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Abstract 9 

Extreme waves influence coastal engineering activities and have an immense geophysical 10 

implication. Therefore, their study, observation and extreme wave prediction are decisive for 11 

planning for mitigation measures against natural coastal hazards, ship routing, design of 12 

coastal and offshore structures. In this study, the estimates of design wave heights associated 13 

with return period of 30 and 100 years are dealt with in detail. The design wave height is 14 

estimated based on four different models to obtain a general and reliable model. Different 15 

locations are considered to perform the analysis: four sites in Indian waters (two each in Bay 16 

of Bengal and the Arabian Sea), one in the Mediterranean Sea and two in North America (one 17 

each in North Pacific Ocean and the Gulf of Maine). For the Indian water domain European 18 

Centre for Medium-Range Weather Forecasts (ECMWF) global atmospheric reanalysis ERA-19 

interim wave hindcast data covering a period of 36 years have been utilized for this purpose. 20 

For the locations in Mediterranean Sea and North America both ERA-interim wave hindcast 21 

and buoy data are considered. The reasons for the variation in return value estimates of the 22 

ERA-interim data and the buoy data using different estimation models are assessed in detail.  23 

1. Introduction 24 

The Indian Ocean with two horns of the Arabian Sea and the Bay of Bengal has been playing 25 

a significant role in the regional economic development. This rapid progress is attributed to a 26 

variety of activities in the coastal and offshore sectors that include construction and 27 

development of major ports and fishing harbours, establishment of power plants, offshore 28 

exploration and exploitation of oil and gas, and tampering of ocean wave and tidal energy. To 29 

sustain these developments along the coast, the aforementioned activities require a variety of 30 

coastal and offshore structures such as groins, sea walls, breakwaters, offshore platforms, 31 

intake and outfall structures, submarine pipelines etc. to be constructed in the marine 32 
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environment. It is hence mandatory to design these structures for its life span which could be 33 

achieved by considering its survival conditions. The most dominant environmental forces that 34 

dictate this design of the structure is due to the maximum probable wave height of a site of 35 

interest (Massel, 1978).  36 

Depending on the importance and lifespan of the structure, the return period of the extreme 37 

events could be selected as 30 years or 100 years. The lesser would be associated with lesser 38 

wave height but more risk and vice versa. It demands a better understanding of hydrodynamic 39 

characteristics of local wave environment, especially the extreme conditions. In the design of 40 

any marine structures, the first step is the extreme wave analysis for the determination of 41 

design wave heights with certain return periods (Goda, 2000). Estimation of appropriate 42 

design values indicates the level of protection and the scale of investment during the 43 

construction of the structure. 44 

Fundamentally, extreme values are scarce and are necessarily outside the range of the 45 

available observations, implying that an extrapolation from the observed sea states to 46 

unknown territories is required. An estimate of anticipated wave height can be furnished 47 

using historical wave hindcast data or field observed data with the help of various distribution 48 

models, which enable extrapolation under the Extreme value theory framework (Goda, 2000; 49 

Coles, 2001; Caires, 2011). Ferreira and Soares, 2000 suggested that the estimation of 50 

extreme values should rely on methods based on extreme value theory which makes use of 51 

the largest of the observations in the sample. Coles, 2001 obtained the detailed statistical 52 

results of extreme value prediction using the annual maximum (AM) (Castillo, 1988) and 53 

Peaks Over Threshold (POT) (Ferreria and Soares, 1998) sampled observations. Caires, 2011 54 

rigorously compared the commonly used extreme value statistical methods (like GEV and 55 

GPD) with different parameter estimation methods for combination of different data 56 

sampling techniques. 57 

Another approach that may be applied starting from a wave data time series is that of 58 

equivalent storm models (Boccotti 1986, 2000; Fedele and Arena, 2010; Laface and Arena, 59 

2016) which is based on the concept of sea storm. Specifically, these models consist of 60 

substituting the sequence of sea storms at a given site (actual sea) with a sequence of 61 

equivalent storms (equivalent sea) from a statistical perspective. The equivalent storms have 62 

very simple geometric shapes such as triangular (Boccotti 1986, 2000; Arena and Pavone, 63 

2009), power (Fedele and Arena, 2010; Arena et al., 2014) or exponential (Laface and Arena, 64 
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2016). Depending on the shape the related model gives analytical or numerical solution for 65 

the calculation of the return period R(Hs>h) of a sea storm whose maximum Hs is greater than 66 

a given threshold h. Specifically, the triangular and exponential equivalent storm models give 67 

a closed form solution for R(Hs>h), while the Equivalent power storm model requires 68 

numerical calculation. In the paper the Equivalent Triangular (ETS) model is utilized. 69 

The accuracy of any methodology for extreme values significantly depends on the length of 70 

the recorded time series data. It is believed that measurements from wave rider buoy offer the 71 

most reliable long historical record. However, the availability of such buoy data is limited to 72 

certain specific locations, mainly in the northern hemisphere. At a particular location of 73 

interest, the availability of buoy data is usually scarce, and often there will be no data. The 74 

oceanographic community has recognized the hindcasts with ocean wave models to 75 

complement the limited buoy observational records. 76 

In the recent years, the performance of wave models has appreciably improved, with better 77 

quality of the wind fields and enhancement in numerical wave modelling. The meteorological 78 

centres like European Centre for Medium-Range Weather Forecasts (ECMWF), Australian 79 

Bureau of Meteorology and Meteo-France that operate global wave models are currently 80 

using altimeter wind data for data assimilation purposes. The process combines numerical 81 

wave model and observations of diverse sorts in the best possible ways to generate a 82 

consistent, global estimate of the various atmospheric, wave and oceanographic parameters. 83 

At present, in numerous meteorological centres, wind, and wave simulated data are 84 

assimilated on a daily basis. 85 

The simulated hindcast data have been adopted in numerous studies for the estimation of 86 

extreme wave conditions. Teena et al., 2012 applied a generalized extreme value distribution 87 

and generalized Pareto distribution to the 31 years assimilated wave hindcast data based on 88 

