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Abstract: In the present study, landslide susceptibility assessment for the the part of the 10 

North Anatolian Fault Zone is made using index of entropy models within geographical 11 

information system. At first, the landslide inventory map was prepared in the study area 12 

using earlier reports, aerial photographs and multiple field surveys. 63 cases (69 %) out 13 

of 91 detected landslides were randomly selected for modeling, and the remaining 28 14 

(31 %) cases were used for the model validation. The landslide-trigerring factors, 15 

including slope degree, aspect, elevation, distance to faults, distance to streams, distance 16 

to road. Subsequently, landslide susceptibility maps were produced using frequency 17 

ratio and index of entropy models. For verification, the receiver operating characteristic 18 

(ROC) curves were drawn and the areas under the curve (AUC) calculated. The 19 

verification results showed that frequency ratio model (AUC=75.71%) performed 20 

slightly better than index of entropy (AUC=75.43%) model. The interpretation of the 21 

susceptibility map indicated that distance to streams, distance to road and slope degree 22 

play major roles in landslide occurrence and distribution in the study area. The landslide 23 

susceptibility maps produced from this study could assist planners and engineers for 24 

reorganizing and planning of future road construction. 25 

 26 

Keywords: Landslide susceptibility, GIS, Nort Anatolian Fault Zone, İndex of Entropy, 27 

Reşadiye, Tokat. 28 

 29 

1. Introduction 30 

Among various natural hazards, landslides are the most widespread and damaging. 31 

Potentials landslide-prone areas should, therefore, are identified in advance in order to 32 

reduce such damage. In this respect, landslide susceptibility assessment can provide 33 

valuable information essential for hazard mitigation through proper project planning 34 

and implementation. The main goal of landslide susceptibility analysis is to identify 35 

dangerous and high risk areas and thus landslide damage can be reduced through 36 

landslide susceptibility and hazard maps using statistical methods and GIS tools were 38 

these studies have applied statistical models such as logistic regression(Akgun 2012; 40 

Ozdemir and Altural 2013; Solaimani et al. 2013;Demir et al. 2015), bivariate(Bednarik 41 

et al. 2010; Pareek et al. 2010; Pradhan and Youssef 2010)  and multivariate (Pradhan 42 

2010a, b; Choi et al. 2012). Probabilistic models such as frequency ratio (FR), weight of 43 

evidence (WOE), etc. have been used in landslide susceptibility mapping (Akgun et al. 44 

2008; Oh et al. 2012; Yilmaz and Keskin 2009; Youssef et al. 2009, 2013; Pradhan and 45 

Youssef 2010; Pradhan et al. 2011; Akgun et al 2012; Saponaro et al. 2014; Sujatha et 46 

al. 2014; Demir et al. 2015, Bourenane et al 2016, Chen et al. 2016b). Other different 47 

methods such as, analytical hierarchy process (AHP) (Yalcin et al. 2011; Pourghasemi 48 

37 suitable mitigation measures ( Solaimani et al. 2013). Different methods to prepare 

39 developed in the last decade (Van Westen et al. 2003; Guzzetti et al. 2005). Many of 
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et al. 2012a; Park et al. 2013, Demir et al. 2013, Myronidis et al. 2016, Wu et al. 2016, 49 

Chen et al. 2016a), index of entropy (IOE) model(Mihaela et al.2011; Devkota et al. 50 

2013, Jaafari et al 2013, Youssef et al. 2015, Wang et al. 2016), certainty factor (CF) model 51 

(Devkota et al. 2013), artificial neural network model (Chauhan et al. 2010; Pouydal et 52 

al. 2010; Pradhan and Buchroithner 2010; Park et al. 2013),, spatial multicriteria 53 

decision analysis (MCDA) approach (Akgun and Turk 2010; Akgun 2012), fuzzy logic 54 

and neuro-fuzzy (Vahidnia et al. 2010; Sezer et al. 2011), decision-tree methods 55 

(Nefeslioglu et al. 2010; Pradhan 2013), fuzzy logic (Pourghasemi et al. 2012a, 2012b, 56 

2012c; Sharma et al. 2013), support vector machine (SVM) (Yilmaz 2010; Pradhan 57 

2013) have also been employed for the purpose of landslide susceptibility mapping.  58 

This study aims to develop landslide susceptibility maps of the part of the North 59 

