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In the following we have listed the referee comments and immediately after our 

response. We have highlighted the modifications suggested by Anonymous 

Referees #1 and #2 in red and blue, respectively. 

 

Referee #1 

This study estimates the design wave heights associated with return period of 30 

and 100 years using four different methods of extreme wave analysis. Also based on 

the results obtained from four methods, the study has attempted to generalise the 

reliable model which can be used in future for better wave height estimation in 

designing the coastal activities.  

General comments: 

This paper presents good piece of work which is publishable in NHESS. 

Authors 
We thank the referee for his/her appreciation of our work. 

Referee #1 
The name of the Oceans or Seas may be mentioned, instead of Continent or 

country, as we are dealing with ocean waves. 

Authors 
We agree with the referee. We have modified the sentence (Pg.1 – ln.16-18) related 

to this issue. Here follows: 

“…four sites in Indian waters (two each in Bay of Bengal and Arabian Sea), one in 

Mediterranean Sea and two in North America (one each in North Pacific Ocean and 

Gulf of Maine).” 

Referee #1 

Pg5, Ln 136-137: provide a few important references to the statement  

Specific comments: 



Authors 
The following two references have been added in the text and in the list of 

references. 

Sanil Kumar V, Muhammed Naseef T, (2015).Performance of ERA-Interim wave 

data in the nearshore waters around India, J. Atmos. Ocean. Technol., vol.32(6); 

2015; 1257-1269 

 P.R. Shanas and V. Sanil kumar, Comparison of ERA-Interim waves with buoy 

data in eastern Arabian sea during high waves, Indian journal of Marine 

sciences vol.43(7), July 2014,pp. 

Referee #1 
Section 2.2.2: Buoy data: If buoy data of the Indian Ocean is used, the details should 

be given. 

Authors 
 The buoy data for the Indian Ocean has not been used in this study. 

The Indian Buoy data is very scarce and the length of buoy measurements is limited 

to 4 or 5 years which is insufficient for extreme wave analysis. 

Referee #1 
Section 3.5: may be reduced, and only the important details of the method may be 

given. 

Authors 
In the revised manuscript, section 3.5 has been reduced.  

Referee #1 

Section 4.4: It is not clear which datasets are used for this estimation. As stated 

earlier this method considers wave height estimation during storm events, and ERA 

data may not give accurate results for extreme events. As all the regions considered 

in this study are prone to extreme events, authors should clearly comment on this 

aspect in the text. 

Authors 
Table 5 in the manuscript provides the datasets used for this estimation along with 

the related parameters of the ETS model. 



The ETS associated with a particular storm is achieved by means of two parameters: 

the triangle height aand its base b. Where a is the intensity parameter which is equal 

to the maximum significant wave height i.e., height of the peak during the actual 

storm. As mentioned by the referee when ETS method is used for the extreme wave 

analysis for ERA-Interim data, it resulted in an underestimation as given in the table 

below. 

These results were discussed in revised version of the manuscript (Pg.15 & 16 – 

ln.435-449). 

Table:  Percentage of variation of 100 year return value estimates from measured 

maximum wave height (%) 

Data ETS 

ERA IN-1 4 
ERA IN-2 0 
ERA IN-3 -9 
ERA IN-4 -1 

NOAA 44005 6 
ERA 44005 2 

NOAA 46050 -2 
ERA 46050 2 

RON Alghero 27 
ERA Alghero 16 

 

Referee #1 
Pg. 17, Para 1: As you have considered long term data, 6 h time interval is sufficient 

for extreme wave analysis. If so, 6 hly data may not be the reason for under 

prediction. Accordingly, the end part of the para may be modified. Yes, the main 

drawback of ERA-I is that it does not capture the cyclonic events, and that is the 

important aspect to be considered in this study. As this study has utilised long term 

buoy data, important conclusions can be drawn from all four methods used in this 

study. 

Authors 
Figure shows the comparison of time series of the significant wave heights at 

Alghero from buoy measurements (red curve), from ERA-Interim wave hindcast 



measurements (green curve) during the cyclonic month of December 1999. This 

comprehensive comparison has been carried out by extracting the ERA-Interim data 

of resolution 0.125ox0.125o nearest to the selected buoy locations. 

 
Figure: Comparison of ERA-Interim data with buoy data for a cyclonic month at 

Alghero 

From the figure we can see that the maximum Hs observed for ERA-interim data is 

7.51m which is lower than 9.88m, maximum Hs that is measured by thebuoy. For this 

location, the maximum wave height obtained from ERA-interim and that with buoy 

measurements show considerable variation. From this comparison of time series it 

can be observed that the simulated ERA-Interim data under predicts the high wave 

events especially during cyclones. 

We have shown the comparison of the return values obtained from the buoys and 

ERA-Interim at the same locations with different sampling interval in Table 6 and 

Table 7 of manuscript. From the results, the underprediction of ERA-Interim is 

witnessed for all the locations. So, it is justified to state the lower sampling rates of 

ERA-Interim data eventually results in the underestimation of extreme wave heights. 

Referee #1 
Pg. 17, Ln 484: " 30,100 year extreme wave estimates"?? I suppose it is 30 and 100 

years; if so, add ‘and’. 

Authors 
Done 

 
Referee #1 

Pg 17, Para 3: The reasons for not discussing 100 yr results may be provided. 



Authors 
The 100 yr results were already addressed in the manuscript (Pg.17 – ln.500-506). 

Referee #1 
Section 6: As the results of ERA-I are showing underestimation, and use of ERA-I is 

not the objective of the study, it may be brought down. Before that results of other 

data sets may be provided in the conclusion. Also, results of ETS method are not 

mentioned in the conclusion. It is worth to mention which method has given the best 

results for the datasets. 

Referee #1 
In the abstract it is stated that four models have been used, and the results are 

intercompared, and from that the best model is chosen for the present work. But, in 

the text, that part is missing. While revising the MS, this aspect may be looked into, 

and accordingly, the conclusion can be drawn. Then it is possible to state that which 

method or analysis provides the best results. It may also be noted that the datasets 

used for this study are from three different Oceans. 

Authors reply for both the comments 

Comparing the buoy return value estimates with the respective ERA-Interim 

estimates at the same location, we see that the ERA-Interim estimates are lower 

than those of the buoy estimates. It is possible to develop a linear association 

between the ERA-Interim and buoy estimates to overcome this underestimation in 

the future studies. This can be done by comparing the buoy return value estimates 

with the respective ERA-Interim estimates at several locations to maximize the 

number of data points used to estimate the linear association. 

This study focuses only on the estimation of the extreme significant wave heights. 

The analyses carried out and results produced will aid in the development of a 100-

year extreme wave map for the Indian water domain. 

We have considered four different approaches to the return values estimation, all of 

them have their own advantages and shortcomings. But polynomial approximation 

method showed the consistency in 30 and 100-yr estimated return values for both 

simulated ERA-Interim and buoy wave height datasets, and hence identified as a 

general and reliable extreme value estimation method for Indian water region. 



This was already addressed in the manuscript (Pg.17– ln.474-480). 

Referee #1 
"Buoy data" may be written as "buoy data" in the entire manuscript. 

Authors  

Done 

 

Referee #1 
Figure 1: Only the location map of IO is shown; what about buoy locations in the 

other Oceans?  

