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Abstract: Conventional outputs of physics-based landslide forecasting models are presented as deterministic 10 

warnings by calculating the safety factor (Fs) of potentially dangerous slopes. However, these models are highly 11 

dependent on variables such as cohesion force and internal friction angle which are affected by high degree of 12 

uncertainty especially at a regional scale, which result in unacceptable uncertainties of Fs. Under such circum-13 

stances, the outputs of physical models are more suitable if presented in the form of landslide probability values. 14 

In order to develop such models, a method to link the uncertainty of soil parameter values with landslide probabil-15 

ity is devised. This paper proposes the use of Monte Carlo method to quantitatively express uncertainty by as-16 

signing random values to physical variables inside a defined interval. The inequality Fs < 1 is tested for each pixel 17 

in n simulations which are integrated in a unique parameter. This parameter links the landslide probability to the 18 

uncertainties of soil mechanical parameters and is used to create a physics-based probabilistic forecasting model 19 

for rainfall-induced shallow landslides. The prediction ability of this model was tested in a case study, in which 20 

simulated forecasting of landslide disasters associated to heavy rainfalls on July 9 of 2013 in the Wenchuan 21 

earthquake region of Sichuan province, China was performed. The proposed model successfully forecasted land-22 

slides in 159 of the 176 disaster points registered by the geo-environmental monitoring station of Sichuan prov-23 

ince. Such testing results indicate that the new model can be operated in a high efficient way and show more reli-24 

able results attributing to its high prediction accuracy. Accordingly, the new model can be potentially packaged 25 

into a forecasting system for shallow landslides providing technological support for the mitigation of these disas-26 

ters at regional scale. 27 
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1 Introduction  29 

Rainfall-induced shallow landslides are common in many mountainous areas and are considered extremely 30 

dangerous (Varnes, 1978). In despite the low volume of debris deposits involved in these processes (generally < 31 

1,000 m3), rainfall-induced shallow landslides present high moving speeds (Cruden and Varnes, 1996), evolve 32 

very rapidly, and can propagate even in presence of obstacles (Davide T. and Davide R., 2010). Current regional 33 

landslide forecasting models mainly focuses on shallow landslides. They can be classified in three categories: 34 

statistics-based methods (Caine, 1980; Crosta, 1998; Crosta and Frattini, 2001; Aleotti, 2004; Wei et al., 2004; 35 

Wieczorek and Glade, 2005; Cardinali et al., 2006; Jacob et al., 2006), contributor-factor-based forecasting meth-36 

ods (Dai and Lee 2003; Wei et al., 2007a; Chang et al. 2008) and physics-based forecasting methods (Montgom-37 

ery and Dietrich, 1994; Wu and Sidle, 1995; Montgomery et al., 1998; Iverson, 2000; Wilkinson et al., 2002; 38 

Crosta and Frattini, 2003; Salciarini et al., 2006). The physics-based forecasting models have overcome the draw-39 

back of statistics-based models with respect to excessive dependence on rainfall data. Furthermore, by devising 40 

mechanisms for coupling rainfall with soil surface mechanics using hydrological process simulation (Zhang et al., 41 

2014a), the physically-based models represent an improvement over the independent treatment of these factors by 42 

contributor-factor-based forecasting models e.g. (Wei et al., 2007a). 43 
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The physics-based forecasting model is able to describe the variation rule of hydrological parameters induced 44 

by rainfall infiltration and further explain the failure mechanism of a slope due to the variation of hydrological 45 

parameters. Those characteristics explain the interest of scholars to the physics-based forecasting model and its 46 

implementation at regional scales (Schmidt et al., 2008; Montrasio et al., 2011; Raia et al., 2014). The most com-47 

mon analysis unit used in physics-based forecasting models is the pixel, used for example in the well-known 48 

TRIGRS model (Baum, et al., 2002, 2008). The safety factor of each pixel within a forecasting region, Fs (Fs=R/S: 49 

where R is shear resistance and S is the driving force) is calculated considering rainfall infiltration, pixels are then 50 

identified as unstable (Fs < 1) or stable (Fs ≥ 1). From these results, landslide warnings are expressed determinis-51 

tically by labeling each pixel of the forecasting area as either ‘landslide occurrence’ or ‘nonoccurrence’. 52 

However, it must be noted that the underlying physics-based forecasting model requires large number of sur-53 

face data to be assigned to each pixel before safety factors can be calculated. The physics-based model is sensitive 54 

to the accuracy of such data, especially the soil mechanical parameters (cohesion force and internal friction angle) 55 

that can significantly influence the pixel stability. In general, and specially for large areas, seemingly deterministic 56 

soil mechanical parameters at pixel level used in physical models have different amounts of uncertainty (Schmidt 57 

et al., 2008; Rossi et al., 2013), which thus generate uncertain forecasting results. In this scenario, it is unwise to 58 

give deterministic forecasting results to the public while using the physical model in local forecasting service.  59 