MIKE-21, a spectral wave model for a location in the eastern Arabian Sea and extracted 89 

extreme wave for several return periods. Li et al., 2016 used a third generation wave model, 90 

WAMC4 and simulated 35 years of wave hindcast data from two sets of reanalysis wind data, 91 

NCEP and ECMWF. In their study, Pearson-III distribution method is used to analyse the 92 

extreme wave climate in the East China seas. Polnikov and Gomorev, 2015 proposed to use 93 

the extrapolation of a polynomial approximation constructed for the shorter part of the tail of 94 

probability function to estimate the return values of wind speed and wind-wave height. The 95 
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wave field was computed from the wind-wave model, WAM-C4M from ECMWF global 96 

atmospheric reanalysis ERA-interim wind field data. 97 

Even though several studies have been carried out, the study on the identification of the most 98 

suitable approach for estimating extreme wave heights for a particular source of assimilated 99 

wave hindcast data is still lacking. In the present study, the investigation of different existing 100 

approaches and models is carried to assess its application and reliability for the Indian 101 

domain. Increased uncertainty in the model outputs questions the reliability of the estimation 102 

model, which is an important issue. Thus, the present study introduces a statistical approach 103 

to validate the reliability of the design wave height return values resulting from a particular 104 

extreme wave estimation method by considering variability criterion as measured maximum 105 

value. The variation in the extreme value estimates of the ERA-interim data and the buoy 106 

data for different estimation models is also considered and examined. The objective of the 107 

present study is to identify a robust extreme wave height estimation method for the Indian 108 

domain using global atmospheric reanalysis ERA-interim wave hindcast data.  109 

2. Datasets 110 

2.1 Study Locations 111 

Four offshore locations along the Indian coast (Fig.1) are considered. The selection of these 112 

particular locations is based on their distance from the nearest coast and the water depth, two 113 

each on east and west coasts of the Indian peninsula. Both deep and shallow water locations 114 

are chosen to examine the application of the estimation model based on water depth.  115 

The projected estimates using ERA-Interim data are compared with those obtained from data 116 

from various buoys to validate the performance of ERA-Interim data in extreme wave 117 

analysis. The choice of the locations was according to the size of wave data that were 118 

available. Further, two locations in North America, National Data Buoy Center Station 44005 119 

in Gulf of Maine, National Data Buoy Center Station 46050 West of Newport and one of the 120 

most energetic sites in the coasts of Central Mediterranean Sea (Liberti et al., 2013; 121 

Vicinanza et al., 2013; Arena et al., 2015) from the Italian buoys network locations, Alghero 122 

(West coast of Sardinia Island) are considered. A comprehensive comparison has been 123 

carried out by extracting the ERA-Interim data of resolution 0.125ox0.125o nearest to the 124 

selected buoy locations. The coordinates, period of data availability, interval and number of 125 

data points for these locations are presented in Table 1. 126 
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2.2 Wave Data 127 

2.2.1 ERA-Interim data 128 

ERA-Interim data is produced by the ECMWF, which is a global atmospheric reanalysis from 129 

1979, continuously updated in real time and is one among the most recent re-analysis data 130 

available (Berrisford et al., 2009). ERA-Interim is the first to perform re-analysis using 131 

adaptive and fully automated bias corrections of observations (Dee and Uppala, 2008). The 132 

parameters such as significant wave height (Hs), mean wave direction and mean wave period 133 

can be obtained with 6-hourly fields covering the whole globe, with the best space resolution 134 

of 0.125ox0.125o. 135 

There have been several studies comparing the values of Hs between ERA-Interim dataset and 136 

buoy data at different locations around the world to evaluate the model performance (Shanas 137 

and Kumar, 2014; Kumar and Nassef, 2015). It has been found that at certain locations in the 138 

Arabian sea, the maximum Hs based on ERA dataset in deep water is about 15% less than 139 

that of buoy measured data, whereas, in shallow waters, ERA dataset over predicts the 140 

maximum Hs by about 9%. The underprediction in deep water suggests that extreme events 141 

attained mainly during cyclones are difficult to be captured by the model. The results show 142 

that Hs of model data set are reliable in both deep and shallow water locations with a good 143 

degree of accuracy. The estimates in this study are based on ERA-Interim wave hindcast data, 144 

covering a period of 36 years (1979-2014). For nearest intersection buoy locations, the data 145 

period was selected based on buoy data availability. 146 

2.2.2 Buoy data 147 

The most reliable data for significant wave height are from the buoy measurements. The 148 

available length of buoy data is usually limited and the data prior to 1978 is scanty. The 149 

available buoy data further requires significant quality control on account of large gaps of 150 

missing data and outlier, flagship measurements. In the paper data from two different buoys 151 

networks are processed: RON (Rete Ondametrica Nazionale) Italian network and the 152 

National Oceanic and Atmospheric Administration’s National Data Buoys Center (NOAA-153 

NDBC).  154 

The Italian buoys network (RON) started measurements in 1989, with 8 directional buoys 155 

located off the coasts of Italy. Later it has reached the number of 15 buoys moored in deep 156 

water. For each record, the data of significant wave height, peak and mean period and 157 

dominant direction are given. 158 
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The NOAA manages the NDBC, which consists of many buoys moored along the US coasts, 159 

both in the Pacific Ocean and in the Atlantic Ocean. Some buoys were moored in the late 160 

1970s so that more than 35 years of data are available. The historical wave data give hourly 161 

significant wave height, peak and mean period. The NOAA buoy observations are readily 162 

available which are of proven quality. The measurements have passed through quality control 163 

by NOAA. It is however always recommended to perform some basic quality checks. 164 

The return value estimates acquired from the ERA-Interim data are compared with that of 165 

NDBC Stations 44005, 46050 and at Alghero along the coast of Central Mediterranean Sea. 166 