Authors  
We have removed the Figures to reduce the size of the Manuscript. The following 

figures show the locations of other buoys. 

 

Figure: NOAA-National Data Buoy Centre Station locations 



 

Figure: Location of Alghero buoy in Mediterranean Sea 

Referee #1 
Figure 6: It is good to present the results of both the datasets in one figure with 

different colours; it gives better visual interpretation to the readers. 

Authors  

Thank you for the suggestion, but we think it is comprehensive and easy to identify 

the variation of the tail part of the curves for different datasets, when the plots are 

separate. 

Referee #1 

Pg 1, Ln 17: Replace ‘water’ with Ocean 

Technical corrections: 

The four locations along Indian coast are not in Indian Ocean. They are located two 

each in Bay of Bengal and Arabian Sea. This is the reason for using the term Indian 

waters instead of Indian Ocean. 

Pg.16: Ln 446: Replace Al. with al. 

Done 

Pg. 16: Ln 466-467: This is repetition, and may be deleted from any one place. 

We agree with the referee. We have modified the sentence (Pg.16 – ln.459) related 

to this issue.  

 
 



Referee #2 

The paper provides a useful tutorial on the statistical analyses of extreme events. 

Different techniques are systematically introduced and explained. The prediction of 

key statistics is compared with buoy data and the effectiveness of the techniques is 

discussed. 

General comments: 

Authors 
We thank the referee for his/her appreciation of our work. 

Referee #2 
The authors speculate that the under-prediction of the buoy data is because the 

ECMWF data do not capture cyclone events. Is there any way they could test (or 

even suggest a test) of this hypothesis? For example, could one window the buoy 

data to eliminate time windows known to contain cyclones, and repeat the analysis? 

If their hypothesis is correct, such artificial windowing would lead to an improved 

comparison.C1 Of course, in practice one wants to correctly model all extremes 

including cyclones, but it may be possible to quantify the effect of the cyclones. 

Authors 
Figure shows the comparison of time series of the significant wave heights at 

Alghero from buoy measurements (red curve), from ERA-Interim wave hindcast 

measurements (green curve) during the cyclonic month of December 1999. This 

comprehensive comparison has been carried out by extracting the ERA-Interim data 

of resolution 0.125ox0.125o nearest to the selected buoy locations. 

 
Figure: Comparison of ERA-Interim data with buoy data for a cyclonic month at 

Alghero 



From the figure we can see that the maximum Hs observed for ERA-interim data is 

7.51m which is lower than 9.88m, maximum Hs that is measured by the buoy. For 

this location, the maximum wave height obtained from ERA-interim and that with 

buoy measurements show considerable variation. From this comparison of time 

series it can be observed that simulated ERA-Interim data under predicts the high 

wave events especially during cyclones. 

Eventually comparing the buoy return value estimates with the respective ERA-

Interim estimates at the same location, we see that the ERA-Interim estimates are 

lower than those of the buoy estimates. It is possible to develop a linear association 

between the ERA-Interim and buoy estimates to overcome this underestimation in 

the future studies. This can be done by comparing the buoy return value estimates 

with the respective ERA-Interim estimates at several locations to maximize the 

number of data points used to estimate the linear association. 

Referee #2 

p11, line 296: Please provide a reference for "It has been experimentally prove [d-

>n]that ..." 

Minor Comment 

Authors 
We agree with the referee. We have added the following references related to this 

sentence.  

Boccotti, 2000; Arena and Pavone, 2006; Laface and Arena, 2016. 

Referee #2 

p6 line 183: Is it clearer to write "should not be correlated with one another and 

should be identically distributed"? 

Minor clarifications 

Yes we have rewritten the sentence like the reviewer mentioned above. 

p9 line 240: Presumably this should read "If X is distributed according to the GPD" 

Yes 

p10 line 287: It is not clear what is meant by "P-" approximation; "P" it is not defined 

as" polymonial" until section 4.3. 

This correction has been incorporated in the revised version of the manuscript. 

p17, line 497 and p19, line 542: do the authors mean "shortcome", not "shortage"? 



‘shortcome’, This corrections has been incorporated in the revised version of the 

manuscript. 
 

Referee #2 

p1 line 24: "The Indian Ocean with ..." 

Minor presentation notes 

p2 line 60: "these models consist of" 

p3 line 67: "give a closed form" 

p3 line 94: "extrapolation of a polynomial " 

p3 line 108: "for the Indian" 

p4 line 122: the acronym RON is only defined (Rete Ondametrica Nazionale) on the 

next page; please define when first used. 

p7 line 201: [missed space] "respectively and" 

p7 line 211: "the GPD" 
p8 line 213: "to amount to" 

p9 line 248: "does not" 

p10 line 268: "... of degree n; it is considered that the value of n may vary." 

p10 line 278: "Another principal feature of the ... is the standard deviation ..." 

p10 line 281: "Obviously, the lesser delta, the higher" 

p10 line 288: "statistical equivalence" 

p11, line 297: "aspects, it emerges" 

p11, line 302: "to the equivalent" 

p12, line 330: "despite being very simple" 

p12, line 336: "This means that the calculation"; line 337 "this means that" 

p12, line 343: "a three-parameter Weibull" 

p13, line 360: "and resulting parameters"; line 362 "a Frech/’et" 

p13, line 374: "The lower the value of RMSE, i.e. near to zero, the better the fit" 

p14, line 385: "result in a less" 

p15, line 429: "the standard deviation" 

Equations: Presumably the journal will understand that the functions ln and log 

should be typeset in normal (Roman) font not mathematical font, but it is worth 

changing now to ensure there is no typesetting error. Equation (13) is already 

correct, but the earlier equations need this adjustment. 



p15, lines 431-2: "The lower the value of delta, i.e., the nearer to zero, indicates a 

better fit between the actual tail of the provisional function and the Polynomial 

approximation with tail fitted. 

p15, lines 431-2: "resulting standard deviation" [not standard error, presumably] 

p16, line 466: "at a certain location in the Arabian Sea" 

p17, line 492: "The GEV and GPD methods show" 

p17, line 505: "recommended always applying" 

p19, line 538: "the ETS method"; line 539 "the provision function" 

p19, line 550: "these vary" 

Authors 
Thank you for your comments. These corrections have been incorporated in the 

revised version of the manuscript. 
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Abstract 

Extreme waves influence coastal engineering activities and have an immense geophysical 

implication. Therefore, their study, observation and extreme wave prediction are decisive for 

planning for mitigation measures against natural coastal hazards, ship routing, design of 

coastal and offshore structures. In this study, the estimates of design wave heights associated 

with return period of 30 and 100 years are dealt with in detail. The design wave height is 

estimated based on four different models to obtain a general and reliable model. Different 

locations are considered to perform the analysis: four sites in Indian waters (two each in Bay 

of Bengal and Arabian Sea), one in Mediterranean Sea and two in North America (one each 

in North Pacific Ocean and Gulf of Maine). For the Indian water domain European Centre for 

Medium-Range Weather Forecasts (ECMWF) global atmospheric reanalysis ERA-interim 

wave hind cast data covering a period of 36 years have been utilized for this purpose. For the 

locations in Mediterranean Sea and North America both ERA-interim wave hind cast and 

buoy data are considered. The reasons for the variation in return value estimates of the ERA-

interim data and the buoy data using different estimation models are assessed in detail.  