Providing probabilistic landslide forecasting results is the more direct solution to this issue. Currently, several 60 

scholars advance in the development of physics-based probabilistic forecasting models (Schmidt et al., 2008; Raia 61 

et al., 2014). However, the relationship between the landslide probability and the uncertainties in soil mechanical 62 

parameters is not addressed in their models. This effectively renders such probabilistic models actually still in 63 

deterministic mode. For example, in Raia et al. (2014) a series of deterministic forecasting results are generated by 64 

the model during the simulation process from which an experienced forecaster with professional knowledge of 65 

landslides is necessary for picking up the most probable one. Consequently, this approach requires a large number 66 

of calculations, which is unsuitable for operational forecasting of shallow landslides.  67 

This paper focuses on an effective method for linking landslide probability to the uncertain soil mechanical 68 

parameters. It uses Monte Carlo methods to propose a probabilistic forecasting model with a high calculating 69 

efficiency. The proposed model can directly generate probabilistic forecasting results instead of serial of deter-70 

ministic results, and hence it will be more suitable to operational forecasting of shallow landslides, in special at 71 

the regional scale. 72 

The next section introduces the physics-based probabilistic forecasting for shallow landslides model. Third 73 

section addresses the general aspects of its application to a regional scale shallow landslide forecasting system. 74 

Fourth section describes a case study in which the effectiveness of the proposed model is analyzed in a study case. 75 

Sections five and six discuss the results and states the conclusions of this study respectively.   76 

2 Probabilistic forecasting for shallow landslides 77 

2.1 The Infinite slope model for unsaturated soil slopes using safety factor Fs 78 

There are two mechanisms that trigger failure in slopes subject to rainfall infiltration. They are loss of matrix 79 

suction and increasing of a positive pore water pressure (Li et al., 2013). In southwestern China, precipitation is 80 

rich in summer due to monsoon conditions from both Pacific and India Ocean (Wei et al., 2006). Before of the 81 

raining season slopes in this area are generally unsaturated during the relatively dry seasons. Almost all landslide 82 

disasters in southwestern China occur during the rainy season when the matrix suction of topsoil’s suddenly de-83 

creases due to monsoon heavy rains. Consequently, this research focuses on the stability analysis of unsaturated 84 

soil mass. 85 

During the evolution process from stability to failure driven by rainfall infiltration, the rapid loss of suction 86 

due to the increasing soil water content is the key triggering factor for shallow landslides. The safety factor Fs is 87 



3 
 

used to evaluate the stability of slopes under the action of rainfall infiltration; in this scenario, the failure plane is 88 

governed by the Mohr-Coulomb failure criteria of unsaturated soil mass, and is assumed to be parallel to the slope 89 

surface (Fig.1). The expression of Fs based on the shear strength formula of the unsaturated soil (Fredlund and 90 

Rahardjo, 1993) and the infinite slope model can be expressed as follows: 91 
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Where c is a stress and can be named of the cohesion force, φ is the internal friction angle, φb is related to the 93 

matrix suction (which is close to the internal friction angle φ in the condition of the low matrix suction), Hs is the 94 

instable soil depth, ψ is the matrix suction of the soil, which is a function of the soil water content described as 95 

follows (Van Genuchten, 1980): 96 
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where Se is the saturation degree, θs is the saturated water content, θr is the residual water content, θ is the soil 98 

water content of the current hour, α, n and m are the parameters of soil-water characteristic curve, and n=1–1/m. 99 

 100 
Fig.1 Infinite slope model for unsaturated soil in a slope 101 

2.2 Deterministic forecasting model using safety factor Fs 102 

   The infinite slope model aims to calculate the safety factor Fs to identify the stability of a slope. It has its basis 103 

in a theoretical hypothesis (Apip et al., 2010), which can describe the mechanical process of shallow landslides 104 

formation. This approach can give reliable results for each pixel as long as the soil mechanical parameters are 105 

accurate. From a deterministic point of view, this physical framework can be briefly drawn as follows: for each 106 

pixel in the forecast area, if Fs < 1 it’s considered unstable, while pixels with Fs ≥ 1 are considered to be stable.  107 

   Acquiring the values for the soil mechanical parameters necessary for the infinite slope model require the use 108 

of field sampling or soil-texture based methods (Blondeau, 1973; Apip et al., 2010; Zhang et al., 2014a; Zhang et 109 

al., 2014b). However, the precision of these methods are relatively low (Schmidt et al., 2008), thus subject to high 110 

levels of uncertainty. Consequently, the seemingly deterministic infinite slope model based on soil mechanical 111 

parameters of each pixel is in fact uncertain (Schmidt et al., 2008; Rossi et al., 2013). This will be reflected in the 112 

safety factors Fs of each pixel, leading to a situation in which, despite the advantages of the physical-based land-113 

slide forecasting model, it may be misleading if used in a deterministic way for real world applications.  114 

   This is not an issue for other landslide forecasting models. For example, although the input variables of the 115 
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contribution-factors-based forecasting model are also uncertain (Wei et al., 2007a) and thus it essentially belong to 116 

statistical models (Zhang et al., 2014a) it successfully account for the relationship between uncertainties of input 117 

variables and results using fuzzy mathematics so that they are expressed as probabilistic forecasting for landslides. 118 

