Published: 24 October 2016

© Author(s) 2016. CC-BY 3.0 License.

Benchmarking an operational procedure for rapid risk assessment in Europe

2 3 4

1

Francesco Dottori, Milan Kalas, Peter Salamon, Alessandra Bianchi, Lorenzo Alfieri ,Luc Feyen

5 6

European Commission, Joint Research Centre, Directorate for Space, Security and Migration, Via
E. Fermi 2749, 21027 Ispra, Italy.

9

10 francesco.dottori@jrc.ec.europa.eu

11

12 **Keywords:** real-time, early warning system, flood hazard mapping, flood impact, economic

damage, risk assessment

14 Abstract

- 15 The development of methods for rapid flood mapping and risk assessment is a key step to increase
- 16 the usefulness of flood early warning systems, and is crucial for effective emergency response
- 17 and flood impact mitigation. Currently, flood early warning systems rarely include real-time
- 18 components to assess potential impacts generated by forecasted flood events. To overcome this
- 19 limitation, this work describes the benchmarking of an operational procedure for rapid flood risk
- 20 assessment based on predictions issued by the European Flood Awareness System (EFAS). Daily
- 21 streamflow forecasts produced for major European river networks are translated into event-based
- 22 flood hazard maps using a large map catalogue derived from high-resolution hydrodynamic
- 23 simulations. Flood hazard maps are then combined with exposure and vulnerability information,
- and the impacts of the forecasted flood events are evaluated in terms of flood prone areas,
- 25 economic damage and affected population, infrastructures and cities.
- 26 An extensive testing of the operational procedure is carried out by analysing the catastrophic
- 27 floods of May 2014 in Bosnia-Herzegovina, Croatia and Serbia. The reliability of the flood
- 28 mapping methodology is tested against satellite-based and report-based flood extent data, while
- 29 ground-based estimations of economic damage and affected population are compared against
- 30 modelled estimates. Finally, we evaluate the skill of risk estimates derived from EFAS flood
- 31 forecasts with different lead times and combinations of probabilistic forecasts. Results show the
- 32 potential of the real-time operational procedure in helping emergency response and management.

1) Introduction

34

33

35 Nowadays, flood early warning systems (EWS) have become key components of flood

36 management strategies in many rivers (Cloke et al., 2013; Alfieri et al., 2014a). They can increase

Published: 24 October 2016

© Author(s) 2016. CC-BY 3.0 License.

- 37 preparedness of authorities and population, thus helping reduce negative impacts (Pappenberger
- 38 et al., 2015). Early warning is particularly important for cross-border river basins where
- 39 cooperation between authorities of different countries may require more time to inform and
- 40 coordinate actions (Thielen et al., 2009).
- 41 In this context, the European Commission has developed the European Flood Awareness System
- 42 (EFAS) which provides operational flood predictions in major European rivers as part of the
- 43 Copernicus Emergency Management Services. The service is fully operational since 2012 and
- 44 available to hydro-meteorological services with responsibility in flood warning, EU civil
- 45 protection and their network.
- 46 While early warning systems are routinely used to predict flood magnitude, there is still a gap in
- 47 the ability to translate flood forecasts into risk forecasts, that is, to evaluate the possible impacts
- 48 generated by forecasted events (e.g. flood prone areas, affected population, flood damages losses).
- 49 Currently, flood impacts are generally evaluated considering static flood scenarios, either related
- 50 to official maps issued by the competent authorities (EC 2007) or to synthetic events derived from
- 51 current or future climatology (Alfieri et al., 2015), which implies some degree of manual
- 52 interpretation of forecasts to delineate flood prone areas and define impacts. A few research
- 53 projects are being developed where flood impact estimation is automated and linked to event
- 54 forecasting (Rossi et al., 2015; Schulz et al., 2015; Saint-Martin et al., 2016), however to our
- 55 knowledge these systems are still at experimental phase, and not yet integrated into operational
- 56 EWS
- 57 Indeed, the availability of real-time operational systems for assessing potential consequences of
- 58 forecasted events would be a substantial advance in helping emergency response, and indeed
- 59 flood impact forecasts are increasingly being requested by end users of early warning systems
- 60 (Emerton et al., 2016; Ward et al., 2016). At local scale, impact forecasting may provide valuable
- 61 information to alert local civil protection services and plan measures to increase preparedness, for
- 62 instance monitoring and strengthening flood defences and planning evacuation measures. At
- 63 European scale, the possibility to receive prior information on expected flood impacts would
- 64 increase preparedness and response time of the Emergency Response Coordination Centre
- 65 (ERCC), in order to plan and coordinate support for national emergency services.
- In the present paper, we describe a methodology designed to meet the needs of EWS users and
- 67 overcome the limitations mentioned so far. The methodology translates EFAS flood forecasts into
- 68 event-based flood hazard maps, and combines hazard, exposure and vulnerability information to
- 69 produce risk estimations in near-real time. All the components are fully integrated within the
- 70 EFAS forecasting system, thus providing seamless risk forecasts at European scale.
- 71 To demonstrate the reliability of the proposed methodology, we perform a detailed assessment
- 72 focused on the 2014 floods in the Sava River Basin in Southeast Europe. A large dataset for the
- 73 evaluation and validation of the results has been collected, which consists of observed flood
- 74 magnitude, flood extent derived from different satellite imagery datasets, and detailed post-event
- 75 evaluation of flood impacts, economic damage assessment and affected population and
- 76 infrastructure.

Published: 24 October 2016

© Author(s) 2016. CC-BY 3.0 License.

- The reliability of the flood mapping procedure is first assessed by assuming a "perfect" forecast, where flood magnitude is taken from real observations instead of EFAS predictions. The effect of flood defences failure is also taken into account. After that, we test the performance of the operational flood forecasting procedure, to evaluate the influence of different lead times and
- 81 combination of forecast members.

2) Methodology

In this section we describe the three components which compose the rapid risk assessment procedure: 1) streamflow and flood forecasting; 2) event-based rapid flood mapping 3) impact assessment. Figure 1 shows a conceptual scheme of the step composing the methodology.