1. Introduction 

The Indian Ocean with two horns of the Arabian Sea and the Bay of Bengal has been playing 

a significant role in the regional economic development. This rapid progress is attributed to a 

variety of activities in the coastal and offshore sectors that include construction and 

development of major ports and fishing harbours, establishment of power plants, offshore 

exploration and exploitation of oil and gas, and tampering of ocean wave and tidal energy. To 

sustain these developments along the coast, the aforementioned activities require a variety of 

coastal and offshore structures such as groins, sea walls, breakwaters, offshore platforms, 

intake and outfall structures, submarine pipelines etc. to be constructed in the marine 

mailto:sasraj@iitm.ac.in�


environment. It is hence mandatory to design these structures for its life span which could be 

achieved by considering its survival conditions. The most dominant environmental forces that 

dictates this design of structure is due to the maximum probable wave height of a site of 

interest (Massel, 1978).  

Depending on the importance and life span of the structure, the return period of the extreme 

events could be selected as 30 years or 100 years. The lesser would be associated with lesser 

wave height but more risk and vice versa. It demands a better understanding of hydrodynamic 

characteristics of local wave environment, especially the extreme conditions. In the design of 

any marine structures, the first step is the extreme wave analysis for the determination of 

design wave heights with certain return periods (Goda, 2000). Estimation of appropriate 

design values indicates the level of protection and the scale of investment during the 

construction of structure. 

Fundamentally, extreme values are scarce and are necessarily outside the range of the 

available observations, implying that an extrapolation from the observed sea states to 

unknown territories is required. An estimate of anticipated wave height can be furnished 

using historical wave hindcast data or field observed data with the help of various distribution 

models, which enable extrapolation under the Extreme value theory framework (Goda, 2000; 

Coles, 2001; Caires, 2011).Ferreira and Soares, 2000 suggested that the estimation of extreme 

values should rely on methods based on extreme value theory which makes use of the largest 

of the observations in the sample. Coles, 2001 obtained the detailed statistical results of 

extreme value prediction using the annual maximum (AM) (Castillo, 1988) and Peaks Over 

Threshold (POT) (Ferreria and Soares, 1998) sampled observations. Caires, 2011 rigorously 

compared the commonly used extreme value statistical methods (like GEV and GPD) with 

different parameter estimation methods for combination of different data sampling 

techniques. 

Another approach that may be applied starting from a wave data time series is that of 

equivalent storm models (Boccotti 1986, 2000; Fedele and Arena, 2010; Laface and Arena, 

2016) which is based on the concept of sea storm. Specifically these models consist of 

substituting the sequence of sea storms at a given site (actual sea) with a sequence of 

equivalent storms (equivalent sea) from a statistical perspective. The equivalent storms have 

very simple geometric shapes such as triangular (Boccotti 1986, 2000; Arena and Pavone, 

2009), power (Fedele and Arena, 2010; Arena et al., 2014) or exponential (Laface and Arena, 



2016). Depending on the shape the related model gives analytical or numerical solution for 

the calculation of the return period R(Hs>h) of a sea storm whose maximum Hs is greater than 

a given threshold h. Specifically the triangular and exponential equivalent storm models give 

a closed form solution for R(Hs>h), while the Equivalent power storm model requires 

numerical calculation. In the paper the Equivalent Triangular (ETS) model is utilized. 

The accuracy of any methodology for extreme values significantly depends on the length of 

the recorded time series data. It is believed that measurements from wave rider buoy offer the 

most reliable long historical record. However, the availability of such buoy data is limited to 

a certain specific locations, mainly in the northern hemisphere. At a particular location of 

interest, the availability of buoy data is usually scarce, and often there will be no data. The 

oceanographic community has recognized the hind-casts with ocean wave models to 

complement the limited buoy observational records. 

In the recent years, the performance of wave models has appreciably improved, with better 

quality of the wind fields and enhancement in numerical wave modeling. The meteorological 

centres like European Centre for Medium-Range Weather Forecasts (ECMWF), Australian 

Bureau of Meteorology and Meteo-France that operate global wave models are currently 

using altimeter wind data for data assimilation purposes. The process combines numerical 

wave model and observations of diverse sorts in the best possible ways to generate a 

consistent, global estimate of the various atmospheric, wave and oceanographic parameters. 

At present, in numerous meteorological centres, wind and wave simulated data are 

assimilated on a daily basis. 

The simulated hindcast data have been adopted in numerous studies for the estimation of 

extreme wave conditions. Teena et al., 2012 applied a generalized extreme value distribution 

and generalized Pareto distribution to the 31 years assimilated wave hindcast data based on 

MIKE-21, a spectral wave model for a location in the eastern Arabian Sea and extracted 

extreme wave for several return periods. Li et al., 2016 used a third generation wave model, 

WAMC4 and simulated 35 years of wave hindcast data from two sets of reanalysis wind data, 

NCEP and ECMWF. In their study, Pearson-III distribution method is used to analyse the 

extreme wave climate in the East China seas. Polnikov and Gomorev, 2015 proposed to use 

the extrapolation of a polynomial approximation constructed for the shorter part of the tail of 

probability function to estimate the return values of wind speed and wind-wave height. The 



wave field was computed from wind-wave model, WAM-C4M from ECMWF global 

atmospheric reanalysis ERA-interim wind field data. 

Even though several studies have been carried out, the study on the identification of the most 

suitable approach for estimating extreme wave heights for a particular source of assimilated 

wave hindcast data is still lacking. In the present study, the investigation of different existing 

approaches and models is carried to assess its application and reliability for the Indian 

domain. Increased uncertainty in the model outputs questions the reliability of the estimation 

model, which is an important issue. Thus, the present study introduces a statistical approach 

to validate the reliability of the design wave height return values resulting from a particular 

extreme wave estimation method by considering variability criterion as measured maximum 

value. The variation in the extreme value estimates of the ERA-interim data and the buoy 

data for different estimation models is also considered and examined. The objective of the 

present study is to identify a robust extreme wave height estimation method for the Indian 

domain using global atmospheric reanalysis ERA-interim wave hindcast data.  

2. Datasets 

2.1 Study Locations 

Four offshore locations along the Indian coast (Fig.1) are considered. The selection of these 

particular locations is based on their distance from the nearest coast and the water depth, two 

each on east and west coasts of the Indian peninsula. Both deep and shallow water locations 

are chosen to examine the application of the estimation model based on water depth.  

The projected estimates using ERA-Interim data are compared with those obtained from data 

from various buoys to validate the performance of ERA-Interim data in extreme wave 

analysis. The choice of the locations was according to the size of wave data that were 

available. Further, two locations in North America, National Data Buoy Center Station 44005 

in Gulf of Maine, National Data Buoy Center Station 46050 West of Newport and one of the 

most energetic sites in the coasts of Central Mediterranean Sea (Liberti et al., 2013; 

Vicinanza et al., 2013; Arena et al., 2015) from the Italian buoys network locations, Alghero 

(West coast of Sardinia Island) are considered. A comprehensive comparison has been 

carried out by extracting the ERA-Interim data of resolution 0.125ox0.125o nearest to the 

selected buoy locations. The coordinates, period of data availability, interval and number of 

data points for these locations are presented in Table 1. 