The landslide probability is divided into five grades from 1st to 5th level, which represents a low, relative low, 119 

medium, high and extremely high probability of occurrence of landslides, respectively. This forecasting result 120 

conveys clearer landslide risk levels to the public (Wei et al., 2007b).  121 

   Due to the above reasons it is relevant to identify an effective relationship between the landslide probability 122 

and uncertain input variables with uncertainty (cohesion force and internal friction angle) in a physics-based 123 

probabilistic forecasting model.  124 

2.3 Probabilistic forecasting model for shallow landslides 125 

   In order to link landslide probability to uncertain variables, the nature of this uncertainty should be quantita-126 

tively expressed in mathematical language. Then, a physical parameter associated with both, input variables and 127 

landslide probability will be used to formalize the linkage. 128 

   The uncertainty of physical parameters can be described by a probability density function, e.g. the common 129 

used functions of normal distribution and the uniform distribution (Schmidt et al., 2008; Raia et al., 2014). The 130 

physical parameters submit the normal distribution meaning that they can be expressed as c=N(μc, σc
2), φ= N(μφ, 131 

σφ
2). In this distribution function, μ represents the mean value of the soil parameters, and σ represents the standard 132 

deviation. So if the normal distribution function is adopted to describe the uncertainty, the two key parameters 133 

(mean value μ and standard deviation σ) should be firstly determined in order to establish the corresponding spe-134 

cific distribution function for each pixel within study area. To achieve this purpose, numerous samples and ex-135 

perimental works are necessary and it is very difficult to be implemented in a large region. Because the uniform 136 

distribution suited in the investigation of large areas where information on the geo-hydrological properties is lim-137 

ited (Raia et al., 2014), which can easily allow authors to get random parameters from its set approximate varia-138 

tion range instead of large amount of field and experimental works in large area. Accordingly, the uncertainties of 139 

cohesion force and internal friction angle are described here as uniform probability distributions in the intervals of 140 

c=U(cmin, cmax), and φ=U(φmin, φmax), respectively. Then, Monte Carlo method can be used to randomly extract 141 

cohesion force and internal friction angles from the two intervals n times in any forecasting step. This random 142 

approach is used to account for the uncertain nature of soil mechanical parameters. The detailed description of 143 

random extracting process is as follows: the extraction of the two parameters is dependent on the variable ri which 144 

is described as uniform probability distributions in the interval of ri=U(0,1), the random values of cohesion force 145 

ci and internal friction angle φi can be identified via Eq. 3 and Eq.4. In these equations, ri can help to get a random 146 

number ci with uniform distribution rule between cmin and cmax, because the variable ri submits this distribution 147 

rule between 0 and 1. In the whole extracting process, each ri may have different value and corresponds to a kind 148 

of uncertainty of mechanical parameters, but in one extracting step, the calculated ci and φi in Eq. 3 and Eq.4 use a 149 

same value of ri. 150 

ci=ri(cmax-cmin)+cmin                                  (3) 151 

φi=ri(φmax-φmin)+φmin                                  (4) 152 

There, i is the number of some pixel, cmin and φmin are lower borders of intervals of the two mechanical parameters 153 

expected values; cmax and φmax are the upper borders. Both the lower and upper borders will vary from pixel to 154 

pixel, because each pixel with different lithology has different mechanical parameters. For any pixel in any fore-155 

casting step, a matrix Mi can be generated after the n-times random extraction process:  156 
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Any element contained in Mi has a specific physical meaning representing as a whole the physical phenome-158 

non of uncertainty.  159 

   Provided other parameters identified in Eq. 1, each set of [ci, φi] in Mi can generate a safety factor 160 

Fsi=[Fs1,Fs2,Fs3,…,Fsn]. The array of safety factors Fsi reflects n possible stable states for a pixel under these 161 

physical conditions. It’s possible from there to identify a failure probability by the number of Fsi 1 (failure) in 162 

the n different states in the form of a ratio P (P [0,1] ) of Fsi 1 representing a tendency of a pixel to failure from 163 

stability. 164 

1FsSum
P

n
                                      (6) 165 

Larger P values in Eq. 6 indicates a forecasting result favorable to a high occurrence probability of failure un-166 

der uncertain variables. This interpretation implies that a pixel will tend to one end failure when P exceeds 50% 167 

and its failure probability will only increase with larger values of P. Since P is derived from series of random 168 

(uncertain) variables [ci, φi] via Eq.1 and Eq. 6, and is also directly associates with the landslide probability, the 169 

ratio (P [0,1] ) of Fsi 1 is a strong candidate for linking the landslide probability to the uncertain soil mechan-170 

ical parameters.  171 

For the purposes of practical implementation of this forecasting model, P is divided into a series of reference 172 

intervals in Table 1, the occurrence probability of shallow landslides increase from 1st interval to 5th interval of 173 

P. Five grades of landslide warnings are defined accordingly and color-coded Table 1. 174 

Table 1 Reference intervals for shallow landslides forecasting based in probabilistic safety factor 175 

Ratio intervals/% 20P   20 50P   50 60P   60 80P   80 100P   

Warning degree 1 2 3 4 5 

Warning color Colorless Blue Yellow Orange Red 

3 Probabilistic shallow landslides forecasting method at regional scale 176 

3.1 Gathering basic data necessary for landslide forecasting 177 

Topography is the main factor in shallow landslides. Nowadays, obtaining a DEM of precision adequate for 178 

regional scale forecasting is straightforward. The DEM of the study zone is re-sampled into pixels with dimen-179 

sions according to the extension of the area. The parameters required to calculate the ratio P for each pixel from 180 

the array of safety factors Fsi from a series of randomly extracted [ci, φi] are identified in Eq.1. In this case matrix 181 

suction, which is associated with the soil water content, should be identified by hydrological process simulation. 182 

