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Abstract. Resonance has recently been proposed as the fundamental underlying mechanism that shapes the amplification in
coastal runup for both Tsunamis and storm surges. It is without doubt that the resonance plays a rdle in runup phenomena of
various kinds, however we think that the extent at which it plays its role has not been completely understood. For incident
waves, the best approach to investigate the rdle played by the resonance would be to calculate the normal modes by taking
radiation damping into account and then test how those modes are excited by the incident waves. There are a small number of
previous works that attempt to calculate the resonant frequencies but they do not relate the amplitudes of the normal modes
to those of the incident wave. This is because, by not including radiation damping, they automatically induce a resonance that
leads to infinite amplitudes, thus preventing them from predicting the exact contribution of the resonance to coastal runup.
In this study we consider two different coastal geometries: an infinitely wide beach with a constant slope connecting to a
flat-bottomed deep ocean and a bay with sloping bottom, again, connected to a deep ocean. For the fully 1-D problem we
find significant resonance if the bathymetric discontinuity is large. For the 2-D ocean case the analysis shows that the wave
confinement is very effective when the bay is narrow. The bay aspect-ratio is the determining factor for the radiation damping.
One reason why we include a bathymetric discontinuity is to mimic some natural settings where bays and gulfs may lead to
abrupt depth gradients such as the Bay of Tokyo. The other reason is, as mentioned above, to test the role played by the depth

discontinuity for resonance.

1 Introduction

During the last decades, several analytical and numerical studies of coastal runup were published (see Synolakis (1987),
Carrrier et al. (2003), Kanoglu (2005), Kanoglu and Synokalis (2005), Ozeren and Postacioglu (2012), and Stefanakis et al.
(2015)) most of which made use of Carrier-Greenspan transformations (Carrrier et al. (2003)). Some of these works, for
instance Stefanakis et al. (2015), Stefanakis et al. (2011) and Ezersky et al. (2013b), identified the resonance as the fundamental
factor for the runup amplification. The bulk of the present study will be dedicated to determine those physical settings in which
this might be the case.

In the past, several researchers looked at resonance aspect of the coastal runup. Among those, the ones that are the most
relevant to the discussion in the present study are Stefanakis et al. (2015), Stefanakis et al. (2011), Carrier and Noiseux (1983),
Ezersky et al. (2013a), Fuentes et al. (2015), Volker et al. (2010) and Yamazaki and Cheung (2011). The last two of these

studies report coastal resonance mechanisms leading to amplified runups during the 2009 Samoa and 2010 Chile Tsunamis
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Figure 1. (A) is the side view of the the incident wave at instant ¢ = 0 . The black dot is the shoreline and (z%, z}) are its coordinates with
2., being equal to runup r’. (B) is the geometry of the channel seen from above. In MODEL-I the sloping channel is connected to a deeper
channel of the same width (see broken lines in (B). In MODEL-2 the channel opens to a semi-infinite ocean. The width of the channel is

2a’. Non- dimensional quantities are defined as x =2’ /L’ , .y =vy'/L' ,2=2"/(aL’) ,n=n"/(aLl'),D=D'/(aL) anda=a'/L’.
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respectively. The work by Carrier and Noiseux (1983) does not explicitly mention resonance but their formulation clearly
shows a constructive interference by multiple reflections of an obliquely incident Tsunami wave for a particular set of incidence
angles. Some of the studies looked at the resonant mechanism in experimental settings (Ezersky et al. (2013a), Abcah et al.
(2016)).

In our modelling, we will be considering monochromatic incident waves, simply because this makes it easier to shed light
on the resonance. However, the mathematical algorithm we will develop is not limited to monochromatic waves but is capable
of calculating runup for any kind of offshore source including the earthquakes, submarine landslides or atmospheric pressure
perturbations.

This article deals with the transient runup response of a sloping channel (or bay) to an incident wave. Here the term transient
is used for the wave evolution before the standing wave regime sets in. As such, the problem presents itself as an initial value
problem. Such an initial value problem can be difficult and expensive to handle by purely numerical approaches. The reason for
the difficulty is that, on the offshore boundary it is difficult to make a distinction between the incident and reflected waves. One
way of surmounting this difficulty numerically is to take the computational domain so large that by the time the reflected waves
arrive at the offshore boundary, the standing wave regime would have set in in the coastal region. For instance, Stefanakis et al.
(2011) did one-dimensional numerical simulations to understand the runup amplification by nonleading long waves. They cast
the problem as a boundary value problem and imposed an offshore boundary condition, at distance L’ from the undisturbed
shoreline, for the wave height as 7' = +2n,! sin(w't') where ¢’ is time. However, this model, as will be explained in detail
later, tends to overestimate the runup if the open boundary lies in one of the nodes of the standing wave that will eventually
set in. When the incident and reflected wave distinction is made (see, for example, Antuono and Brocchini (2010)), the runup
amplification factor (defined as r'/ (27761 ) where 7’ é is the incident wave amplitude and 7’ is the runup) remains finite as long
as the frequency of the incident wave is real. This has independently been shown in Antuono and Brocchini (2010).

Our purpose in the present work is to determine the way in which the free modes near the coast are excited by the incident
waves by taking the radiation damping into account. We will examine resonance in two different geometric settings: firsta 1D
slope which connects to a 1D channel with a flat bottom and then, again a 1D slope that connects to a semi-infinite 2D ocean
with a flat bathymetry (see Figure (1)). When the wavelength of the incident wave is much shorter than the width of the sloping
channel the completely 1D model is a good approximation to the natural case and we can neglect the geometric spreading of
the waves at the toe of the sloping bay (this geometry will be referred to as MODEL-1 during the rest of the article). If this is not
the case, then a 2D model (MODEL-2) near the mouth of the bay becomes necessary (see Figure 1). The Coriolis acceleration
is neglected in both cases as we limit ourselves to small scales. Storm surges and meteotsunamis can excite Kelvin waves in
the coastal areas and such waves travelling along the coast can come across bay mouths and force the normal modes of the bay,
so the analysis here is not confined to one specific type of wave.

MODEL-1 is actually solvable, through fast Fourier transforms (see Ezersky et al. (2013b)), without necessarily resorting
to the coastal free modes. However generalizing this solution approach to 2D in the deep ocean part is computationally very
expensive, requiring a solution of an integral equation for each frequency component to calculate the transient response. Hence,

the real importance of the technique developed in this manuscript becomes more apparent in MODEL-2 which can be of great
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engineering importance in modelling coastal amplifications of Tsunamis and storm surges in places like the Tokyo Bay which
has a sloping bathymetry (Kataoka et al. (2013)).
2 Basic equations

MODEL-1 consists of a channel of constant slope «, length L’ that connects to a another channel of uniform depth o’ + D’

(see Figure 1). Parameter D’ is the discontinuity in depth at toe of the slope. The maximum depth of the sloping channel is oL’

The governing equations we shall use over the sloping part of the geometry are non-linear shallow water equations

Opu + ' 0y + gy’ =0 9]

Ny + 0w (' + 0 )u') =0 ()

where v’ is depth-averaged velocity in offshore-pointing x direction, ¢’ is time, ¢’ is the acceleration due to gravity and 7’ is

the wave height. For the flat part of the domain, for MODEL- 1, the linearized versions of the same equations,

v + g0 =0 3)

Ny + 0w (L’ + D")u') = 0. 4)

are used. Note that, when we shall eventually start to discuss MODEL-2, we will generalize equations (3) and (4) into two

dimensions. Let us now define non-dimensional quantities as

z=a'/L', n=n'/(aLl’)
t=t'\ag /L', u=4v/\/¢gal’, D=D"/(al). 3)

A hodograph transformation introduced by Carrrier et al. (2003), also called Carrier-Greenspan transformation (hereafter

referred to as CG), uses "distorted time” A\ and a potential ¢ defined as
A=t—u (6)
with

u=—0,/(20) , 1= 0xp— (9op)*/(80%) 7
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o =\TTn )

The non-linear shallow water equations accordingly become (Carrrier et al. (2003))

1L, 9,

8,2\/\@—58090 T =0. 9)

To treat the incident wave problem, the initial conditions everywhere are

n(t=0,z)= niInitial (10)
and
I
—’]7 .y
w(t=0,z) = initial 11
t=00="T50 an

for the wave height 7 and the fluid velocity u respectively. We assume that both quantities are initially zero over the slope
(0 <z < 1). The minus sign in (11) is due to the fact that the progressive wave advances in the negative-z direction towards

the coast on the left.