Anatolian Fault Zone, southeast Resadiye-Koyulhisar Turkey, (Fig. 1), using index of 60 

entropy (IOE) model. To achieve this, index of entropy analysis methodology, to obtain 61 

landslide susceptibility map using the geographic information system was developed, 62 

applied, and verified in the study area. 63 

 64 

        Figure 1. Study Area 65 

 66 

2. Study area 67 

The study area is located in the the North Anatolian Fault Zone, between the southeast 68 

Resadiye to Koyulhisar Sivas province.   The area lies between 44
o
70’64’’ and 44

 o
 69 

56’84 latitude and 36
 o

 21’87 and 41
 o

 47’09’’ longitude, and covers an area about of 70 

720 km
2
.  71 

According to a geological map prepared by General Directory of Mineral Research and 72 

Exploration, north of the NAFZ there are, from old to young, Upper Cretaceous-age 73 

volcanic and sedimentary units, Maastrichtian-age limestone, and Pliocene-age basalt 74 
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and other volcanic units. While the Upper Cretaceous volcanic and sedimentary units on 75 

the lower slopes have a gentle slope morphology, Maastrichtian limestones present a 76 

very steep morphology. While the dip of the lower beds of the limestone varies over 77 

short distances due to the effect of the NAFZ, it is generally to the northeast (Gokceoglu 78 

et al. 2005). Landslides are common natural hazards in the seismically active North 79 

Anatolian Fault Zone (NAFZ), which is 1,100 km in length and is moving westward 80 

with the rate of 2.5 cm every year according to geological and GPS data(Demir et al 81 

2013) The latest catastrophic event occurred on March 17, 2005 at Kuzulu (Sivas) in the 82 

valley. The landslide was initiated within highly weathered volcanics in the mode of 83 

sliding and then transformed to an earth flow. It killed 15 people, and more than 30 84 

houses and a mosque were buried and damaged by the earth flow material. A second but 85 

smaller landslide originated from the same source areas after 4 days and caused 86 

additional damages (Gokceoglu et al. 2005; Ulusay et al. 2007; Yılmaz 2009). After the 87 

main event, the governor needed landslide susceptibility maps of the landslide area. 88 

3. Data production 89 

The study began with the preparation of a landslide inventory map based on field work, 90 

earlier reports and satellite images. Landslide inventory maps show the areal 91 

distribution of existing landslide areas and their characteristics. These maps indicate the 92 

landslides, which are perceptible on site (Cevik and Topal 2003). In total, 321 93 

landslides were mapped (Fig. 2) and subsequently digitized for further analysis. The 94 

mapped landslides cover an area of 47.81 km2, which constitutes 6.68 % of the entire 95 

study area. From these landslides, 63 (69 %) randomly selected instabilities were taken 96 

for making landslide susceptibility models and 28 (31 %) were used for validating the 97 

models.  98 

 99 

 100 
   Figure 2. Landslide inventory map 101 

 102 
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The number of landslide-conditioning factors may range from only a few numbers to 103 

several (Mohammady et al. 2012; Pourghasemi et al. 2012d; Papathanassiou et al. 104 

2012). The selection of these factors mainly depends on the availability of data for the 105 

study area and the relevance with respect to landslide occurrences (Papathanassiou et 106 

al.2012). According to the Ayalew and Yamagishi (2005), in GIS-based studies, the 107 

selected factors should be operational, complete, non-uniform, measurable, and non-108 

redundant. We prepared six thematic data layers representing the following landslide 109 

conditioning factors: slope degree, aspect, elevation, distance to faults, distance to 110 

streams, distance to road (Figure 3).   111 

 112 

 113 

Figure 3. Conditioning Factors(a.slope degree, b.distance to stream, c.distance to road, 114 

d.elevation, e.distance to faults,f.aspect.) 115 
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The main parameter of the slope stability analysis is the slope degree(S. Lee and K. Min 116 

2001). Because the slope degree is directly related to the landslides, it is frequently used 117 

in preparing landslide susceptibility maps[S. Lee, J. H. Ryu, J. S. Won and H. J. Park 118 

(2004), M. Ercanoglu, C. Gokceoglu, T. W. J. Van Asch (2004, A. Clerici, S. Perego, C. 119 

Tellini and P. Vescovi (2002) . For this reason, the slope degree map of the study area is 120 

prepared from the digital elevation model (DEM) and divided into nine slope classes 121 

with an interval of 5°(Figure 3). Aspect and elevation also were extracted from the 122 

