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Abstract. In this contribution we identify storm time-clustering in the Mediterranean Sea through a comprehensive analysis of

the Allan Factor. This parameter is evaluated from long timeseries of wave height provided by oceanographic buoy measure-

ments and hindcast re-analysis of the whole basin, spanningthe period 1979-2014 and characterized by a horizontal resolution

of about 0.1 degree in longitude and latitude and a temporal sampling of one hour (Mentaschi et al., 2015).The nature of the

processes highlighted by the AF and the spatial distribution of the parameter are both investigated. Results reveal that5

the Allan Factor follows different curves at two distinct time scales. The range of time scales between 12 hrs to 50 days

is characterised by a departure from the Poisson distribution. For timescales above 50 days, a cyclic Poisson process

is identified. The spatial distribution of the Allan Factor reveals that the clustering at smaller time scales is present in the

North-West of the Mediterranean, while seasonality is observed in the whole basin. This analysis is believed to be important to

assess the local increased flood and coastal erosion risks due to storm clustering.10

1 Introduction

In recent years the occurrence of different coastal storms in a short time has been studied in the context of storm driven

erosion of beaches and dunes. Indeed it has been showed by different authors (Vousdoukas et al., 2012, Coco et al., 2014,

Splinter et al., 2014; Karunarathna et al., 2014; Dissanayake et al., 2015) that storms occurring in quick succession may result

in greater beach erosion than the cumulated erosion inducedby single storms of far higher return periods.15

In the events analysed in the aforementioned studies both the surge and the wave components played an important role. While

studies that identify time-clustering of storm surges are available (e.g. Wadey et al., 2014, Haigh et al., 2016), thereis no study,

to the best knowledge of the authors, that analyses the clustering properties of wave storms alone. In micro-tidal environments,

such as the Mediterranean Sea, wave storms are the principaldriver of short term coastal erosion and flooding, hence it is

important to understand the occurrence of clustering.20

The Mediterranean Sea wave climate has been extensively studied (e.g. Sartini et al., 2015a) and it is known that throughout

the basin winter is richer in cyclones and, in turn, in wave storms. However, regional differences are significant. Sartini et al.
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(2015a) linked the seasonality of wave storms to local features of atmospheric pressure over the Mediterranean basin strongly

suggesting that the local typical meteorological conditions determine different temporal regimes of storm waves.

The present work addresses the gap in the knowledge of the occurrence of time-clustering of wave storms by carrying out

an analysis of wave storms sequences using the Allan Factor (hereinafter AF, Allan, 1966; Barnes and Allan, 1966), a well

established technique to study the time behaviour of environmental processes. When the underlying process is characterised5

by clustering, the AF of a specific sequence of events is larger than1 and shows a power-law behaviour at the time scales

the exhibit departure from a Poisson distribution. The simplicity of the AF analysis made it popular in the study of time

sequences of a number of physical processes such as earthquakes (Telesca et al., 2002, Cavers and Vasudevan, 2015), lightning

(Telesca et al., 2008), rainfall (Telesca et al., 2007, García-Marín et al., 2008) or fires (Telesca and Pereira, 2010).However,

the AF can be larger than 1 also for non-homogeneous Poisson processes, as shown in Serinaldi and Kilsby (2013).10

Hence it is important to distinguish clustering dynamics from cyclic Poisson processes. Methodologies that are suitable

to achieve this are presented in Serinaldi and Kilsby (2013)and Telesca et al. (2012).

Here we analyse the AF on long time series of wave height in theMediterranean Sea provided by hindcast re-analysis

spanning the period 1979-2014 (Mentaschi et al., 2015). This analysis is validated and compared against the AF evalu-

ated using the time series of wave measurements of the Italian national Sea Wave Measurement Network (Rete Onda-15

metrica Nazionale, hereinafter RON). Subsequenlty we apply the methodology proposed in Serinaldi and Kilsby (2013)

to gain an insight in the type of process that is described by the AF. The objective of this study is to identify the presence

of time-clustering of wave storms in the whole Mediterranean basin and examine the time scales at which events are correlated

as well as the spatial distribution of the clustering.To this end, after scaling properties of wave storms are identified, they

are mapped over the Mediterranean Sea.20

The paper is organised as follows: after this Introduction,Section 2 explains the methodology used for the AF analysis,Sec-

tion 3 describes the datasets used, Section 4 illustrates the results and Section 5 discusses the results and draws the conclusions

of this work.