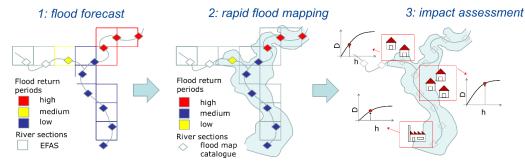


Figure 1: conceptual scheme of the rapid risk assessment procedure

The basic workflow of the procedure is the following:

- Every time a flood event is forecasted, we identify the river sections affected and local flood magnitude, (expressed as return period of the peak discharge);
- we identify areas which might be flooded using a the map catalogue, which contains all the flood prone areas for each river section and flood magnitude; these local flood maps are then combined to derive event-based hazard maps:
- Event hazard maps are combined with exposure information to assess affected population, infrastructures and urban areas, and economic damage.

The following sections provide a detailed description of each component.

2.1 The European Flood Awareness System (EFAS)

The European Flood Awareness System (EFAS) produces streamflow forecasts for Europe using a hydrological model driven by daily weather forecasts. We provide here a general description of the EFAS components, the reader is referred to the website (www.efas.eu) and to published

Published: 24 October 2016

© Author(s) 2016. CC-BY 3.0 License.

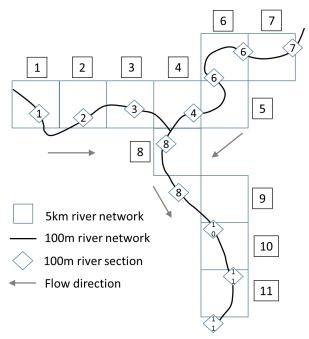
- literature for further details (Thielen et al., 2009; Pappenberger et al., 2011; Cloke et al., 2013;
- 108 Alfieri et al., 2014a).
- 109 Hydrological simulations in EFAS are performed with Lisflood (Burek et al, 2013; van der Knijff
- et al., 2010), a distributed physically based rainfall-runoff model combined with a routing module
- for river channels. The model is calibrated at European scale using streamflow data from a large
- 112 number of river gauges and meteorological fields interpolated from point measurements of
- 113 precipitation and temperature. Based on this calibration, a reference hydrological simulation for
- the period 1990-2013 is run for the European window at 5 km grid spacing, and updated daily.
- This reference simulation provides initial conditions for daily forecast runs of the Lisflood model
- driven by the latest weather predictions, which are provided twice per day with lead times up to
- 117 10 days. To evaluate the magnitude of streamflow forecasts in every grid point of the simulation
- domain, these are compared with local discharge thresholds, statistically evaluated from the
- 119 reference simulation (Alfieri et al., 2014a). In case thresholds are exceeded persistently over
- 120 several forecasts, flood warnings for the affected locations are issued to the members of the EFAS
- 121 consortium.
- 122 To account for the inherent uncertainty of the weather forecast, EFAS adopts a multi-model
- 123 ensemble approach, running the hydrological model with forecasts provided by the European
- 124 Centre for Medium Weather Forecast (ECMWF), the Consortium for Small-scale Modelling
- (COSMO), and the Deutscher Wetterdienst (DWD),

2.2 Database of flood hazard maps

- 128 Linking streamflow forecast with inundation mapping is complex because inundation modelling
- tools are computationally much more demanding than hydrological models used in early warning
- 130 systems, which currently prevent a real time integration of these two components. To overcome
- 131 this limitation, in the present work we decided create a catalogue of flood inundation maps
- covering all the EFAS river network and linked to EFAS streamflow forecast.
- 133 The hydrological input for creating the map catalogue is derived from the stream flow dataset of
- the EFAS reference simulation, described in Section 2.1. The information is available on the
- 135 EFAS river network at 5 km grid spacing for rivers with upstream drainage areas larger than 500
- 136 km². The streamflow data is downscaled to a high-resolution river network (100m), where
- reference sections are identified at regular spacing along stream-wise direction each 5km. Figure
- 2 shows a conceptual scheme of the two river networks. For each of these reference sections, a
- statistical analysis of extreme value analysis is applied to derive discharge values for several
- reference return periods (10, 20, 50, 100, 200 and 500 years), which are then combined with flow
- duration curves to produce flood hydrographs (see Alfieri et al., 2014b for a detailed description).
- 142 The hydrographs are used to run flood simulations at 100 m resolution in each river section using
- the 2D hydrodynamic model LISFLOOD-FP (Bates et al., 2010).
- The 100m flood maps related to the same EFAS river section (i.e. pixel of the 5km river network)
- are merged together, to identify the areas at risk of flooding because of overflowing from a

Published: 24 October 2016

© Author(s) 2016. CC-BY 3.0 License.


146

147

148

specific EFAS river section, and archived in the flood map catalogue. The merging is performed separately for each return period, in order to relate flooded areas with the magnitude of the flood event.

149 150

Figure 2: conceptual scheme of the EFAS river network (5 km, squares) with the high resolution network (100m) and river sections (diamonds) where flood simulations are derived. The sections of the two networks related are indicated by the same number. Adapted from Dottori et al. (2015).

152153

151

2.3 Event-based mapping of flood hazard

154155

The database of flood hazard maps described in Section 2.2 is used to translate the information coming from EFAS discharge forecasts into event-based estimations of flood extent. Since the EFAS daily predictions are provided as an ensemble of forecasts, the procedure to identify flood

prone areas and flood magnitude is also carried out in a probabilistic framework.

We first identify the maximum discharge predicted over the full forecasting period, calculated using the median discharge from ensemble forecasts at each river grid cell. The value is compared with the reference long-term climatology to calculate the return period.

Then, predicted streamflow is compared with the local flood protection level, and river grid cells where the protection level is exceeded are considered to activate the complete risk assessment procedure.

Flood protection levels are given as the return period of the maximum flood event which can be retained by the defence measures (e.g. dykes). The map of flood protections used is based on risk-

Published: 24 October 2016

© Author(s) 2016. CC-BY 3.0 License.

- based estimations for Europe developed by Jongman et al. (2014), integrated, where available,
- with the actual level of protection found from literature review or assessed by local authorities.
- 170 Selected river cells are reclassified into classes according to the closest return period exceeded
- 171 (10, 20, 50, 100, 200, 500 years) and the corresponding flood hazard maps are retrieved from the
- catalogue and tiled together. For instance, if the estimated return period is 40 years, the flood map
- for 20 years return period is used. Where more maps related to more river sections overlap (see
- 174 Section 2.2), the maximum depth value is taken.