3 Green’s function and the free mode expansion

For the flat part of the domain (z > 1) we propose the following solution

n(t,e>1) = /oo (ﬁf(w) exp (iw (t—i— %)) + R(w)exp (iw (t— %))) dw (12)

where 7’ (w) and R(w) are the temporal Fourier transforms of the incident and the reflected waves (to be calculated) respec-

tively. Here 7} is defined as
7 (w) = — / n'(t,x = 1)exp(—iwt)dt. (13)
=)

The integrand in the right-hand side of (13), for all times, can be inferred from the initial condition as 7’ (t,z = 1) = (0,1 +
tv/ D+ 1). Note that the choice of the point x = 1 is completely arbitrary. Let us now propose a solution over the slope as

Y= /Ao(w)Jo(Qwa)eXp(iw)\)dw (14)

— 00

where Ag(w) is the amplitude of the wave over the slope and .Jy is Bessel function of the first kind of order zero.
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The corresponding wave height near x = 1~ (toe of the slope) is then given as

(oo}

n(t,x) = / iwAg(w)Jo(2wy/) exp(iwt)dw. (15)
Note that we performed a linearization here by taking A = ¢ and o = \/x, because we assume that in the deeper part of the
domain, waves are small. The unknown coefficients R(w) and Ag(w) are to be determined from the continuity conditions at the
toe of the slope (see Al for the matrix form of these two equations). The zero subscript for A is used because for MODEL-1,
having a fully one-dimensional geometry, only one coefficient is needed. Later, other coefficients will also be needed when we
will consider two spatial dimensions.

The linearized free surface and flux continuity conditions at the toe (x = 1) are used to obtain Ap(w) and R(w) as

2vD+1

Aol = VDT Lo(2) — 1 (2)

i’ (w) (16)

14 2vD+1
VD +1Jy(2w) + iJ1(2w)

Here by linear boundary condition at z = 1 we mean that x = 02, A = t and depth is equal to x rather than x + 7.

R = (- B(2) ) (0). an

Both Agp(w) and R(w) have simple poles at w = 0. The non-vanishing poles are on the upper complex plane due to the
conservation of energy through the radiation damping, because on these poles, the ratio Ag(w)/7! (w) and R(w) /7! (w) both
diverge and the wave can sustain itself without an incident wave and is fueled solely by the initial conditions (see Longuet-
Higgins (1967) for a similar radiation damping problem over a circular submerged sill), these are called the free modes. Note
that the conservation of energy requires that the amplitude of the incident wave is equal to that of the reflected wave with
77! (w)| = | R(w)| when the frequency is real. However this condition is relaxed when the frequency is no longer real because
the energy density averaged over one cycle of oscillation evolves in time. See also Synolakis (1988) for a rigorous proof that the
frequencies of the free modes are indeed on the upper complex half-plane for D = 0. Our argument based on the conservation
of energy is more general and can be applied to any bathymetric profile.

Recently Stefanakis et al. (2015) attempted to calculate resonant frequencies for a geometry similar to Ezersky et al. (2013b)
but imposed an offshore Dirichlet condition of the form 7 = 279 sin(wt) at a specified point z = L using a numerical wave-
maker. With this boundary condition their results diverged at certain discrete real frequencies (equation (46) in Stefanakis
et al. (2015)). They attributed this to runup resonance. However one can always adjust the frequencies in such a way that the
reflected wave and the incident wave are off-phase by 7 at x = L, thereof leading to a destructive interference, requiring an
infinite runup yielding to such a finite oscillation at x = L. There is no simple relation between the amplitude of oscillation at
a specified point and the amplitude of the incident wave unless the incident and reflected waves are in phase at this particular
point. Therefore relating the ratio between 7y and the runup to the resonance is meaningless. This problem can partially be

remedied by imposing an artificial relaxation zone (Stefanakis et al. (2015) and Madsen and Schéffer (2010)). In this work, we
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replace this approach with a physically realistic initial value problem where our definition of resonance is based on the ratio
between the runup and the amplitude of the incident wave. Not only that the resonant frequencies we will calculate will be
complex, but also that their real parts will be substantially higher than those found by Stefanakis et al. (2015) when the disconti-
nuity, D, is small (see Table 1). Only in the limit of large D, the complex roots of the denominator (iv/D + 1.Jo(2w) — J1 (2w))
of Ao (w) approach those of Dirichlet condition Jy(2w) = 0. Note that all of the resonant frequencies that we calculate in this
work are independent of any nonlinearity. The reason for this is that we linearize the boundary conditions at the toe of the
slope. The modes themselves (Jy(2wo)), on the other hand, are affected by shoaling nonlinearity. Note that by the frequencies
of the modes, we mean the frequency of the oscillation at the toe of the slope (x = 1). In section 4.2 we will show that for
higher modes the shoaling nonlinearities are dominant over those created by the boundary condition at the toe.
Now consider an incident wave of the following form:

ng(tx) =4 (t—to+ yl%)l) (18)

where ¢ is the Dirac’s delta function. The zero index of ¢ in (18) relates to the phase of the incident wave. The response, ¢,

to such Dirac-type incident wave will be called Green’s function G(\,tg,0). Remember that Ag(w)Jy(2we) is the temporal
Fourier transform of ¢ . In (16) if we replace 77’ by exp(—iwtg) /2, then Ag(w)Jo(2wa) will become the Fourier transform

of the Green’s function. This Green’s function in Fourier domain is given as

Gl t.) = — YD LoD Cito)
10 VD T Lo(2w) — 1 (20))

Jo(2wo). (19)

Any incident wave can be expressed in terms of a linear superposition of Dirac functions, the response, , will then be
t(A\o=1)
oA\ o) = / G(\to,0)n! (to,z =1)dty . (20)
0
Because of the linearisation at the toe of the slope, the upper limit of the integration, (A, = 1), in (20) can be simply replaced

by \. We will use G(w, tg, o) to recover G(\,to, ). Accordingly the potential will become

A %9

oA o) = /dto / G(w,to,0)n  (to,x = 1) exp(iw)dw 21
0 —o0

where the integration over the frequencies will be transformed to a series of residues. This is not a closed integral over the
complex plane but a real line integral between —oo and oo except w = 0 which we circumvent with an infinitesimal semi-
circle on the lower half-plane. The reason we use the lower half-plane is that we want the Green’s function to vanish for
negative values of \. The whole integral can be cast into a closed integral by connecting oo to —oco along a semi-circle on the
upper complex plane and can be calculated using a residue summation. Here w = 0 is not the only pole. As a matter of fact

G(w,to,0) has many poles in the upper half-plane (see equation 19). These poles are symmetrical with respect to the imaginary

axis. Our aim is to understand the excitation of these free modes by the incident waves.
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It is important to note that as  — oo these free modes diverge. However this is not a problem if one wishes to find a solution
in the coastal zone. We will expand the reflected wave in terms of these free modes. For the numerical calculation, the free
mode expansion is truncated at a finite term N. This finite series also diverges for x — oo, thus the truncation error between
the real reflected wave and the finite series expansion grows as x increases but this is also not a problem if one wishes to find
the wave field near the coast because the discrepancy (or error) propagates towards offshore.