The key data necessary for the hydrological process simulation include the spatial distribution of precipitation, 183 

land use, soil type and NDVI. Precipitation data with the same solution of the DEM can be obtained by 184 

re-sampling rainfall prediction from Doppler radar supplied by meteorological bureaus. Land use, soil type and 185 

soil depth can be obtained from corresponding databases, all of which should be transformed into grid data with 186 

the same solution of DEM. Other data necessary for stability calculations are slope angle for each pixel, parame-187 

ters from soil-water characteristic curve (α, m, n), and soil mechanical parameters. Slope angles can be derived 188 

from DEM using spatial analyst tools, parameters (α, m, and n) of the soil-water characteristic curve are derived 189 

from the different soil types within the pixel.  190 

Regarding the identifications of soil mechanical parameters (cohesion force and internal friction angle), a rela-191 

tively reliable way such as field sampling or soil-texture based methods should be used to assign an initial basic 192 
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value to each pixel. Although these values include high uncertainty levels, they are used only as reference values 193 

while setting intervals of c=U(cmin, cmax), and φ=U(φmin, φmax) (Raia et al., 2014). In this study, the lithology of the 194 

study zone is derived from a geological map, and the mechanical parameters (cohesion force and internal friction 195 

angle) of the corresponding lithology are identified using a rock mechanics handbook (Ye et al., 1991). Finally the 196 

data is assigned to each pixel using the grid cells of the DEM as reference.  197 

   From Eq.3 and Eq.4, it is necessary to identify the lower and upper border of intervals of the soil mechanical 198 

parameters. However, the exact values for lower (cmin and φmin) and upper (cmax and φmax) limits are very difficult 199 

to determine. From currently published papers, there is no known theoretical or experimental method to solve this 200 

issue. Raia et al. (2014) used variations of 1%, 10% and 100% around the values of cohesion force and internal 201 

friction angle (from field tests) to get several intervals, showing that the forecasting effectiveness is significantly 202 

improved by using a large variations. Consequently, this method applies a variation of 100% around the mean 203 

value of these parameters for each pixel to set the corresponding lower and upper borders as follows:  204 

crandom[0.5×corigin, 2×corigin]                               (7) 205 

φrandom[0.5×φorigin, 2×φorigin]                              (8) 206 

Where crandom and φrandom are the randomly extracted cohesion forces and internal friction angles, corigin and φorigin 207 

are the mean value of each pixel (in this case from the rock mechanics handbook (Ye et al., 1991)).  208 

3.2 Pixel level hydrological process simulation 209 

The simulation of hydrological processes including rainfall interception, infiltration, and evapotranspiration is 210 

extremely complicate. However, rainfall infiltration is the key factor in the distribution of soil water content in 211 

underlying surface which simplify the analysis. In southwestern region of China slopes are almost unsaturated 212 

before the rainy season due to characteristic distribution of rainfall influenced by monsoon (Zhang et al., 2014b). 213 

The infiltration process in the vertical direction in unsaturated soil mass can be described by the 1D Richards’s 214 

equation (1931): 215 
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                               (9) 216 

Where θ is soil water content, D(θ)=K(θ)/(dθ/dψ) is the hydraulic diffusivity, ψ is the suction of unsaturated soil, z 217 

represents the soil depth, which is positive along the soil depth and have the topsoil as the origin point, K(θ) is the 218 

hydraulic conductivity. The matrix suction is the dominant external force to drive the water movement in unsatu-219 

rated soil mass, which can be calculated from Eq. 2.  220 

   Infiltration upper border: If the topsoil is unsaturated, it has a strong infiltration capacity (Lei et al., 1988). 221 

Then, while the rainfall intensity is less than the infiltration capacity of the topsoil, all precipitation will infiltrate 222 

into topsoil without any runoff. In this scenario, the infiltration border is governed by Eq. (10): 223 
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, 0, 0t z                                (10) 224 

Where R(t) is the rainfall intensity at time t. Here, the part of precipitation that exceeds the capacity of infiltration 225 

of the topsoil will transform into runoff (no water storage above topsoil). In this case the topsoil of a pixel is con-226 

sidered saturated. Thus, the Eq.10 that governs infiltration upper border is transformed into the equation of θ=θs 227 

(Lei et al., 1988). There θs is the saturated moisture corresponding to the soil type.    228 

Infiltration bottom border: It has been experimentally demonstrated that the soil water content beyond a soil 229 

depth of 40 cm is barely influenced by rainfall infiltration (Cui et al., 2003). Consequently a region with a 230 

groundwater level near the surface of the soil has hydrological characteristics in which rainfall infiltration can 231 

hardly induce any groundwater level variation. In this case, it is reasonable to ignore the water exchange process 232 

between the lower boundary and groundwater (Zhang et al., 2015).  233 

   An implicit finite difference method is used for discretization of the 1D differential equation of water move-234 
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ment. The calculation time t is segmented into several intervals with the same time gap △t, and the soil depth L 235 

of each pixel is segmented into soil layers (each layer is named of i number) with the same depth △z. 236 

