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Abstract: Conventional outputs of physics-based landslide forecasting models are presented as deterministic 10 

warnings by calculating the safety factor (Fs) of potentially dangerous slopes. However, these models are highly 11 

dependent on variables such as cohesion force and internal friction angle which are affected by high degree of 12 

uncertainty especially at a regional scale, which result in unacceptable uncertainties of Fs. Under such circum-13 

stances, the outputs of physical models are more suitable if presented in the form of landslide probability values. 14 

In order to develop such models, a method to link the uncertainty of soil parameter values with landslide probabil-15 

ity is devised. This paper proposes the use of Monte Carlo method to quantitatively express uncertainty by as-16 

signing random values to physical variables inside a defined interval. The inequality Fs < 1 is tested for each pixel 17 

in n simulations which are integrated in a unique parameter. This parameter links the landslide probability to the 18 

uncertainties of soil mechanical parameters and is used to create a physics-based probabilistic forecasting model 19 

for rainfall-induced shallow landslides. The prediction ability of this model was tested in a case study, in which 20 

simulated forecasting of landslide disasters associated to heavy rainfalls on July 9 of 2013 in the Wenchuan 21 

earthquake region of Sichuan province, China was performed. The proposed model successfully forecasted land-22 

slides in 159 of the 176 disaster points registered by the geo-environmental monitoring station of Sichuan prov-23 

ince. Such testing results indicate that the new model can be operated in a high efficient way and show more reli-24 

able results attributing to its high prediction accuracy. Accordingly, the new model can be potentially packaged 25 

into a forecasting system for shallow landslides providing technological support for the mitigation of these disas-26 

ters at regional scale. 27 

Keywords: Landslide, probabilistic forecasting, infinite slope model, hydrological process simulation 28 

1 Introduction  29 

Rainfall-induced shallow landslides are common in many mountainous areas and are considered extremely 30 

dangerous (Varnes, 1978). In despite the low volume of debris deposits involved in these processes (generally < 31 

1,000 m3), rainfall-induced shallow landslides present high moving speeds (Cruden and Varnes, 1996), evolve 32 

very rapidly, and can propagate even in presence of obstacles (Davide T. and Davide R., 2010). Current regional 33 

landslide forecasting models mainly focuses on shallow landslides. They can be classified in three categories: 34 

statistics-based methods (Caine, 1980; Crosta, 1998; Crosta and Frattini, 2001; Aleotti, 2004; Wei et al., 2004; 35 

Wieczorek and Glade, 2005; Cardinali et al., 2006; Jacob et al., 2006), contributor-factor-based forecasting meth-36 

ods (Dai and Lee 2003; Wei et al., 2007a; Chang et al. 2008) and physics-based forecasting methods (Montgom-37 

ery and Dietrich, 1994; Wu and Sidle, 1995; Montgomery et al., 1998; Iverson, 2000; Wilkinson et al., 2002; 38 

Crosta and Frattini, 2003; Salciarini et al., 2006). The physics-based forecasting models have overcome the draw-39 

back of statistics-based models with respect to excessive dependence on rainfall data. Furthermore, by devising 40 

mechanisms for coupling rainfall with soil surface mechanics using hydrological process simulation (Zhang et al., 41 

2014a), the physically-based models represent an improvement over the independent treatment of these factors by 42 

contributor-factor-based forecasting models e.g. (Wei et al., 2007a). 43 
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The physics-based forecasting model is able to describe the variation rule of hydrological parameters induced 44 

by rainfall infiltration and further explain the failure mechanism of a slope due to the variation of hydrological 45 

parameters. Those characteristics explain the interest of scholars to the physics-based forecasting model and its 46 

implementation at regional scales (Schmidt et al., 2008; Montrasio et al., 2011; Raia et al., 2014). The most com-47 

mon analysis unit used in physics-based forecasting models is the pixel, used for example in the well-known 48 

TRIGRS model (Baum, et al., 2002, 2008). The safety factor of each pixel within a forecasting region, Fs (Fs=R/S: 49 

where R is shear resistance and S is the driving force) is calculated considering rainfall infiltration, pixels are then 50 

identified as unstable (Fs  < > 1) or stable (Fs ≥ < 1). From these results, landslide warnings are expressed de-51 

terministically by labeling each pixel of the forecasting area as either ‘landslide occurrence’ or ‘nonoccurrence’. 52 

However, it must be noted that the underlying physics-based forecasting model requires large number of sur-53 

face data to be assigned to each pixel before safety factors can be calculated. The physics-based model is sensitive 54 

to the accuracy of such data, especially the soil mechanical parameters (cohesion force and internal friction angle) 55 

that can significantly influence the pixel stability. In general, and specially for large areas, seemingly deterministic 56 

soil mechanical parameters at pixel level used in physical models have different amounts of uncertainty (Schmidt 57 

et al., 2008; Rossi et al., 2013), which thus generate uncertain forecasting results. In this scenario, it is unwise to 58 

give deterministic forecasting results to the public while using the physical model in local forecasting service.  59 

Providing probabilistic landslide forecasting results is the more direct solution to this issue. Currently, several 60 

scholars advance in the development of physics-based probabilistic forecasting models (Schmidt et al., 2008; Raia 61 

et al., 2014). However, the relationship between the landslide probability and the uncertainties in soil mechanical 62 

parameters is not addressed in their models. This effectively renders such probabilistic models actually still in 63 

deterministic mode. For example, in Raia et al. (2014) a series of deterministic forecasting results are generated by 64 

the model during the simulation process from which an experienced forecaster with professional knowledge of 65 

landslides is necessary for picking up the most probable one. Consequently, this approach requires a large number 66 

of calculations, which is unsuitable for operational forecasting of shallow landslides.  67 

This paper focuses on an effective method for linking landslide probability to the uncertain soil mechanical 68 

parameters. It uses Monte Carlo methods to propose a probabilistic forecasting model with a high calculating 69 

efficiency. The proposed model can directly generate probabilistic forecasting results instead of serial of deter-70 

ministic results, and hence it will be more suitable to operational forecasting of shallow landslides, in special at 71 

the regional scale. 72 

The next section introduces the physics-based probabilistic forecasting for shallow landslides model. Third 73 

section addresses the general aspects of its application to a regional scale shallow landslide forecasting system. 74 

Fourth section describes a case study in which the effectiveness of the proposed model is analyzed in a study case. 75 

Sections five and six discuss the results and states the conclusions of this study respectively.   76 

2 Probabilistic forecasting for shallow landslides 77 

2.1 The Infinite slope model for unsaturated soil slopes using safety factor Fs 78 

There are two mechanisms that trigger failure in slopes subject to rainfall infiltration. They are loss of matrix 79 

suction and increasing of a positive pore water pressure (Li et al., 2013). In southwestern China, precipitation is 80 

rich in summer due to monsoon conditions from both Pacific and India Ocean (Wei et al., 2006). Before of the 81 

raining season slopes in this area are generally unsaturated during the relatively dry seasons. Almost all landslide 82 

disasters in southwestern China occur during the rainy season when the matrix suction of topsoil’s suddenly de-83 

creases due to monsoon heavy rains. Consequently, this research focuses on the stability analysis of unsaturated 84 

soil mass. 85 

During the evolution process from stability to failure driven by rainfall infiltration, the rapid loss of suction 86 

due to the increasing soil water content is the key triggering factor for shallow landslides. The safety factor Fs is 87 
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used to evaluate the stability of slopes under the action of rainfall infiltration; in this scenario, the failure plane is 88 

governed by the Mohr-Coulomb failure criteria of unsaturated soil mass, and is assumed to be parallel to the slope 89 

surface (Fig.1). The expression of Fs based on the shear strength formula of the unsaturated soil (Fredlund and 90 