2.4 Flood impact and risk assessment

- After the event-based flood hazard map has been completed, it is combined with the available information defining the exposure and vulnerability at European scale.
- The number of people affected is calculated using the population map developed by Batista e
- 180 Silva et al. (2012) at 100m resolution. A detailed database of infrastructures produced by Marín
- Herrera et al. (2015) is used to compute the extension of the road network affected during the
- 182 flood event. The list of major towns and cities potentially affected within the region is derived
- from an internally developed map of major urban areas. The total extension of urban and built-up
- 184 areas (differentiated between residential, commercial and industrial areas) and agricultural areas
- is computed using the latest update of the Corine Land Cover for the year 2006.
- 186 The land use layer is also used as asset exposure information to compute direct economic losses
- in combination with flood hazard variables (flood extent and depths) and depth-damage functions,
- following the approach applied by Jongman et al. (2012), Rojas et al. (2013) and Alfieri et al.
- 189 (2015). The set of empirical damage functions derived for European countries by Huizinga (2007)
- 190 have been elaborated to produce separate functions for the land use classes that are more
- 191 vulnerable to flooding (residential, commercial, industrial, agricultural). To account for the
- 192 variable value of assets within one country, damage values are corrected considering the ratio
- between the gross domestic product (GDP) of regions (identified according to the Nomenclature
- of Territorial Units for Statistics (NUTS), administrative level 1) and country's GDP. To enable
- the application of the methodology in all the EFAS domain, additional damage curves have been
- derived for countries not included in the original database, like Serbia and Bosnia-Herzegovina.
- 197 All the results computed during the risk assessment procedure are aggregated using the
- 198 classification of EU regions of EUMetNet (the network of European Meteorological Services,
- www.meteoalarm.eu). The regions considered are based on the levels 1 and 2 of the NUTS
- 200 classification, according to the EU country, with the advantage of providing areas of aggregation
- with a comparable extent.
- 202 In the operational system, the described procedure is fully integrated in the EFAS forecast
- analysis chain. When a new EFAS hydrological forecast becomes available, the risk assessment
- 204 procedure is activated in those locations where predicted peak discharges exceeds the flood
- 205 protection levels. When activated, the execution time depends on the extent and spatial spread of
- 206 the potentially affected areas over the full forecasting domain. Even in case of flood events

Published: 24 October 2016

© Author(s) 2016. CC-BY 3.0 License.

209210

219

220

occurring simultaneously in different European countries, the results of the analysis are delivered within one hour after the EFAS forecast runs are finished.

3) Benchmarking of the procedure

211 In order to perform a comprehensive evaluation of the risk assessment procedure, it is important 212 to evaluate each component of the methodology, namely, streamflow forecasts, event-based flood 213 mapping, and the impact assessment. The skill of EFAS streamflow forecasts is routinely 214 evaluated (Pappenberger et al., 2011) while impact assessment was successfully applied by 215 Alfieri et al. (2016) to evaluate socio-economic impacts of river floods in Europe for the period 216 1990-2013. Here, the complete procedure is tested using the information collected for the 217 catastrophic floods of May 2014, which affected several countries in Southeast Europe. In 218 particular, we focus on the flooding of the Sava River in Bosnia-Herzegovina, Croatia and Serbia.

3.1 The floods in Southeast Europe in May 2014

221 Exceptionally intense rainfalls from 13 May 2014 onwards following weeks of wet conditions led 222 to disastrous and wide spread flooding and landslides in South-eastern Europe, in particular 223 Bosnia-Herzegovina and Serbia. In these two countries, the flood events have been reported to be 224 the worst for over 200 years. Over 60 people lost their lives and more than a million inhabitants 225 were estimated to be affected, while the estimated damages and losses exceeded 1.1 billion Euro 226 for Serbia and 2 billion Euro for Bosnia-Herzegovina (ECMWF, 2014; ICPDR and ISRBC, 227 2015). Critical flooding was also reported in other countries including Croatia, Romania and 228 Slovakia. Serbia and Croatia requested and obtained access to the EU Solidarity Fund for major 229 national disasters (EC 2016). 230 According to the technical report issued by the International Commission for the Protection of 231 the Danube River and the International Sava River Basin Commission (ICPDR and ISRBC, 232 2015), the flood events were particularly severe in the middle-lower course of the Sava River and 233 in several tributaries. The discharge measurements and estimations carried out between 14 and 234 17 May indicated that the peak flow magnitude exceeded the 500 years return period both in the 235 Bosna and Kolubara rivers and in part of the Sava River downstream of the confluence with 236 Bosna. Discharges above 50 years were observed in the Una, Vrbas, Sana and Drina rivers (Figure 237 3).

Published: 24 October 2016

© Author(s) 2016. CC-BY 3.0 License.

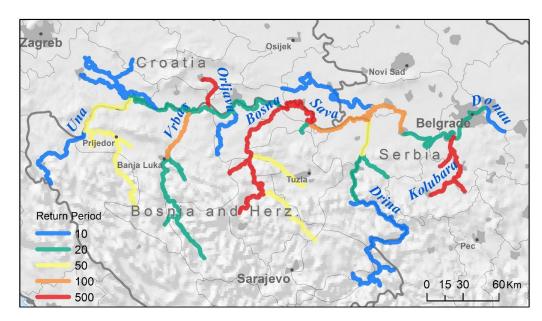


Figure 3. Reconstruction of return period of peak discharges in Sava River basin (source: ICPDR and ISRBC, 2015).

240241

242

243

244

245

246

247248

249

238239

The lower reach of the Sava was less heavily affected because upstream flooding reduced peak discharges and hydraulic operations on the Danube hydraulic structures reduced water levels in the Danube (ICPDR and ISRBC, 2015). As a result, multiple dyke breaches occurred along the Sava River, and severe flooding occurred at the confluence of tributaries like Bosna, Drina and Kolubara due to the extreme discharges (Figure 4). In many areas, dykes were reinforced and heightened during the flood event to withstand the peak flow; also, additional temporary flood defences were built to prevent further flooding, and drains were dug to drain flooded areas more quickly. Other rivers in the area experienced severe flood events, such as the tributaries of the Danube Velika Morava and Mlava, in Serbia.

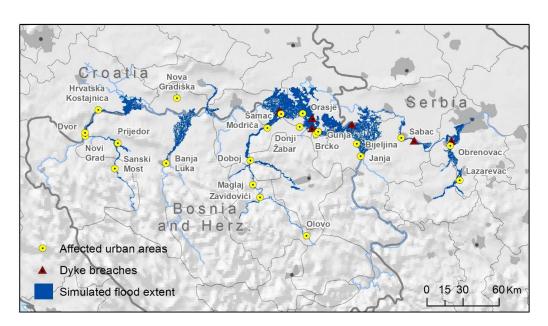

Danube Velika Morava and Mlava, in Serbia
Table 1 reports a summary of flood impacts a

Table 1 reports a summary of flood impacts at national level for Bosnia-Herzegovina, Croatia and Serbia, retrieved from different sources.