Identifying the initial soil water content is an important issue during the hydrological simulation process. 237 

However, this value cannot be directly determined at any given time for a large region due to complex rainfall 238 

infiltration and evapotranspiration interactions. In the case of southwestern China, the winter is generally a rela-239 

tively dry season, thus the soil water content value of the topsoil is very low closing to the residual water content 240 

of the soil type (Zhang et al., 2014b). This situation is exploited setting the simulation time to start on January 1 of 241 

the forecasting year (driest month in winter), which allows the use of the residual water content corresponding to 242 

the soil type as and the initial value of the topsoil water content. Measured meteorological data from January 1 are 243 

then feed to the simulation, which allows for a relatively accurate initial value of soil water content for the land-244 

slide forecasting. Each simulation step takes also into account the rainfall interception and evapotranspiration 245 

processes by means of the algorithm of distributed hydrological model GBHM (Yang et al., 2002).  246 

After the hydrological simulation process identify the initial soil water content of each pixel, the simulation 247 

focuses on the extraction of key hydrological parameters (soil water content and matrix suction) necessary for the 248 

stability calculation of each pixel using the expected rainfall from Doppler radar forecasting. During this last stage 249 

in the simulation in which landslide forecasting is performed, the evapotranspiration processes is not considered 250 

since this period is typically short, with rainfalls, negligible sunshine and lower temperatures.  251 

3.3 Probabilistic landslide forecasting at pixel level 252 

During the forecasting stage, the hydrological parameters (soil water content and matrix suction) of each pixel 253 

in each forecasting step △t are extracted via hydrological process simulation. Then the ratio P is computed for 254 

each pixel in several steps as follows: (1) Hs representing the instable soil depth in Eq.1is not equal to the soil 255 

depth L in Section 3.2, and cannot be identified in advance. We have to divide each pixel with a certain soil depth 256 

L into several soil layers in order to calculate the Fs using Eq.1 layer by layer. When the calculated soil layer is the 257 

jth, the parameters Hs will be equal to the sum of all the soil layers above the jth layer (including the depth of the jth 258 

soil layer). As mentioned in Section 3.2, each pixel was divided into soil layer with a same depth. The matrix suc-259 

tion and soil water content are the important hydrological parameters to the stability analysis of pixel which will 260 

be calculated and saved in each divided soil layer after the hydrological process simulation. So we adopt the same 261 

discretization rule during the stability analysis in order to easily extract these hydrological parameters(2) The 262 

Monte Carlo method is used to extract the cohesion force and the internal friction angle n times from the corre-263 

sponding intervals (c=U(cmin, cmax), and φ=U(φmin, φmax)) of each pixel; (3) The safety factor Fs of each divided 264 

layer within one pixel is calculated after each extraction, using the soil mechanical parameters and the hydrologi-265 

cal parameters only related to time as inputs of Eq.1, when the Fs of jth layer is less than 1, then the calculation 266 

process within the pixel will stop; (4) Once the Monte Carlo process end, the total times SumFs<1 (a count of the 267 

number of occurrences satisfying the instability condition) is obtained, and the ratio P of Fs <1 is calculated by 268 

Eq.6; (5) Finally the interval of Table 1 where ratio P is located according to its value is assigned to the pixel as 269 

the early warning information to be broadcasted.  270 

After completing this process for all pixels within the forecasting region, the whole calculation at time t is fin-271 

ished, meanwhile a map of landslide warning degrees in the forecasting region will be generated at the end of each 272 

forecasting step. Such maps can then be used by the forecasting bureau of the region to issue landslide warnings to 273 

hazard mitigation units and the public. 274 

4 Verification of the probabilistic landslide forecasting model 275 

4.1 Study zone 276 

   The Wenchuan earthquake region with an area 3.14×104 km2 within Sichuan province, China is chosen as the 277 



8 
 

study zone in this study (Fig.2). In this region, at 14:28 PM (Beijing time) on May 12rd 2008, an Ms 8.0 earth-278 

quake occurred. Massive potential unstable slopes were left after this earthquake, which are known to readily 279 

evolve into shallow landslides by rainfall infiltration (Zhang et al., in Pres.). The close relationship between rain-280 

fall and landslides in this region has been demonstrated by the short lag time of landslides and its strong correla-281 

tion to rainfall time (Tang, 2010). The same study established that landslide events within the earthquake region 282 

are mainly in the form of shallow landslides (Tang, 2010). Tang (2010) also pointed out that shallow landslides 283 

will be active within Wenchuan earthquake region at least for the next ten years. Such conditions make this region 284 

ideal for implementation of shallow landslides forecasting models. 285 

 286 

Fig.2 Study zone and intensity distribution of Wenchuan earthquake 287 

4.2 Rainfall process and related landslide events used for testing 288 

   The chain of events in the Wenchuan earthquake area that ended in disastrous landslides in July 9th of 2013 289 

was chosen to evaluate the proposed landslide probabilistic forecasting method. These events started with heavy 290 

rainstorms in the area during the days from July 1th to July 8th of 2013. As the rainfall measured by the weather 291 

stations within the area shows (Fig.3), the maximum accumulated precipitation during these days reached 317.7 292 

mm, which become a key contributing factor for the landslide events of July 9th of 2013. 293 