DEM. Aspects are grouped into 9 classes such as flat (-1), north (337.5°–360°, 0°–123 

22.5°), northeast (22.5°–67.5°), east (67.5°–112.5°), southeast (112.5°–157.5°), south 124 

(157.5°–202.5°), southwest (202.5°–247.5°), west (247.5°–292.5°), and northwest 125 

(292.5°–337.5°).In the study area, the elevation ranges between 500 and 2,625 m. The 126 

elevation values were divided into nine classes (Figure 3). The distance from faults, 127 

road and stream is calculated at 100m intervals using the geological map (Figure 9). An 128 

important parameter that controls the stability of a slope is the saturation degree of the 129 

material on the slope(Yalçın 2008, Yalçın and Bulut 2007). The closeness of the slope 130 

to drainage structures is another important factor in terms of stability. Streams may 131 

adversely affect stability by eroding the slopes or by saturating the lower part of 132 

material resulting in water level increases(Pourghasemi et al. 2012a, Gökçeoğlu 1996, 133 

Saha et al. 2002). For this reason, ten different buffer zones were created within the 134 

study area to determine the degree to which the streams affected the slopes. A road 135 

constructed can cause a disturbance of the slopes that lead to increase in stress on the 136 

back of the slope, because of changes in topography and decrease of load on toe, some 137 

tension cracks may develop. Although a slope is balanced before the road construction, 138 

some instability may be happened because of negative effects of excavation. In the 139 

current study many landslides were recorded along the roads in the study area that is 140 

due to road construction. The distance from roads was calculated and reclassified into 141 

ten classes. 142 

4. Landslide Susceptibility Analysis 143 

a. Application of Index of Entropy Model 144 

In this study index of entropy model was used for landslide susceptibility analysis using 145 

six landslide conditioning factors. 146 

The entropy indicates the extent of the instability, disorder, imbalance, and uncertainty 147 

of a system (Yufeng and Fengxiang, 2009). The entropy of a landslide refers to the 148 

extent that various factors influence the development of a landslide (Pourghasemi et al., 149 

2012b; Jaafari et al., 2013). Several important factors provide additional entropy into 150 

the index system. Therefore, the entropy value can be used to calculate objective 151 

weights of the index system. The equations used to calculate the information coefficient 152 

Wj representing the weight value for the parameter as a whole (Bednarik et al., 2010; 153 

Constantin et al., 2011) are given as follows: 154 

 155 
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 157 

where a and b are the domain and landslide percentages, respectively, (Pij) is the 158 

probability density, Hj and Hj max represent entropy values, Ij is the information 159 

coefficient and Wj represents the resultant weight value for the parameter as a whole. 160 

The final landslide susceptibility map was prepared by the summation of weighted 161 

products of the secondarily parametric maps. The final landslide susceptibility maps 162 

using index of entropy model was developed using the following equation: 163 

 164 
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 165 

 166 

where Y is the value of landslide susceptibility (Fig. 4). The result of this summation is 167 

a continuous interval of values from 0.7297 to 6.1861, which represents the landslide 168 

susceptibility index. A natural break classification method was used to divide the 169 

interval into four classes and a susceptibility map was prepared (Bednarik et al., 2010; 170 

Constantin et al., 2011; Erner et al., 2010; Falaschi et al., 2009; Ram Mohan et al., 171 

2011; Xu et al., 2012a, 2012b). According to the landslide susceptibility map generated 172 

with the IOE model (Fig. 4 and Table 1), it was found that 24.87% and 23.50% of the 173 

total landslides falls in the very low and low susceptibility zones respectively. 174 

Moderate, high, and very high susceptible zones represent 20.37%, 16.42%, and 175 

14.83% of the landslides pixels, respectively. 176 

 177 

Table.1 Spatial relationship between each landslide conditioning factor and landslides 178 

using index of entropy model. 179 

 

Factor 

(Parameter) 

Class 

Percentage 

of pixels in 

the class 

(%) 

(a) 

Percentage 

of 

landslide 

pixels(%) 

(b) 