Table-1providesthe coordinates and data details of these buoy stations. ERA-Interim wave 167 

hindcast data has been used to assess the estimates in Indian waters. 168 

3. Extreme wave height Estimation Methods 169 

3.1 General 170 

The estimation models used in this study to obtain extreme wave return values include the 171 

generalised extreme value (GEV) and the generalised Pareto distribution (GPD), which are 172 

currently being adopted for the standard practice in mainstream extreme statistics. Each 173 

distribution was fit to the data using the Maximum likelihood method (MLE) and the 174 

Probability weighted moments method (PWM). Further, new polynomial approximation 175 

model prescribed by Polnikov and Gomorev, 2015 and Equivalent Triangular storm model 176 

(Boccotti, 2000) based on the concept of replacing the sequence of actual storms extrapolated 177 

from a given time series of Hs with a sequence of equivalent triangular storms are used. 178 

 179 

3.2 Generalised extreme value distribution model 180 

According to extreme value theory, to form a valid distribution, the sampled observations 181 

should be independent which would mean that successive observations should not be 182 

correlated with one another and should be identically distributed (Goda, 2000).In general, for 183 

the sampling of data to be used for extreme wave analysis three different approaches are 184 

available. The first approach uses all the recorded data of Hs during a number of years and fits 185 

a cumulative distribution to this data. This approach is called the initial distribution method 186 

(IDM). For the other two approaches, only the peaks of wave heights are engaged. The 187 

method of block maxima consists of partitioning recorded data in blocks, wherein, the 188 

maximum value of each block is considered. Normally a block could be chosen as one year 189 

(Lionello et al., 1992). The POT (Peaks Over Threshold) method, consists of the peaks of 190 

clustered data exceeding a given threshold. IDM observations violate the conditions of 191 
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identity and independence in distribution, which invalidates the application of the common 192 

statistical methods as well as the definition of return values (Anderson et al., 2001). The 193 

annual maxima method and POT method both satisfy the obligatory of independency. 194 

According to theory of the generalized extreme value (GEV) distribution, the sample has 195 

been selected by means of annual maxima (AM) method. 196 

The generalized extreme value (GEV) distribution has the cumulative distribution function 197 

(CDF) as: 198 

𝐺𝐺𝐺𝐺𝐺𝐺(𝑥𝑥;µ,σ, ξ) =     

⎩
⎪
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where µ, σ and ξ represent the location, scale and shape parameters of the distribution, 200 

respectively and within the range of  −∞ < μ < ∞, σ > 0 and −∞ < ξ < ∞ . By setting the 201 

shape parameter,ξ , one can obtain the most common distributions like Gumbel (ξ=0), 202 

Frechet (ξ>0) and Weibull (ξ<0).  203 

The 1/Tyr wave height return value, XT based on the GEV distribution model is given as 204 
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                             �(2) 205 

3.3 Generalised Pareto distribution model 206 

This approach is based on fitting the generalized Pareto distribution (GPD) to the POT 207 

sampled data. The observations in a cluster above the threshold are considered and 208 

calculating return values has been done by taking into account the rate of occurrence of 209 

clusters (Davidson and Smith, 1990; Coles, 2001). 210 

The cumulative distribution function of the GPD is given as: 211 

𝐺𝐺𝐺𝐺𝐺𝐺(𝑥𝑥;µ,σ, ξ) =     
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where µ  σ and ξ represent the threshold, scale and shape parameters of the distribution, 212 

respectively and within the range of 0 <x< ∞, σ > 0 and −∞ < ξ < ∞. When ξ = 0 the GPD is 213 

said to amount to the exponential distribution with mean σ; when ξ > 0, it is the Pareto 214 

distribution; and when ξ < 0 it is a special case of the beta distribution.  215 

The 1/Tyr wave height return value based on the GPD distribution model, XT, is given as 216 

                         𝑋𝑋𝑇𝑇 =  

⎩
⎨

⎧𝜇𝜇 +
σ
ξ
�1 − (𝜆𝜆𝜆𝜆)−ξ�,      𝑓𝑓𝑓𝑓𝑓𝑓  ξ ≠  0

 
 

𝜇𝜇 + σln(𝜆𝜆𝜆𝜆)ξ ,            𝑓𝑓𝑓𝑓𝑓𝑓  ξ = 0

                                         (4) � 

where λ = Nu/N, with Nu being the total number of exceedances above the selected threshold u 217 

and N are the number of years in the record. 218 

 219 

There are several parameter estimation methods for fitting the above candidate distribution 220 

functions to the sampled wave data (Goda, 2000). The method of moments (MM), probability 221 

weighted moments (PWM) method and the maximum likelihood method (MLE) are more 222 

preferred estimation methods since these are more flexible, particularly when the number of 223 

parameters is increased. The MM yields a large bias particularly for small size samples and 224 

this method was not used in the present study. The parameters of the above distributions are 225 

derived according to the methods of maximum likelihood method and probability weighted 226 

moments method. 227 

 228 

The threshold selection in GPD analysis is an important practical problem, which is 229 

analogous to the block size in the block maxima approach. The threshold value represents a 230 

compromise between bias and variance. Too low a threshold violates the asymptotic basis of 231 

the GPD model, leading to a bias. Too high a threshold will generate fewer values of excess 232 

to estimate the model, leading to high variance. There is an extensive literature on the attempt 233 

to choose an optimal threshold by Neelamani, 2009; Caires, 2011. In this study, the threshold 234 

selection is based on the Mean residual life plots introduced by Davison and Smith, 1990. 235 

The mean residual life plot is based on the theoretical mean of the GPD given as: 236 

                                          
[ ]

1
E x σµ

ξ
= +

−
,  for ξ< 1                                                   (5) 237 

The mathematical basis for Mean residual life plots method is  238 
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 , for ξ < 1                                       (6)                                                                                              239 

If X is distributed according to the GPD, then the mean excess over a threshold y (for y > 0) 240 

with slope ξ/(1 – ξ) is a linear function of y. Thus, we can draw a plot in which the ordinate is 241 

the sample mean of all excesses over that threshold and the abscissa is the threshold.  242 