To perform the free mode expansion approach, let us rewrite the convolution (20) as

t o

! 2D +1
o(A(t,x),0(t,z)) = %/dto / w(imjo(2w)_J1(2w))

0 —o0

J0(2wa)771(t0,x =1)

x exp(iw(t —tg))dw . (22)

In an effort to calculate solitary wave runup, Synolakis (1987) evaluated a similar integral in his linear approach. However his
integral was tasked to compute directly the free surface, n, rather than the potential and consequently did not have a singularity
at w = 0. The Fourier transform of the particular solitary wave Synolakis (1987) considered approached zero so fast along
the infinite-radius integration contour that he was able to close his contour on the lower half-plane (upper half-plane in his
convention). Thus his complex integration loop did not contain any of the complex frequencies we mentioned above. The
only poles that remained within his closed contour were those of the Fourier transform of the solitary wave he considered and
were, therefore, independent of the geometry. His technique is limited to this particular incident wave forcing. In his article,
Synolakis (1987), did express the solution in terms of a summation over discrete frequencies but these frequencies can not be
interpreted as free mode frequencies not only because they are independent of the geometry but also because the result is only
valid for times smaller than a critical time ¢.. To see this, let us write down the integral (given as equation 2.6 in Synolakis

(1987)) in our convention for D = 0:

n(t,z) = ! /(2@(W)J0(2w\/5) exp(iwt)dw (23)

o ) (ido(2w) — T (2w))

— 00

where ® is the Fourier transform of incident wave. In the integrant here, the exponential term exp(iwt) diverges on the lower
semi-circle. This divergence is counter-balanced by the Fourier transform of the incident wave for ¢ < t. but not later.

To do our calculations for wave evolution, we will need the non-vanishing poles of Ay(w) which we calculate using the
Miiller scheme (see Press et al. (2007)). For large D an asymptotic approximation is presented n the Appendix A. A comparison
between these two approaches is displayed in Table-1. As seen in this table, as D increases, radiation towards offshore becomes
less efficient, therefore making the complex parts of the roots smaller. The real parts, also decrease as D increases. This is
because the waves that propagate from the shore towards offshore create reflecting waves continuously because of the variable

depth of the slope over which they are travelling. However, we have radiation damping in our case, some of the waves that reach
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Table 1. The complex natural frequencies multiplied by 2 using both Miiller method and the asymptotic approach (see (AS)) for MODEL-1

are tabulated. Note that 2wy, tend to the roots of Jy for large D. All nonlinearities are neglected in calculating these frequencies.

2(.«.)1 2<.U2 2(4)3 2&)4 2(1.)5

(Miiller) D=0.0 2.98+4+1.28; 6.17+1.61¢ 9.34+1.81¢ 12.441.96% 15.6 +2.074
(Miiller) D=1.0 2.5540.80¢ 5.60+0.86: 8.7041.877 11.8340.877 14.9640.877
(Asymp.) D =1.0 2.5240.70¢ 5.56+0.70¢ 8.6840.70¢ 11.8140.707 14.944-0.707
Miiller) D =5.0 2.44+0.42¢: 5.5340.437 8.66+40.43¢ 11.840.43¢ 14.9+0.437
(Asymp.) D =5.0 2.43+0.40¢ 5.53+0.40¢ 8.66+0.40¢ 11.8+40.40¢ 14.9 4 0.40¢
(Miiller) D =20  2.4140.22¢ 5.5240.22¢ 8.65+0.227 11.84-0.22¢ 14.940.227¢

the toe of the channel escape from the sloping part of the channel. In the absence of radiation damping, all waves reaching the
toe of the channel would reflect back. These waves contribute to standing waves of low frequencies over the sloping channel,
because of the long distance they travel. Consequently, the relative weight of this low frequency component would increase if
there is no or little radiation. In the case of any non-uniform bathymetry, at the high-frequency limit, ray theory can be used
and the reflections will become minimal. This explains why the damping factor of the higher modes (imaginary parts of the
eigenfrequencies) become larger. In the real geophysical settings where the discontinuities are less abrupt than the geometry
depicted here (such as the edges of coastal shelves), the short waves will cross over the toes of the slopes, essentially without
reflection.

The geometry considered by Stefanakis et al. (2015) features two consecutive slopes. If one fixes the slope angles in their
work to a single value, the resulting geometry would be the same as ours. The frequencies that they would have come up with
in their solutions would have been the real roots of Jy(2w). These frequencies are substantially smaller than the real parts of
the frequencies we calculate (2.98 versus 2.4 for the fundamental mode) with radiation damping.

Now let us return to the integral (22). This integral can be written completely in terms of A and ¢ as:

/\—2(1—0') o0
o= [t [ ARG o)
2 ) w (ivVD +1Jo(2w) — J1 (2w))

x exp(iw(A\ — tg))dw (24)
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for A > 2(1 — o) because of the causality (¢ becomes zero otherwise, because the disturbance takes 2(1 — o) to travel from the

toe of the slope to the point ). A residue summation transforms (24) into:

A—2(1-0) +oo
v D+ 1Jy(2wro
=12 / dtorr (to,x =1) | + Z /D +1J} 20( kJ)’ 2
0 k=—o0,k£0 Wk (Z + 1J5 (2w ) — Ji( wk))
A—2(1-0)
X / dton’ (to,z = 1)exp (iwp (A —to)) (25)
0

where Jy" and J; are the derivatives of Jo(2wy,) and J; (2wy,) with respect to 2wy,. The first integral in (25) comes from the
residue associated with the pole at w = 0. It is calculated by using the fact that J5(0) = 1 and J; (0) = 0. Using the Leibnitz

rule, the partial derivatives of the potential are then

- iv/D+ 1.Jy(2wo)
e =2"(A\-2(1-0)x=1)+ ,
k:—gk;ﬁo Wi (z\/D + 1J)(2wy) — J{(2wk))

I()\ —2(1—0),z=1)exp (2w (1 — o))

2(1— )
> \/ﬁj@(z,dkd /
+ dton’ (to,z =1)exp (iwr(A—t 26
X DT i) | s = Derliat-t) 26)
and
o0 .
dop=an' (A—2(1—0)z=1)+ 3. __2ivD+ Lo(Zoro)
k=—o00,k#0 Wk (Z\/D + 1J0 (2&}]9) — Jl (20%))
x exp(iwp2(1 — o)) (A =2(1 —0),z=1)
00 \/7 ( ) A—2(1—0)
—2ivD +1J, (2wro / _ s
+ - dto exp(iwk (A —to))n' (to,z=1). 27
k:—go:,k;éo ZMJO/(ka) — Jl'(ka)

The equation given in (9) is, in essence, the linear wave equation with cylindrical symmetry. Because of this, the partial
derivative of its regular solution with respect to o must be zero at o = 0. A quick inspection of (27) reveals that the terms in the
first and second line are not equal to zero individually, and their collective sum will involve a truncation error. This truncation
error is subject to an amplification in the estimation of 9, (¢)/c which is used to calculate both 7 and u. To remedy this, we
use the fact that, near o = 0, the value of 9, (/o is approximately equal to 203, ¢ due to L’Hospital’s rule. Hence, we use the

numerical derivative of (26) to find the non-linear contribution to runup.

4 Resonance sensitivity for MODEL-1

In this section we consider a monochromatic incident wave of type 0 (w)sin(w(t+ (z —1)/v/D +1)). We will study the

evolution in the large time limit, namely the standing wave regime. The transient regime will be discussed in the next subsection.
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Figure 2. The limiting amplitude of runup, 7., normalised to the amplitude of the incident wave is shown as a function of the frequency of
the incident wave multiplied by 2 for MODEL-1. The depth discontinuity D is O for the blue continuous curve, 1 for the green dashed curve,
and 5 for the red dot-dashed curve. The black bullets correspond to the limiting runup given in the expression (37), normalized to 7}, for the

infinite slope. Here oy is taken to be one.