Pij (Pij) Hj Hjmax Ij Wj 

Elevation 

(m) 500-750 11.324 10.406 0.919 0.147 2.551 3.170 0,195 0,136 

 750-950 13.048 16.226 1.244 0.199     
 950-1200 18.265 21.566 1.181 0.189     
 1200-1450 18.478 24.770 1.341 0.214     
 1450-1700 19.762 20.921 1.059 0.169     
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 1700-1900 12.213 6.021 0.493 0.079     
 1900-2150 4.096 0.091 0.022 0.004     
 2150-2400 2.115 0.000 0.000 0.000     
 2400-2625 0.699 0.000 0.000 0.000     

Slope degree 

(°) 0-5 7.093 7.888 1.112 0.142 2.770 3.170 0.126 0,110 

 5-10 11.692 24.212 2.071 0.265     
 10-15 15.430 26.660 1.728 0.221     
 15-20 16.929 17.950 1.060 0.136     
 20-25 16.714 11.004 0.658 0.084     
 25-30 15.076 6.438 0.427 0.055     
 30-35 10.864 4.399 0.405 0.052     
 35-40 4.870 1.338 0.275 0.035     
 >40 1.331 0.111 0.083 0.011     

Aspect FLAT 1.043 0.302 0.290 0.034 2.871 3.170 0,094 0,080 
 NORTH 13.922 5.270 0.378 0.045     
 NORTHEA

ST 12.046 4.593 0.381 0.045     

 EAST 9.461 5.779 0.611 0.072     
 SOUTHEAS

T 10.956 11.476 1.047 0.124     

 SOUTH 15.267 25.409 1.664 0.196     
 SOUTHWE

ST 13.818 24.351 1.762 0.208     

 WEST 11.493 15.909 1.384 0.163     
 NORTHWE

ST 11.994 6.911 0.576 0.068     

Distance to 

Stream (m) 

0-100 
3.692 7.789 2.110 0.152 3.266 3.322 0,017 0,023 

 100-200 3.630 7.086 1.952 0.140     
 200-300 3.584 5.757 1.606 0.115     
 300-400 3.614 5.274 1.459 0.105     
 400-500 3.522 4.877 1.384 0.100     
 500-600 3.440 4.510 1.311 0.094     
 600-700 3.307 3.666 1.108 0.080     
 700-800 3.133 3.451 1.101 0.079     
 800-900 3.110 3.400 1.093 0.079     
 >900 68.968 54.190 0.786 0.056     

Distance to 

Road (m) 

0-100 
6.937 12.505 1.803 0.142 3.262 3.322 0,018 0,023 

 100-200 6.445 10.563 1.639 0.130     
 200-300 6.258 9.866 1.577 0.125     
 300-400 6.179 9.075 1.469 0.116     
 400-500 5.825 7.848 1.347 0.106     
 500-600 5.016 5.799 1.156 0.091     
 600-700 5.813 6.422 1.105 0.087     
 700-800 5.801 5.880 1.014 0.080     
 800-900 6.566 6.414 0.977 0.077     
 >900 45.159 25.628 0.568 0.045     

Distance to 0-100 6.331 4.788 0.756 0.079 3.305 3.322 0,005 0,005 
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Fault (m) 

 100-200 5.193 4.444 0.856 0.090     
 200-300 4.245 3.980 0.938 0.098     
 300-400 3.682 3.346 0.909 0.095     
 400-500 3.261 3.676 1.127 0.118     
 500-600 2.940 3.592 1.222 0.128     
 600-700 2.984 3.167 1.061 0.111     
 700-800 2.899 2.548 0.879 0.092     
 800-900 2.805 2.153 0.768 0.080     
 >900 65.660 68.306 1.040 0.109     

 180 

 181 
  182 

Figure 4. Landslide susceptibility map IOE 183 

 184 

b. Application of Frequency ratio method 185 

Frequency ratio method is a simple and understandable probabilistic model, and the 186 

model is based on the observed relationships between distribution of landslides and 187 

each landslide-causative factor, to reveal the correlation between landslide locations and 188 

the factors in the study area (Lee and Pradhan, 2007). To calculate the frequency ratio, 189 

the ratio of landslide occurrence to non-occurrence (Regmi et al., 2013) was calculated 190 

for each factor’s class. Therefore, the frequency ratio for each factor’s class was 191 

calculated from its relationship with landslide events. The frequency ratio is defined as 192 

shown in Equation (8). 193 

 194 

                      