© Author(s) 2016. CC-BY 3.0 License.

253254

Figure 4. Reconstruction of affected urban areas and dyke failure locations along the Sava River (sources: UNDAC, 2014; ICPDR and ISRBC, 2015). The flood extent of the reference simulation with the proposed procedure is also shown (see Section 3.2).

255256257

	Flooded area	Casualties ⁽¹⁾	Affected	Evacuated	Economic
	(km ²)		population ⁽¹⁾	population ⁽¹⁾	impact (M€)
Bosnia-	266.3 ⁽¹⁾ ; 831 ⁽²⁾	25	1.6 million	90000	2040
Herzegovina					
Croatia	53.5 ⁽¹⁾ ; 110 ⁽³⁾ ;	3	38000	15000	300
	210 ⁽⁴⁾				
Serbia	$22.4^{(1)}$; $221^{(3)}$;	51	1 million	32000	1530 ⁽¹⁾
	350 ⁽⁵⁾				

258259

260

261

262

Table 1. Summary of flood impacts at national level. Figures have been retrieved from the following sources: 1- ICPDR and ISRBC (2015); 2- Bosnia-Herzegovina Mina Action Center (BHMAC, Bajic et al 2015); 3— Copernicus EMS Rapid Mapping Service; 4- Wikipedia (2016); 5- GeoSerbia geoportal (2016).

3.2 Evaluation of the flood hazard mapping procedure

263264265

266

We considered in our analysis the river network of the Sava River basin, where some of the most affected areas are located and for which detailed information is available from various reports.

Published: 24 October 2016

© Author(s) 2016. CC-BY 3.0 License.

276

277

278

279

280

281

282

283

267 To evaluate the skill of the flood hazard mapping procedure, we used observed flood magnitudes (Figure 3) to identify the return period of peak discharges and thus select the appropriate flood 268 269 maps. In addition, we used the information on flood protection level and dyke failures to select only those river sections where flooding actually occurred, either because of defence failures or 270 271 exceeding discharge. The resulting flood hazard map will be named from now on as "reference 272 simulation". Such a procedure excludes the uncertainty due to the hydrological input from the 273 analysis, focusing on the evaluation of the flood hazard mapping approach alone. In other words, 274 the test can be seen as an application of the procedure in case of a single, deterministic and 275 "perfect" forecast. The resulting inundation map is displayed in Figure 4.

It is important to note that a margin of uncertainty remains because of the emergency measures taken during the event. In several river sections of the Sava River, the flood defences were actually able to withstand discharges well above their design value, thanks to timely emergency measures such as the heightening and strengthening of dykes. Moreover, the preparation of temporary flood defences in the floodplains helped to protect some areas which would have been otherwise flooded. A further issue of the methodology is that, where flood protections are exceeded, flooding can occur on both river banks, while in case of dyke failure flooding is usually limited to one side where protection level is lower. This has not been corrected and therefore the results are affected by this limitation.

284 285 The flood events in the Sava River have been mapped by several agencies and institutions using 286 both ground observations and satellite imagery (see UN SPIDER 2014 for a complete list). The 287 most comprehensive flood maps were developed by the Copernicus Emergency Management 288 System (EMS) using Sentinel-1 data (EMS, 2014), and by NASA using MODIS Aqua (2014). 289 For Serbia, the Republic Geodetic authority has acquired and processed further satellite images,

290 which are available on the geoportal GeoSerbia (2016).

291 Despite this large amount of data sources available, the evaluation of the simulated flood extent 292 is not straightforward. All the available images have been acquired during the flood recession 293 (from 19 May onwards), while flood peaks in flooded areas where observed between 15 and 17 294 May 15 and 17. Therefore, several areas which have been reported as flooded in the available 295 documentation are not included in the detected flood footprints, which results in a significant 296 difference between satellite-detected and reported flood extent from ground surveys (see Table 297 1). On the other hand, EMS satellite maps are designed to produce a low rate of false positive 298 errors, therefore they can be considered as a "lower limit" for the real flood extent. Finally, it has 299 to been considered that the available sources of information report for each country different 300 extents of flooded area, as can be seen in Table 1. 301

In order to take into account these issues, we first compare the total simulated and reported flood extent, considering all the available reported data. Then, we evaluate the agreement between satellite-derived and simulated flood extent using the hit ratio H (Alfieri et al., 2014b). The index measures the extent of observed flooded area included into estimations and it is defined as:

304 305 306

302

$$H = (Fm \cap Fo)/(Fo) \times 100 \tag{1}$$

Nat. Hazards Earth Syst. Sci. Discuss., doi:10.5194/nhess-2016-338, 2016

Manuscript under review for journal Nat. Hazards Earth Syst. Sci.

Published: 24 October 2016

© Author(s) 2016. CC-BY 3.0 License.

307 308

309

where $Fm \cap Fo$ is the area correctly predicted as flooded by the model, and Fo is the total observed flooded area. As a further element, we compare the number of urban areas (cities, towns

and villages) which were reported as flooded in existing reports.

3.2 Evaluation of forecast-based flood maps

311312

315

313 To evaluate the overall performance of forecast-based flood mapping, we considered the EFAS

314 forecasts issued on 12 and 13 May for the Sava river basin, that is, immediately before the

occurrence of first flood events on 14 May. We first applied the procedure described in Section

316 2.3 to derive peak discharges and the estimated return period using the median of the EFAS

ensemble forecasts. To provide an indication of the possible range of risk scenarios, we produced

additional flood hazard maps with the same procedure considering the 25 and 75 percentiles of

319 discharge

320 The forecast-based flood hazard maps are evaluated against the reference simulation, comparing

321 the river sectors and the urban areas (or municipalities) at risk of flooding. Note that no direct

322 comparison against observation-based flood maps has been carried out, because forecast-based

maps cannot account for defence failures or strengthening.

3.3 Evaluation of the flood risk assessment

324325326

Inundation maps derived from the reference simulation and flood forecasts have been used to

compute the flood impacts in terms of number of affected people, affected major towns and cities,

328 and economic damage.