Rahardjo, 1993) and the infinite slope model can be expressed as follows: 91 
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Where c is a stress and can be named of the cohesion force, φ is the internal friction angle, φb is related to the 93 

matrix suction (which is close to the internal friction angle φ in the condition of the low matrix suction), Hs is the 94 

instable soil depth, ψ is the matrix suction of the soil, which is a function of the soil water content described as 95 

follows (Van Genuchten, 1980): 96 
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where Se is the saturation degree, θs is the saturated water content, θr is the residual water content, θ is the soil 98 

water content of the current hour, α, n and m are the parameters of soil-water characteristic curve, and n=1–1/m. 99 

 100 
Fig.1 Infinite slope model for unsaturated soil in a slope 101 

2.2 Deterministic forecasting model using safety factor Fs 102 

   The infinite slope model aims to calculate the safety factor Fs to identify the stability of a slope. It has its basis 103 

in a theoretical hypothesis (Apip et al., 2010), which can describe the mechanical process of shallow landslides 104 

formation. This approach can give reliable results for each pixel as long as the soil mechanical parameters are 105 

accurate. From a deterministic point of view, this physical framework can be briefly drawn as follows: for each 106 

pixel in the forecast area, if Fs <  1 it’s considered unstable, while pixels with Fs ≥ >1 are considered to be sta-107 

ble.  108 

   Acquiring the values for the soil mechanical parameters necessary for the infinite slope model require the use 109 

of field sampling or soil-texture based methods (Blondeau, 1973; Apip et al., 2010; Zhang et al., 2014a; Zhang et 110 

al., 2014b). However, the precision of these methods are relatively low (Schmidt et al., 2008), thus subject to high 111 

levels of uncertainty. Consequently, the seemingly deterministic infinite slope model based on soil mechanical 112 

parameters of each pixel is in fact uncertain (Schmidt et al., 2008; Rossi et al., 2013). This will be reflected in the 113 

safety factors Fs of each pixel, leading to a situation in which, despite the advantages of the physical-based land-114 

slide forecasting model, it may be misleading if used in a deterministic way for real world applications.  115 
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   This is not an issue for other landslide forecasting models. For example, although the input variables of the 116 

contribution-factors-based forecasting model are also uncertain (Wei et al., 2007a) and thus it essentially belong to 117 

statistical models (Zhang et al., 2014a) it successfully account for the relationship between uncertainties of input 118 

variables and results using fuzzy mathematics so that they are expressed as probabilistic forecasting for landslides. 119 

The landslide probability is divided into five grades from 1st to 5th level, which represents a low, relative low, 120 

medium, high and extremely high probability of occurrence of landslides, respectively. This forecasting result 121 

conveys clearer landslide risk levels to the public (Wei et al., 2007b).  122 

   Due to the above reasons it is relevant to identify an effective relationship between the landslide probability 123 

and uncertain input variables with uncertainty (cohesion force and internal friction angle) in a physics-based 124 

probabilistic forecasting model.  125 

2.3 Probabilistic forecasting model for shallow landslides 126 

   In order to link landslide probability to uncertain variables, the nature of this uncertainty should be quantita-127 

tively expressed in mathematical language. Then, a physical parameter associated with both, input variables and 128 

landslide probability will be used to formalize the linkage. 129 

   The uncertainty of physical parameters can be described by a probability density function (Schmidt et al., 130 

2008),  e.g. the common used functions of normal distribution and the uniform distribution (Schmidt et al., 2008; 131 

Raia et al., 2014). The physical parameters submit the normal distribution meaning that they can be expressed as 132 

c=N(μc, σc
2), φ= N(μφ, σφ

2). In this distribution function, μ represents the mean value of the soil parameters, and 133 

σ represents the standard deviation. So if the normal distribution function is adopted to describe the uncertainty, 134 

the two key parameters (mean value μ and standard deviation σ) should be firstly determined in order to establish 135 

the corresponding specific distribution function for each pixel within study area. To achieve this purpose, numer-136 

ous samples and experimental works are necessary and it is very difficult to be implemented in a large region. 137 

bBecause the uniform distribution suited in the investigation of large areas where information on the 138 

geo-hydrological properties is limited (Raia et al., 2014), which can easily allow authors to get random parameters 139 

from its set approximate variation range instead of large amount of field and experimental works in large area. 140 

Accordingly, the uncertainties of cohesion force and internal friction angle are described here as uniform probabil-141 

ity distributions in the intervals of c=U(cmin, cmax), and φ=U(φmin, φmax), respectively. Then, Monte Carlo method 142 

can be used to randomly extract cohesion force and internal friction angles from the two intervals n times in any 143 

forecasting step. This random approach is used to account for the uncertain nature of soil mechanical parameters. 144 

The detailed description of random extracting process is as follows: the extraction of the two parameters is de-145 

pendent on the variable ri which is described as uniform probability distributions in the interval of ri=U(0,1), the 146 

random values of cohesion force ci and internal friction angle φi can be identified via Eq. 3 and Eq.4. In these 147 

equations, ri can help to get a random number ci with uniform distribution rule between cmin and cmax, because the 148 

variable ri submits this distribution rule between 0 and 1. In the whole extracting process, each ri may have dif-149 

ferent value and corresponds to a kind of uncertainty of mechanical parameters, but in one extracting step, the 150 

calculated ci and φi in Eq. 3 and Eq.4 use a same value of ri. 151 

ci=ri(cmax-cmin)+cmin                                  (3) 152 

φi=ri(φmax-φmin)+φmin                                  (4) 153 

There, i is the number of some pixel, cmin and φmin are lower borders of intervals of the two mechanical parameters 154 

expected values; cmax and φmax are the upper borders. Both the lower and upper borders will vary from pixel to 155 

pixel, because each pixel with different lithology has different mechanical parameters. For any pixel in any fore-156 

casting step, a matrix Mi can be generated after the n-times random extraction process:  157 
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Any element contained in Mi has a specific physical meaning representing as a whole the physical phenome-159 

non of uncertainty.  160 

   Provided other parameters identified in Eq. 1, each set of [ci, φi] in Mi can generate a safety factor 161 

Fsi=[Fs1,Fs2,Fs3,…,Fsn]. The array of safety factors Fsi reflects n possible stable states for a pixel under these 162 

physical conditions. It’s possible from there to identify a failure probability by the number of Fsi  1 (failure) in 163 

the n different states in the form of a ratio P (P [0,1] ) of Fsi  1 representing a tendency of a pixel to failure 164 

from stability. 165 

1FsSum
P

n
                                      (6) 166 

Larger P values in Eq. 6 indicates a forecasting result favorable to a high occurrence probability of failure un-167 

der uncertain variables. This interpretation implies that a pixel will tend to one end failure when P exceeds 50% 168 

and its failure probability will only increase with larger values of P. Since P is derived from series of random 169 