2 Clustering analysis methodology

Sequences of natural events such as earthquakes, rainfall,wildfires, can be seen as realisations of stochastic point processes.25

A process of this kind describes events that occur randomly in time and it is completely defined by the times at which these

events occur. Here time series of sea states are considered.Each sea state is defined by a set of spectral parameter, such as the

significant wave heightHs, the peak periodTp, the mean periodTm−1,0 and the mean direction of propagationθm. Waves

are always present on the sea surface, hence a sequence of storms need to be extracted from a time series of sea states by

considering only events that satisfy a certain criterion. Astorm is commonly defined as a sequence of sea states in whichHs30

exceeds a given threshold (e.g. Goda, 1988). In this work, a threshold for each node is defined by considering the local 98%

percentile of theHs distribution, regardless ofθm (omnidirectional analysis, see Fig. 1 for threshold valuesof Hs obtained

with the hindcast model used here). The timeti at which the threshold is exceeded for the first time in each storm defines
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Figure 1. Value of significant wave height threshold in meters for the 98% percentile
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Figure 2. Hindcast control grid points (red circle) and RON buoys reference points (yellow circles)

the event as part of a point process. If the interval between two subsequent events is below 12 hours, the two are regarded as

one event, this is common practice in analysing storms and the value is deemed appropriate for the Mediterranean Sea (e.g.

Sartini et al., 2015a). Therefore, in each of the computational nodes over the Mediterranean Sea (see Fig. 2 for a map of the

domain and the location of few control grid points used in this study to show the single point behavior of the AF), a point

process is defined. An example for the control point A and for the years 2004 and 2005, is given in Fig. 3. In this figure it is5

evident that most of the storms, during the two years considered, occur between November and May, showing the pronounced

seasonality that characterizes the basin. Fig. 4 shows the number of events defined in each month over the year in the hindcast

record for the same reference point A during the period 1979-2014 as a function of the percentile threshold (different wave

heights). The seasonal variability of the storms in the Mediterranean basin is again recognizable. Note that the difference in

number of storms between the different percentiles considered is maximum in the most active months and, if the 99% is chosen,10

the differences among seasons are small, although the seasonal variability is still recognizable.

These point processes are studied by defining equally spacedtime windows of durationτ and counting the events in each

window. The result is a sequence of countsNk (k = 1, ..,M , whereM is the number of time windows). The clustering of the

events is then studied with the Allan Factor (Allan, 1966; Barnes and Allan, 1966), defined as the variance of successive counts

3



Jan
2004

Mar
2004

May
2004

Jul
2004

Sep
2004

Nov
2004

Jan
2005

Mar
2005

May
2005

Jul
2005

Sep
2005

Nov
2005

16/12
2004

23/12
2004

30/12
2004

06/01
2005

13/01
2005

20/01
2005

27/01
2005

03/02
2005

10/02
2005

17/02
2005

Figure 3. Storm occurence for the Northern Thyrrenian reference point (A): 2004/2005, top panel; zoom on winter 2004/2005, bottom panel
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Figure 4. Number of Storms vs Threshold for the Northern Thyrrenian reference point (A)

as:

AF (τ) =

〈

[Nk+1 (τ)−Nk (τ)]
2
〉

2〈Nk (τ)〉
(1)
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In general term, a point process is called fractal when a number of the relevant statistics shows scaling with related scaling

exponents (Lowen and Teich, 1995). This implies that the AF depends onτ with a power-law, with exponentα, which indicates

the presence of clusters of points over a number of time scales τ . For a fractal process with0< α < 3 this power law reads

(Telesca and Pereira, 2010):

AF (τ) = 1+

(

τ

τ1

)α

(2)5

whereτ1 is the fractal onset time that marks the lower limit for significant scaling behavior for the AF. For times smaller than

τ1 there is no significant time correlation, while for times greater thanτ1 a characteristic fractal trend can be derived from the

value of the exponent.If the storms process is Poissonian, the arrival times are uncorrelated, henceα is expected to be

zero and the AF will be near unity. If non-poissonian processes are present over a significant range of time scales it will

be possible to identifyα > 0 and AF> 1. Serinaldi and Kilsby (2013) demonstrated that cyclic, hence non-homogenous,10

Poisson processes showAF > 1 for time scales associated to cyclic components. It is therefore necessary to identify and

separate the timescales at which clustering occurs from those at which the point process is poissonian. To this end it

is necessary to compare the AF pattern found in the wave time series with that of a process of known properties. A

cyclic Poisson process is generated here with the same “integrate and fire” (IF) technique used in Serinaldi and Kilsby

(2013). The cyclic components are selected by looking at thedominant harmonic components obtained with the Fourier15

analysis.