            294 

Fig.3 Total rainfall from 1st to 7th of July 2013 295 
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   On July 9th of 2013, there was no evidence of decreasing rainfall intensity, on the contrary all evidence sug-296 

gested heavier rainfalls. Records from the rainfall forecasted by Doppler radar provided by the weather bureau of 297 

Sichuan province on that day, predicted a maximum 24-hour total precipitation within the earthquake region of up 298 

to 498 mm (Fig.4). Accordingly, the Weather Bureau of Sichuan province published red color warning signals 299 

(which are the highest alert degree) for some locations within the study region. On that day, 176 landslide events 300 

were reported within the study region (Fig.4) leading to casualties and serious economic losses for local residents 301 

(Zhang et al., 2014b). This typical landslide disaster triggered by intense rainfall is ideal to evaluate the main as-302 

pects of the implementation of the proposed probabilistic landslide forecast model at regional scales. 303 

 304 

Fig.4 Distribution of rainfall-induced landslides within Wenchuan earthquake region on July 9th of 2013 305 

4.3 Gathering of basic data of study zone 306 

   The topography of the study region (Fig.5) was described by 125 m × 125 m DEM. This way, the study 307 

region was segmented into 6965505 pixels. A data matrix with 2576 rows and 2704 columns was created from the 308 

DEM and saved in text format. The basic data for hydrological process simulation and stability was resampled to 309 

correspond to the same resolution of the DEM and saved as text matrices with the same dimensions. 310 
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 311 

Fig.5 DEM of Wenchuan earthquake area 312 

4.3.1 Data for hydrological process simulation 313 

The process of rainfall interception due to vegetation influence within the study region is taken into account 314 

using NDVI values. Generally, the vegetation, and thus the values of NDVI vary with the variation of land uses 315 

and seasons. In this case, NDVI values from the same reason of the adjacent year are considered reasonably close, 316 

since the distribution of land uses within a region is relatively stable. The monthly NDVI distribution over the 317 

study region in the precedent year (2012) was used to adjust for canopy rainfall interception during the hydrolog-318 

ical process simulation (Fig.6). 319 

    320 



11 
 

     321 

Fig.6 Distributions of the LAI within the study zone 322 

Other data required, such as land use (Figure 7 (a)), soil type (Figure 7 (b)), and the soil depth for Wenchuan 323 

earthquake region was obtained from the FAO database (http://www.fao.org/geonetwork/srv/en/main.home). The-324 

se data was processed using GIS functions so that they correspond to the pixels of the DEM.  325 

    326 

         (a) Distribution of land use                                        (b) Distribution of soil type 327 

Fig. 7 Information of land uses and soil types within the study zone 328 

The physical parameters of the soil required for the simulation of rainfall infiltration in the vertical direction 329 

were determined by the land use and standard soil types within the study region. The soil thickness ranged from 1 330 

to 4 m, soil depths of 1 m accounts for 44.1% of the study area, while deeper soils cover the remaining 55.9%. 331 

Each pixel was divided into 10 layers (along the soil depth in the vertical direction) during the hydrological pro-332 

cess simulation and stability analysis. There are 10 soil types in the area (shown in Fig. 7b). Their relevant physi-333 

cal properties are listed in Table 2.  334 

Table2 Soil-water parameters for hydrological simulation 335 

Soil type code Saturated moisture Residual moisture 
Parameters of curve Saturated hydraulic 

conductivity(mm/h) Alpha n 
3085 0.48278 0.07768 0.01896 1.40474 22.78608 
3963 0.47303 0.07347 0.01796 1.42367 22.46508 
3967 0.52726 0.08259 0.01867 1.41453 35.97075 
4269 0.45649 0.06905 0.02306 1.55872 32.68625 
4287 0.44596 0.07343 0.01971 1.47235 19.30871 
4288 0.43797 0.07175 0.02064 1.53067 24.80996 
4329 0.45049 0.07957 0.01604 1.44517 9.307170 
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4350 0.47990 0.07435 0.02156 1.42176 22.51646 
4351 0.48278 0.07723 0.02040 1.41974 21.61279 
4391 0.42784 0.06439 0.01623 1.63524 23.91267 
6998 0.46154 0.06817 0.01770 1.46884 23.60925 

4.3.2 Data for calculation of slope stability 336 

   The Eq.1 indicates that matrix suction, cohesion force, and internal friction angle are the key mechanical pa-337 

rameters influencing the slope stability. Simulation of the hydrological process is used to obtain the matrix suction 338 

of soil mass as a function of the soil water content as shown in Eq. 2. Cohesion forces and internal friction angles 339 

for each pixel updated from the old database (Liu et al., 2016) are determined according to lithology map and the 340 

rock mechanical handbook (Fig.8), the detailed process to obtain these data are as follows: each pixel will be 341 

firstly assigned the lithology attribution according to the lithology map, and then the rock mechanical handbook 342 

which contains the mechanical parameters of all lithology will be used to find the corresponding parameters of 343 

each pixel . These mechanical values are then used as a basic reference for constructing intervals of these parame-344 

ters (c=U(cmin, cmax), and φ=U(φmin, φmax)) for each pixel.  345 

    346 

        (a) Distribution of cohesion forces                           (b) Distribution of internal friction angles 347 