2.2 Wave Data 

2.2.1 ERA-Interim data 

ERA-Interim data is produced by the ECMWF, which is a global atmospheric reanalysis from 

1979, continuously updated in real time and is one among the most recent re-analysis data 

available (Berrisford et al., 2009). ERA-Interim is the first to perform re-analysis using 

adaptive and fully automated bias corrections of observations (Dee and Uppala, 2008). The 

parameters such as significant wave height (Hs), mean wave direction and mean wave period 

can be obtained with 6-hourly fields covering the whole globe, with the best space resolution 

of 0.125ox0.125o. 

There have been several studies comparing the values of Hs between ERA-Interim dataset and 

buoy data at different locations around the world to evaluate the model performance (Shanas 

and Kumar, 2014; Kumar and Nassef, 2015). It has been found that at certain locations in the 

Arabian sea, the maximum Hs based on ERA dataset in deep water is about 15% less than 

that of buoy measured data, whereas, in shallow waters, ERA dataset over predicts the 

maximum Hs by about 9%. The under prediction in deep water suggests that extreme events 

attained mainly during cyclones are difficult to be captured by the model. The results show 

that Hs of model data set are reliable in both deep and shallow water locations with a good 

degree of accuracy. The estimates in this study are based on ERA-Interim wave hind cast 

data, covering a period of 36 years (1979-2014). For nearest intersection buoy locations, the 

data period was selected based on buoy data availability. 

2.2.2 Buoy data 

The most reliable data for significant wave height are from the buoy measurements. The 

available length of buoy data is usually limited and the data prior to 1978 is scanty. The 

available buoy data further requires significant quality control on account of large gaps of 

missing data and outlier, flagship measurements. In the paper data from two different buoys 

networks are processed: RON (Rete Ondametrica Nazionale) Italian network and the 

National Oceanic and Atmospheric Administration’s National Data Buoys Center (NOAA-

NDBC).  

The Italian buoys network (RON) started measurements in 1989, with 8 directional buoys 

located off the coasts of Italy. Later it has reached the number of 15 buoys moored in deep 

water. For each record, the data of significant wave height, peak and mean period and 

dominant direction are given. 



The NOAA manages the NDBC, which consists of many buoys moored along the US coasts, 

both in the Pacific Ocean and in the Atlantic Ocean. Some buoys were moored in the late 

1970s, so that more than 35 years of data are available. The historical wave data give hourly 

significant wave height, peak and mean period. The NOAA buoy observations are readily 

available which are of proven quality. The measurements have passed through quality control 

by NOAA. It is however always recommended to perform some basic quality checks. 

The return value estimates acquired from the ERA-Interim data are compared with that of 

NDBC Stations 44005, 46050 and at Alghero along the coast of Central Mediterranean Sea. 

Table-1providesthe coordinates and data details of these buoy stations. ERA-Interim wave 

hindcast data has been used to assess the estimates in Indian waters. 

3. Extreme wave height Estimation Methods 

3.1 General 

The estimation models used in this study to obtain extreme wave return values include the 

generalised extreme value (GEV) and the generalised Pareto distribution (GPD), which are 

currently being adopted for the standard practice in mainstream extreme statistics. Each 

distribution was fit to the data using the Maximum likelihood method (MLE) and the 

Probability weighted moments method (PWM).Further, new polynomial approximation 

model prescribed by Polnikov and Gomorev, 2015 and Equivalent Triangular storm model 

(Boccotti, 2000) based on the concept of replacing the sequence of actual storms extrapolated 

from a given time series of Hs with a sequence of equivalent triangular storms are used. 

 

3.2 Generalised extreme value distribution model 

According to extreme value theory, to form a valid distribution, the sampled observations 

should be independent which would mean that successive observations should not be 

correlated with one another and should be identically distributed (Goda, 2000).In general, for 

the sampling of data to be used for extreme wave analysis three different approaches are 

available. The first approach uses all the recorded data of Hs during a number of years and fits 

a cumulative distribution to this data. This approach is called the initial distribution method 

(IDM). For the other two approaches, only the peaks of wave heights are engaged. The 

method of block maxima consists of partitioning recorded data in blocks, wherein, maximum 

value of each block is considered. Normally a block could be chosen as one year (Lionello et 

al., 1992). The POT (Peaks Over Threshold) method, consists of the peaks of clustered data 

exceeding over a given threshold. IDM observations violate the conditions of identity and 



independence in distribution, which invalidates the application of the common statistical 

methods as well as the definition of return values (Anderson et al., 2001). The annual maxima 

method and POT method both satisfy the obligatory of independency. 

According to theory of the generalized extreme value (GEV) distribution, the sample has 

been selected by means of annual maxima (AM) method. 

The generalized extreme value (GEV) distribution has the cumulative distribution function 

(CDF) as: 

𝐺𝐺𝐺𝐺𝐺𝐺(𝑥𝑥;µ,σ, ξ) =     
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where, µ, σ and ξ represent the location, scale and shape parameters of distribution, 

respectively and within the range of  −∞ < μ < ∞ , σ > 0  and −∞ < ξ < ∞ . By setting the 

shape parameter,ξ , one can obtain the most common distributions like Gumbel (ξ=0), 

Frechet (ξ>0) and Weibull (ξ<0).  

The 1/Tyr wave height return value, XT based on the GEV distribution model is given as 
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3.3Generalised Pareto distribution model 

This approach is based on fitting the generalized Pareto distribution (GPD) to the POT 

sampled data. The observations in a cluster above the threshold are considered and 

calculating return values has been done by taking into account the rate of occurrence of 

clusters (Davidson and Smith, 1990; Coles, 2001). 

The cumulative distribution function of the GPD is given as: 
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where µ  σ and ξ represent the threshold, scale and shape parameters of distribution, 

respectively and within the range of 0 <x< ∞, σ > 0 and −∞ < ξ < ∞. When ξ = 0 the GPD is 

said to amount to the exponential distribution with mean σ; when ξ > 0, it is the Pareto 

distribution; and when ξ < 0 it is a special case of the beta distribution.  

The 1/Tyr wave height return value based on the GPD distribution model, XT, is given as 

                         𝑋𝑋𝑇𝑇 =  
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                                         (4) � 

where λ = Nu/N, with Nu being the total number of exceedances above the selected threshold u 

and N are the number of years in the record. 

 

There are several parameter estimation methods for fitting the above candidate distribution 

functions to the sampled wave data (Goda, 2000). The method of moments (MM), probability 

weighted moments (PWM) method and the maximum likelihood method (MLE) are more 

preferred estimation methods since these are  more flexible, particularly when the number of 

parameters is increased. The MM yields a large bias particularly for small size samples and 

this method was not used in the present study. The parameters of the above distributions are 

derived according to the methods of maximum likelihood method and probability weighted 

moments method. 

 

The threshold selection in GPD analysis is an important practical problem, which is 

analogous to the block size in the block maxima approach. The threshold value represents a 

compromise between bias and variance. Too low a threshold violates the asymptotic basis of 

the GPD model, leading to a bias. Too high a threshold will generate fewer values of excess 

to estimate the model, leading to high variance. There is an extensive literature on the attempt 

to choose an optimal threshold by Neelamani, 2009; Caires, 2011. In this study, the threshold 

selection is based on the Mean residual life plots introduced by Davison and Smith, 1990. 