(uncertain) variables [ci, φi] via Eq.1 and Eq. 6, and is also directly associates with the landslide probability, the 170 

ratio (P [0,1] ) of Fsi  1 is a strong candidate for linking the landslide probability to the uncertain soil me-171 

chanical parameters.  172 

For the purposes of practical implementation of this forecasting model, P is divided into a series of reference 173 

intervals in Table 1, the occurrence probability of shallow landslides increase from 1st interval to 5th interval of 174 

P. Five grades of landslide warnings are defined accordingly and color-coded Table 1. 175 

Table 1 Reference intervals for shallow landslides forecasting based in probabilistic safety factor 176 

Ratio intervals/% 20P   20 50P   50 60P   60 80P   80 100P   

Warning degree 1 2 3 4 5 

Warning color Colorless Blue Yellow Orange Red 

3 Probabilistic shallow landslides forecasting method at regional scale 177 

3.1 Gathering basic data necessary for landslide forecasting 178 

Topography is the main factor in shallow landslides. Nowadays, obtaining a DEM of precision adequate for 179 

regional scale forecasting is straightforward. The DEM of the study zone is re-sampled into pixels with dimen-180 

sions according to the extension of the area. The parameters required to calculate the ratio P for each pixel from 181 

the array of safety factors Fsi from a series of randomly extracted [ci, φi] are identified in Eq.1. In this case matrix 182 

suction, which is associated with the soil water content, should be identified by hydrological process simulation. 183 

The key data necessary for the hydrological process simulation include the spatial distribution of precipitation, 184 

land use, soil type and NDVI. Precipitation data with the same solution of the DEM can be obtained by 185 

re-sampling rainfall prediction from Doppler radar supplied by meteorological bureaus. Land use, soil type and 186 

soil depth can be obtained from corresponding databases, all of which should be transformed into grid data with 187 

the same solution of DEM. Other data necessary for stability calculations are slope angle for each pixel, parame-188 

ters from soil-water characteristic curve (α, m, n), and soil mechanical parameters. Slope angles can be derived 189 

from DEM using spatial analyst tools, parameters (α, m, and n) of the soil-water characteristic curve are derived 190 

from the different soil types within the pixel.  191 

Regarding the identifications of soil mechanical parameters (cohesion force and internal friction angle), a rela-192 

tively reliable way such as field sampling or soil-texture based methods should be used to assign an initial basic 193 
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value to each pixel. Although these values include high uncertainty levels, they are used only as reference values 194 

while setting intervals of c=U(cmin, cmax), and φ=U(φmin, φmax) (Raia et al., 2014). In this study, the lithology of the 195 

study zone is derived from a geological map, and the mechanical parameters (cohesion force and internal friction 196 

angle) of the corresponding lithology are identified using a rock mechanics handbook (Ye et al., 1991). Finally the 197 

data is assigned to each pixel using the grid cells of the DEM as reference.  198 

   From Eq.3 and Eq.4, it is necessary to identify the lower and upper border of intervals of the soil mechanical 199 

parameters. However, the exact values for lower (cmin and φmin) and upper (cmax and φmax) limits are very difficult 200 

to determine. From currently published papers, there is no known theoretical or experimental method to solve this 201 

issue. Raia et al. (2014) used variations of 1%, 10% and 100% around the values of cohesion force and internal 202 

friction angle (from field tests) to get several intervals, showing that the forecasting effectiveness is significantly 203 

improved by using a large variations. Consequently, this method applies a variation of 100% around the mean 204 

value of these parameters for each pixel to set the corresponding lower and upper borders as follows:  205 

crandom[0.5×corigin, 2×corigin]                               (7) 206 

φrandom[0.5×φorigin, 2×φorigin]                              (8) 207 

Where crandom and φrandom are the randomly extracted cohesion forces and internal friction angles, corigin and φorigin 208 

are the mean value of each pixel (in this case from the rock mechanics handbook (Ye et al., 1991)).  209 

3.2 Pixel level hydrological process simulation 210 

The simulation of hydrological processes including rainfall interception, infiltration, and evapotranspiration is 211 

extremely complicate. However, rainfall infiltration is the key factor in the distribution of soil water content in 212 

underlying surface which simplify the analysis. In southwestern region of China slopes are almost unsaturated 213 

before the rainy season due to characteristic distribution of rainfall influenced by monsoon (Zhang et al., 2014b). 214 

The infiltration process in the vertical direction in unsaturated soil mass can be described by the 1D Richards’s 215 

equation (1931): 216 

( )
[ ( ) ]

K
D

t z z

  




   
 

   
                               (9) 217 

Where θ is soil water content, D(θ)=K(θ)/(dθ/dψ) is the hydraulic diffusivity, ψ is the suction of unsaturated soil, z 218 

represents the soil depth, which is positive along the soil depth and have the topsoil as the origin point, K(θ) is the 219 

hydraulic conductivity. The matrix suction is the dominant external force to drive the water movement in unsatu-220 

rated soil mass, which can be calculated from Eq. 2.  221 

   Infiltration upper border: If the topsoil is unsaturated, it has a strong infiltration capacity (Lei et al., 1988). 222 

Then, while the rainfall intensity is less than the infiltration capacity of the topsoil, all precipitation will infiltrate 223 

into topsoil without any runoff. In this scenario, the infiltration border is governed by Eq. (10): 224 

( ) ( ) ( )D K R t
z


 


  


, 0, 0t z                                (10) 225 

Where R(t) is the rainfall intensity at time t. Here, the part of precipitation that exceeds the capacity of infiltration 226 

of the topsoil will transform into runoff (no water storage above topsoil). In this case the topsoil of a pixel is con-227 

sidered saturated. Thus, the Eq.10 that governs infiltration upper border is transformed into the equation of θ=θs 228 

(Lei et al., 1988). There θs is the saturated moisture corresponding to the soil type.    229 

Infiltration bottom border: It has been experimentally demonstrated that the soil water content beyond a soil 230 

depth of 40 cm is barely influenced by rainfall infiltration (Cui et al., 2003). Consequently a region with a 231 

groundwater level near the surface of the soil has hydrological characteristics in which rainfall infiltration can 232 

hardly induce any groundwater level variation. In this case, it is reasonable to ignore the water exchange process 233 

between the lower boundary and groundwater (Zhang et al., 2015).  234 

   An implicit finite difference method is used for discretization of the 1D differential equation of water move-235 
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ment. The calculation time t is segmented into several intervals with the same time gap △t, and the soil depth L 236 

of each pixel is segmented into soil layers (each layer is named of i number) with the same depth △z. 237 

Identifying the initial soil water content is an important issue during the hydrological simulation process. 238 

However, this value cannot be directly determined at any given time for a large region due to complex rainfall 239 

infiltration and evapotranspiration interactions. In the case of southwestern China, the winter is generally a rela-240 

tively dry season, thus the soil water content value of the topsoil is very low closing to the residual water content 241 

of the soil type (Zhang et al., 2014b). This situation is exploited setting the simulation time to start on January 1 of 242 

the forecasting year (driest month in winter), which allows the use of the residual water content corresponding to 243 

the soil type as and the initial value of the topsoil water content. Measured meteorological data from January 1 are 244 

then feed to the simulation, which allows for a relatively accurate initial value of soil water content for the land-245 

slide forecasting. Each simulation step takes also into account the rainfall interception and evapotranspiration 246 

processes by means of the algorithm of distributed hydrological model GBHM (Yang et al., 2002).  247 