)8(
PIF

PLO
FR   195 

 196 
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Here, PLO is the subcategory percentage of each factor conditioning landslide in a 197 

landslide area, while PIF is the category percentage of each factor conditioning 198 

landslide (Table 2). 199 

Table.2 Frequency ratio values of the landslide-trigerring parameters. 200 

 

Factor 

(Parameter) 
Class 

Number of 

pixels in 

class 

Percentage 

of pixels in 

the class (%) 

(a) 

Number of 

landslide 

pixels 

Percentage 

of landslide 

pixels(%) 

(b) 

FREQUENCY 

RATIO 

(FR) 

(b/a) 

Elevation 

(m) 500-750 130386 11.324 5166 10.406 0.919 
 750-950 150242 13.048 8055 16.226 1.244 
 950-1200 210313 18.265 10706 21.566 1.181 
 1200-1450 212763 18.478 12297 24.770 1.341 
 1450-1700 227550 19.762 10386 20.921 1.059 
 1700-1900 140627 12.213 2989 6.021 0.493 
 1900-2150 47161 4.096 45 0.091 0.022 
 2150-2400 24348 2.115 0 0.000 0.000 
 2400-2625 8044 0.699 0 0.000 0.000 

Slope degree 

(°) 0-5 81676 7.093 3916 7.888 1.112 
 5-10 134628 11.692 12020 24.212 2.071 
 10-15 177671 15.430 13235 26.660 1.728 
 15-20 194923 16.929 8911 17.950 1.060 
 20-25 192448 16.714 5463 11.004 0.658 
 25-30 173594 15.076 3196 6.438 0.427 
 30-35 125095 10.864 2184 4.399 0.405 
 35-40 56076 4.870 664 1.338 0.275 
 >40 15323 1.331 55 0.111 0.083 

Aspect FLAT 12005 1.043 150 0.302 0.290 
 NORTH 160305 13.922 2616 5.270 0.378 
 NORTHEAST 138703 12.046 2280 4.593 0.381 
 EAST 108940 9.461 2869 5.779 0.611 
 SOUTHEAST 126147 10.956 5697 11.476 1.047 
 SOUTH 175786 15.267 12614 25.409 1.664 
 SOUTHWEST 159110 13.818 12089 24.351 1.762 
 WEST 132340 11.493 7898 15.909 1.384 
 NORTHWEST 138098 11.994 3431 6.911 0.576 

Distance to 

Stream (m) 

0-100 
42513 3.692 3867 7.789 2.110 

 100-200 41798 3.630 3518 7.086 1.952 
 200-300 41271 3.584 2858 5.757 1.606 
 300-400 41614 3.614 2618 5.274 1.459 
 400-500 40558 3.522 2421 4.877 1.384 
 500-600 39604 3.440 2239 4.510 1.311 
 600-700 38082 3.307 1820 3.666 1.108 
 700-800 36070 3.133 1713 3.451 1.101 
 800-900 35807 3.110 1688 3.400 1.093 
 >900 794117 68.968 26902 54.190 0.786 

Distance to 

Road (m) 

0-100 
79875 6.937 6208 12.505 1.803 
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 100-200 74209 6.445 5244 10.563 1.639 
 200-300 72053 6.258 4898 9.866 1.577 
 300-400 71146 6.179 4505 9.075 1.469 
 400-500 67076 5.825 3896 7.848 1.347 
 500-600 57759 5.016 2879 5.799 1.156 
 600-700 66937 5.813 3188 6.422 1.105 
 700-800 66800 5.801 2919 5.880 1.014 
 800-900 75608 6.566 3184 6.414 0.977 
 >900 519971 45.159 12723 25.628 0.568 

Distance to 

Fault (m) 

0-100 
72894 6.331 2377 4.788 0.756 

 100-200 59789 5.193 2206 4.444 0.856 
 200-300 48884 4.245 1976 3.980 0.938 
 300-400 42392 3.682 1661 3.346 0.909 
 400-500 37545 3.261 1825 3.676 1.127 
 500-600 33854 2.940 1783 3.592 1.222 
 600-700 34362 2.984 1572 3.167 1.061 
 700-800 33376 2.899 1265 2.548 0.879 
 800-900 32301 2.805 1069 2.153 0.768 
 >900 756037 65.660 33910 68.306 1.040 