The resulting wave on the slope in the linear approximation will then be

exp(iwt)
2

+ Ao(—w) M) Jo(2wy/x) (28)

n(t,z) = (Ao(w) 5

for ¢ — oo. This equation follows naturally from equation (15) where instead of evaluating the integral, we add the two contri-

butions coming from w and —w. Taking into account that J,(0) = 1 the associated runup, r = 7(¢,0 = 0), becomes
w|Ap(w)|cos(wt+ pa) (29)

in the linearised theory. Here ¢ 4 is the argument of complex number Ay(w). In a real situation that would occur in the nature

where the monochromatic incident wave gets generated at a particular instant ¢ = 0, the expression
w| Ao (w)| (30)

11



Figure 3. Continuous and dashed ’-.” blue curves display the runup normalised to the amplitude of incident wave for Model I with D = 0.
The frequency of the incident wave is equal to the real part of the first-mode resonant frequency w1 (see Table 1). The continuous blue curve
is obtained from the series of residues (see equation 26). The dashed blue curve is the runup calculated using the Fast Fourier Transform
approach. The green horizontal line on the top part of the figure is the limiting amplitude given by w’|Ao(w”)|/ng where w” is the frequency
of the incident wave. The red bullets are the runup produced by a wave-maker on an infinite constant slope. The action of the wave-maker is
represented by the "tsunamigenic" seafloor motion given by h(t,x) = —2n{d(x—1) cos(Rw1t)0(t) /Rw: where @ is the Heaveside function,

h is the seafloor uplift and R denotes the real part.

12
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in (29) provides a limiting value of amplitude of oscillation of the runup. This limiting amplitude, normalised to the amplitude
of the incident wave, is displayed in Figure (2) as a function of 2w where w is the frequency of the incident wave. In this
figure local maxima of the limiting amplitude of the runup can be observed for D = 1 and D = 5 but not for D = 0 where this
amplitude steadily increases with the frequency of the incident wave. Therefore there is no resonance for D = 0.

In the limit of large D, the local maxima of the limiting amplitude of the runup occur at the frequencies where Jo(2w) =0

and the value of the limiting amplitude of the oscillation of the runup at those maxima is given as

2v'D + 1| (2wy) /1 (2wr)| (3D

where 2wy, is the gth

root of Bessel function Jy. Hence, the runup sensitivity to w increases as D increases.

These results indicate that in the real world where D is often much smaller than one, the resonance is an insignificant
phenomenon. For two-slope cases the resonance is even less significant because the imaginary parts of eigenfrequencies are
decreasing functions of second slope, .

One last remark relates to the power laws for runup, provided by Didenkulova et al. (2009). The Figure (2) shows that, when
D is large, the denominator of (16) has roots that are closer to the real axis. This essentially means that for large D explicit

relations for power laws might not be possible to derive.
4.1 Transient regime

The resonant phenomena we discussed above do not set in immediately upon the entrance of the incident wave into the slope
region. It is important to know how fast the limiting amplitude of oscillation of the runup will be reached, because in a real
situation the incident wave will have a finite duration, a fact that was not taken into account in the large time limit analysis.
For that purpose the residue series in equation (26) must be evaluated. Here, the incident wave is, taken as nd sin(w(t + (z —
1)/vVD +1))8(t — (x —1)/v/D + 1) where 0 is the Heaviside step function. The resulting runup is displayed in Figure (3).
A good agreement between runup obtained from residues summation and the fast Fourier transform approach can be seen in
this figure (continuous and dashed curves respectively). The limiting amplitude for the runup is almost reached after just one
oscillation (see the horizontal limiting line on the top part of the figure). In Figure (4) the runup is displayed as function of time,
for incident waves of three different frequencies. In this figure no significant change in runup can be observed as the frequency
of the incident wave deviates from the resonant frequency . This is due to the fact that the depth discontinuity D is zero. On
the other hand in the bottom part of Figure (4) where D is equal to 5, the runup increases as the incident wave frequency
approaches the resonant frequency. A comparison between the upper and bottom parts of Figure (4) reveals that in the bottom
figure it takes longer for the runup to reach its limiting value. This is due to the fact that for larger D the imaginary part of
the frequency of the free mode is smaller. This means that if the incident wave excitation were to be cut at a given time, the
standing wave oscillations over the slope would last longer (before eventually decaying due to the radiation) when D is larger.
Similarly, for large D, it takes also longer for the standing wave regime to reach its limiting amplitude. It is also important to
note that in both part of Figure (4) the initial time derivative of the runup is very large, leading to the glitch at ¢ = 6 for the

D =5 case on the bottom. No such glitch exists D = 0 because there is minor reflection from the toe. In the real nature, waves
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Figure 4. The runup normalised to the amplitude of the incident wave for MODEL-1. In the top figure, the frequency of the incident wave is
Rwi (D = 0) for the blue continuous curve, 1.05 Rw; (D = 0) for black dashed curve, 1.075%w; (D = 0) for the green dashed-dotted curve,
and 1.1Rw; (D = 0) for the red dotted curve. In the bottom figure the frequencies Rwi (D = 0), 1.05Rw:1 (D = 0), 1.075Rw; (D = 0)
and 1.1%w; (D = 0) have been replaced by Rw1 (D = 5), 1.05Rw; (D =5), 1.075Rw: (D = 5) and 1.1 Rw; (D = 5) respectively. Depth
discontinuity D is O in the top figure and 5 in the bottom figure. Refer to Table 1 for the values of wq. All curves are obtained using series
of residues. Note that in the bottom figure the wave arrives at the shore at ¢ = 2 and the first reflection from the toe of the slope reaches the

shore at ¢ = 6 for which the continuous plot includes a slight glitch. In the main text we elaborate on this glitch.
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Figure 5. The top figure is the shoreline velocity us normalised to the amplitude of the incident wave as a function of ¢ (Model
I). The frequency of the incident wave is Rwi. The continuous green curve is the shoreline velocity corresponding to incident wave
n=ngsin(Rwi(t+ (x—1)/vD+1))0(t+ (x —1)/v/D+1). The red, dashed curve is the same for the incident wave that has been
smoothed by multiplying it by tanh(¢+ (z —1)/+/D + 1). The bottom figure is the time derivative of the shoreline velocity for the smoothed

incident wave.

do not "switch on" at a given time, at once. Therefore their initial profiles do not have discontinuous spatial derivatives. As a
matter of fact, such discontinuities will trigger short-frequency waves which can not be properly modeled using shallow water

approach anyway. The discontinuity mentioned here is seen much more clearly in the shoreline velocity field in Figure (5).

4.2 Nonlinear effects

We assume the incident wave to be linear. Considering that we are dealing with a monochromatic incident wave, this makes
sense. Because any nonlinearity over the flat part of the ocean would have generated higher harmonics during the propagation.
As long as the waves do not break, the nonlinearity arising from the shoaling over the slope is accounted for by the CG
approach. This particular nonlinearity, as indicated by Pelinovsky and Mazova (1992), does not affect the maximum shoreline

velocity, it does, on the other hand, affect the timing of the maximum. After the CG transformation the equations become
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linear, the only remaining nonlinearity in the (A, o) space for the runup is the u2/2 term in (7) with u4 being the fluid velocity
on the shoreline. Figure (6) shows the difference between the two values of runup calculated by taking and not taking this 12 /2
term into account. Another subtelty in this figure is that, for the nonlinear case the time is given as ¢t = \ + u.