The mean residual life plot is based on the theoretical mean of the GPD given as: 
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The mathematical basis for Mean residual life plots method is  
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If X is distributed according to the GPD, then the mean excess over a threshold y (for y > 0) 

with slope ξ/(1 – ξ) is a linear function of y. Thus, we can draw a plot in which the ordinate is 

the sample mean of all excesses over that threshold and the abscissa is the threshold.  

A mean residual life plot consists in representing points: 
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where n is the number of observations (xi, i=1,2,…n) above the threshold µ, and xmax is the 

maximum of the observations. According to the Central Limit Theorem, confidence intervals 

are added to this mean residual life plot as the empirical mean to be normally distributed. 

However, this normality does not hold for high threshold as there are less and less excesses. 

3.4 Polynomial approximation model 

Polnikov and Gomorev, 2015 proposed to use the extrapolation of polynomial approximation 

constructed for the shorter part of the tail of probability function to estimate the return values 

of wind speed and wave height. 

This method involves the construction of an analytical approximation Fap(H), aimed for its 

extrapolation beyond the observed maximum value HM. The approximation should be 

restricted to a shorter domain lying above the uppermost mode of the histogram considered of 

the function F(H).The domain suitable for approximation can be determined by the condition 

                                     Hl ≤ H ≤ Hh ≤ HM      (8) 

where Hl and Hh are the lower and the upper edges of the domain of F(H), used for 

constructing approximation Fap(H). The number of points (NM) considered in the histogram is 

HM/ΔH and NS is defined as, 

                                     NS = ( ) /M hH H H− ∆      (9) 

And the number of points (NT) used for building approximation Fap(H) is defined as, 

                               NТ = ( ) /h lH H H− ∆ +1                (10) 



The approximation,  Fap(H)  should be built in the logarithmic coordinates due to few values 

in the tail of F(H), providing importance to the tail values.  It allows to assess the strong 

variability of the tail of function F(H) near the maximum value of the series, depending on 

the length of the series. To exclude the application of fixed statistics, the approximation 

function Fap(H)  in the form of a polynomial of degree n, it is considered the value of which 

may vary. The varying n allows obtaining the approximation Fap(H,n) with an accuracy 

higher than the case of using the fixed statistical distributions.  

The statistical distribution with the provision function is of the form, 
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Once the approximation function,Fap(H)   is obtained from Eq.(11), the return value, XR, 

appearing once for NR  years, can be deduced by inversing the formula, 

 

           R( ) / 8760 RF X t N= ∆ ⋅      (12) 

where, t∆  is the interval of discrete of data observations. 

Another principal feature of polynomial approximation Fар(W) is the standard deviation δ, 

defined by the formula: 
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Obviously the lesser δ, the higher accuracy of approximation can be achieved and it is more 

preferable. 

3.5 Equivalent Triangular Storm model 

The Equivalent Triangular Storm (ETS) model (Boccotti, 2000; Arena and Pavone, 2006, 

2009) is applied for calculating return values of significant wave height for given thresholds 

of return period. The ETS approach is based on the assumption that given a sequence of 

actual storms it may be replaced by an equivalent storm sequence maintaining the same wave 

risk. The validity of the above assumption is guaranteed by the statistical equivalence 

between the actual storm and the related Equivalent Triangular one. The ETS associated with 



a given storm is achieved by means of two parameters: the triangle height a and its base 

b(Fig. 2). The former is an intensity parameter and is equaled to the maximum significant 

wave height during the actual storm, the latter is a duration parameter and it is determined 

following an iterative procedure imposing the equality between the maximum expected wave 

heights of actual and triangular storms. It has been experimentally numerically proved that 

imposing this equality not only the area under the exceedance probability curves of the 

maximum wave height are the same, but those curves tend to coincide (Boccotti, 2000; Arena 

and Pavone, 2006; Laface and Arena, 2016) 

.  

Considering all these aspects, it emerges that the actual storm and the ETS sequences (actual 

and Equivalent Triangular seas) have the same number of storms, each of them characterized 

by the same maximum significant wave height and the same probability P(Hmax>H) that the 

maximum wave height is greater than a fixed threshold H. The considerations above enable 

to affirm that the return period of a sea storm with given characteristics is the same if 

calculated starting from the actual storm sequence or the ETSs one. Referring to the 

equivalent triangular sea, an analytical solution for the calculation of the return period 

R(Hs>h) of a sea storm whose maximum significant wave height is greater than a given 

threshold h has been developed by Boccotti,2000. 

 
)()(

)()(
hHPhHhp

hbhHR
ss

s >+=
=>  (14) 

where )(hb is the base-height regression function of ETSs, )( hHP s > is the probability of 

exceedance of the significant wave height Hs at the considered site and 

dh
hHdPhHp s

s
)()( >

−== is the probability density function of Hs.  

The calculation of return values of Hs by means of Eq. (14) requires the determination of two 

functions: 

• the base-height regression function, )(hb which gives the average value of the base b 

of ETSs for a given storm height h; 

• the probability )( hHP s > . 



The function )(hb is determined starting from the ETSs sequence diving storm in classes of 

storm intensity a=h of one meter width and the taking the average bmof storm durations and 

of storm intensities am. Then the data am, bm obtained in this way are reported in a Cartesian 

plot and fitted by an exponential law as the following: 

The function )(hb is determined starting from the ETSs sequence. Specifically, starting from 

a given storm sequence, the related ETSs sequence is determined by calculating for each 

event the intensity and duration parameters a andb of the ETS.Then two different 

assumptions can be made. The simplest is to consider an average value of b, in other words to 

assume a constant base-height regression. The other is to calculate a linear or exponential 

regression function. In general, the function )(hb presents a decaying pattern, because of 

which, an exponential function is preferable in order to guarantee positive values of the base 

b for any storm threshold. To calculate the regression, initially the data have to be divided in 

classes of triangle height and then for each class the average values of a andb have to be 

calculated. Then the regression may be easily determined representing data in a Cartesian plot 

with parameters b in y axis and parametera in x axis respectively.By fitting the data by means 

of an exponential law as per the relationship given below:  

 ( )akkab 21 exp)( =  (15) 

where k1 (hours) and k2 (m-1) are parameters depending on the storms characteristics at the 

considered site. 

The determination of the base-height regression function despite beingvery simple from a 

computational and mathematical point of view, requires careful attention because of its 

sensitivity to the time interval between the data of Hsused in the analysis. In this regard, it is 

worth noting that ETS duration parameter b, is strongly dependent on the actual storm 

structure close to the storm peak. Specifically it tends to increase as the storm structure 

became flat and it is quite small for steep storms. When data sampling interval is more than 

one to three hours, one may have very flat storms. This means that the calculation may lead 

to big values of duration b. This aspect causes that return values of Hs may be underestimated 

(Arena et al., 2013). This aspect strongly affects predictions when wave model data are 

processed (3 to 6 hours between two successive data of Hs). To overcome this problem, a 

good practice is to do the analysis in conjunction with buoy data close to the location under 



study. In these cases, the base height regression function calculated from buoys is utilized for 

correcting the base height regression function obtained from model data. 

Concerning the distribution of the significant wave height )( hHP s > , a three-parameter 

Weibull distribution is considered. 
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where u, hl and w are the characteristic parameters at the considered location. In particular u 

and hl are the shape parameters and w is the scale parameter of the distribution. 

4. Results 

In this study, hindcast results for ERA-interim data are compared with buoy measurements 

for different estimation models.  Further study of the various uncertainties due to the 

parameter estimation method, the sample size, sample interval and location conditions 

involved in this analysis are also examined.  