329 The results are compared with the available impact estimations both at national and local level.

330 For Serbia and Bosnia-Herzegovina, the national figures reported in Table 1 are referred to the

total impact given by river floods, landslides and pluvial floods, therefore they cannot be directly

332 compared with methodology results. As such, the comparison has been done only for Croatia and

for a number of municipalities (e.g. Obrenovac in Serbia) where impacts can be attributed to river

flooding alone.

335 The figures of affected population simulated with the observation-based flood scenario are also

336 useful to test the reliability of the population map used as exposure dataset. Similarly, damage

337 estimations coming from the observation-based scenario provide an indication of the reliability

of depth-damage curves for the study area.

339 As done for the flood hazard maps, forecast-based risk estimations are evaluated against the

observation-based estimations, comparing both population and damage figures. Note that other

341 variables produced by the operational procedure (e.g. roads affected, flooded urban and

342 agricultural areas) could not be tested due to the lack of observed data and therefore are not

343 discussed here. To add a further term of comparison, affected population has been computed using

344 Copernicus-EMS flood footprints.

Published: 24 October 2016

© Author(s) 2016. CC-BY 3.0 License.

4) Results and discussions

345346347

348

The results of the validation exercise are shown and discussed separately for each component of the procedure.

4.1 Flood hazard mapping

349350351

352

353

Table 3 reports the observed flood extent data from different sources and the simulated extent derived from the reference simulation (.i.e. the mapping procedure applied on discharge observations). Table 4 reports the scores of the hit ratio H for a number of flooded river sections, together with a comparison of towns flooded according to simulations and observation.

354355

Country	Flood extent (km ²)				
	Simulated Satellite		Reported by	Reported	
			ICPDR-ISRBC	(other sources)	
Bosnia - Herzegovina	995	339	266.3 (1)	831 (2)	
Croatia	919 (319)	110	53.5 (1)	>210 (3)	
Serbia	582	221	22.4 (1)	>350 (4)	

356357

358

359

360

Table 3. Comparison of observed and simulated flood extent data at country scale. Satellite flood extent is referred to Copernicus EMS maps. The value between parentheses for Croatia is based on a modified simulation, as explained in the text. Reported flood extent has been retrieved from the following sources: 1- ICPDR and ISRBC (2015); 2- BHMAC(Bajic et al 2015); 3- Wikipedia (2016); 4 – GeoSerbia geoportal (2016).

361362

Affected areas	Hit ratio	EMS flooded	Affected towns and cities	
		area (km²)		
Bosna River	90.6%	58.46	Maglaj, Doboj, Modriča	
Sava River between confluences	63.9%	134.76	Orašje, Šamac, Donji	
with Bosna and Drina			Žabar, Brcko, Gunja,	
			(Zupanja), Bijeljina	
Sava River between confluences	83.7%	405.43	Sabac, Obrenovac,	
with Drina and Kolubara			Lazarevac	
Total	79.9%	598.65		

363364

Table 4. Scores of the hit ratio H for a number of flooded river sections, and affected towns and cities. Names between parentheses refer to towns and cities wrongly predicted as flooded, otherwise towns and cities have been correctly predicted as flooded.

Published: 24 October 2016

© Author(s) 2016. CC-BY 3.0 License.

367

368 extent (see Table 3), given the delay between flood peaking time and time o image acquisition 369 mentioned in Section 3.2. For Serbia in particular the flooded area detected from Copernicus and 370 GeoSerbia maps are both smaller than the simulation. Also, flood extent indicated in the ICPDR 371 and ISRBC report is consistently lower than values from both simulated and satellite maps. 372 For Bosnia-Herzegovina, the simulated value is close to the reported flood extent published in a 373 report by Bajic et al. (2015). For Croatia, the flood mapping methodology is largely 374 overestimating both the satellite-based and reported flood extents. The main reason is that 375 flooding on the left side of Sava was limited due to the reinforcing of river dykes in the area close 376 to the city of Zupania, which could contain the reported 500 years return period discharge despite 377 having been designed for a 1 in 100 year event. In fact, all the left bank of Sava in this area was 378 reported as areas at risk in case of a failure of flood defences, and only the emergency measures 379 taken prevented more severe flooding (ISRBC, 2014). We performed an additional flood 380 simulation excluding any failure on the river left bank between the Bosna confluence and 381 Zupanja, and in this case we found a total flood extent of 319 km². Although this value is larger 382 than for satellite maps, it is close to the extent reported by other sources. 383 Regarding Table 4, the scores of the H index indicate that the mapping procedure can correctly 384 detect most of the flooded areas, although with the partial exception of the lower Sava area. In 385 particular, the great majority of towns reported to have been flooded are correctly detected by the simulations, with only few false alarms (e.g. the already mentioned Zupanja). 386 387 When looking at the results it's important to keep in mind the limitations of the procedure. As 388 mentioned in Section 2.3, the mapping procedure is able to reproduce only maximum flood 389 depths, and the dynamic of the flood event is not taken into account. This means that processes

As expected, the simulated flood extent is significantly larger in all the cases than the satellite

4.2 Flood risk assessment

Tables 5 and 6 show a summary of the simulated flood impacts on population (based on the reference simulation), compared with estimates both at local scale and aggregated at national scale. Note that we compare simulated population impacts with figures of evacuated population because the reported estimates of affected population included also people affected by pluvial floods and landslides, as well as indirect effects like energy shortage and road cuts. On the other hand, it is important to remember that the figures of evacuated population are not equivalent to directly affected population (i.e. whose houses were actually flooded). In some areas, evacuation was taken as a precautionary measure, even if flooding did not eventually occur.

like flood wave attenuation due to inundation occurring upstream cannot be simulated, and

possible flood mitigation measures taken during the event are not considered as well.

Furthermore, due to the DEM coarse resolution, flood simulations do not include small scale

topographic features like minor river channels, dykes and road embankments.

403 404

390

391

392

393

394

395396

397

398

399

400

401

Published: 24 October 2016

© Author(s) 2016. CC-BY 3.0 License.

Country	Evacuated	Affected	Affected
	population	population	population
	(reported)	(satellite)	(simulated)
Bosnia-Herzegovina	90.000	51.010	215.200
Croatia	27.255	5.758	57.000
Serbia	32.000	13.699	29.800

Table 5. Comparison of evacuated population and affected population estimated from satellite and simulations in Bosnia-Herzegovina, Croatia and Serbia (source: ICPDR and ISRBC, 2015).