For ¢ — oo, the nonlinear runup is given as w|Ag|sin(w\) — 0.5u2 which approximately becomes

1142 cos(2wt) + 1 .

1 (32)

w|Ap| (sin (wt) — wus cos (wt)) — %uf = |Ap|wsin (wt) + w

The reason we performed this expansion with respect to small shoreline velocity is that we eventually want to compare the
nonlinear effects on the runup, caused by the nonlinear boundary condition at x = 1 with the contribution by the nonlinear
terms in the above equation.

At the near-resonant frequencies nonlinear effects will become important even in the deep part of the slope, rendering the
linearized boundary conditions that we apply at z = 1 invalid, compromising the relations for Ay(w) and R(w) (equations (16)
and (17)). In Appendix B we give the results from a first-order perturbative approach to correct the boundary conditions for
nonlinearity. We performed a comparison between the nonlinearity brought in by the boundary condition and that caused by
the nonlinear part of (32). The details of this perturbative analysis can be found in Appendix B. The results suggest that, the

first-order correction associated with the nonlinearity of the boundary condition at z = 1 is given by

N cos(2wt)Jo (dwy/x) +C1) for z <1

RO cos (2wt - S8 ) 1000 (t— 2L ) for @ >1.

n® = (33)
where the superscripts refer to the first order perturbation. When D becomes very large, at the near-resonant frequencies
(Jo(2w) = 0), the time-dependent and time-independent parts of the solution for 7 over the slope, respectively become

2 Jt (2w) ‘A0|
0 (4w )

These indicate that the nonlinearity brought in by the nonlinear part of (32) is comparable to that caused by the boundary

and CW =

N® ~ 7|A 2w Jl( w). (34)

conditions at = 1 only for the first mode and when D is infinite. This is to be expected, because shoaling is insignificant for
the first mode. The wave must travel a distance of several wavelengths in order to experience significant amplification associated
with shoaling. For the first mode (2w = 2.4) the analysis yields N (1) ~ —0.41|Ay|? and C") ~ 0.097. The coefficient of the
2

second harmonic in (32) is 1.4| Ag|*. For the higher modes the dominance of the (32), nonlinear effect associated with shoaling,

increases rapidly because of the fourth power of w.

5 Resonance for infinite slope

In this section we investigate the resonant frequencies of the waves produced by a wave-maker placed on an infinite, constant
slope. The reason for this practice is that the work that claims significant resonance (Stefanakis et al. (2011)) considered
an infinite slope. In the analysis we will allow the waves to progress in the offshore direction, unrestricted. When the the
wavelength produced by the wave-maker matches the distance of the wave-maker to the shoreline one might expect a resonance

to occur. To see if this is really the case, let us go into a little further detail about the nature of the wave-maker.
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Figure 6. Runups normalized to the amplitude of the incident wave for MODEL-I. The incident wave is in the form 7 = n{ sin(w(t + (z —
1)/v/D+1))0(t+ (z—1)/vD + 1)tanh(t+ (z — 1) /+/D + 1). The frequency of the incident wave is fw; (D = 0). The blue continuous
curve is the linear runup. The dash-dotted green curve includes nonlinear effects associated with CG transform (r = Oy — 0.5u2 and

t = A+ us). The amplitude of the incident wave is 1/15. Nonlinear effects due to the boundary condition at the toe of the slope have been

neglected.

When the water is sufficiently deep, in the vicinity of the wave-maker linear shallow water equations will apply. The effect
of the wave-maker which starts its action at a given time, will be equivalent to hypothetical volume injections and suctions at
a rate 2n/ \/depthsin(wt) = (2ndoo) sin(wt) where o is the horizontal distance between the wave-maker and the shoreline.
Consequently, two waves of equal amplitude of n{ start moving in opposite directions if w is not smaller than 2. For w — 0
the asymmetry introduced by the slope becomes significant and the wave maker radiates essentially in the offshore direction
(see the black bullets Figure 2). Due to the superposition principle, the action of the wave-maker will not prevent the waves
reflected from the shore to freely propagate in the offshore direction. The free surface response to such a source on the slope is
given in equation (2.13) in Ozeren and Postacioglu (2012). To adapt the source in Ozeren and Postacioglu (2012) to our case,
the expression S(&, ) needs to be replaced by 21 sin(w))d(& — 00)oo where & and X are integration variables. In Figure (3),

the red bullets show the runup associated by such a source over an infinite slope as a function of time. For ¢ — oo a simple
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analytical solution that satisfies the radiation condition (wave progressing in +x direction for x >> () can be found for a

source of the form mentioned above. The presence of the source at zy induces a discontinuity in the fluid velocities such that
(u(t,ad) —u(t,zg)) = 205 (w)sin(wt) and y(t,aF) =n(t,zq) (35)
oo (u(t,zg) —u(t,zy My (w)sin(wt) and n(t,z] n(t,xq

where z is both the horizontal position of the source and the non-dimensional depth at that position. The corresponding

solution as t — oo is then given as

—2wmognt (Jo(2wa) (Yo(2wag) cos(w) — Jo(2wag) sin(wl)))  for o < oy 36)
’[’/ =
—2wroont Jo(2woo) (Yo(2wa) cos(w) — Jo(2wa) sin(w)) for o> oy

where Yy is the Bessel function of the second kind. For o >> o the relation given in (36) is proportional to sin(w(t—

24/x))/+/x. The amplitude of the resulting runup then becomes

2wmaend \/Y'02(2w00) + J2 (2woy) (37)

and for large frequencies it is reduced to %/Wné . The black-dotted curve in Figure 2 shows this expression normalized
by nd as a function of 2w for o9 = 1. As seen in this figure, the resonance for the infinite slope is almost non-existent. It is
also worthwhile to mention that the runup tends to zero for w — 0 for the infinite slope. The reason for this is that the wave
generated during one period of the forcing activity spreads over to an infinite distance offshore. It is clear from Figure 2 that
the wave generated by the artificial source/sink that we introduce emulates satisfactorily an incident wave if the wavelength of

the generated wave is less than the distance to the shore.

6 Normally incident wave from a 2D ocean into a bay

Analytical studies that consider runup in 2D are rare. There are, however, some studies that combine 1D analytical approaches
with 2D numerical simulations such as Choi et al. (2011). In this section we shall study the MODEL-2. We consider an incident
wave of the form n{(w) exp(iw(t + (z — 1) /+/D + 1)) coming from the open ocean into a sloping bay of width 2a. This wave
will be reflected back by the the shallower part of the bay. This reflected wave will then be subject to geometrical spreading in
the open ocean. Consequently, the one-dimensional nature of the waves will be lost in the deeper part of the bay. We will now
derive a simple mathematical formulation to model these phenomena.

The governing equations, linearized in the deeper part of the channel and the open sea, for the potential, ¢, read

(92, + 205) p(0) for z<<1
wo(z,y) = 0 (h(x)Drip) + h(x)D2, ¢ for 0 <<z < 1and dyp(z,y) =0 for y = +a (38)

(D+1) (92, +02,) ¢ for x>1andd,p(xz=1%,y)=0 for |y| >a

where h(x) = x is the undisturbed depth in our case. For a constant-slope beach Mei et al. (2004) page 155 and Zhang and
Wu (1999) used the confluent hypergeometric function M. We will now adapt their solution to a sloping bay. Let us start by
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defining a potential inside the channel as:

Y (t,x) = Ag(w)Jo(2wo) exp(iwA)+
2

Z Ay (w)exp ( WZ:E) M(f;}nia +z L ,1,2mnx/a) cos (mryza> exp(iwt) (39)

where the unknown coefficients Ay, A1, .. are to be determined from the boundary conditions at the mouth of the channel. Note
that the solution given in (39) satisfy the linear shallow water equations in the deeper part of the channel. For 1 —z >> a the
y-dependent part of the solution quickly decays. The cosine term with integer values of n is both symmetrical about the x-axis
and its derivative with respect to y for y = £a is zero, satisfying, therefore the no-flux condition on the channel sides. In the
the deeper part of the channel where 1 — x is of the order of a, the velocities in x and y directions can be derived from the
potential given in equation(39) using u = —0,¢ and v = —0,p respectively.