After the hydrological simulation process identify the initial soil water content of each pixel, the simulation 248 

focuses on the extraction of key hydrological parameters (soil water content and matrix suction) necessary for the 249 

stability calculation of each pixel using the expected rainfall from Doppler radar forecasting. During this last stage 250 

in the simulation in which landslide forecasting is performed, the evapotranspiration processes is not considered 251 

since this period is typically short, with rainfalls, negligible sunshine and lower temperatures.  252 

3.3 Probabilistic landslide forecasting at pixel level 253 

During the forecasting stage, the hydrological parameters (soil water content and matrix suction) of each pixel 254 

in each forecasting step △t are extracted via hydrological process simulation. Then the ratio P is computed for 255 

each pixel in several steps as follows: (1) Hs representing the instable soil depth in Eq.1is not equal to the soil 256 

depth L in Section 3.2, and cannot be identified in advance. We have to divide each pixel with a certain soil depth 257 

L into several soil layers in order to calculate the Fs using Eq.1 layer by layer. When the calculated soil layer is the 258 

jth, the parameters Hs will be equal to the sum of all the soil layers above the jth layer (including the depth of the jth 259 

soil layer). As mentioned in Section 3.2, each pixel was divided into soil layer with a same depth. The matrix suc-260 

tion and soil water content are the important hydrological parameters to the stability analysis of pixel which will 261 

be calculated and saved in each divided soil layer after the hydrological process simulation. So we adopt the same 262 

discretization rule during the stability analysis in order to easily extract these hydrological parameters(12) The 263 

Monte Carlo method is used to extract the cohesion force and the internal friction angle n times from the corre-264 

sponding intervals (c=U(cmin, cmax), and φ=U(φmin, φmax)) of each pixel; (23) The safety factor Fs of each divided 265 

layer within one pixel is calculated after each extraction, using the soil mechanical parameters and the hydrologi-266 

cal parameters only related to time as inputs of Eq.21, when the Fs of jth layer is less than 1, then the calculation 267 

process within the pixel will stop; (34) Once the Monte Carlo process end, the total times SumFs<1 of Fs<1 (a 268 

count of the number of occurrences satisfying the instability condition) is obtained, and the ratio P of Fs <1 is 269 

calculated by Eq.6; (45) Finally the interval of Table 1 where ratio P is located according to its value is assigned 270 

to the pixel as the early warning information to be broadcasted.  271 

After completing this process for all pixels within the forecasting region, the whole calculation at time t is fin-272 

ished, meanwhile a map of landslide warning degrees in the forecasting region will be generated at the end of each 273 

forecasting step. Such maps can then be used by the forecasting bureau of the region to issue landslide warnings to 274 

hazard mitigation units and the public. 275 

4 Verification of the probabilistic landslide forecasting model 276 

4.1 Study zone 277 

   The Wenchuan earthquake region with an area 3.14×104 km2 within Sichuan province, China is chosen as the 278 
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study zone in this study (Fig.2). In this region, at 14:28 PM (Beijing time) on May 12rd 2008, an Ms 8.0 earth-279 

quake occurred. Massive potential unstable slopes were left after this earthquake, which are known to readily 280 

evolve into shallow landslides by rainfall infiltration (Zhang et al., in Pres.). The close relationship between rain-281 

fall and landslides in this region has been demonstrated by the short lag time of landslides and its strong correla-282 

tion to rainfall time (Tang, 2010). The same study established that landslide events within the earthquake region 283 

are mainly in the form of shallow landslides (Tang, 2010). Tang (2010) also pointed out that shallow landslides 284 

will be active within Wenchuan earthquake region at least for the next ten years. Such conditions make this region 285 

ideal for implementation of shallow landslides forecasting models. 286 

 287 
Fig.2 Study zone and intensity distribution of Wenchuan earthquake 288 

4.2 Rainfall process and related landslide events used for testing 289 

   The chain of events in the Wenchuan earthquake area that ended in disastrous landslides in July 9th of 2013 290 

was chosen to evaluate the proposed landslide probabilistic forecasting method. These events started with heavy 291 

rainstorms in the area during the days from July 1th to July 8th of 2013. As the rainfall measured by the weather 292 

stations within the area shows (Fig.3), the maximum accumulated precipitation during these days reached 317.7 293 

mm, which become a key contributing factor for the landslide events of July 9th of 2013. 294 

            295 

Fig.3 Total rainfall from 1st to 7th of July 2013 296 
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   On July 9th of 2013, there was no evidence of decreasing rainfall intensity, on the contrary all evidence sug-297 

gested heavier rainfalls. Records from the rainfall forecasted by Doppler radar provided by the weather bureau of 298 

Sichuan province on that day, predicted a maximum 24-hour total precipitation within the earthquake region of up 299 

to 498 mm (Fig.4). Accordingly, the Weather Bureau of Sichuan province published red color warning signals 300 

(which are the highest alert degree) for some locations within the study region. On that day, 176 landslide events 301 

were reported within the study region (Fig.4) leading to casualties and serious economic losses for local residents 302 

(Zhang et al., 2014b). This typical landslide disaster triggered by intense rainfall is ideal to evaluate the main as-303 

pects of the implementation of the proposed probabilistic landslide forecast model at regional scales. 304 

 305 

Fig.4 Distribution of rainfall-induced landslides within Wenchuan earthquake region on July 9th of 2013 306 

4.3 Gathering of basic data of study zone 307 

   The topography of the study region (Fig.5) was described by 125 m × 125 m DEM. This way, the study 308 

region was segmented into 6965505 pixels. A data matrix with 2576 rows and 2704 columns was created from the 309 

DEM and saved in text format. The basic data for hydrological process simulation and stability was resampled to 310 

correspond to the same resolution of the DEM and saved as text matrices with the same dimensions. 311 
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 312 

Fig.5 DEM of Wenchuan earthquake area 313 

4.3.1 Data for hydrological process simulation 314 

The process of rainfall interception due to vegetation influence within the study region is taken into account 315 

using NDVI values. Generally, the vegetation, and thus the values of NDVI vary with the variation of land uses 316 

and seasons. In this case, NDVI values from the same reason of the adjacent year are considered reasonably close, 317 

since the distribution of land uses within a region is relatively stable. The monthly NDVI distribution over the 318 

study region in the precedent year (2012) was used to adjust for canopy rainfall interception during the hydrolog-319 

ical process simulation (Fig.6). 320 

    321 
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     322 
Fig.6 Distributions of the LAI within the study zone 323 

Other data required, such as land use (Figure 7 (a)), soil type (Figure 7 (b)), and the soil depth for Wenchuan 324 

earthquake region was obtained from the FAO database (http://www.fao.org/geonetwork/srv/en/main.home). The-325 

se data was processed using GIS functions so that they correspond to the pixels of the DEM.  326 

    327 

         (a) Distribution of land use                                        (b) Distribution of soil type 328 

Fig. 7 Information of land uses and soil types within the study zone 329 

The physical parameters of the soil required for the simulation of rainfall infiltration in the vertical direction 330 

were determined by the land use and standard soil types within the study region. The soil thickness ranged from 1 331 

to 4 m, soil depths of 1 m accounts for 44.1% of the study area, while deeper soils cover the remaining 55.9%. 332 

Each pixel was divided into 10 layers (along the soil depth in the vertical direction) during the discretization pro-333 

cessduring the hydrological process simulation and stability analysis. There are 10 soil types in the area (shown in 334 