A mean residual life plot consists in representing points: 243 

                                              
max

1

1, , :
n

i
i

x n x
n

µ µ µ
=

  − ≤  
  

∑
                                               

 (7) 244 

where n is the number of observations (xi, i=1,2,…n) above the threshold µ, and xmax is the 245 

maximum of the observations. According to the Central Limit Theorem, confidence intervals 246 

are added to this mean residual life plot as the empirical mean to be normally distributed. 247 

However, this normality does not hold for high threshold as there are less and less excesses. 248 

3.4 Polynomial approximation model 249 

Polnikov and Gomorev, 2015 proposed to use the extrapolation of polynomial approximation 250 

constructed for the shorter part of the tail of probability function to estimate the return values 251 

of wind speed and wave height. 252 

This method involves the construction of an analytical approximation Fap(H), aimed for its 253 

extrapolation beyond the observed maximum value HM. The approximation should be 254 

restricted to a shorter domain lying above the uppermost mode of the histogram considered of 255 

the function F(H).The domain suitable for approximation can be determined by the condition 256 

                                     Hl ≤ H ≤ Hh ≤ HM      (8) 257 

where Hl and Hh are the lower and the upper edges of the domain of F(H), used for 258 

constructing approximation Fap(H). The number of points (NM) considered in the histogram is 259 

HM/ΔH and NS is defined as, 260 

                                     NS = ( ) /M hH H H− ∆      (9) 261 

And the number of points (NT) used for building approximation Fap(H) is defined as, 262 

                               NТ = ( ) /h lH H H− ∆ +1                (10) 263 
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The approximation,  Fap(H)  should be built in the logarithmic coordinates due to few values 264 

in the tail of F(H), providing importance to the tail values.  It allows assessing the strong 265 

variability of the tail of function F(H) near the maximum value of the series, depending on 266 

the length of the series. To exclude the application of fixed statistics, the approximation 267 

function Fap(H)  in the form of a polynomial of degree n, it is considered the value of which 268 

may vary. The varying n allows obtaining the approximation Fap(H,n) with an accuracy 269 

higher than the case of using the fixed statistical distributions.  270 

The statistical distribution with the provision function is of the form, 271 

     0
( ) exp

i n
k

ap k
i

F H a H
=

=

 =   
∑       (11) 272 

Once the approximation function, Fap(H)   is obtained from Eq.(11), the return value, XR, 273 

appearing once for NR  years, can be deduced by inversing the formula, 274 

 275 

           R( ) / 8760 RF X t N= ∆ ⋅      (12) 276 

where, t∆  is the interval of discrete of data observations. 277 

Another principal feature of polynomial approximation Fар(W) is the standard deviation δ, 278 

defined by the formula: 279 

                 
( )( ) ( )( )

1/ 2
21 ln ln

i h

i l

H H

i ap i
H HT

F H F H
N

δ
=

=

 
 − =  

 
∑

             
(13) 280 

Obviously, the lesser δ, the higher accuracy of approximation can be achieved and it is more 281 

preferable. 282 

3.5 Equivalent Triangular Storm model 283 

The Equivalent Triangular Storm (ETS) model (Boccotti, 2000; Arena and Pavone, 2006, 284 

2009) is applied for calculating return values of significant wave height for given thresholds 285 

of return period. The ETS approach is based on the assumption that given a sequence of 286 

actual storms it may be replaced by an equivalent storm sequence maintaining the same wave 287 

risk. The validity of the above assumption is guaranteed by the statistical equivalence 288 

between the actual storm and the related Equivalent Triangular one. The ETS associated with 289 
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a given storm is achieved by means of two parameters: the triangle height a and its base 290 

b(Fig. 2). The former is an intensity parameter and is equaled to the maximum significant 291 

wave height during the actual storm, the latter is a duration parameter and it is determined 292 

following an iterative procedure imposing the equality between the maximum expected wave 293 

heights of actual and triangular storms. It has been numerically proved that imposing this 294 

equality not only the area under the exceedance probability curves of the maximum wave 295 

height are the same, but those curves tend to coincide (Boccotti, 2000; Arena and Pavone, 296 

2006; Laface and Arena, 2016) 297 

Considering all these aspects, it emerges that the actual storm and the ETS sequences (actual 298 

and Equivalent Triangular seas) have the same number of storms, each of them characterized 299 

by the same maximum significant wave height and the same probability P(Hmax>H) that the 300 

maximum wave height is greater than a fixed threshold H. The considerations above enable 301 

to affirm that the return period of a sea storm with given characteristics is the same if 302 

calculated starting from the actual storm sequence or the ETSs one. Referring to the 303 

equivalent triangular sea, an analytical solution for the calculation of the return period 304 

R(Hs>h) of a sea storm whose maximum significant wave height is greater than a given 305 

threshold h has been developed by Boccotti,2000. 306 

 
)()(

)()(
hHPhHhp

hbhHR
ss

s >+=
=>  (14) 307 

where )(hb is the base-height regression function of ETSs, )( hHP s > is the probability of 308 

exceedance of the significant wave height Hs at the considered site and 309 

dh
hHdPhHp s

s
)()( >

−== is the probability density function of Hs.  310 

The calculation of return values of Hs by means of Eq. (14) requires the determination of two 311 

functions: 312 

• the base-height regression function, )(hb which gives the average value of the base b of 313 

ETSs for a given storm height h; 314 

• the probability )( hHP s > . 315 

The function )(hb is determined starting from the ETSs sequence diving storm in classes of 316 

storm intensity a=h of one meter width and the taking the average bm of storm durations and 317 
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of storm intensities am. Then the data am, bm obtained in this way are reported in a Cartesian 318 

plot and fitted by an exponential law as the following: 319 

 ( )akkab 21 exp)( =  (15) 320 

where k1 (hours) and k2 (m-1) are parameters depending on the characteristics of the storm at 321 

the considered site. 322 

Concerning the distribution of the significant wave height )( hHP s > , a three-parameter 323 

Weibull distribution is considered. 324 

 

