Fig.8 Mechanical paramters of soil used for calculation of slope stability 348 

4.4 Forecasting results 349 

The landslide probability in Wenchuan earthquake region on July 9, 2013 was calculated, along with col-350 

or-coded warnings for each pixel according to Table 1. This forecast covered 24 time nodes (hourly forecasts) 351 

covering the whole day. Two representative time nodes (at 6:00 AM and 15:00 PM) are chosen from the 24 h 352 

forecasting results for further analysis (figure 9). The detailed forecasting results are listed in Table 3. These de-353 

tails denote low variation in the forecast for these time nodes. 354 

Table 3 Quantity of pixels with warning information 355 

` Blue Yellow Orange Red 

pixel 

count 

6:00 AM 534 150 332 699 

15:00 PM 527 158 321 704 

 356 
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 357 

(a) Forecasting information at 6:00                             (b) Forecasting information at 15:00 358 

Fig.9 Landslide warning maps for Wenchuan earthquake region at two representative time nodes. 359 

Colored points in fig. 9 represent landslide disasters occurred on July 9, 2013. Green points represent land-360 

slides located in pixels forecasted with high degree of probability of landslides (orange-red), thus they are consid-361 

ered successfully forecasted or true positives (159 events). The other 17 events represented by yellow and red 362 

points denote landslide events in low warning areas, which are considered as failed-forecasted landslides or false 363 

negatives. These numbers indicate a missing-prediction rate of the new proposed forecasting model of about 364 

9.7%. 365 

Further analysis of these failures indicated that in some cases, the maximum slope angle of the corresponding 366 

pixel reported by the DEM is less than 4 degrees (yellow points). Furthermore, 4 of these pixels have slope angles 367 

equal to 0 from the DEM. These small angles are for practical effect equal to flat terrain. In this scenario the 368 

probabilistic forecast model is unable to predict any unstable state, even during a more serious rainstorm. Howev-369 

er, the real occurrence of landslide events at these locations indicates further analysis is necessary. In this case, the 370 

most probable cause of this situation is the generalization process associated with the resolution of the DEM. It is 371 

well known that increasing the size of the pixel tends to lower the estimated slope value, which in turn will raise 372 

the failure prediction rate of models with high dependence on accurate slope values. A straightforward solution to 373 

this problem is to further reduce the size of the pixel, which will in turn represent the real slope angle more accu-374 

rately. This solution however will drastically increase the computing time. As reference, the current matrix dimen-375 

sions of 2576×2704 (for 125 m pixel size) represent the limit for a regular workstation when the data is not parti-376 

tioned.  377 

There is still 8 prediction failures (marked by red dots) unexplained. These are considered to be related to oth-378 

er aspects of the probabilistic forecasting model and unaccounted uncertainties. Detailed forecasting information 379 

about the landslide events in this study is listed in Table 4.  380 

Table 4 Detailed forecasting analysis 381 

landslides  
Successful predicted 

landslides 

Failure to predict land-

slides due to DEM 

imprecision 

Failure to predict land-

slides due to model 

imprecision 

Failure rate 

176 159 9 8 9.7% 

   The false prediction (false positives) rate for the probabilistic forecast model is high. The Fig. 9 shows high 382 

warning degrees concentrated around Guangyuan City and Qingchuan County (marked by “red star” in Fig.9b), 383 

where landslide events did not occur. Looking at Fig. 3, the accumulative precipitation within Guangyuan City 384 

during the days of July 1st and 7th are 317.7 mm according to the local weather station. This implies initial soil 385 
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water contents in the region close to saturation levels just before the forecasting time. Additionally, the cumulative 386 

precipitation predicted from the Doppler radar reached more than 470 mm in Guanyuan City. Under the action of 387 

such a combination of strong antecedent rainfall and forecasted rainfall, it is reasonable to expect high concentra-388 

tion of landslides (forecasted by the probabilistic model with different warning colors). Although the measured 389 

rainfall data for July 9th was not available for this study, indirect information (absence of report of landslides and 390 

other phenomena associated with heavy rainfall, even with notable initial soil water content levels) indicates the 391 

real precipitation on July 9th was much smaller than forecasted from Doppler radar. Adding the known tendency of 392 

Doppler radar forecasts to overestimate rainfall, it is reasonable to consider the precision of Doppler radar rainfall 393 

as a key factor influencing the high false prediction rates of the proposed probabilistic forecasting model.  394 

5 Discussions 395 

The general rule for the evolution of a slope from stability to failure is that the failure probability should in-396 

crease as the rainfall process continues since increasing soil water content will decrease the suction matrix. This 397 

rule implies a forecasting result at 15:00 PM with more unstable pixels than the result at 6:00 AM. However, both 398 

of them are relatively close.  399 

The distribution map of initial soil water content at 24:00 on July 8th, shown in Fig. 10, indicates significant 400 

effects of accumulated rainfall for landslide forecasting, the topsoil of some areas are even in saturated conditions 401 

(this means that only the topsoil was saturated rather than the whole soil layer). The total saturated pixels within 402 

study region are 532.  403 

 404 

Fig.10 Intial conditions for landslide forecasting 405 

Under these initial conditions, the mechanism of the runoff-infiltration process indicates that significant 406 

amount of precipitations will transform directly into runoff as the soil water content value of topsoil increases. In 407 

this case study, these high levels of initial soil water content attributed to strong antecedent rainfalls leads to lower 408 

variation rate of soil water content at pixel level. In this scenario, the variation of soil water content tends be gen-409 

tle even during long and intensive rain, while excess water contribute mainly to the runoff process. This chain of 410 

events may explain the lack of clear evolution in the forecast in this particular study.  411 