Fig. 7b). Their relevant physical properties are listed in Table 2.  335 

Table2 Soil-water parameters for hydrological simulation 336 

Soil type code Saturated moisture Residual moisture 
Parameters of curve Saturated hydraulic 

conductivity(mm/h) Alpha n 
3085 0.48278 0.07768 0.01896 1.40474 22.78608 
3963 0.47303 0.07347 0.01796 1.42367 22.46508 
3967 0.52726 0.08259 0.01867 1.41453 35.97075 
4269 0.45649 0.06905 0.02306 1.55872 32.68625 
4287 0.44596 0.07343 0.01971 1.47235 19.30871 
4288 0.43797 0.07175 0.02064 1.53067 24.80996 
4329 0.45049 0.07957 0.01604 1.44517 9.307170 



12 
 

4350 0.47990 0.07435 0.02156 1.42176 22.51646 
4351 0.48278 0.07723 0.02040 1.41974 21.61279 
4391 0.42784 0.06439 0.01623 1.63524 23.91267 
6998 0.46154 0.06817 0.01770 1.46884 23.60925 

4.3.2 Data for calculation of slope stability 337 

   The Eq.1 indicates that matrix suction, cohesion force, and internal friction angle are the key mechanical pa-338 

rameters influencing the slope stability. Simulation of the hydrological process is used to obtain the matrix suction 339 

of soil mass as a function of the soil water content as shown in Eq. 2. Cohesion forces and internal friction angles 340 

for each pixel updated from the old database (Liu et al., 2016) are determined according to lithology map and the 341 

rock mechanical handbook (Fig.8), the detailed process to obtain these data are as follows: each pixel will be 342 

firstly assigned the lithology attribution according to the lithology map, and then the rock mechanical handbook 343 

which contains the mechanical parameters of all lithology will be used to find the corresponding parameters of 344 

each pixel . These mechanical values are then used as a basic reference for constructing intervals of these parame-345 

ters (c=U(cmin, cmax), and φ=U(φmin, φmax)) for each pixel.  346 

    347 

        (a) Distribution of cohesion forces                           (b) Distribution of internal friction angles 348 

Fig.8 Mechanical paramters of soil used for calculation of slope stability 349 

4.4 Forecasting results 350 

The landslide probability in Wenchuan earthquake region on July 9, 2013 was calculated, along with col-351 

or-coded warnings for each pixel according to Table 1. This forecast covered 24 time nodes (hourly forecasts) 352 

covering the whole day. Two representative time nodes (at 6:00 AM and 15:00 PM) are chosen from the 24 h 353 

forecasting results for further analysis (figure 9). The detailed forecasting results are listed in Table 3. These de-354 

tails denote low variation in the forecast for these time nodes. 355 

Table 3 Quantity of pixels with warning information 356 

` Blue Yellow Orange Red 

pixel 

count 

6:00 AM 534 150 332 699 

15:00 PM 527 158 321 704 

 357 
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 358 
(a) Forecasting information at 6:00                             (b) Forecasting information at 15:00 359 

Fig.9 Landslide warning maps for Wenchuan earthquake region at two representative time nodes. 360 

Colored points in fig. 9 represent landslide disasters occurred on July 9, 2013. Green points represent land-361 

slides located in pixels forecasted with high degree of probability of landslides (orange-red), thus they are consid-362 

ered successfully forecasted or true positives (159 events). The other 17 events represented by yellow and red 363 

points denote landslide events in low warning areas, which are considered as failed-forecasted landslides or false 364 

negatives. These numbers indicate a missing-prediction rate of the new proposed forecasting model of about 365 

9.7%. 366 

Further analysis of these failures indicated that in some cases, the maximum slope angle of the corresponding 367 

pixel reported by the DEM is less than 4 degrees (yellow points). Furthermore, 4 of these pixels have slope angles 368 

equal to 0 from the DEM. These small angles are for practical effect equal to flat terrain. In this scenario the 369 

probabilistic forecast model is unable to predict any unstable state, even during a more serious rainstorm. Howev-370 

er, the real occurrence of landslide events at these locations indicates further analysis is necessary. In this case, the 371 

most probable cause of this situation is the generalization process associated with the resolution of the DEM. It is 372 

well known that increasing the size of the pixel tends to lower the estimated slope value, which in turn will raise 373 

the failure prediction rate of models with high dependence on accurate slope values. A straightforward solution to 374 

this problem is to further reduce the size of the pixel, which will in turn represent the real slope angle more accu-375 

rately. This solution however will drastically increase the computing time. As reference, the current matrix dimen-376 

sions of 2576×2704 (for 125 m pixel size) represent the limit for a regular workstation when the data is not parti-377 

tioned.  378 

There is still 8 prediction failures (marked by red dots) unexplained. These are considered to be related to oth-379 

er aspects of the probabilistic forecasting model and unaccounted uncertainties. Detailed forecasting information 380 

about the landslide events in this study is listed in Table 4.  381 

Table 4 Detailed forecasting analysis 382 

landslides  
Successful predicted 

landslides 

Failure to predict land-

slides due to DEM 

imprecision 

Failure to predict land-

slides due to model 

imprecision 

Failure rate 

176 159 9 8 9.7% 

   The false prediction (false positives) rate for the probabilistic forecast model is high. The Fig. 9 shows high 383 

warning degrees concentrated around Guangyuan City and Qingchuan County (marked by “red star” in Fig.9b), 384 

where landslide events did not occur. Looking at Fig. 3, the accumulative precipitation within Guangyuan City 385 

during the days of July 1st and 7th are 317.7 mm according to the local weather station. This implies initial soil 386 
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water contents in the region close to saturation levels just before the forecasting time. Additionally, the cumulative 387 

precipitation predicted from the Doppler radar reached more than 470 mm in Guanyuan City. Under the action of 388 

such a combination of strong antecedent rainfall and forecasted rainfall, it is reasonable to expect high concentra-389 

tion of landslides (forecasted by the probabilistic model with different warning colors). Although the measured 390 

rainfall data for July 9th was not available for this study, indirect information (absence of report of landslides and 391 

other phenomena associated with heavy rainfall, even with notable initial soil water content levels) indicates the 392 

real precipitation on July 9th was much smaller than forecasted from Doppler radar. Adding the known tendency of 393 

Doppler radar forecasts to overestimate rainfall, it is reasonable to consider the precision of Doppler radar rainfall 394 

as a key factor influencing the high false prediction rates of the proposed probabilistic forecasting model.  395 

5 Discussions 396 

The general rule for the evolution of a slope from stability to failure is that the failure probability should in-397 

crease as the rainfall process continues since increasing soil water content will decrease the suction matrix. This 398 

rule implies a forecasting result at 15:00 PM with more unstable pixels than the result at 6:00 AM. However, both 399 

of them are relatively close.  400 

The distribution map of initial soil water content at 24:00 on July 8th, shown in Fig. 10, indicates significant 401 

effects of accumulated rainfall for landslide forecasting, the topsoil of some areas are even in saturated conditions 402 

(this means that only the topsoil was saturated rather than the whole soil layer). The total saturated pixels within 403 

study region are 532.  404 

 405 

Fig.10 Intial conditions for landslide forecasting 406 

Under these initial conditions, the mechanism of the runoff-infiltration process indicates that significant 407 

amount of precipitations will transform directly into runoff as the soil water content value of topsoil increases. In 408 

this case study, these high levels of initial soil water content attributed to strong antecedent rainfalls leads to lower 409 

variation rate of soil water content at pixel level. In this scenario, the variation of soil water content tends be gen-410 

tle even during long and intensive rain, while excess water contribute mainly to the runoff process. This chain of 411 

events may explain the lack of clear evolution in the forecast in this particular study.  412 

