10 

(-39.93) 

Member 3 

(-61.17) 

Member 5 

(-77.19) 

12 
Member 13 

(-20.12) 

Member 3 

(-39.71) 

Member 10 

(-57.85) 

Member 14 

(-40.24) 

Member 14 

(-62.37) 

Member 6 

(-78.70) 

13 
Member 10 

(-22.63) 

Member 13 

(-39.72) 

Member 16 

(-58.78) 

Member 3 

(-42.64) 

Member 8 

(-62.43) 

Member 10 

(-81.42) 

14 
Member 11 

(-27.30) 

Member 9 

(-40.24) 

Member 9 

(-59.85) 

Member 12 

(-42.99) 

Member 13 

(-65.12) 

Member 9 

(-83.77) 

15 
Member 12 

(-34.24) 

Member 5 

(-40.41) 

Member 13 

(-63.66) 

Member 4 

(-51.58) 

Member 16 

(-65.73) 

Member 11 

(-85.16) 

16 
Member 9 

(-37.69) 

Member 1 

(-42.15) 

Member 14 

(-65.04) 

Member 2 

(-53.36) 

Member 15 

(-66.99) 

Member 12 

(-86.59) 
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Table 6. AREs of the 16 members of the physical ensemble for the four types of storm events (%) 

Type 1 Type 2 Type 3 Type 4 

I II VI IV V III 

15.82  33.80  43.96  48.22  64.18  66.37  
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Table 7. Average index values of the 16 members of the physical ensemble for the simulations of the spatial rainfall 

distributions 

Types of storm events 
Categorical indices Continuous indices (%) 

POD FBI FAR CSI RMSE MBE SD 

Type 1 Event I 0.8440  0.9815  0.1313  0.7565  61.74 21.21 53.54 

Type 2 
Event II 0.8934  1.5877  0.4238  0.5357  40.07 35.67 15.74 

Event VI 0.9014  2.8866  0.6187  0.3516  66.36 42.74 49.78 

Type 3 
Event IV 0.6460  0.9974  0.3285  0.4873  60.46 45.49 41.10 

Event V 0.4671  0.6906  0.3215  0.3821  78.65 61.51 51.36 

Type 4 Event III 0.0503  1.6301  0.9731  0.0194  96.88 66.14 63.53 
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Table 8. Average index values of the 16 members of the physical ensemble for the simulations of the temporal rainfall 

patterns 

Types of storm events 
Categorical indices Continuous indices (%) 

POD FBI FAR CSI RMSE MBE SD 

Type 1 Event I 0.8341 1.0389 0.1621 0.7264 102.18 -20.37 805.67 

Type 2 
Event II 0.8531 2.9596 0.4654 0.5153 116.27 -37.74 236.57 

Event VI 0.8044 3.5119 0.7310 0.2527 161.29 -45.55 787.85 

Type 3 
Event IV 0.5683 0.8429 0.2931 0.3894 167.89 -43.11 650.35 

Event V 0.4083 1.6646 0.2880 0.2947 140.00 -65.60 812.78 

Type 4 Event III 0.0427 2.1653 0.9040 0.0148 253.27 -66.08 948.23 

 