 −

−=>
u

l
s w

hhhHP exp)(  (16) 325 

where u, hl and w are the characteristic parameters at the considered location. In particular, u 326 

and hl are the shape parameters and w is the scale parameter of the distribution. 327 

4. Results 328 

In this study, hindcast results for ERA-interim data are compared with buoy measurements 329 

for different estimation models.  Further study of the various uncertainties due to the 330 

parameter estimation method, the sample size, sample interval and location conditions 331 

involved in this analysis are also examined.  332 

4.1 GEV analysis 333 

In the application of generalised extreme value distribution to the sampled annual maxima 334 

data, the scale, shape and location parameters can be used to make statements about the 335 

probability of the annual maximum exceeding a particular level. A change in either parameter 336 

can affect the long-period return levels. 337 

 338 

The parameter estimation is done by maximum likelihood estimate method and probability 339 

weighted moments method (Hosking et al., 1985) and resulting parameters are shown in 340 

Table 2. It has been observed that the shape parameter is positive for ERA-interim data 341 

indicating that this data would follow Frechét distribution and the tail of the cumulative 342 

distribution function decreases more slowly.   343 

The influence of estimated parameters in fitting the data to the GEV model is presented in 344 

Fig. 3a. It shows the level of fitting of the empirical CDF with the GEV PWM and GEV 345 
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MLE models. The difference in the normal coordinates in their fitting with empirical CDF is 346 

insignificant. Fig. 3b shows the variation in tail estimates of the PWM and MLE parameter 347 

estimation methods in logarithmic scale. The results show for buoy and ERA-interim data 348 

sets, the PWM method of parameter estimation yields better estimates compared to the MLE 349 

method.  350 

The statistical parameter, root mean square error was estimated in order to check the level of 351 

fitting of sampled data to the GEV distribution model. The root mean square error is a 352 

residual between the empirical cumulative distribution obtained from the actual observed data 353 

and the theoretical GEV model cumulative distribution. The lower the value of RMSE i.e., 354 

nears to zero, the better the fit of sampled data to the GEV distribution model. The fitting of 355 

GEV to buoy and ERA-interim data is found to be good for both PWM and MLE methods. 356 

The variation RMSE value of the MLE estimates is usually smaller than those of the PWM 357 

estimates for both buoy and ERA-interim data.  358 

4.2 GPD analysis 359 

In POT method, the selection of a suitable threshold value is the key in achieving a robust 360 

sample data set. The mean residual plot, between the mean excess GPD and threshold, helps 361 

in determining a proper range of threshold to be selected (Coles, 2001). Such plots with 95% 362 

confidence for the data ERA IN-1, (Fig. 4) appear to have two slopes with the major 363 

transition at the threshold range of 1.5 to 2.5 indicates the range of threshold could possibly 364 

be selected. However, attention should be made as too high threshold can result in a less 365 

sampled data set which results in a higher variance of the GPD model.  366 

The sample used in the peaks over threshold method has to be extracted in such a way that 367 

the data can be modelled as independent observations. A process of declustering helps to 368 

collect only the peaks within the clusters of successive exceedances of a specified threshold 369 

and are retained in such a way that they are sufficiently apart (so that they belong to 370 

‘independent storms’). Specifically, in the present applications, we have treated cluster 371 

maxima at a distance of less than 48 hours apart as belonging to the same cluster (Caires, 372 

2011). Table 3 provides the selected threshold and the number of exceedences of that 373 

specified threshold with a 48h interval. It is seen that the threshold values are observed to be 374 

dependent on the length, location and interval of the datasets. The major factor has to be the 375 

location since the higher latitude locations are exposed to more severe wave and wind 376 

conditions than those at the lower latitudes. 377 
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For parameter estimation, the PWM and MLE methods are used. The MLE has a 378 

considerable statistical motivation but can turn out to be poor estimators, especially in the 379 

case where the number of estimated parameters is large. So the approach chosen here was to 380 

utilize a variety of techniques like PWM and MLE for exploratory fitting for the probability 381 

model and chose the best possible parameters. 382 

To verify the estimated parameters for the GPD model, quantile-quantile (QQ) plots were 383 

used. In Fig. 5a, the QQ plots for the dataset NOAA44005 is shown, comparing the estimated 384 

GPD with the sample data for PWM parameter estimation method. In order to check the 385 

influence of parameters resulting from PWM and MLE parameter estimation models, the 386 

Root mean square error was estimated for GPD model also and presented in Table 3. 387 

 388 

Comparing the estimates and the fits, one can conclude that the MLE fits seem less adequate 389 

and that the shape parameter estimates are lower than those of the PWM fits. These results 390 

support the recommendations of Hosking et al., 1985 to preferably use the PWM method for 391 

GPD or GEV estimation from the relatively short duration of data with limited heavy-tailed 392 

cumulative distributions. Fig. 5b shows the return value GPD plot of PWM fit to the dataset 393 

NOAA44005. 394 

 395 

4.3 Polynomial approximation method analysis 396 

Polynomial approximation (P-app) method has a distinct advantage of selecting the optimum 397 

choice of the parameters NS, NT, and n. The detailed analysis demonstrates that all 398 

approximation parameters (n, NT, and NS) are equally important. Fig.6 shows the application 399 

of the P-app method for both buoy and ERA-interim data at Alghero buoy station. In the 400 

above-mentioned figure, the bottom level (ln(1-F)= -12.6) indicates the probability of 401 

occurrence once for 100 years and can be deduced by Eq. 12  with discrete of data 402 

observations of the 3hr interval. For 1hr and 6hr interval of data observations, the probability 403 

of occurrence once in 100 years can obtain as -13.7 and -11.9 respectively.  404 

One can see the adaptation of P-app method to the real behavior of the tails for provision 405 

functions. For the Alghero location buoy data, the optimized parameters obtained are NS=0, 406 

NT=8 (points used for approximation), n=2 (degree of approximation function)to arrive at the 407 

optimum return value as shown in the Fig.6.  408 
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The optimum choice of parameters will also depend on the standard deviation δ (Eq. 13) 409 

which resembles the residual between the actual tail of the provision function and the 410 