To further confirm this analysis, a new hydrological simulation was run in which the antecedent precipitation 413 

is ignored. The initial soil water content of each pixel for landslide forecasting was directly assigned with the 414 

residual soil water value according to the corresponding soil type (assuming a completely dry soil). All other pa-415 

rameters, including predicted rainfall from Doppler radar remained unchanged from the previous simulation. The 416 
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forecast results at 6:00 AM and 15:00 PM under these new conditions are shown in Fig. 11 and Table 5. It is easy 417 

to observe differences between forecasting times, with quantity of unstable pixels at 15:00 PM larger than at 6:00 418 

AM as expected. In this case, the low level of initial soil water content allows for strong infiltration process in the 419 

topsoil, which in turn leads to high variation rates for soil water content in each pixel, reflected in the differences 420 

of forecasting aligned with the expected evolution of the slope failure process.  421 

Above analysis not only explain why there is not big difference between 6:00 AM and 15:00 PM forecasts dur-422 

ing a high intensive rainstorm. It also to stress the relevance of the initial soil water content (or the effective ante-423 

cedent rainfall) for any physically based landslide forecast model. A reliable method to calculate the initial soil 424 

water content can significantly influence the results of landslide forecasting models. 425 

Table 3 Quantity of pixels with warning information, without considering the influence of antecedent soil water content 426 

Warning colors Blue Yellow Orange Red 

pixel 

count 

6:00 AM 229 106 237 325 

15:00 PM 328 128 290 586 

    427 
Fig.12 Forecasting results without considering the influence of the antecedent soil water content 428 

Another issue is that most published physical models for landslide forecast such as the SLIP and TRIGRS 429 

models (Montrasio et al., 2011; Tsai and Chiang, 2012) overestimated the probability of landslide occurrence at 430 

regional scales. This proposed physics-based probabilistic forecasting model is also affected by this problem. 431 

From the point of view of input parameters, three key factors can lead to this high false prediction rate. (1) The 432 

soil mechanical parameters can only be obtained indirectly at regional scales, which greatly increase uncertainty. 433 

Consequently, it is impossible to guarantee the correspondence of the fixed mechanical values at pixel level with 434 

the actual values in nature, even using large intervals of soil mechanical parameters such as in this paper. Under-435 

estimating these values increase the probability to identify the corresponding pixel as unstable, which contribute 436 

to high false prediction rates. (2) The nature of DEM models implies that a pixel identified as unstable by a pixel 437 

based forecasting model may not really represent an unstable slope in nature. A slope may contain several pixels 438 

of which only a few are unstable, or more likely at regional scales, a pixel may include several slopes. In this sce-439 

nario isolated unstable pixels can contribute to high false prediction rates. (3) The precision of short term rainfall 440 

forecasting is the last factor that can contribute to high false prediction rates. This is relevant in this study in which 441 

rainfall forecasts from Doppler radar overestimated the expected rainfall in some areas.  442 

6 Conclusions 443 

The extreme complexity of the landslide formation process conditions that even physics-based forecasting 444 

models are unable to model the slope instability with 100% of confidence. However, the uncertainty of some input 445 
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variables (e.g., soil mechanical parameters) is responsible for a significant part of this situation. This research 446 

adopted a probabilistic approach to express this uncertainty using Monte Carlo simulation. A single parameter (the 447 

ratio P) was devised to couple the uncertain nature of input variables with shallow landslides forecasting. Fur-448 

thermore, a regional physics-based probabilistic shallow landslide forecasting model was developed around this 449 

parameter. The proposed model does not eliminate uncertainty; it manages it by explicitly introducing it into the 450 

model expressing the forecast directly in probabilistic form. Our tests shown that this approach increases the 451 

forecast precision (true positives) in real conditions, which is cardinal to protecting the public from catastrophic 452 

consequences of shallow landslides and other associated disasters (such as debris flows). 453 

   It must be noted that the complexity of landslide forecasting is not limited to the uncertainty of physical soil 454 

properties, this research points to the initial soil water content as another key variable extremely difficult to iden-455 

tify accurately at regional scales. The model proposed in this paper implements a simulation of the hydrological 456 

processes occurring in the soil to estimate this value. Such simulation is time intensive, which is unfavorable for 457 

real world applications. Future research should focus in efficient methods for identification of soil water content at 458 

regional scales, which is a difficult but worthy challenge. 459 

   The goal of developing this physics-based probabilistic forecasting model is to serve for regional landslide 460 

disaster mitigation. Detailed resolution data, which in case of DEMs is readily available, are not always straight-461 

forward solutions for better forecasting results at this scale. In this case higher DEM resolution will improve the 462 

efficiency of the model failure prediction rates at individual pixel level due to better slope representation. Howev-463 

er, it will also increase the time and resources required by the model to produce usable results. A balance point 464 

between pixel-level precision and operational efficiency is required for the proposed model in order to make it 465 

more suitable for regional operation. 466 

Acknowledgement: This work was supported by Science and Technology Service Network Initiative (No: 467 

KFJ-SW-STS-180), the Science and Technology Support Project of Sichuan Province (No. 2015SZ0214), the Risk 468 

assessment on geohazards induced by extreme rainfall (CCSF201428), and hydrometeorological forecasting pro-469 

ject from National Meteorological Center of China Meteorological Administration. 470 

Reference 471 

Acharya, G., De, S.F., and Long, N.T.: Assessing landslide hazard in GIS: a case study from Rasuwa, Nepal. Bull Eng. Geol. Environ 472 

65(1), 99–107, 2006. 473 

Aleotti, P.: A warning system for rainfall-induced shallow failures, Eng. Geol., 73, 247-265, 2004.  474 

Apip, Kaoru Takara, Yosuke Yamashiki, Kyoji Sassa, Agung Bagiawan Ibrahim, and Hiroshi Fukuoka: A distributed hydrologi-475 

cal-geotechnical model using satellite-derived rainfall estimates for shallow landslide prediction system at a catchment scale, 476 

Landslides, 7, 237-258, 2010. 477 

Baum, R.L., Savage, W.Z., and Godt, J.W.: TRIGRS-a FORTRAN program for transient rainfall infiltration and grid-based regional 478 

slopestability analysis, Virginia, US Geological Survey Open file report 02-424, 2002. 479 

Baum, R.L., Savage, W.Z., and Godt, J.W.: TRIGRS-a FORTRAN program for transient rainfall infiltration and grid-based regional 480 

slopestability analysis, Virginia, US Geological Survey Open file report 2008-1159, 2008. 481 

Blondeau, F.: The residual shear strength of some French clays: measurement and application to a natural slope landslide, Geologia 482 

Applicata e Idrogeologia, 8(1), 125–141, 1973. 483 

Caine, N.: The rainfall intensity– duration control of shallow landslides and debris flows. Geogr. Ann. A62:23-27, 1980. 484 

Cardinali, M., Galli, M., Guzzetti, F., Ardizzone, F., Reichenbach, P., and Bartoccini, P.: Rainfall induced landslides in December 485 

2004 in Southwestern Umbria, Central Italy. Nat. Hazards Earth Syst. Sci., 6, 237-260, 2006. 486 