The exponentα is estimated for the time scales at which the process is not poissonian. Note different ranges ofτ can

reveal different time scaling (clustering) of the same process through different slopes of eq. (2) due to different kindof

forcing (Telesca and Pereira, 2010).

3 Wave data20

3.1 Wave hindcast

Wave hindcast in the Mediterranean Sea has been implementedon a time window covering 36 years, from the first of January

of 1979 till the 31st of December of 2014 (www.dicca.unige.it/meteocean/hindcast.html). The wave model is forced by the

10-m wind fields obtained by means of the non-hydrostatic model WRF-ARW (Weather Research and Forecasting - Advanced

Research WRF) version 3.3.1 (Skamarock et al., 2008). In thepresent study a Lambert conformal grid covering the whole25

Mediterranean Sea with a resolution of about 0.1 degree in longitude and latitude has been used. Initial and boundary conditions

for atmospheric simulations were provided from the CFSR (Climate Forecast System Reanalysis) database (Saha et al., 2010).

Use of CFSR reanalysis data for wave modeling provides reliable results, even if sometimes extreme wave conditions are

not properly modeled (Cavaleri, 2009; Cox et al., 2011; Splinder et al., 2011; Carvalho et al., 2012; Chawla et al., 2013). For

further details of the set-up and validation of the meteorological model readers can refer to Cassola et al. (2015, 2016).30
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Generation and propagation of sea waves have been modeled using WavewatchIII®, version 3.14 (Tolman, 2009). A336×

180 regular grid covers the whole Mediterranean Sea with a resolution of0.1273×0.09 degrees, corresponding to about10km

at the latitude of45◦N. Spectral resolution is characterized by 24 bins in direction and 25 frequencies ranging from 0.06 to

0.7Hz with a step factor of 1.1. The output has been recorded hourlyin all points of the computation grid for integrated quan-

tities (i.e. significant wave heightHs, mean periodTm−1,0, peak periodTp, mean directionθm, peak directionθp, directional5

spreading∆θ). The validation of the wave hindcast has been carried out through extensive comparison of simulated quantities

and wave buoy data (cfr. Mentaschi et al., 2013a, b, 2015) andhas already been employed for different applications such as

wave energy resource assessment (Besio et al., 2016) and extreme and wave climate analysis (Sartini et al., 2015a, b).

3.2 Buoy data

The Italian Sea Wave Measurement Network (Rete OndametricaNazionale RON) started operating in July 1989 (De Boni et al.,10

1992; Arena et al., 2001; Corsini et al., 2004). The locations of the buoys are indicated in Fig. 2. Until 1998 the network was

made by eight pitch-roll directional buoys located offshore, in deep water conditions, of several sea areas equally spaced along

the italian peninsula. These original eight stations were:La Spezia, Alghero, Ortona, Ponza, Monopoli, Crotone, Catania and

Mazara del Vallo. The statistical wave parameters (i.e. significant wave heightHs, mean periodTm, peak periodTp, mean

directionθm) were originally retrieved every three-hours, below a station-dependent threshold forHs, and every half an hour15

above this threshold. The wave data time series, measured bythe RON buoys, that have been analysed in the present study,

cover a time window of 20 years, from the summer of 1989 until the spring of 2008 for the original eight buoys. For the cluster

analysis performed using the RON records, data every three hours were considered for all the stations.