Polynomial approximation tail fitted to it. The lower the value of δ i.e., the nearer to zero, 411 

indicates a better fit between the actual tail of the provision function and the Polynomial 412 

approximation with tail fitted. The parameters NS, NT, and n for all the datasets including the 413 

resulted standard deviation δ are provided in Table 4. 414 

4.4 Analysis of ETS Model 415 

The calculation of the 100-year return values via ETS model is done by means of Eq. (14), 416 

known the base-height regression function Eq. (15) and the probability distribution Eq. (16) 417 

of Hs at the examined location. The base height regression function is determined starting 418 

from the storm sequence at the considered site, while the probability distribution is achieved 419 

processing the whole data set of Hs. An important aspect to be taken into account in 420 

estimating the parameters of both Eq. (15) and Eq. (16) is the time interval between two 421 

successive data of Hs. A value of 3 to 6 hours should be appropriate for estimating the 422 

parameters of the probability distribution, in order to guarantee the stochastic independence 423 

between successive events, but could be too high for determining the parameters of the base-424 

height regression function.  425 

In fact, Arena et al., 2013 has shown that as the time interval between two successive Hs 426 

increases, the peak of the storm may not be well identified, involving flat storm history that 427 

led to an increase of the duration b of ETSs respect to the case with the lower time interval 428 

between Hs data. Such situations are those of wave model data. In this paper, both wave 429 

model and buoy data are considered.  430 

To determine the base-height regression function parameters, the actual storm sequence is 431 

identified starting from Hs time series, and for each actual storm, the parameters a and b of 432 

ETS are calculated (Boccotti, 2000). Then the ETS are divided into classes of Hs of 1m width 433 

and the average value am and bm of a and b for each class is considered. The sequence am, bm 434 

is plotted in a Cartesian diagram and fitted by an exponential law as the Eq. (15). The 435 

determination of the base-height regression function despite very simple from a 436 

computational and mathematical point of view requires careful attention because of its 437 

sensibility to the time interval between the data of Hs used in the analysis. In this regard, it is 438 

worth noting that ETS duration parameter b, is strongly dependent on the actual storm 439 

structure close to the storm peak. Specifically, it tends to increase as the storm structure 440 
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became flat and it is quite small for steep storms. When data sampling interval is more than 441 

one to three hours, one may have very flat storms. This involves that the calculation may lead 442 

to big values of duration b. This aspect causes that return values of Hs may be underestimated 443 

(Arena et al., 2013). This aspect strongly affects predictions when wave model data are 444 

processed (3 to 6 hours between two successive data of Hs). For this reason, a further step is 445 

required for the calculation of bm when processing wave model data. A good practice is to do 446 

the analysis in conjunction with buoy data close to the location under study. In these cases, 447 

the base height regression function calculated from buoys is utilized for correcting the base 448 

height regression function obtained from model data. 449 

Specifically, considering an increase of b due to high time interval between Hs data, the 450 

regression should be corrected considering a reducing factor r, defined as the ratio between 451 

the average values of the base calculated starting from buoy data moored close to the 452 

considered site and the average value calculated by means of wave model data. The 453 

regression parameters k1 and k2 at each considered site are summarized in Table 5 in 454 

conjunction with the parameters u, w and hl of the probability distribution Eq. (16). 455 

5. Discussions 456 

From the results, it is observed that the estimates from buoy observations are higher 457 

compared to the estimates for ERA-interim datasets. This trend is being observed from all the 458 

estimation models. A variation of 20% to 30% while comparing maximum observed Hs of 459 

buoy data and ERA-interim at NOAA44005, NOAA46050 and Alghero locations is 460 

observed. This, in turn, will result in underestimation of the return value of ERA-Interim 461 

data.  462 

 463 

The underprediction of ERA-Interim data suggests, that high wave events mainly due to the 464 

cyclone events are difficult to capture by ECMWF numerical model. It is a familiar 465 

phenomenon and challenge that the smoothing effect implanted in the numerical model will 466 

lead to the flattened variability at relatively high frequencies, resulting in the missing peaks. 467 

An additional potential explanation for the under prediction is that the simulated ERA-468 

Interim data contains 6- hourly intervals of Hs data. It is possible because of the lower 469 

sampling rate, the maximum wave heights in a storm occur between observations will not be 470 

recorded. To overcome this, it is obvious that ECMWF numerical modeling system needs 471 
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further improvement in correction or calibration of the ERA-interim data especially when this 472 

hindcast is used for the extreme wave analysis.  473 

 474 

Final results on the 30 and100 year extreme wave estimates, obtained by the GEV, GPD, ETS 475 

and P-app methods described above are presented in Table 6 and 7. The variation of these 476 

estimates from the measured maximum wave heights will give a statistical validation of the 477 

performance of the estimation models. The percentage of variation of 30-yr and 100-yr return 478 

value estimates from measured 36-year maximum wave height is calculated for this analysis. 479 

Here one can observe the following principal peculiarities from the results of above 480 

mentioned statistical validation methodology. 481 

 482 

The GEV and GPD methods show the 30-year return values smaller than the measured 483 

maximum Hs for all the locations mostly by an extent of 10% to 25%. In the cases of 484 

simulated data, these models exhibit high deviations from measured maximum Hs. This 485 

peculiarity is because of the reason of neglecting the behavior of the tails for provision 486 

functions, accepted in GEV and GPD methods. As a result, this leads to underestimating the 487 

return values. This is a reasonable shortcoming of these methods, as far as one cannot 488 

forecast extreme smaller return values than ones observed already.  489 

 490 

The GEV model with annual maxima sample resulted in overestimation of return values 491 

compared to the GPD model with peaks over threshold approach. As the GEV estimation 492 

model considers only the highest Hs in the year, which might lead to the overestimation of 493 

Annual maxima based approach in comparison with the other method. For most of the 494 

locations, there is not much variation in the results of the PWM, MLE parameter estimated 495 