407
408

Administrative area	Country	Evacuated	Affected
		population	population
		(reported)	(estimated)
Obrenovac municipality	Serbia	> 25000	17600
Brod-Posavina county	Croatia	13700	12800
Osjek-Baranja county	Croatia	200	1300
Sisak-Moslavina county	Croatia	2400	3300
Požega-Slavonija county	Croatia	2300	1500
Vukovar-Srijem county	Croatia	8700	39200

Table 6. Comparison of evacuated population (reported) and affected population (simulated) in administrative areas in Croatia and Serbia (source: ICPDR and ISRBC, 2015; Wikipedia, 2016)

As can be seen, results from the reference simulation match well figures reported for all the flooded counties of Croatia except for the Vukovar-Srijem County. This is due to the overestimation of flooded areas due to the emergency measures mentioned in Section 4.1. If these are taken into account and dyke failures are not included in this county, the affected population is reduced to 8600 people, extremely close to the reported figure. Some underestimation can be observed for Obrenovac municipality but the estimated figures still depict a major impact on the city. A possible reason is that the flood simulations are less reliable for urban areas, as the elevation data from SRTM is known to be less accurate in urban and densely vegetated areas (Sampson et al., 2015). It is worth noting that simulated and reported figures for affected people compare much better than for flood extent, which supports the hypothesis of a general underestimation of flood extent from satellite images.

For flood impacts related to monetary damage, the simulations for Croatia report a total damage of 653 M€, against a reported estimate of 298 M€. However, if the already mentioned overestimation of flooded areas is considered, then the estimate decreases to 190 M€. As mentioned in Section 3.3, damage figures Serbia and Bosnia-Herzegovina could not be used because available estimates aggregate damages from landslides and river and pluvial flooding.

Published: 24 October 2016

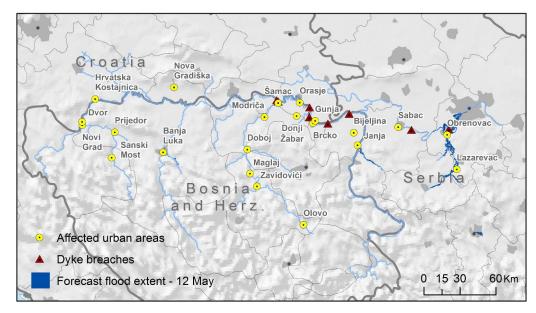
© Author(s) 2016. CC-BY 3.0 License.

The observed underestimation can be explained considering that the damage curves applied have not yet been calibrated for Bosnia-Herzegovina, Croatia and Serbia. On this point, previous applications in countries where established damage curves were available (e.g. Germany) led to results well in line with observations (Jongman et al., 2012; Alfieri et al., 2016). Also, estimated damages include only direct damage to buildings, while infrastructural damage is only partially accounted for (e.g. damage to the dyke system).

4.3 EFAS forecasts

436 437 438

439


440

441

442443

444

Figures 5 and 6 show the inundation maps derived using the median of ensemble streamflow forecasts issued on 12 and 13 May (that is, the standard procedure adopted for the operational procedure). In addition, Table 7 illustrates the outcomes of impact forecasts, compared to impacts obtained from the reference simulation. For 12 May, we considered predicted maximum streamflow values based on the 25th, 50th and 75th percentiles of the ensemble forecast. For 13 May only the 50th percentile is considered. All of estimations are computed taking into account local flood protection levels.

445 446

Figure 5. Simulated flood extent based on 12 May forecast, with location of reported flooded urban areas and dyke failures.

© Author(s) 2016. CC-BY 3.0 License.

448 449

450

451

452 453

454

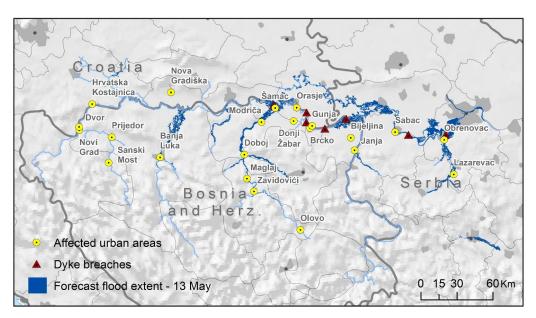


Figure 6. Simulated flood extent based on 13 May forecast, with location of reported flooded urban areas and dyke failures.

Country	12 May -	12 May	12 May -	13 May -	Reference	
	25 perc	12 -50	75 perc	50 perc		
		perc				
	f	lood extent (km ²)			
Bosnia-Herzegovina	0	5	196	509	995	
Croatia	0	0	100	159	919	
Serbia	91	187	385	658	582	
affected population						
Bosnia-Herzegovina	0	5,225	20,458	100,665	215,176	
Croatia	0	0	3,598	4,924	57,053	
Serbia	2,793	6,012	15,120	27,732	29,758	
economic damage (million €)						
Bosnia-Herzegovina	0	10	36	254	378	
Croatia	0	0	41	54	653	
Serbia	14	31	92	203	141	

Table 7. Comparison of forecasted flood impacts with the reference impact estimation.

The simulated flood maps and the values displayed in Table 7 show that, while forecasts for 12 May are significantly far from the observations, the performance greatly improves after one single

Published: 24 October 2016

© Author(s) 2016. CC-BY 3.0 License.

- day, when predicted impacts are very similar to the reference simulation for Serbia, even though
- 458 for Bosnia- Herzegovina and especially Croatia there is still a significant underestimation.
- 459 Nevertheless, the order of magnitude is already indicating a major flood risk for the predicted
- events, meaning that emergency responders could have used this estimation to plan and
- 461 implement countermeasures, and monitor the situation. A further important result is that the
- location of forecasted flooded areas is mostly consistent with the reference simulation shown in
- 463 Figure 3, with several urban areas already at risk of flooding in the map based on 13 May forecast
- 464 (Figure 6).
- Regarding the prediction based on 12 May forecast, it is worth noting that the use of 75th percentile
- 466 results in estimations closer to the reference simulation (Table 7). Again, this is an important
- 467 piece of information because it provides emergency responders with an early indication of the
- possible severe consequences of the upcoming flood.