4 Results

4.1 Comparison between hindcast and buoy measurements20

In order to assess the reliability of the hindcast time series related to storm cluster analysis, the results of AF for theRON buoys

are analysed and compared to the corresponding grid points of the hindcast model. These results are shown in Figs. 5-6. Results

obtained on the basis of the RON data and hindcast series showa good qualitative and quantitative agreement especially for

lower threshold conditions (98% percentile) while for higher threshold (99.5% percentile) tend to present stronger differences,

e.g. in Alghero (see Fig. 5). These findings can be explained by the fact that increasing the threshold limit would select just25

the most energetic wave conditions that are the most difficult to be reproduced by numerical models (a.o. Cavaleri, 2009)and

sometimes to be recorded by wave buoys (breakdown, damages or even loss of the instrumentation). Also, differences are

usually larger for smaller time scales, i.e.0.5< τ < 50 days and for the 99.5% percentile (e.g. Alghero and Mazara inFig. 5).

These results confirm that the hindcast data and the wave buoys show very similar scaling properties.
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Figure 5. Comparison of Allan Factor between RON and Hindcast data series for different threshold percentiles (98% and 99.5%)
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Figure 6. Comparison of Allan Factor between RON and Hindcast data series for different threshold percentiles (98% and 99.5%)

4.2 Comparison with a simulated non-homogeneous point-process

The AF patterns of both the model and data, show a consistent behaviour across the Mediterranean basin. The AF

is greater than one forτ greater than 12-24 hours (0.5-1 days) and a distinct slope isrecognizable, generally between
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0.5 to 20-50 days in many of the stations. For larger values ofτ , the AF increases to reach a maximum at 180 days. It

is necessary to clarify the nature of the processes described by the AF patterns seen and, in particular, it is necessary

to identify if deviation from a cyclic Poisson-Process is present. To this end, the AF pattern found from hindcast time

series is compared with that of a simulated non-homogeneousPoisson process. This is generated using the IF technique

employed in Serinaldi and Kilsby (2013). The rate function of the simulated hon-homogeneous Poisson process is gen-5

erated as a sum of sinusoidal components with amplitudes, periods and phases obtained from the Fourier analysis of

the reference signal. A Monte Carlo simulation of 1000 time series is then carried out and the simulated population of

AF is compared with the reference one. Hindcast points A, G and O (see Fig. 2) are chosen for this analysis because they

show different AF patterns in the time scalesτ < 50 days.

This analysis reveals that, as expected, the dominant cyclic component for all the considered time series is the one with10

1-year period. This was also noted for the RON data in Briganti and Beltrami (2008), where the amplitude of the an-

nual cycle component was estimated to be around0.25 m in Alghero, which is consistent with what found in the present

work. Together with the annual cycle also the components with periods of six, three, one months and one week have

been considered to simulate the non-homogeneous Poisson processes. The results of the comparison are shown in Fig.

7. For all three points it is clear that the simulated cyclic Poisson process well explains the pattern of the AF atτ > 5015

days in all cases. As expected, this is the signature of the annual cycle, which strongly influences the occurrence of

above-threshold events. The AF departs from the Poisson distribution at τ < 50 days, above all in points A and G. The

departure from a poissonian behaviour at these time scales occurs even at very low values ofα, as for example in point

O. However, data often show oscillations, above all forα < 0.1, and it is not possible to make conclusions about the

existence of a clustering regime.20

4.3 AF results over the Mediterranean Sea

Results from the control points located over the basin (see Fig. 2) are shown in Figs. 8-11.The analysis of the AF curves

reveal that these can be divided in two groups:

a) the first group shows clearly the slope corresponding to the departure from the Poisson regimes. The change in

regimes occurs at aroundτ = 50 days in most cases.α varies significantly from point to point. A well-defined25

slope, is very evident at points A (North Thyrrenian Sea), B (Gulf of Lyon), D (Alboran Sea), and E (Algerian

Sea). In all these cases a uniform value ofα can be defined and the exponent value is in the interval0.15− 0.3. In

other cases the slope is not so well defined or it is significantly smaller than 0.2. Points that show either or both

characteristics are point R (Adriatic Sea), C (West Sardinia), F (Tunisian coast), G (South Thyrrenian Sea), M