The bulk of the incident wave will be reflected back by the solid boundary at 2 = 1,|y| > a. Consequently the wave in the
open ocean will be 1 = 27j{ cos(w(t — (x — 1)/v/D + 1)) perturbed by the waves radiating from the mouth of the channel and

the scattering from the channel mouth corners. The potential in the open sea then reads

it (w) cos (w(z —1)/v/D +1)

S%(tvx >1y)=2 oy exp(iwt)
dj— o HEY (=== (2= 1)i+ (y — )| ) explicwt) (40)

where i andj are unit vectors in z and y directions respectively. Note that the Hankel function H (()2)

satisfies both the linearized
wave equation in two dimensions and the radiation condition for w > 0. For w < 0, on the other hand, Hankel function will be
replaced by its complex conjugate alongside the rest of the terms. The integral in equation (40) represents the potential of the
waves radiating from the mouth of the channel. Function S(w, ) is the unknown virtual sources distribution along the mouth
of the channel. This source distribution will be determined by matching the potentials given in equations (39) and (40).

We want the solution in the open sea to satisfy the no-flux condition at (z = 1, |y| > a). According to Mei et al. (2004) page

194 , the solution given in (40) satisfies this condition as

0 0 for |y|>a
(D+1)87§0w(tax:1+’y): g 4D
t S(w,y) for |y|<a.

To match the depth-integrated v along the mouth we need to satisfy
I (z,y) P (2,y)
D+1)—/——————|,—1+ = = "1 42
(D+1) Oz |lz=1+ = S(w,y) or |lz=1 (42)

The second condition to be satisfied is the continuity of 7 itself, across the mouth. This condition reads

@w(x7y)|:c=1+ :(pw(xay)‘a:=1*~ (43)
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Here it is important to note that the condition (43) is an integral equation for the source distribution. The condition (42), on
the other hand, is not an integral equation because the field inside the channel is governed using summations rather than an
integral. In order to solve a system that simultaneously involves an integral equation and a set of algebraic equations we shall

expand the source distribution, S(w, y), in terms of even-order Legendre polynomials as

N-—
Z @) Pon(? (44)

where the even indices of the Legendre polynomial were used to make sure that the solution is symmetric with respect to the
symmetry axis of the sloping channel (y = 0). The coefficients S‘n (w) in (44) and Ag, Ay, ...,Ay—1 in (39) (we truncate the

series in (39) to N — 1) are solved in such a way to minimize the following penalty integral along the mouth:

/a (\(DH)W“(”“";“” ~5(.)

—a

2
+|s0w($—1,y)s0w(fﬂ—1+,y)!2> dy. (45)

Thus we have 2N unknowns. The integral (45) is evaluated numerically using Gauss quadrature. For precision, the number of
quadrature points we use is larger than 2/NV. The equations (42) and (43) have to be satisfied at all quadrature points, making the
resulting system over-determined. We use weighted least-squares approach to solve this over-determined system. Algebraically
speaking, this simply corresponds to writing down equations (42) and (43) for each quadrature point and multiplying each
equation by the square-root of the corresponding quadrature weight and solving the resulting linear, over-determined system
by using conventional least-squares method.

Note that in equations (39) and (44), the only terms that are responsible for the net flux from the channel to the open sea are

Ag and Sy since the following integrals

fo (=)
cos nﬂ'T dy

a

[ Pentufara (46)
vanish for n # 0. The conservation of the net flux requires that —2awA.J; (2w) = 2a.Sy where .J; is Bessel function of order
1. When the frequency of the incident wave is equal to that of the free oscillation of the system, the coefficients Ay and So
should diverge. In order to determine the frequencies of these free mode oscillations (natural frequencies), the roots of 1/4,
are sought in the complex plane using the Miiller method.

A quick look at Table 2 reveals that for any mode, with the decreasing channel width (2a), imaginary parts of the normal
mode frequencies decrease. However, for lower modes this effect is slightly more pronounced. This is because the time neces-
sary for the waves to travel over the open ocean across a distance of half channel width a is equal to a/+/D + 1 and when this
time is much less than the period of a longitudinal oscillation within the sloping channel, the geometrical spreading in the open

sea is very efficient. This makes the free surface in the vicinity of the channel mouth almost flat due to the fast escape of the
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Table 2. The complex natural frequencies multiplied by 2 are tabulated for Model 2. These are essentially those 2w, that are the roots of
1/Ao(w). In this table those lines with "(int)" list the frequencies calculated using Ao (w) obtained from minimising the penalty integral (45).
The lines with "(conf)", on the other hand, use (48) from the conformal mapping formulation for this quantity. Note that 2wy, tend to the roots

of Jy for large D or small a.

2w1 2w 2ws 2w 2ws

a=0.05,D = 0 (int) 226+40.0561 5.27+0.1261 8.32+0.191 11.4+0.251 14.5 + 0.31i
a=0.05,D =0 (conf) 2.26+0.056i 5.27+0.126i 8.3240.192i  11.38+0.253i  14.46+0.310i
a=0.1,D =0 (int) 2.18+0.11i 5.14 + 0.23i 816+034i 11.2+0.44i 14.3 + 0.52i
a=0.1,D =0 (conf) 2.18+0.107i 5.13+0.234i 8.14+0.3461  11.17+0.4461  14.20+0.533i
a=0.1,D =1 (int) 2.28+0.0571 5.30+0.131 837+0.201 11.45+0.261 14.6+0.32i
a=0.1,D =5 (int) 235+0.020i 5.43+0.0451 8.53+0.07i 11.65+0.095 14.8+0.12i
a=0.2,D =0 (int) 2.05+0.1971 4.95+0.41i 795+0.581 11.0+0.74i 14.0 + 0.881
a=0.2,D =0 (conf) 2.05+0.197i 4.92+0.4101 7.84+0.5721 10.75+40.661i  16.6+0.61i

waves, rendering the channel mouth boundary condition effectively a Dirichlet condition with 7 = 0. Consequently, the waves
reaching the mouth reflect very efficiently back towards the shore, limiting the radiation damping.

The rays that the waves follow in the sloping channel are straight lines at the shallower parts and they bend towards the
corners as they get near to the mouth of the channel, due to geometrical spreading (see the streamlines in Figure C.1). If the
width of the channel increases, this corner effect will penetrate deeper into the channel, making the rays longer. Longer rays
will decrease the frequencies of the free oscillations. This can be observed in Table 2. Overall, because of this ray bending
the frequencies in MODEL-2 are lower than those in MODEL-1. Having said that, for a fixed value of channel width, if D
increases, the discrepancy between MODEL-1 and MODEL-2 decreases because for D — oo the free surface in open ocean
side of the domain will be flat for all free modes for both MODEL-I and MODEL-2, making the behaviour the same within the
channel.

Now let us turn our attention to the transient response for MODEL-2. As before, we shall model the transient response to
an incident wave of the form 7! (¢t +x/v/D +1) and, as the first step, we shall look at the particular case in which ! is a
Dirac’s delta function. For the sloping channel, such a response for the potential ¢ corresponds to the integration of equation
(39) with respect to w. This integration reduces down into a residue summation which we shall explain below. Since we are not
interested in the y-direction dependence of the runup, we are only interested in Ag. But since they are inter-related through the
boundary conditions, we do end up having to calculate A;, As,....A,, as well, even though we do not need them individually
for our physical interpretations.