GEV and GPD models. But Hosking et al., 1985 recommended always applying the PWM 496 

parameter estimation method for GPD and GEV distribution models from relative short 497 

datasets with not too heavy-tailed distributions. Furthermore, PWM works for a wider range 498 

of parameter values than MLE method. 499 

 500 

The results from the P-app method are remarkably closer to the measured maximum values 501 

than those obtained by the GEV, GPD and ETS method, with variation ranges between 5%  502 

to  -7%. The P-app method shows consistency in 100-yr estimated return values for both 503 

simulated and buoy wave height datasets, as these varies consistently between 7% to 13% 504 

from the measured maximum values. GEV, GPD and ETS methods fails in the above-505 
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mentioned criterion as variation is as high as 56% to as low as -19% which is not possible in 506 

nature.  507 

 508 

This consistency of polynomial approximation method estimates is due to the dependence of 509 

return values on the actual kind of the tail for provision function, which could vary and is 510 

dependent on the sample of the series. The only disadvantage of the P-app method 511 

(Fар(Hs,n)) is the necessity to control reliability of its extrapolation, as far as the extrapolation 512 

of a polynomial with the order n > 1 may have twists and extremes. This well-known fact 513 

could be provided by a considerable variability of the “tail” for F(W). Such an extrapolation 514 

is implausible, of course. Therefore, it is necessary to vary the parameters NS, NT, and the 515 

order of polynomial n in such a manner, the twists of extrapolation could be avoided. 516 

6. Conclusions 517 

In this study, we chose the simulated ERA-Interim wave data, for the two following reasons. 518 

First, they have more regular coverage for the whole World Ocean, and the Indian coast, in 519 

particular. Second, numerically simulated datasets have long and regular continuous series, 520 

what is very important for the extreme value statistical aims. 521 

This study focused on the estimation of the extreme significant wave heights only. The 522 

analyses carried out and result produced will aid in the preparation of a 100-year extreme 523 

wave map for the Indian water domain which may serve as a quick guide to identify regions 524 

where extremes lie within the design criteria of the coastal and offshore structures to be 525 

constructed.  526 

We have considered four different approaches to the return values estimating: the GEV 527 

distribution model based on annual maxima sample, the GPD distribution model based on 528 

peaks over threshold sample, the ETS model based on storms and the polynomial 529 

approximation method for the tail of the provision function. All of them have their own 530 

advantages and shortages.  531 

The main shortage of the GEV and GPD methods are the high variation in underestimating or 532 

overestimating return values with respect to ones presenting in the time-series. The shortage 533 

of the P-app method is related to the ambiguity of the return values estimations, obtained 534 

from different parts of the full time-series. It is also found that the values estimated based on 535 

GEV model were slightly larger than those from the GPD. But GPD method with peaks over 536 

threshold sample is preferable in the locations of multiple storm events in a single year. In 537 
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turn, the estimates through the Polynomial approximation method, depend on the actual kind 538 

of the tail for provision function, which could vary and is dependent on the sample of the 539 

series resulted in showing the consistency in 100-yr estimated return values for both 540 

simulated and buoy wave height datasets, as these vary consistently between 7% to 13% from 541 

the measured maximum values. 542 

It is observed that the return value estimates from buoy observations are higher when 543 

compared to the estimates for ERA-interim datasets.The underprediction of ERA-Interim 544 

data suggests, that high wave events mainly due to the cyclone events are difficult to capture 545 

by ECMWF numerical model. To overcome this, it is obvious that ECMWF numerical 546 

modelling system needs further improvement in correction or calibration of the ERA-interim 547 

data especially when this hindcast is used for the extreme wave analysis.   548 
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Table 1: ERA-Interim data locations and buoy stations 626 

Data Point Coordinates Availability 
Interval 

(hr) 

No. of data 

points 

ERA IN-1 19.50N, 85.75E 1979-2014 6 52596 

ERA IN-2 15.50N, 81.00E 1979-2014 6 52596 

ERA IN-3 10.25N, 75.75E 1979-2014 6 52596 

ERA IN-4 14.50N, 73.50E 1979-2014 6 52596 

NDBC 44005 43.204N, 69.128W 1978-2014 1 254221 

ERA 44005 43.25N, 69.125W 1979-2014 6 52596 

NDBC 46050 44.656N, 124.526W 1991-2014 1 180231 

ERA 46050 44.625N, 124.50W 1991-2014 6 35064 

RON Alghero 40.548N,8.107E 1989-2008 3 125443 

ERA Alghero 40.5N,8.125E 1989-2008 6 29220 

  627 
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Table 2: PWM and MLE parameter estimators fitting GEV distribution 628 