469

5) Conclusions and next developments

470 471 472

473

474

475

476

486

487

488

489

490

491

492

493

494

495

This paper presents the first application of an impact forecasting procedure which is fully integrated within a continental scale flood early warning system. The procedure has been thoroughly tested in all its components, and the results demonstrate the potential of the proposed approach. Comparison of reported and simulated flooded areas suggests that the methodology enables to identify areas at risk well in advance, which could help the planning of timely response

477 measures (e.g. dyke strengthening, temporary road closure).

The methodology provided acceptable estimates of affected population, thus providing valuable information for the implementation of evacuation measures. Damage estimations are in the same order of magnitude of observed figures, albeit with a general underestimation. It should be considered, however, that the damage curves used for Bosnia-Herzegovina, Croatia and Serbia are curves that have been derived for other European countries rescaled to reflect local asset values. Further applications will allow to improve estimations by calibrating damage curves in

different contexts and more countries.When evaluating the outcomes, it is im

When evaluating the outcomes, it is important to remember that, even in case of a risk assessment based on "perfect" forecasts and modelling, simulated impacts will always be different from actual impacts. As we have shown in the test case of the floods in the Sava River basin, unexpected defence failures can occur for flow magnitudes lower than the design level, thus increasing flood impacts. On the other hand, flood defences might be able to withstand greater discharges than the design level, and emergency measures can improve the strength of flood defences or creating new temporary structures. Finally, evaluating forecasted impacts is still complicated by the lack of standardized reporting of flood impacts, meaning that reported flood extents and damages can strongly deviate from the true extents and damages (as observed in the test case from the differences between the satellite and reported extents). As such, forecast-based risk assessment should be regarded as a flood scenario that can provide valuable information for

Published: 24 October 2016

© Author(s) 2016. CC-BY 3.0 License.

- local, national and international authorities, complementing the standard information provided by
- flood early warning systems.
- 498 Since September 2016, the procedure is running in testing mode within the EFAS modelling chain
- and will be fully operational by the beginning of 2017. Besides the version currently in use and
- described in this paper, further modifications and alternative approaches for hazard mapping and
- risk assessment will be tested in the near future.
- 502 Currently, inundation forecasting is computed using the median of daily ensemble streamflow
- 503 forecasts, but in principle the methodology can easily be adapted to produce additional flood
- scenarios considering different ensemble percentiles, thus taking into account less probable but
- 505 potentially more severe flood scenarios (see the application described this paper). Alternatively,
- 506 the uncertainty of meteorological predictions could be represented using probabilistic maps of
- 507 flood extent as proposed by Di Baldassarre et al. (2010). The influence of lead time on flood
- 508 predictions could also be assessed, for instance by setting a criterion based on forecasts
- 509 persistence over a period to trigger the release of impact forecasts. All these alternatives will be
- 510 tested in collaboration with the community of the EFAS users, to maximize the value of the
- 511 information provided and avoid information overload which can be difficult to manage in
- 512 emergency situations.
- A further promising application is the possibility of using inundation forecast to activate rapid
- 514 flood mapping from satellites, exploiting the Copernicus Emergency Mapping Service of the
- 515 European Commission.
- 516 Finally, the proposed procedure will also be incorporated into the Global Flood Awareness
- 517 System (GloFAS), which would allow to establish a near-real time flood risk alert system at global
- 518 scale.

519

Acknowledgements

521

520

- 522 This work has been partially funded by the COPERNICUS programme and an administrative
- 523 arrangement with the Directorate General Humanitarian Aid and Civil Protection (DG ECHO) of
- 524 the European Commission.
- 525 The authors would like to thank Jutta Thielen for her valuable suggestions on an early version of
- 526 the manuscript.

527

Bibliography

529

- Alfieri L., Pappenberger F., Wetterhall F., Haiden T., Richardson D., Salamon P., 2014a.
- 531 Evaluation of ensemble streamflow predictions in Europe, Journal of Hydrology, 517, 913-922
- Alfieri, L., Salamon, P., Bianchi, A., Neal, J., Bates, P.D., Feyen, L., 2014b. Advances in pan-
- 533 European flood hazard mapping, Hydrol. Process., 28 (18), 4928-4937, doi:10.1002/hyp.9947.

Published: 24 October 2016

© Author(s) 2016. CC-BY 3.0 License.

- 534 Alfieri L., Feyen L., Dottori F., Bianchi A., 2015. Ensemble flood risk assessment in Europe
- 535 under high end climate scenarios. Global Environmental Change 35, 199-212.
- 536 Alfieri, L., Feyen, L., Salamon, P., Thielen, J., Bianchi, A., Dottori, F., and Burek, P.:
- 537 Modelling the socio-economic impact of river floods in Europe, Nat. Hazards Earth Syst. Sci.,
- 538 16, 1401-1411, doi:10.5194/nhess-16-1401-2016, 2016.
- 539 Bates P.D., Horritt M.S., and Fewtrell T.J. (2010). A simple inertial formulation of the
- 540 shallow water equations for efficient two-dimensional flood inundation modelling. Journal of
- 541 Hydrology, 387, 33–45.
- 542 Batista e Silva F., Gallego J., and Lavalle C. (2013). A high-resolution population grid map
- 543 for Europe. Journal of Maps, 9 (1), 16-28.
- Burek, P., Knijff van der, J., Roo de, A., 2013. LISFLOOD, Distributed Water Balance and 544
- 545 Flood Simulation Model Revised User Manual 2013. Publications Office, Luxembourg.
- 546 Cloke, H., Pappenberger, F., Thielen, J. and Thiemig, V. (2013) Operational European Flood
- 547 Forecasting, in Environmental Modelling: Finding Simplicity in Complexity, Second Edition (eds
- 548 J. Wainwright and M. Mulligan), John Wiley & Sons, Ltd, Chichester, UK. doi:
- 549 10.1002/9781118351475.ch25.
- Copernicus Emergency Management Service Mapping. Institute for the Protection and 550
- Security of the Citizen (IPSC), European Commission, Joint Research Centre (JRC). Accessed 551
- 552 November 12, 2014. http://emergency.copernicus.eu/.
- 553 Di Baldassarre G, Schumann G, Bates PD, Freer JE, and Beven KJ. (2010). Floodplain
- 554 mapping: a critical discussion of deterministic and probabilistic approaches. Hydrological
- 555 Sciences Journal, 55 (3), 364–376.
- 556 Dottori F., Salamon P., Kalas M., Bianchi A., Thielen J., Feyen L., 2015. A near real-time
- procedure for flood hazard mapping and risk assessment in Europe. 36th IAHR World Congress 557
- 28 June 3 July, The Hague, the Netherlands. 558
- 559 EC. 2016. List of EU Solidarity Fund Interventions since 2002,
- 560 http://ec.europa.eu/regional_policy/sources/thefunds/doc/interventions_since_2002.pdf
- (accessed 15-9-2016). 561
- 562 EC, 2007. Directive 2007/60/EC of the European Parliament and of the Council on the
- 563 assessment and management of flood risks. Official Journal of the European Communities,
- http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32007L0060 564 Brussels,
- 565 (accessed 21-10-2016).
- ECMWF, 2014. EFAS Bulletin April May 2014. Available at https://www.efas.eu/efas-566
- bulletins/1801-efas-bulletin-april-may-2014-issue-20143.html (accessed October 2015). 567
- 568 Emerton, R., Stephens, E.M., Pappenberger, F., Pagano, T.C., Weerts, A.H., Wood, A.W.,
- 569 Salamon, P., Brown, J.D., Hjerdt, N., Donnelly, C., Baugh, C.A., Cloke, H.L., 2016. Continental
- 570 and global scale flood forecasting systems. WIREs Water 2016 (3) 391-418,
- 571 doi:10.1002/wat2.1137.
- 572 Geoportal GeoSerbia, http://www.geosrbija.rs/ (accessed 21-10-2016).