4.1 GEV analysis 

In the application of generalised extreme value distribution to the sampled annual maxima 

data, the scale, shape and location parameters can be used to make statements about the 

probability of the annual maximum exceeding a particular level. A change in either parameter 

can affect the long-period return levels. 

 

The parameter estimation is done by maximum likelihood estimate method and probability 

weighted moments method (Hosking et al., 1985) and resulting parameters are shown in 

Table 2. It has been observed that the shape parameter is positive for ERA-interim data 

indicating that this data would follow Frechét distribution and the tail of the cumulative 

distribution function decreases more slowly.   

The influence of estimated parameters in fitting the data to the GEV model is presented in 

Fig. 3a.It shows the level of fitting of the empirical CDF with the GEV PWM and GEV MLE 

models. The difference in the normal coordinates in their fitting with empirical CDF is 

insignificant. Fig. 3b shows the variation in tail estimates of the PWM and MLE parameter 

estimation methods in logarithmic scale. The results show for both buoy and ERA-interim 



data sets, the PWM method of parameter estimation yields better estimates compared to the 

MLE method.  

The statistical parameter, root mean square error was estimated in order to check the level of 

fitting of sampled data to the GEV distribution model. The root mean square error is a 

residual between the empirical cumulative distribution obtained from the actual observed data 

and the theoretical GEV model cumulative distribution. The lower the value of RMSE i.e., 

nears to zero, the better the fit of sampled data to the GEV distribution model. The fitting of 

GEV to buoy and ERA-interim data is found to be good for both PWM and MLE methods. 

The variation RMSE value of the MLE estimates is usually smaller than those of the PWM 

estimates for both buoy and ERA-interim data.  

4.2 GPD analysis 

In POT method, the selection of a suitable threshold value is the key in achieving a robust 

sample data set. The mean residual plot, between the mean excess GPD and threshold helps 

in determining a proper range of threshold to be selected (Coles, 2001). Such plots with 95% 

confidence for the data ERA IN-1, (Fig. 4) appear to have two slopes with major transition at 

the threshold range of 1.5 to 2.5 indicates the range of threshold could possibly be selected. 

However, attention should be made as too high threshold can result in a less sampled data set 

which results in a higher variance of the GPD model.  

The sample used in the peaks over threshold method has to be extracted in such a way that 

the data can be modelled as independent observations. A process of declustering helps 

collecting only the peaks within the clusters of successive exceedances of a specified 

threshold and are retained in such a way that they are sufficiently apart (so that they belong to 

‘independent storms’). Specifically, in the present applications we have treated cluster 

maxima at a distance of less than 48 hours apart as belonging to the same cluster (Caires, 

2011). Table 3provides the selected threshold and the number of exceedences of that 

specified threshold with 48h interval. It is seen that the threshold values are observed to be 

dependent on the length, location and interval of the datasets. The major factor has to be the 

location, since the higher latitude locations are exposed to more severe wave and wind 

conditions than those at the lower latitudes. 

For parameter estimation, the PWM and MLE methods are used. The MLE has a 

considerable statistical motivation but can turn out to be poor estimators, especially in the 



case where the number of estimated parameters is large. So the approach chosen here was to 

utilize a variety of techniques like PWM and MLE for exploratory fitting for the probability 

model and chose the best possible parameters. 

To verify the estimated parameters for the GPD model, quantile-quantile (QQ) plots were 

used. In Fig. 5a, the QQ plots for the dataset NOAA44005 is shown, comparing the estimated 

GPD with the sample data for PWM parameter estimation method. In order to check the 

influence of parameters resulting from PWM and MLE parameter estimation models, the 

Root mean square error was estimated for GPD model also and presented in Table 3. 

 

Comparing the estimates and the fits, one can conclude that the MLE fits seem less adequate 

and that the shape parameter estimates are lower than those of the PWM fits. These results 

support the recommendations of Hosking et al., 1985 to preferably use the PWM method for 

GPD or GEV estimation from relatively short duration of data with limited heavy-tailed 

cumulative distributions. Fig. 5b shows the return value GPD plot of PWM fit to the dataset 

NOAA44005. 

 

4.3 Polynomial approximation method analysis 

Polynomial approximation (P-app) method has a distinct advantage of selecting the optimum 

choice of the parameters NS, NT, and n. The detailed analysis demonstrates that all 

approximation parameters (n, NT, and NS) are equally important. Fig.6 shows the application 

of P-app method for both buoy and ERA-interim data at Alghero buoy station. In the above 

mentioned figure, the bottom level (ln(1-F)= -12.6) indicates probability of occurrence once 

for 100 years and can be deduced by Eq. 12  with discrete of data observations of 3hr 

interval. For 1hr and 6hr interval of data observations, the probability of occurrence once in 

100 years can obtained as -13.7 and -11.9 respectively.  

One can see the adaptation of P-app method to the real behavior of the tails for provision 

functions. For the Alghero location buoy data, the optimized parameters obtained are NS=0, 

NT=8 (points used for approximation), n=2 (degree of approximation function)to arrive at the 

optimum return value as shown in the Fig.6.  

The optimum choice of parameters will also depend on the standard deviation δ (Eq. 13) 

which resembles the residual between the actual tail of the provision function and the 

Polynomial approximation tail fitted to it. The lower the value of δ i.e., the nearer to zero, 



indicates a better fit between actual tail of the provision function and the Polynomial 

approximation with tail fitted. The parameters NS, NT, and n for all the datasets including the 

resulted standard deviation δ are provided in Table 4. 

4.4 Analysis of ETS Model 

The calculation of the 100 year return values via ETS model is done by means of Eq. (14), 

known the base-height regression function Eq. (15) and the probability distribution Eq. (16) 

of Hs at the examined location. The base height regression function is determined starting 

from the storm sequence at the considered site, while the probability distribution is achieved 

processing the whole data set of Hs. An important aspect to be taken into account in 

estimating the parameters of both Eq. (15) and Eq. (16) is the time interval between two 

successive data of Hs. A value of 3 to 6 hours should be appropriate for estimating the 

parameters of the probability distribution, in order to guarantee the stochastic independence 

between successive events, but could be too high for determining the parameters of the base-

height regression function.  

In fact, Arena et al., 2013 has shown that as the time interval between two successive Hs 

increases, the peak of the storm may not be well identified, involving flat storm history that 

led to an increase of the duration b of ETSs respect to the case with lower time interval 

between Hs data. Such situations are those of wave model data. In this paper both wave 

model and buoy data are considered.  

To determine the base-height regression function parameters, the actual storm sequence is 

identified starting from Hs time series, and for each actual storm the parameters a and b of 

ETS are calculated (Boccotti, 2000). Then the ETS are divided into classes of Hs of 1m width 

and the average value am and bm of a and b for each class is considered. The sequence am, bm 

is plotted in a Cartesian diagram and fitted by an exponential law as the Eq. (15). For the case 

of wave model data a further step is required. The determination of the base-height regression 

function despite very simple from a computational and mathematical point of view, requires 

careful attention because of its sensibility to the time interval between the data of Hs used in 

the analysis. In this regard, it is worth noting that ETS duration parameter b, is strongly 

dependent on the actual storm structure close to the storm peak. Specifically it tends to 

increase as the storm structure became flat and it is quite small for steep storms. When data 

sampling interval is more than one to three hours, one may have very flat storms. This 

involves that the calculation may lead to big values of duration b. This aspect causes that 



return values of Hs may be underestimated (Arena et al., 2013). This aspect strongly affects 

predictions when wave model data are processed (3 to 6 hours between two successive data 

of Hs). For this reason a further step is required for the calculation of bm when processing 

wave model data. A good practice is to do the analysis in conjunction with buoy data close to 

the location under study. In these cases, the base height regression function calculated from 

buoys is utilized for correcting the base height regression function obtained from model data. 