Chang, K., Chiang, S.H., and Lei, F.: Analysing the relationship between typhoon-triggered landslides and critical rainfall conditions, 487 

Earth Surf Process Land, 33, 1261-1271, 2008. 488 

Crosta, G.: Regionalization of rainfall thresholds: an aid to landslide hazard evaluation, Environ. Geol., 35(2–3),131–145, 1998. 489 



17 
 

Crosta, G.B., and Frattini, P.: Rainfall thresholds for triggering soil slips and debris flow. In: Mugnai A, Guzzetti F, Roth G (eds) 490 

Mediterranean storms. Proceedings of the 2nd EGS Plinius Conference on Mediterranean Storms. Siena, Italy, pp 463–487, 491 

2001. 492 

Crosta, G. B. and Frattini, P.: Distributed modeling of shallow landslides triggered by intense rainfall, Nat. Hazards Earth Syst. Sci., 3, 493 

81–93, 2003.  494 

Cruden, D.M., and Varnes, D.J.: Landslides types and processes. In: Truner AK, Schuster, R.L. (eds) Landslides: investigation and 495 

mitigation. Transportation Research Board Special Report 247. National Acadmy Press, Washington, pp 36-75, 1996. 496 

Cui, P., Yang, K., and Chen, J.: Relationship between occurrence of debris flow and antecedent precipitation: Taking the Jiangjia 497 

Gully as an example, China Journal of Soil and Water Conservation, 1(1), 11-15, 2003. (in Chinese) 498 

Dai, F.C., and Lee, C.F.: A spatiotemporal probabilistic modeling of storm-induced shallow landsliding using aerial photographs and 499 

logistic regression, Earth Surf Process Land, 25, 527-545, 2003. 500 

Davide, T., and David, R.: Estimation of rainfall thresholds triggering shallow landslides for an operational warning system, Land-501 

slides, 7: 471-481, 2010. 502 

Fredlund, D.G., and Rahardjo, H.: Soil Mechanics for Unsaturated Soils. A Wiley-Interscience Publication, New York, USA, 1993. 503 

Gao, K.C., Wei, F.Q., Cui, P., Hu, K.H., Xu, J., and Zhang, G.P.: Probability forecast of regional landslide based on numerical weath-504 

er forecast, Wuhan University Journal of Natural Sciences, 11(4), 853-858, 2006.  505 

Iverson, R.M.: Landslide triggering by rain infiltration. Water Resources Research, 36, 1897-1910, 2000. 506 

Jacob, M., Holm, K., Lange, O., and Schwab, J.W.: Hydrometeorological thresholds for landslide initiation and forest operation 507 

shutdowns on the north coast of British Columbia, Landslides, 3(3), 228-238, 2006. 508 

Jia, G.Y., Tian, Y., Liu, Y., and Zhang Y.: A static and dynamic factors-coupled forecasting model of regional rainfall-induced land-509 

slides: A case study of Shenzhen, Science in China Series E: Technological Sciences, 51(11), 164-175, 2008. 510 

Lei, Z.D., Yang, S.X., and Xie, S.C.: Soil water dynamics, Beijing, Tsinghua University, 1988. (in Chinese) 511 

Li, W.C., Lee, L.M., Cai, H., Li, H.J., Dai, F.C., and Wang, M.L.: Combined roles of saturated permeability and rainfall characteris-512 

tics on surficial failure of homogeneous soil slope, Eng. Geol., 153, 105–113, 2013. 513 

Liu, D.L., Zhang, S.J., Yang, H.J., Zhao, L.Q., Jiang, Y.H., Tang, D., and Leng, X.P.: Application and analysis of debris-flow early 514 

warning system in Wenchuan earthquake-affected area, Natural hazards and earth system science, 16, 483-496, 2016. 515 

Montgomery, D.R., Dietrich, W.E.: A physically based model for the topographic control on shallow landsliding, Water Resources 516 

Research, 30(4), 1153-1171, 1994. 517 

Montgomery, D.R., Sullivan, K., and Greenberg, M.: Regional test of a model for shallow landsliding, Hydrological Process, 12, 518 

943– 955, 1998. 519 

Montrasio, L., Valentino, R., and Losi, G.L.: Towards a real-time susceptibility assessment of rainfall-induced shallow landslides ona 520 

regional scale, Nat. Hazards Earth Syst. Sci., 11, 1927-1947, 2011. 521 

Richards, L.A.: Capillary condition of liquids in porous mediums, Physics, 1, 318-333, 1931. 522 

Raia, S., Alvioli, M., Rossi, M., Baum, R.L., Godt, J.W., and Guzzetti, F.: Improving predictive power of physically based rain-523 

fall-induced shallow landslide models: a probabilistic approach, Geosci. Model Dev., 7, 495-514, 2014. 524 

Rossi, G., Catani, F., Leoni, L., Segoni, S., and Tofani, V.: HIRESSS: a physically based slope stability simulator for HPC applica-525 

tions, Nat. Hazards Earth Syst. Sci., 13, 151-166, 2013. 526 

Salciarini, D., Godt, J.W., Savage, W.Z., Conversini, P., Baum, R.L., and Michael, J.A.: Modeling regional initiation of rain-527 

fall-induced shallow landslides in the eastern Umbria Region of central Italy, Landslides, 3(3), 181-194, 2006. 528 

Schmidt, J., Turek, G., Clark, M.P., Uddstrom, M., and Dymond, J.R.: Probabilistic forecasting of shallow, rainfall-triggered land-529 

slides using real-time numerical weather predictions, Nat. Hazards Earth Syst. Sci., 8, 349-357, 2008. 530 

Tang, C.: Activity tendency prediction of rainfall induced landslides and debris flows in the Wenchuan earthquake areas, Journal of 531 

Mountain Science, 28(3), 341-349, 2010. (in Chinese) 532 

Tsai, T.L., and Chiang, S.J.: Modeling of layered infinite slope failure triggered by rainfall, Environ. Earth Sci., 68(5), 1429-1434, 533 

2012. 534 



18 
 

Van Genuchten: A closed form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Science Society of Amer-535 

ica Journal 44, 892-898, 1980. 536 

Varnes, D.J.: Slope movements types and process. In: Schuster, R.L., Krizeck, R.J. (eds) Landslides: analysis and control. National 537 

Academy of Science, Washington, D.C., pp 11-30, 1978. 538 

Wei, F.Q., Tang, J.F., Xie, H., and Zhong, D.L.: Debris flow forecast combined regions and valleys and its application, Journal of 539 

Mountain Science, 22(3), 321-325, 2004. (in Chinese) 540 

Wei, F. Q., Gao, K. C., Cui, P., Hu, K.H., Xu, J., Zhang, G., Bi, B.: Method of Debris Flow Prediction Based on a Numerical Weather 541 

Forecast and Its Application, WIT Transactions on Ecology and the Environment, 90, 37–46, doi: 10.2495/DEB060041, 2006. 542 

Wei, F.Q., Gao, K.C., Jiang, Y.H., Jia, S.W., Cui, P., Xu, J., Zhang, G.P., and Bi, B.G.: GIS-based prediction of debris flows and 543 

landslides in Southwestern China//CHEN, C. L., MAJOR. J. J., Debris-Flow Hazards Mitigation: Mechanics, Prediction, and 544 

Assessment. Rotterdam: Millpress Science Publishers, 479-490, 2007a. 545 

Wei, F.Q., Xu, J., Jiang, Y.H., and Zhang J.: The system of debris flow prediction with different time and space sacles. Journal of 546 