Data 
PWM method MLE method 

ξ µ σ RMSE ξ µ σ RMSE 

ERA IN-1 0.1125 3.1523 0.3849 0.053 0.1157 3.1572 0.3779 0.045 

ERA IN-2 0.2085 1.9181 0.3108 0.081 0.4971 1.8838 0.2499 0.039 

ERA IN-3 0.0311 2.8386 0.3279 0.032 0.0296 2.8413 0.3270 0.035 

ERA IN-4 0.1169 3.6889 0.4553 0.033 0.1118 3.6975 0.4485 0.029 

NOAA 44005 -0.1642 6.7735 1.0880 0.052 -0.1811 6.7958 1.0571 0.023 

ERA 44005 -0.0866 5.0506 0.5649 0.031 0.0457 5.0706 0.5741 0.030 

NOAA 46050 -0.1190 8.9863 1.5655 0.052 -0.1038 8.9429 1.6407 0.039 

ERA 46050 -0.0251 7.1700 0.7646 0.047 0.0554 7.1705 0.7268 0.051 

RON Alghero -0.5089 7.4373 1.4405 0.112 -0.4992 7.4498 1.3588 0.043 

ERA Alghero 0.0746 5.555 0.6298 0.069 -0.0874 5.5719 0.6003 0.061 

  629 



25 
 

Table 3: PWM and ML parameter estimators fitting GPD 630 

Data 
Threshold 

µ 

No. of 

exceedence 

PWM method MLE method 

σ ξ RMSE σ ξ RMSE 

ERA IN-1 2.5 153 0.4429 0.0415 0.028 0.4489 0.0286 0.026 

ERA IN-2 1.5 160 0.2515 0.1438 0.045 0.2471 0.1588 0.052 

ERA IN-3 2.5 107 0.3350 -0.0485 0.036 0.3149 0.0143 0.025 

ERA IN-4 3.0 154 0.5428 -0.0651 0.035 0.5200 -0.0206 0.025 

NOAA 44005 5.0 227 1.3147 -0.1677 0.055 1.3396 -0.1892 0.063 

ERA 44005 4.0 190 0.7335 -0.1159 0.201 0.6938 -0.0560 0.025 

NOAA 46050 6.0 232 1.4608 -0.0200 0.019 1.5058 -0.0514 0.031 

ERA 46050 5.0 203 1.5480 -0.3879 0.126 1.2886 -0.1654 0.066 

RON Alghero 5.0 153 1.6541 -0.2957 0.100 1.6110 -0.2614 0.089 

ERA Alghero 4.0 128 0.9342 -0.1474 0.053 0.9642 -0.1835 0.066 

  631 
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Table 4: Selection of optimum values of approximation parameters 632 

Data 

No. of points used 

for approximation 

NT n δ 

ERA IN-1 6 2 0.176 

ERA IN-2 6 3 0.044 

ERA IN-3 5 3 0.032 

ERA IN-4 7 3 0.063 

NOAA 44005 8 2 0.118 

ERA 44005 7 1 0.197 

NOAA 46050 5 2 0.026 

ERA 46050 6 1 0.200 

RON Alghero 8 2 0.100 

ERA Alghero 7 2 0.105 

  633 
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Table 5: Base-height regression parameters k1, k2 calculated considering a storm sample with 634 

actual durations greater or equal to 18 hours, probability distribution parameters u, w and hl. 635 

Data u w[m] hl[m] k1[h] k2[m-1] 

ERA IN-1 1.320 0.714 0.459 397.61 -0.251 

ERA IN-2 0.773 0.142 0.481 255.73 -0.097 

ERA IN-3 1.600 0.851 0.488 348.02 -0.086 

ERA IN-4 1.504 1.099 0.498 397.6 -0.159 

NDBC 44005 1.121 1.150 0.409 76.125 0.0308 

ERA 44005 1.141 0.884 0.461 114.05 -0.071 

NDBC 46050 1.333 1.945 0.480 154.9 -0.101 

ERA 46050 1.625 2.321 0.000 106.94 -0.055 

RON Alghero 1.155 1.299 0.000 318.37 -0.235 

ERA Alghero 1.227 1.157 0.000 135.53 -0.035 
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Table 6: 30-year return value estimates (m) 637 

Data 
Measured 

maximum 

GEV GPD 
P-App ETS 

PWM MLE PWM MLE 

ERA IN-1 4.91 4.8 4.8 4.9 4.8 4.6 4.7 

ERA IN-2 3.59 3.5 4.1 3.3 3.4 3.6 3.3 

ERA IN-3 4.83 4.0 4.0 3.9 4.1 4.6 4.3 

ERA IN-4 6.17 5.6 5.5 5.1 5.5 5.9 5.9 

NOAA 44005 10.10 9.6 9.5 9.5 9.4 10.6 9.9 

ERA 44005 8.27 7.3 7.2 6.5 7.0 7.9 8.0 

NOAA 46050 14.05 13.7 13.4 12.4 12.3 14.1 12.8 

ERA 46050 10.93 9.9 9.9 8.0 9.0 10.2 9.5 

RON Alghero 9.88 9.8 9.7 9.4 9.5 9.2 10.3 

ERA Alghero 7.51 7.5 7.4 6.6 6.9 7.6 7.4 

  638 
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Table 7: 100-year return value estimates (m) 639 

Data 
Measured 

maximum 

GEV GPD 
P-App ETS 

PWM MLE PWM MLE 

ERA IN-1 4.91 5.5 5.5 5.65 5.5 4.8 5.1 

ERA IN-2 3.59 4.3 5.6 4.0 4.1 4.0 3.6 

ERA IN-3 4.83 4.5 4.5 4.2 4.4 4.7 4.4 

ERA IN-4 6.17 6.5 6.6 5.6 6.0 6.4 6.1 

NOAA 44005 10.10 10.3 10.1 10.1 10.0 11.4 10.7 

ERA 44005 8.27 8.3 8.0 7.2 7.9 9.0 8.4 

NOAA 46050 14.05 15.1 14.6 14.2 14.1 15.2 13.8 

ERA 46050 10.93 10.9 11.0 8.9 9.8 11.3 11.1 

RON Alghero 9.88 10.1 10.0 9.9 10 9.7 12.5 

ERA Alghero 7.51 8.5 8.0 7.7 8.0 8.2 8.7 

 640 

  641 
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 642 

Figure 1: Locations along the Indian coast  643 
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 644 

Figure 2: Typical representation of actual storm and associated ETS. 645 
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 647 

 648 

   (a)      (b) 649 

Figure 3: (a) Comparison ofGEV model CDF to the empirical CDF for NOAA44005 and 650 
ERA IN-4(b) Variation of tail GEV model CDF in logarithmic coordinates for NOAA44005 651 

and ERA IN-4 652 
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 653 

Figure 4: Mean Residual plot of ERA IN-1 with 95% confidence limits 654 

  655 

     95% Confidence Interval      Mean residual line 
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 656 

                (a) 657 

 658 

               (b) 659 

Figure 5: (a) Quantile-Quantile plots of GPD model for NOAA44005 data (b) Return level 660 

plots of GPD model for NOAA44005 data.  661 
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 662 

Figure 6: Polynomial approximation for series of wave heights Hs at Alghero buoy station 663 

for buoy and ERA-interim datasets 664 
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