To further confirm this analysis, a new hydrological simulation was run in which the antecedent precipitation 412 

is ignored. The initial soil water content of each pixel for landslide forecasting was directly assigned with the 413 

residual soil water value according to the corresponding soil type (assuming a completely dry soil). All other pa-414 

rameters, including predicted rainfall from Doppler radar remained unchanged from the previous simulation. The 415 
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forecast results at 6:00 AM and 15:00 PM under these new conditions are shown in Fig. 11 and Table 5. It is easy 416 

to observe differences between forecasting times, with quantity of unstable pixels at 15:00 PM larger than at 6:00 417 

AM as expected. In this case, the low level of initial soil water content allows for strong infiltration process in the 418 

topsoil, which in turn leads to high variation rates for soil water content in each pixel, reflected in the differences 419 

of forecasting aligned with the expected evolution of the slope failure process.  420 

Above analysis not only explain why there is not big difference between 6:00 AM and 15:00 PM forecasts dur-421 

ing a high intensive rainstorm. It also to stress the relevance of the initial soil water content (or the effective ante-422 

cedent rainfall) for any physically based landslide forecast model. A reliable method to calculate the initial soil 423 

water content can significantly influence the results of landslide forecasting models. 424 

Table 3 Quantity of pixels with warning information, without considering the influence of antecedent soil water content 425 

Warning colors Blue Yellow Orange Red 

pixel 

count 

6:00 AM 229 106 237 325 

15:00 PM 328 128 290 586 

    426 

Fig.12 Forecasting results without considering the influence of the antecedent soil water content 427 

Another issue is that most published physical models for landslide forecast such as the SLIP and TRIGRS 428 

models (Montrasio et al., 2011; Tsai and Chiang, 2012) overestimated the probability of landslide occurrence at 429 

regional scales. This proposed physics-based probabilistic forecasting model is also affected by this problem. 430 

From the point of view of input parameters, three key factors can lead to this high false prediction rate. (1) The 431 

soil mechanical parameters can only be obtained indirectly at regional scales, which greatly increase uncertainty. 432 

Consequently, it is impossible to guarantee the correspondence of the fixed mechanical values at pixel level with 433 

the actual values in nature, even using large intervals of soil mechanical parameters such as in this paper. Under-434 

estimating these values increase the probability to identify the corresponding pixel as unstable, which contribute 435 

to high false prediction rates. (2) The nature of DEM models implies that a pixel identified as unstable by a pixel 436 

based forecasting model may not really represent an unstable slope in nature. A slope may contain several pixels 437 

of which only a few are unstable, or more likely at regional scales, a pixel may include several slopes. In this sce-438 

nario isolated unstable pixels can contribute to high false prediction rates. (3) The precision of short term rainfall 439 

forecasting is the last factor that can contribute to high false prediction rates. This is relevant in this study in which 440 

rainfall forecasts from Doppler radar overestimated the expected rainfall in some areas.  441 

6 Conclusions 442 

The extreme complexity of the landslide formation process conditions that even physics-based forecasting 443 

models are unable to model the slope instability with 100% of confidence. However, the uncertainty of some input 444 
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variables (e.g., soil mechanical parameters) is responsible for a significant part of this situation. This research 445 

adopted a probabilistic approach to express this uncertainty using Monte Carlo simulation. A single parameter (the 446 

ratio P) was devised to couple the uncertain nature of input variables with shallow landslides forecasting. Fur-447 

thermore, a regional physics-based probabilistic shallow landslide forecasting model was developed around this 448 

parameter. The proposed model does not eliminate uncertainty; it manages it by explicitly introducing it into the 449 

model expressing the forecast directly in probabilistic form. Our tests shown that this approach increases the 450 

forecast precision (true positives) in real conditions, which is cardinal to protecting the public from catastrophic 451 

consequences of shallow landslides and other associated disasters (such as debris flows). 452 

   It must be noted that the complexity of landslide forecasting is not limited to the uncertainty of physical soil 453 

properties, this research points to the initial soil water content as another key variable extremely difficult to iden-454 

tify accurately at regional scales. The model proposed in this paper implements a simulation of the hydrological 455 

processes occurring in the soil to estimate this value. Such simulation is time intensive, which is unfavorable for 456 

real world applications. Future research should focus in efficient methods for identification of soil water content at 457 

regional scales, which is a difficult but worthy challenge. 458 

   The goal of developing this physics-based probabilistic forecasting model is to serve for regional landslide 459 

disaster mitigation. Detailed resolution data, which in case of DEMs is readily available, are not always straight-460 

forward solutions for better forecasting results at this scale. In this case higher DEM resolution will improve the 461 

efficiency of the model failure prediction rates at individual pixel level due to better slope representation. Howev-462 

er, it will also increase the time and resources required by the model to produce usable results. A balance point 463 

between pixel-level precision and operational efficiency is required for the proposed model in order to make it 464 

more suitable for regional operation. 465 
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