Remember that in MODEL-1 we had an analytical expression for Ay, therefore also for ¢ (see equations (16) and (14)). For
MODEL-2, on the other hand, we do not have a closed-form relation for A except when w — 0. Obviously, when w — 0, the
free surface over the slope becomes flat and in this regime A (w) is approximately equal to 27 (w) /iw for both MODEL-1 and

MODEL-2. For the rest of the frequencies, wy, that make Ay singular, we simply calculate circular integrals around each wy,
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on the complex plane. Consequently, for ¢ we have

A—2(1-0)

400
o= |2 / dton' (to,z=1) |+ Y on(w)JO(Qwa)dw
) k=—00,k#0,
A—2(1—0)
X / dton (to,z = 1) exp (iwg (X — o)) 47

0

where ¢ are integral contours with infinitesimal radii around each wy. This approach is much faster than calculating the
frequency integrals exclusively along the real axis. This is because, on the real axis the integrand becomes oscillatory and the
accuracy can only be sustained using small integration steps (in Model I we used several tens of thousand integration points
to keep the integral stable). This is not feasible because for each integration point, an integral equation (equation (45)) needs

to be solved to calculate the relevant Ay. On the other hand, for each wy, the complex integral § Ag(w).Jo(2wo)dw can be
Ck
satisfactorily calculated using just four points because the integrand for w — wy, becomes proportional to 1/(w — wy,) which

is not oscillatory. A further practicality of this approach for an operational activity such as predicting a storm surge runup is
that these contour integrals are independent of the structure of the incident wave and therefore can be pre-calculated for a
particular bay or channel geometry and be injected in during the operational calculations. To relate the runup to 47 we follow
the same procedure as in MODEL-1 to compute the partial derivatives of (. In Figure (7) the runup, shoreline velocity and
shoreline acceleration is given as a function of time.

In Figure C.1 the rays not only bend towards the mouth of the channel but also they coalesce. This coalescence reflects
certain features that relate to the energy exchange to and from the channel.

To summarize, for both MODEL-1 and MODEL-2, when the incident wavelength is larger than the channel length, the
runup amplitude tends to 27!, in other words the wave becomes blind to the bathymetric variation. However an interesting
case arises in MODEL-2 when the wavelength is much larger than the width of the channel but is still less than the length of
the channel. In this case an analytical solution can be found using a conformal mapping approach (Mei et al. (2004) page 218
for flat-bottomed channel case). In Appendix C we give the mathematical details of the analysis in which we generalize the

conformal mapping approach for the sloping channel with D = 0. As seen in the Appendix, the corresponding Ao (w) becomes

Ao(w):%,l(“’) Jo(2w) + awJ (2w) (:111( °r )H‘ﬂl 48)

w 2l wa

where I" =~ 1.781 is the exponential of the Euler-Mascheroni constant. The runup amplitude is simply then given as w|Ag(w)].
The Figure (8) shows this value as a function of twice the frequency of the incident wave, calculated using both the integral
equation and conformal mapping approaches. Kajiura (1977) also used conformal mapping to reach the same conclusion (note
that his equivalent figure includes the amplification factor rather than the runup, therefore his values are half of those reported

here). In this work we essentially extended the solution of Kajiura (1977) to short waves using integral equations.
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Figure 7. The blue continuous curve is the runup (calculated using equation (47)) normalized by the incident wave amplitude as a function of
time. The channel width, 2a is equal to 0.2. The incident wave is given as 73 sin (Rw (t + (z — 1))) (¢t + (x—1)) where w; is the lowest free
mode frequency for MODEL-2 (see Table 2 for D = 0), smoothed by multiplying it with the tanh fuction as in Figure (5). The continuous
red curve is the shoreline velocity. The dashed green curve is the shoreline acceleration. The horizontal blue line is the maximum runup

calculated using conformal mapping.

7 Conclusions

In this work we studied the resonance aspect of the coastal runup as a response to incident waves. The analysis follows a
normal mode approach and examines the sensitivity of those normal modes to a given incident wave to produce coastal runup.
In MODEL-1, significant runup sensitivity, in other words resonance, occurs only when D is large. Large values of D are
not encountered very often in the nature, not even in the shelf breaks. In the two-dimensional open ocean and finite-width
sloping channel case (MODEL-2) resonance occurs when the aspect ratio of the bay (width/length) is small. This kind of bay
(or channel) geometry exists in many coastal regions such as the Bay of Tokyo, making the results relevant in engineering

practice.
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Figure 8. The maximum runup normalized to the amplitude of the incident wave for the standing wave case for two different channel
half-width values. The continuous blue curves are computed using the integral equation and the red broken curves are obtained from the
conformal mapping (see equation (48)). The green dot-dashed curve is the maximum runup for the infinitely wide channel. In the top figure

the half-width of the sloping channel is 0.1, and in the bottom figure the half-width is 0.2.

The residue method developed here can actually be generalized for more complicated channel geometries (such as piecewise
constant slopes with varying width) by performing a "fusion" of this method with the boundary elements technique. This is
because boundary elements technique is recently proving very efficient for solving Helmholtz equation in multiple dimensions
(Gumerov and Duraiswami (2008), Takahashi and Hamada (2009)). So the fusion should work as follows: for a series of

5 complex frequencies, the boundary elements determines those frequencies for which the response diverges (for a single run,
the boundary elements, formulated in the temporal Fourier domain, can only calculate the response for a monochromatic
incident wave). These are the normal mode frequencies for the particular geometry chosen. Then for any incident wave train
(this can be, for instance, buoy data time series for an incoming Tsunami) we can calculate the contour integrals in (47) to
compute the response much faster than inverse Fourier transforming the boundary element results. The operational FFT-based

10 models that use buoy data for Tsunami warning (such as Lin et al. (2014)) can not assimilate the buoy data continuously as it
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comes, they rather use the time series affer a substantial part of the Tsunami has passed accross the buoy and then input this
time series as the wave forcing to calculate runup. This computational economization has two advantages, the first is that these
contour integrals can be pre-calculated and stored before, so during an operational emergency the only data that is needed is
the wave train and the response can be calculated very fast (the last integral in (47)). The other advantage is that the number
of points necessary to numerically evaluate the contour integral is very low compared the inverse Fourier transformation along

the real axis.

Appendix A: Asymptotic approximation of the frequencies of the free modes for large D in Model-1

In this appendix, the natural frequencies of Model-1 will be evaluated for large D using an asyptotic approximation. The matrix

relation that relates the incident wave to the waves over the slope and the reflected wave is given as

Jo(2w) —1/iw Ap(w) _ 7l (w) /iw ' (AD)
—wJ1(2w) VD41 R(w) VD + 17! (w)

The determinant of the matrix becomes zero if iv/D + 1.Jp(2w) — J1 (2w) vanishes. Expanding natural frequencies in powers

of e =1/v/D + 1, we obtain
Wy = w,(co) + Awg = w,(co) —|—<€w,(€1) + EQw,(f) + ... (A2)
(0) (0)

where w,’ is the unperturbed root with Jy(2w, ") = 0. Up to the second order we obtain

WM =if2 (A3)

0
@ _ L)

- (A4)
k 4 JO/ (2UJ](€0) )
where the primes mean the derivative with respect to the argument, Qw,go). Consequently,
(0)
(0) i 1 g (2”19 )

2wy, & 2w, F + 3 (AS)

VD+1  2(D+1) p (2%(@0))

is obtained for twice the perturbed normal mode frequencies.