 201 

Therefore, the greater the ratio above unity, the stronger the relationship between 202 

landslide occurrence and the given factor’s class attribute, and the lower the ratio below 203 

unity, the lesser the relationship between landslide occurrence and the given factor’s 204 

class attribute (Lee and Pradhan, 2006; Yalcin et al., 2011). To calculate the landslide 205 

susceptibility index (LSI), each factor’s frequency ratio values were summed as shown 206 

in Equation 9.  207 

           

)9(
1





n

i

FRLSI

 

208 

 209 

The LSI map was reclassified using the equal interval method in GIS, and as a result, 210 

the study area was divided into five susceptibility classes: very low, low, moderate high, 211 

and very high (Fig. 5). According to this landslide susceptibility map, 24.67 % of the 212 

total area was determined to be very low susceptible. Low, moderate, and high 213 

susceptible zones constitute 23.08 %, 19.70 %, and 16.85 % of the area, respectively. 214 

The very high susceptible area is 15.69 % of the total area. 215 
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 216 

Figure 5. Landslide susceptibility map FR 217 

 218 

5. Validation of Landslide Susceptibility map   219 

Landslide susceptibility maps without validation are less meaningful (Chung and Fabbri 220 

by using receiver operating characteristics (ROC) (Akgun et al., 2012; Tien Bui et al., 222 

2012a, b, 2013; Regmi et al., 2014; Ozdemir and Altural, 2013). The ROC curve is a 223 

useful method for representing the quality of deterministic and probabilistic detection 224 

and forecast systems. The ROC plots the different accuracy values obtained against the 225 

whole range of possible threshold values of the functions, and the ROC serves as a 226 

global accuracy statistic for the model, regardless of a specific discriminate threshold 227 

(Pourghasemi et al., 2012). In the ROC curve, the sensitivity of the model (the 228 

percentage of existing landslide pixels correctly predicted by the model) is plotted 229 

against 1-specificity (the percentage of predicted landslide pixels over the total study 230 

area) (Mohammady et al., 2012; Jaafari et al., 2013). The area under the ROC curve 231 

(AUC) represents the quality of the probabilistic model to reliably predict of the 232 

occurrence or non-occurrence of landslides. A good fit model has an AUC values range 233 

from 0.5–1, while values below 0.5 represent a random fit. The success rate results were 234 

obtained by comparing the landslide training data with the susceptibility maps (Fig. 6). 235 

AUC plot assessment results showed that the AUC values were 0.7571 and 0.7543 for 236 

FR and IOE models and the training accuracy were 75.71 and 75.43 %, respectively. 237 

From the results of the AUC evaluation, it is seen that both the success rate curve show 238 

almost similar result. All the models employed in this study showed reasonably good 239 

accuracy in predicting the landslide susceptibility of the study area. 240 

221 1998). In the current study, validation of the landslides susceptibility maps was checked 
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 241 

 242 
 243 

Figure 6. Success rate curves of FR and IOE models of the study area. 244 

 245 

6. Conclusion 246 

In this study, the accepted models, frequency ratio and index of entropy, within a GIS 247 

environment for the aim of LSM have been used. For this purpose, six trigerring factors, 248 

i.e., slope degree, aspect, elevation, distance to faults, distance to streams and distance 249 

to road were used. A total of 91 landslides were identified and mapped. Out of which, 250 

63 (69 %) were randomly selected for generating a model and the remaining 28 (31 %) 251 

were used for validation purposes. In this study, five landslide susceptibility classes, 252 

i.e., very low, low, moderate, high, and very high susceptibility for landsliding, were 253 

derived with equal interval method. The validation has been determined by using the 254 

ROC method in which the accuracy of the LS maps produced by the frequency ratio and 255 

index of entropy models was 0.757 and 0.754, respectively for success rate technique. 256 

This shows that all the models employed in this study showed reasonably good accuracy 257 

in predicting the landslide susceptibility of the part of the North Anatolian Fault Zone 258 

(Turkey). All susceptibility zones require further engineering geological and 259 

geotechnical considerations. The increasing population pressure has forced people to 260 

concentrate their activities on steep mountain slopes. Thus, to safeguard the life and 261 

property from landslides, the susceptibility map can be used as basic tools in land 262 

management and planning future construction projects in this area. The landslide 263 

susceptibility map produced in this study can be used for optimum management by 264 

decision makers and land use planners, and also avoidance of susceptible regions in 265 

study area. 266 
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