Published: 24 October 2016

© Author(s) 2016. CC-BY 3.0 License.

- 573 Huizinga H. J. (2007). Flood damage functions for EU member states, HKV Consultants,
- 574 Implemented in the framework of the contract #382442-F1SC awarded by the European
- 575 Commission – Joint Research Centre.
- 576 Jongman B., Kreibich H., Apel H., Barredo J.I., Bates P.D., Feyen L., Gericke A., Neal J.,
- 577 Aerts J.C.J.H and Ward P.J (2012). Comparative flood damage model assessment: towards a
- 578 European approach. Natural Hazards and Earth System Sciences. 12, 3733–3752.
- 579 Jongman, B., Hochrainer-Stigler, S., Feyen, L., Aerts, J.C.J.H., Mechler, R., Botzen, W.J.W.,
- 580 Bouwer, L.M., Pflug, G., Rojas, R., Ward, P.J., 2014. Increasing stress on disaster-risk finance
- 581 due to large floods. Nat. Clim. Change 4, 264-268. doi:http://dx.doi.org/10.1038/nclimate2124.
- 582 ICPDR – International Commission for the Protection of the Danube River and ISRBC –
- 583 International Sava River Basin Commission2015. Floods in May 2014 in the Sava River Basin.
- 584 https://www.icpdr.org/main/sites/default/files/nodes/documents/sava_floods_report.pdf
- 585 (accessed 11-10-2015).
- 586 Marín Herrera, M., Batista e Silva, F., Bianchi, A., Barranco, R. and Lavalle, C., 2015. A
- 587 geographical database of infrastructures in Europe. JRC Technical Report, JRC99274.
- 588 Pappenberger F., Thielen J., and Del Medico M. (2011). The impact of weather forecast 589 improvements on large scale hydrology: analysing a decade of forecasts of the European Flood
- 590 Alert System. Hydrological Processes, 25, 1091–1113. http://dx.doi.org/10.1002/hyp.7772.
- 591 Pappenberger F., Cloke, H. L., Parker, D.J., Wetterhall, F., Richardson, D.S, Thielen, J., 2015.
- 592 The monetary benefit of early flood warnings in Europe. Environmental Science & Policy 51,
- 593 278-291.
- 594 Rojas, R., Feyen, L., Watkiss, P., 2013. Climate change and river floods in the European
- 595 Union: socio-economic consequences and the costs and benefits of adaptation. Glob. Environ.
- 596 Change 23, 1737–1751. doi:http://dx.doi.org/10.1016/j.gloenvcha.2013.08.006.
- 597 Rossi, L., Rudari, R., and the RASOR Team. RASOR Project: Rapid Analysis and
- 598 Spatialisation of Risk, from Hazard to Risk using EO data. Geophysical Research Abstracts Vol.
- 599 18, EGU2016-15073.
- Saint-Martin, C., Fouchier, C., Douvinet, J., Javelle, P., Vinet, F., 2016. Contribution of an 600
- 601 exposure indicator to better anticipate damages with the AIGA flood warning method: a case
- 602 study in the South of France. Geophysical Research Abstracts Vol. 18, EGU2016-10305-4.
- 603 Sampson, C.C., Smith, A.M, Bates, P.D., Neal, J.C., Alfieri, L., Freer, J.E., 2015. A High
- 604 Resolution Global Flood Hazard Model. Accepted article in Water Resour. Res., doi:
- 605 10.1002/2015WR016954.
- Schulz, A., Kiesel, J., Kling, H., Preishuber M., Petersen G., 2015. An online system for rapid 606
- 607 and simultaneous flood mapping scenario simulations - the Zambezi FloodDSS. Geophysical
- 608 Research Abstracts Vol. 17, EGU2015-6876. Thielen J., Bartholmes J., Ramos M.H., and De Roo
- 609 A. (2009). The European flood alert system – part 1: concept and development. Hydrology and
- Earth System Sciences 13, 125-140. 610
- 611 UNDAC - United Nations Disaster Assessment and Coordination Team, 2014. Mission to
- 612 Serbia – Floods 18-31 May 2014, end of mission report.

Published: 24 October 2016

© Author(s) 2016. CC-BY 3.0 License.

Van der Knijff, J.M., Younis, J., de Roo, A.P.J., 2010. LISFLOOD: a GIS-based distributed 613 614 model for river basin scale water balance and flood simulation. Int. J. Geogr. Inf. Sci. 24, 189-615 212. 616 Ward, P., Coughlan de Perez, E., Dottori, F., Jongman, B., Luo T., Safaie S., Uhlemann-Elmer S., 2016. The need for mapping, modelling and predicting flood hazard and risk at the global 617 618 scale. In publication in: Global Flood Hazard: Applications in modeling, mapping and forecasting 619 (Eds. Guy Schumann, Paul Bates, Giuseppe Aronica and Heiko Apel). 620 Wikipedia. Poplave u istočnoj Hrvatskoj u svibnju 2014 (accessed 21-10-2016).