(Ionian Sea) and Q (Aegean Sea). At point Q (Aegean),α is virtually naught.30

b) in the second group only the cyclic Poissonian regime is clearly recognizable, generally forτ > 20 days. At smaller

scales the slope that is associated with the departure from the Poisson distribution is not present. This is the
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Mediterranean Sea) and P (Southern Turkey).
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Figure 8. Allan Factor (AF) as a function of counting windowτ and of the wave height threshold (different percentiles as in the legend) for

different locations in the Mediterranean Sea (cfr. Fig. 2).
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Figure 9. Allan Factor (AF) as a function of counting windowτ and of the wave height threshold (different percentiles as in the legend) for

different locations in the Mediterranean Sea (cfr. Fig. 2).
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Figure 10.Allan Factor (AF) as a function of counting windowτ and of the wave height threshold (different percentiles as in the legend) for

different locations in the Mediterranean Sea (cfr. Fig. 2).
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Figure 11.Allan Factor (AF) as a function of counting windowτ and of the wave height threshold (different percentiles as in the legend) for

different locations in the Mediterranean Sea (cfr. Fig. 2).
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Figure 12.Spatial distribution of the exponentα for the whole Mediterranean basin

The spatial distribution of the slope for small time-scalesis shown in Fig. 12. This figure has been obtained by deter-

mining the best fit value ofα at different time scales. In order to take into account the local differences in determining the

transition between slopes and the different regimes seen inthe representative points, the slope has been estimated using

four different ranges of τ . Clustering in the range12< τ < 72 hours (3 days) is presented in panel a), for12< τ < 120

hours (5 days) results are showed in panel b), finally panel c) shows the results for12< τ < 240 hours (10 days). Within5
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this range the small-scale slope is higher in the North-WestMediterranean Sea and, in particular in the North Thyrre-

nian Sea and in the Balearic Sea. Hereα reaches values up to0.3. Areas with α around 0.2 are present in the Adriatic

Sea, on the Syrian and Lebanese coast and along the Tunisian coast. The effect of widening the range ofτ is to decrease

the best fit value ofα. This effect reduces the regions that showα significantly higher than zero in particular in the

Adriatic Sea and on the East Coast of Tunisia. When the interval 12< τ < 240 hours (0.5-10 days) is used (Fig. 12 panel5

c) the best fit ofα is significantly higher than zero only in the North-West Mediterranean Sea with the averageα around

0.2 and zones withα > 0 are present in the East part of the Adriatic Sea and on the Syrian coast.

5 Discussion and conclusions

The results presented highlighted the presence of a departure from the Poisson distribution for time scales shorter than

τ < 1200 hours (50 days). This regime is characterised byα= 0.15− 0.3 and is more evident in the North-West of the10

Mediterranean Sea. In the rest of the basinα is closer to zero and the AF pattern is characterised by oscillations, with-

out a well defined regime.

For τ > 50 days the arrival of above-threshold storms is dominated by the effect of seasonal and inter-seasonal oscilla-

tions and can be described as a cyclic Poisson process. Similar scaling regimes have been observed in other phenomena

with seasonal behaviour, e.g. fires (Telesca and Pereira, 2010). These results match with the findings by Sartini et al.15

(2015a), who found that the northern basin RON buoys (e.g. Ponza and La Spezia buoys in the Thyrrenian Sea) showed

lower seasonality than the buoys in the south basin (e.g. Crotone, in the Ionian Sea). La Spezia buoy, for example is lo-

cated in the Ligurian Sea, a region where departure from the Poisson distribution is higher. Although in the region the

cyclogenesis in the Gulf of Genoa shows marked seasonality,cyclones are present throughout the year (Lionello et al.,

2006, Sartini et al., 2015a). This persistence of cyclonic events helps in explaining the behaviour at smaller scales (i.e,20

τ < 1200 hours, 50 days). The clustering at scales of days indicates that meterological conditions favour the occurrence

of multiple events in few days. It is not a case that this behaviour is seen in the most active cyclonic region of the Mediter-

ranean Sea, e.g. the North West according to Lionello et al.,2016. Similar considerations apply to the North Adriatic

Sea. In other parts of the basin, where these persistent conditions do not occur, the arrival of storms is well described

as a cyclic-Poisson process.25

The values ofα found in the present study do not allow to draw conclusions onwhether this deviation from a Poisson

distribution is large or small for the phenomenon at hand, asthere is no comparison with other basins. Because of this, itis

important to analyse further basins.

The clustering at the time scales found has the potential to exacerbate local beach erosion generated by individual storms,

as shown in Dissanayake et al. (2015), hence it will be important to understand the implication of these time regimes on the30

dynamics of the Mediterranean coastal regions.
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