Mountain Science, 25(5), 616-621, 2007b. (in Chinese) 547 

Wieczorek, G.F., and Glade, T.: Climatic factors influencing occurrence of debris flows. In: Jakob M, Hungr O (eds) Debris flow 548 

hazards and related phenomena. Berlin, Springer, pp325-362, 2005. 549 

Wilkinson, P.L., Anderson, M.G., and Lloyd, D.M.: An integrated hydrological model for rain-induced landslides prediction. Earth 550 

Surf Process Land, 27, 1285-1297, 2002. 551 

Wu, W., and Sidle, R.C.: A distributed slope stability model for steep forested basins, Water Resources Research, 31(8), 2097– 2110, 552 

1995. 553 

Xu, J.J.:  Application of a distributed hydrological Model of Yangtze River basin, Beijing: Tsinghua University, 2007. (in Chinese) 554 

Yang, D.W., Herath, S., and Musiake, K.: A hillslope-based hydrological model using catchment area and width function, Hydrolog-555 

ical Sciences Journal, 47(1): 231-243, 2002. 556 

Ye, J.H., Xi, Q.X., and Xia, W.R.: Handbook of rock mechanics parameters, Beijing, China Waterpower Press., 1991.  557 

Zhang, S.J., Yang, H.J., Wei, F.Q., Jiang, Y.H., and Liu, D.L.: A model of debris flow forecast based on the water-Soil coupling 558 

mechanism. Journal of Earth Science, 25(4), 757-763, 2014a. 559 

Zhang, S.J., Wei, F.Q., Liu, D.L., Yang, H.J., and Jiang, Y.H.: A regional-scale method of forecasting debris flow events based on 560 

water-soil coupling mechanism, Journal of Mountain Science, 11(6), 1531-1542, 2014b. 561 

Zhang, S.J., Jiang, Y.H., Yang, H.J., and Liu, D.L.: A hydrology-process based method for antecedent effect rainfall determination in 562 

debris flow forecasting, Advance in Water Science, 26(1), 35-43, 2015. (in Chinese) 563 

Zhang, S.J., Wei, F.Q., Liu, D.L., and Jiang, Y.H.: Analysis of slope stability based on the limit equilibrium equation and the hydro-564 

logical simulation. Journal of Basic Science and Engineering, in Pres. (in Chinese) 565 

Zhou, C.Y., Cen, S.X., Li, Y.Q., Peng, G.Z., Yang, S.Q., and Peng, J.: Precipitation variation and its impacts in Sichuan in the last 50 566 

years, Journal of Geographical Science, 66(5), 619-630, 2011. (in Chinese) 567 

 568 

 569 

 570 

 571 

 572 

 573 

 574 

 575 

 576 

 577 

 578 

 579 



19 
 

Response to Editor 

Dear Editor,  

Thanks a lot for your kind comments on our manuscript, the proposed advices are very helpful to improve 

our manuscript. Now we have amended this manuscript according to the advice and used the track changes mode 

in MS to highlight modifications in this manuscript. Any change was also marked by yellow color. The authors 

will give detailed explanations one by one as follows: 

(1) Editor: Stable conditions: At line 49-50, the conditions given for stability and instability are not con-

sistent with the definition of Fs elsewhere in the paper. Please ensure that a consistent and correct definition is 

used throughout the paper.  

1. “49: The safety factor of each pixel within a forecasting region, Fs (Fs=R/S: where R is shear resistance 

and S is the driving force) is calculated considering rainfall infiltration, pixels are then identified as unstable (Fs > 

1) or stable (Fs < 1).” 

2. 105: From a deterministic point of view, this physical framework can be briefly drawn as follows: for each 

pixel in the forecast area, if Fs ?? 1 it’s considered unstable, while pixels with Fs>1 are considered to be stable. 

3. At eqn (6), could the authors please clarify if Sum_Fs<1 is a count of the number of occurrences satisfying 

the instability condition, or a summation?   

4. Line 49-50, Eqn (6), Line 249 and abstract: Please clarify whether the failure condition is Fs < 1 or Fs <= 

1, and correct the text and equation 6 accordingly.   

Authors: The authors appreciated the editor for pointing out this mistake. We have amended these mistakes 

in our manuscript in order to make them consistent with each other. For example: 

1. 49: We changed the original sentence to “pixels are then identified as unstable (Fs > 1) or stable (Fs < 1)” 

to “pixels are then identified as unstable (Fs < 1) or stable (Fs ≥ 1)” in Line 50.  

2. 105: We have modified this sentence in the current form: if Fs < 1 it’s considered unstable, while pixels 

with Fs≥ 1 are considered to be stable in Line 106. 

3. SumFs<1 is a count of the number of occurrences satisfying the instability condition. We have added the ex-

planation in Line 266-277. 

4. The authors clarify that the failure condition is Fs < 1. The pixel is considered to be stable when Fs ≥ 1. 

(2) Editor: Vertical discretization of the soil pixel: To address the referee’s comments relating to the dis-

cretization, please revise the text again, focusing on a more detailed description of the pixel-level forecasting al-

gorithm proposed in Section 3.3. This should:  
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a) Introduce and justify the choice of 10 vertical levels, commenting on the implications of this scheme with re-

spect to regional variations in soil depth. 

b) Describe how Eqn (2) was applied within step (2) of the algorithm, making explicit the mathematical connec-

tion between H_s in Eqn (2) and the soil depth within any soil layer j. 

Authors: The authors appreciate the editor for giving the above excellent advices to the vertical discretiza-

tion of the soil pixel. The authors added the detailed explanations in the suggested Section 3.3 in our manuscript.  

(3) Editor: The authors have expanded on the discussion of the probabilistic basis of the model, as requested 

by the referees and editor. However, the revised text does not fully address the issues raised in the discussion. Two 

issues that require further attention are: 

    (a) Referee #2 commented that “the cohesion and friction angle always are not uniform distributed within 

two limits”, which the authors acknowledge may be the case in their response. However, the implications of the 

uniformity assumption are not explored in the paper nor in the interactive discussion. The new text at lines 

129-131 appears to offer a justification of this choice (of uniform distribution) on the grounds that it was easy to 

implement. However, other distributional assumptions could also be implemented without great difficulty (e.g. a 

normal or triangular sampling distribution). 

The authors are therefore requested to add further discussion of the distributional assumptions made in the paper, 

so that the robustness of this choice can be assessed.  

    (b) The new text at lines 139-140 does not address the editor’s previous question about the role of the simu-

lated variable r_i. Equations 3 and 4 imply that values drawn for c and phi in each sample are both dependent on a 

value, r_i, sampled from U(0,1). Please improve the notation to clarify whether r_i in Equation 3 and r_i in Equa-

tion 4 represent two independent samples from the U(0,1) distribution. Please also make explicit where subscript i 

refers to the pixel index, and clarify if c_min, c_max, phi_min and phi_max also vary from pixel to pixel. 

   Authors: we have added some further discussions and explanations in our manuscript. The first modification 

part is in Line 128-135 in order to further discuss the distributional assumptions made in the paper. The second 

modification part is in Line 147-154 in order to response the address the editor’s previous question about the role 

of the simulated variable ri, the authors have gave explicit expansions at the corresponding position in our manu-

script based on the advices proposed by Editor.   

 

 