Specifically, considering an increase of b due to high time interval between Hs data, the 

regression should be corrected considering a reducing factor r, defined as the ratio between 

the average values of the base calculated starting from buoy data moored close to the 

considered site and the average value calculated by means of wave model data. The 

regression parameters k1 and k2 at each considered site are summarized in Table 5 in 

conjunction with the parameters u, w and hl of the probability distribution Eq. (16). 

5. Discussions 

From the results it is observed that the estimates from buoy observations are higher compared 

to the estimates for ERA-interim datasets. This trend is being observed from all the 

estimation models. A variation of 20% to 30% while comparing maximum observed Hs of 

buoy data and ERA-interim at NOAA44005, NOAA46050 and Alghero locations is 

observed. This in turn will result in under estimation of return value of ERA interim data.  

 

The under prediction of ERA interim data suggests, that high wave events mainly due to the 

cyclone events are difficult to capture by ECMWF numerical model. It is a familiar 

phenomenon and challenge that the smoothing effect implanted in numerical model will lead 

to the flattened variability at relatively high frequencies, resulting in the missing peaks. An 

additional potential explanation for the under prediction is that the simulated ERA-Interim 

data contains 6- hourly intervals of Hs data. It is possible because of the lower sampling rate, 

the maximum wave heights in a storm occurs between observations will not be recorded. To 

overcome this, it is obvious that ECMWF numerical modeling system need further 

improvement in correction or calibration of the ERA-interim data especially when this 

hindcast is used for the extreme wave analysis.  

 

Final results on the 30 and100 year extreme wave estimates, obtained by the GEV, GPD, ETS 

and P-app methods described above are presented in Table 6 and 7. The variation of these 



estimates from the measured maximum wave heights will give a statistical validation of the 

performance of the estimation models. The percentage of variation of 30-yr and 100-yr  

return value estimates from measured 36 year maximum wave height are calculated for this 

analysis. Here one can observe the following principal peculiarities from the results of above 

mentioned statistical validation methodology. 

 

The GEV and GPD methods, show the 30 year return values smaller than the measured 

maximum Hs for all the locations mostly by an extent of 10% to 25%. In the cases of 

simulated data these models exhibit high deviations from measured maximum Hs. This 

peculiarity is because of the reason of neglecting the behavior of the tails for provision 

functions, accepted in GEV and GPD methods. As a result, this leads to underestimating the 

return values. This is a reasonable shortcome of these methods, as far as one cannot forecast 

extreme smaller return values than ones observed already.  

 

The GEV model with annual maxima sample resulted in over estimation of return values 

compared to the GPD model with peaks over threshold approach. As the GEV estimation 

model considers only the highest Hs in the year, which might lead to the overestimation of 

Annual maxima based approach in comparison with the other method. For most of the 

locations, there is not much variation in the results of the PWM, MLE parameter estimated 

GEV and GPD models. But Hosking et al., 1985 recommended always applying the PWM 

parameter estimation method for GPD and GEV distribution models from relative short 

datasets with not too heavy-tailed distributions. Furthermore, PWM works for a wider range 

of parameter values than MLE method. 

 

The results from the P-app method are remarkably closer to the measured maximum values 

than those obtained by the GEV ,GPD and ETS method, with variation ranges between 5%  

to  -7%. The P-app method shows consistency in 100-yr estimated return values for both 

simulated and buoy wave height datasets, as these varies consistently between 7% to 13% 

from the measured maximum values. GEV, GPD and ETS methods fails in the above 

mentioned criterion as variation is as high as 56% to as low as -19% which is not possible in 

nature.  

 

This consistency of polynomial approximation method estimates is due the dependence of 

return values on the actual kind of the tail for provision function, which could vary and is 



dependent on the sample of the series. The only disadvantage of P-app method (Fар(Hs,n)) is 

the necessity to control reliability of its extrapolation, as far as the extrapolation of 

polynomial with the order n > 1 may have twists and extremes. This well-known fact could 

be provided by a considerable variability of the “tail” for F(W). Such an extrapolation is 

implausible, of course. Therefore, it is necessary to vary the parameters NS, NT, and the order 

of polynomial n in such a manner, the twists of extrapolation could be avoided. 

6. Conclusions 

In this study we chose the simulated ERA-Interim wave data, for the two following reasons. 

First, they have more regular coverage for the whole World Ocean, and the Indian coast, in 

particular. Second, numerical simulated datasets have long and regular continuous series, 

what is very important for the extreme value statistical aims. 

This study focused on the estimation of the extreme significant wave heights only. The 

analyses carried out and results produced will aid in the preparation of a 100 year extreme 

wave map for the Indian water domain which may serve as a quick guide to identify regions 

where extremes lie within the design criteria of the coastal and offshore structures to be 

constructed.  

We have considered four different approaches to the return values estimating: the GEV 

distribution model based on annual maxima sample, the GPD distribution model based on 

peaks over threshold sample, the ETS model based on storms and the polynomial 

approximation method for the tail of the provision function. All of them have their own 

advantages and shortages.  

The main shortage of the GEV and GPD methods are the high variation in underestimating or 

overestimating return values with respect to ones presenting in the time-series. The shortage 

of the P-app method is related to the ambiguity of the return values estimations, obtained 

from different parts of the full time-series. It is also found that the values estimated based on 

GEV model were slightly larger than those from the GPD. But GPD method with peaks over 

threshold sample is preferable in the locations of multiple storm events in a single year. In 

turn, the estimates through the Polynomial approximation method, depend on the actual kind 

of the tail for provision function, which could vary and is dependent on the sample of the 

series resulted in showing the consistency in 100-yr estimated return values for both 

simulated and buoy wave height datasets, as these vary consistently between 7% to 13% from 

the measured maximum values. 