Appendix B: Nonlinear effects at the toe of the slope

The solution we obtained in (16) satisfies nonlinear shallow water equations over the slope, however it does not satisfy any
nonlinearity as far as the boundary conditions at z = 1 are concerned. In this section, we will call the potential associated with

this solution ¢(®) which is given as
0O (t,2) =|Ao|Jo (2wy/z + 1) cos (w(t —u)). (B1)
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Note that this expression does not give information on the transients, it is only valid as ¢ — co. An incoming wave arriving from
far-away, considered in this work would probably be highly linear, because otherwise it would have lost its monochromaticity
due to nonlinear effects. However, near the resonant frequencies the amplitudes of oscillations over the slope (even the deeper
part further off-shore) are generally much larger than the amplitude of the incident wave. Nonlinear effects might therefore be
important over the entire slope, including the toe region. On the toe, the upper bound of the free surface oscillations, cannot
be larger than twice the incident wave amplitude. But the derivative with respect to x of 1 can be very large because of the
discontinuity of u for large D and a theoretical upper limit on it cannot be found. Therefore, the linearization of the boundary
conditions might be a serious compromise.

Our aim is to calculate an additional term, <p(1), such that

o= o0 4 (B2)

will satisfy the boundary condition at the toe, to the order |Ag|?. The linear approximation to ©(© is given as

pio) = | Aol Jo (26+v/) cos (wt) (B3)

by using which one can find the linear expressions of the free surface and the fluid velocity. The term that is responsible for
(0)

the nonlinear correction of the boundary condition at = = 1 is the difference between the (%) (¢,x) and ;; (¢, ) near the toe

of the slope, denoted as Ap(?). To the first order, this is simply obtained through expanding ((°) (t,x) around x = 1 and ¢ :

2
Ap©® x| Ao Pw? Ty (2w) Jo (2wy/z) sin(wt) cos(wt) + [Ao|*w? Jy (2w) S Guy) cos(wt)sin(wt) for z—17  (B4)

VT
and Ap(®) =0 for x > 1. We denote the free surface associated with A as (1), Since n() associated with Ap(®) has a

discontinuity of the order | A |? at the toe, this discontinuity will be remedied by adding n(*) = 9;¢(!). The boundary condition

at the toe then reads

nM

- ,7(1)‘ L= | Ao |2w? <_2wJ1 (2w) Jo (2w) cos(2wt) + %Jf(Qw) (cos(2wt) + 1)) . (B3)

=1
For the velocities, a similar approach based on the continuity of the flux (this time taking into account the real depth, given

by 1+ n) gives

e

1 d 3
—(D+1)u® ‘:p:1+ = §\A0|2w2 (—lez(2w) + Jo(2w) y J1(2wz)|,_, + §J0(2w)J1 (2w)> sin(2wt) (B6)

r=1- X

where Au®| = —0,A0| _ andu) = —0,p0).

Let us now propose a general solution for (), composed of time-dependent and time-independent parts of the form:

N cos(2wt) Jy (dwy/z) + CD for 2 < 1

1 (z—1) 1 z—1
R( )cos(th— m) +0Mg (t— \/D7+1) for x > 1.

' = (B7)
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Here N is given as

N 1|A0|2w2 (—wJE (2w) + Jo(2w) £ J1 (2wz)|,_; + 2Jo(2w)J1(2w))
2 J1(4w) — VD + 1Jo(4w)

(—2wJy (2w) Jo (2w) + +J3(2w)) VD + 1
J1(4w) — /D + 1Jo(4w) )

—|A0|2w2

(B8)

Strong resonance is expected for large values of D and for Jo(2w) = 0. So the relation for N' (1) simplifies to | Ag|2w?J? (2w)/ (4.Jo (4w)).

Furthermore, we find C") = | Ag|2w?J?(2w) /4 and © = 0.

Appendix C: Conformal mapping for MODEL-2

The problem of an incident wave into a rectangular bay of uniform depth was solved in Mei et al. (2004), page 218. We
will extend his solution to the case of the sloping channel using the same conformal mapping. Actually, Kajiura (1977) also
mentions a conformal mapping but its mathematical details are not included in his paper, neither elsewhere in publicly available
literature.

The flow displays a complex pattern in the vicinity of the mouth of the channel (See Figure C.1). If the depth discontinuity
D is zero, the relative change of depth in this region is small. Therefore the linearised shallow water equation for a given
frequency w can be approximated by Helmholtz equation (V2 + w2y = 0) in this region. If the wavelength is much larger
than the width of the channel (2a), then V2 is of the order of ¢/a? with 1/a? >> w?. Consequently Laplace equation can be
used as an accurate approximation of Helmholtz equation. Unlike Helmholtz equation however, Laplace equation is invariant
under conformal transformation. The semi-infinite channel connected to an infinite sea shown in Fig. C.1 can be mapped onto

the upper complex plane by conformal transformation f(z). The inverse of this function is given by

i\/221+1n<

2a

—1/~\ “a
e =14 1)

Z
where zZ = T + iy spans the upper half complex plane. The square root function used in this conformal mapping has a branch
cut along the positive real axis with \/m = i\/m . Accordingly, f~! maps the segment ¢ +i0% for 1 > ¢ > 0 on one
side of the semi-infinite channel and the segment with 0 > ¢ > —1 is mapped on the other side.

The no-flux condition is also invariant under the conformal mapping and it becomes
950(Z,5=0")=0 for Z#0 (C2)

in Z space. Note that the Z = 0 is the singular point of f~!. A general solution of Laplace equation that satifies the no flux

condition is given by:
o(Z,9) =mn(|Z]) +¢ (C3)

where the coefficients m, ¢ together with coefficients A, 5’0 will be calculated in a way to insure a smooth transition from the

solution of Laplace equation to the inner solution, (Ag.Jo(2wo)), and to the outer solution given by equation (40).

27



0.8

0.6 .

0.4} 1

0.2 i

—0.4} 1

—0.6F g

Figure C.1. The blue curves are = + iy = z = f (£ = ¢ + €,i) for ¢ varying between -5 and 5 and €, = 0.06/n. The three blue curves
correspond to n = 1,2, 3. The smaller the parameter €, becomes, further left these blue curves will reach (the left extremities of these curves

are approximately 27“ In(e,) where a is 0.2). The red curves are the streamlines.

For small ||, f~! can be approximated by
2a = e .
1+ — (In(z/(24))) = x + 1y. (C4)
Therefore, the solution of Laplace equation, mIn(|Z|) + ¢, in terms of z = = + iy becomes
-1
m%—mln(eﬁ)—kc. (C3)
a

Matching this with the inner solution Ag(w)Jo(2w+/z) ~ Ao (jo(2w)+ (z—1)J1(2w)) at x = 1~ (note that x = 1~ means that

the distance to the mouth is much smaller than the channel length but much larger than a, the width of the channel), we obtain

AO (w)J0(2w) = —m 111(6/2) +c (C6)
and
—Ap(w)w 1 (2w) = % (C7)
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The outer solution given by equation (40) is, at intermediate range, (that is the distance from the mouth of the channel is much

larger than the width of the channel but much smaller than the wavelength) given as

~7 o
) 4 280 (V=17 <8

w s

In obtaining C8, we made the approximation that a << y/(z — 1)? 4 32, therefore the Hankel function term in 40 can be taken
out of the integral and approximated using the logarithm, again assuming that w << 1/(x —1)2? 4+ y2. For |Z| — 00 ,in the

upper complex plane f~!(Z) can be approximated by:
2ai
etiy~l— 2 (C9)
™
Therefore the solution of Laplace equation in the open sea is then
mln (Z; (x—1)2+y2> +c¢ for ( (x—1)2+y2) >>aq. (C10)
a
Matching C10 with (C8) will become

2a.Sy(w)
T

-—m (C11)

- 2a.9 r 277!
aSoi + “S°1n<”)+”.(”):m1n(”)+c (C12)
s 2 W 2a

are obtained. Solving equations C6, C7, C11 and C12

Ap(w) = 21 ) [Jo(QUJ)-i-(Lle(Qw) (_21n( °n )Hﬂl (C13)

w T 2lwa

is found.
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