It is observed that the return value estimates from buoy observations are higher when 

compared to the estimates for ERA-interim datasets.The under prediction of ERA interim 

data suggests, that high wave events mainly due to the cyclone events are difficult to capture 

by ECMWF numerical model. To overcome this, it is obvious that ECMWF numerical 

modeling system need further improvement in correction or calibration of the ERA-interim 

data especially when this hindcast is used for the extreme wave analysis.   
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Table 1: ERA-Interim data locations and buoy stations 

Data Point Coordinates Availability 
Interval 

(hr) 

No. of data 

points 

ERA IN-1 19.50N, 85.75E 1979-2014 6 52596 

ERA IN-2 15.50N, 81.00E 1979-2014 6 52596 

ERA IN-3 10.25N, 75.75E 1979-2014 6 52596 

ERA IN-4 14.50N, 73.50E 1979-2014 6 52596 

NDBC 44005 43.204N, 69.128W 1978-2014 1 254221 

ERA 44005 43.25N, 69.125W 1979-2014 6 52596 

NDBC 46050 44.656N, 124.526W 1991-2014 1 180231 

ERA 46050 44.625N, 124.50W 1991-2014 6 35064 

RON Alghero 40.548N,8.107E 1989-2008 3 125443 

ERA Alghero 40.5N,8.125E 1989-2008 6 29220 

  



Table 2: PWM and MLE parameter estimators fitting GEV 

Data 
PWM method MLE method 

ξ µ σ RMSE ξ µ σ RMSE 

ERA IN-1 0.1125 3.1523 0.3849 0.053 0.1157 3.1572 0.3779 0.045 

ERA IN-2 0.2085 1.9181 0.3108 0.081 0.4971 1.8838 0.2499 0.039 

ERA IN-3 0.0311 2.8386 0.3279 0.032 0.0296 2.8413 0.3270 0.035 

ERA IN-4 0.1169 3.6889 0.4553 0.033 0.1118 3.6975 0.4485 0.029 

NOAA 44005 -0.1642 6.7735 1.0880 0.052 -0.1811 6.7958 1.0571 0.023 

ERA 44005 -0.0866 5.0506 0.5649 0.031 0.0457 5.0706 0.5741 0.030 

NOAA 46050 -0.1190 8.9863 1.5655 0.052 -0.1038 8.9429 1.6407 0.039 

ERA 46050 -0.0251 7.1700 0.7646 0.047 0.0554 7.1705 0.7268 0.051 

RON Alghero -0.5089 7.4373 1.4405 0.112 -0.4992 7.4498 1.3588 0.043 

ERA Alghero 0.0746 5.555 0.6298 0.069 -0.0874 5.5719 0.6003 0.061 

  



Table 3: PWM and ML parameter estimators fitting GPD 

Data 
Threshold 

µ 

No. of 

exceedence 

PWM method MLE method 

σ ξ RMSE σ ξ RMSE 

ERA IN-1 2.5 153 0.4429 0.0415 0.028 0.4489 0.0286 0.026 

ERA IN-2 1.5 160 0.2515 0.1438 0.045 0.2471 0.1588 0.052 

ERA IN-3 2.5 107 0.3350 -0.0485 0.036 0.3149 0.0143 0.025 

ERA IN-4 3.0 154 0.5428 -0.0651 0.035 0.5200 -0.0206 0.025 

NOAA 44005 5.0 227 1.3147 -0.1677 0.055 1.3396 -0.1892 0.063 

ERA 44005 4.0 190 0.7335 -0.1159 0.201 0.6938 -0.0560 0.025 

NOAA 46050 6.0 232 1.4608 -0.0200 0.019 1.5058 -0.0514 0.031 

ERA 46050 5.0 203 1.5480 -0.3879 0.126 1.2886 -0.1654 0.066 

RON Alghero 5.0 153 1.6541 -0.2957 0.100 1.6110 -0.2614 0.089 

ERA Alghero 4.0 128 0.9342 -0.1474 0.053 0.9642 -0.1835 0.066 

  



Table 4: Selection of optimum values of approximation parameters 

Data 

No. of points used 

for approximation 

NT n δ 

ERA IN-1 6 2 0.176 

ERA IN-2 6 3 0.044 

ERA IN-3 5 3 0.032 

ERA IN-4 7 3 0.063 

NOAA 44005 8 2 0.118 

ERA 44005 7 1 0.197 

NOAA 46050 5 2 0.026 

ERA 46050 6 1 0.200 

RON Alghero 8 2 0.100 

ERA Alghero 7 2 0.105 

  



Table 5: Base-height regression parameters k1, k2 calculated considering a storm sample with 

actual durations greater or equal to 18 hours, probability distribution parameters u, w and hl. 

Data u w[m] hl[m] k1[h] k2[m-1] 

ERA IN-1 1.320 0.714 0.459 397.61 -0.251 

ERA IN-2 0.773 0.142 0.481 255.73 -0.097 

ERA IN-3 1.600 0.851 0.488 348.02 -0.086 

ERA IN-4 1.504 1.099 0.498 397.6 -0.159 

NDBC 44005 1.121 1.150 0.409 76.125 0.0308 

ERA 44005 1.141 0.884 0.461 114.05 -0.071 

NDBC 46050 1.333 1.945 0.480 154.9 -0.101 

ERA 46050 1.625 2.321 0.000 106.94 -0.055 

RON Alghero 1.155 1.299 0.000 318.37 -0.235 

ERA Alghero 1.227 1.157 0.000 135.53 -0.035 

  



Table 6: 30 year return value estimates (m) 

Data 
Measured 

maximum 

GEV GPD 
P-App ETS 

PWM MLE PWM MLE 

ERA IN-1 4.91 4.8 4.8 4.9 4.8 4.6 4.7 

ERA IN-2 3.59 3.5 4.1 3.3 3.4 3.6 3.3 

ERA IN-3 4.83 4.0 4.0 3.9 4.1 4.6 4.3 

ERA IN-4 6.17 5.6 5.5 5.1 5.5 5.9 5.9 

NOAA 44005 10.10 9.6 9.5 9.5 9.4 10.6 9.9 

ERA 44005 8.27 7.3 7.2 6.5 7.0 7.9 8.0 

NOAA 46050 14.05 13.7 13.4 12.4 12.3 14.1 12.8 

ERA 46050 10.93 9.9 9.9 8.0 9.0 10.2 9.5 

RON Alghero 9.88 9.8 9.7 9.4 9.5 9.2 10.3 

ERA Alghero 7.51 7.5 7.4 6.6 6.9 7.6 7.4 

  



Table 7: 100 year return value estimates (m) 

Data 
Measured 

maximum 

GEV GPD 
P-App ETS 

PWM MLE PWM MLE 

ERA IN-1 4.91 5.5 5.5 5.65 5.5 4.8 5.1 

ERA IN-2 3.59 4.3 5.6 4.0 4.1 4.0 3.6 

ERA IN-3 4.83 4.5 4.5 4.2 4.4 4.7 4.4 

ERA IN-4 6.17 6.5 6.6 5.6 6.0 6.4 6.1 

NOAA 44005 10.10 10.3 10.1 10.1 10.0 11.4 10.7 

ERA 44005 8.27 8.3 8.0 7.2 7.9 9.0 8.4 

NOAA 46050 14.05 15.1 14.6 14.2 14.1 15.2 13.8 

ERA 46050 10.93 10.9 11.0 8.9 9.8 11.3 11.1 

RON Alghero 9.88 10.1 10.0 9.9 10 9.7 12.5 

ERA Alghero 7.51 8.5 8.0 7.7 8.0 8.2 8.7 

 

  



 

Figure 1: Locations along the Indian coast  



 

Figure 2: Typical representation of actual storm and associated ETS. 
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Figure 3: (a) Comparison ofGEV model CDF to the empirical CDF for NOAA44005 and 
ERA IN-4(b) Variation of tail GEV model CDF in logarithmic coordinates for NOAA44005 

and ERA IN-4 



 
Figure 4: Mean Residual plot of ERA IN-1 with 95% confidence limits 
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Figure 5: (a) Quantile-Quantile plots of GPD model for NOAA44005 data (b) Return level 

plots of GPD model for NOAA44005 data.  
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Figure 6: Polynomial approximation for series of wave heights Hs at Alghero buoy station 

for buoy and ERA-interim datasets 
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