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Abstract. The spatial distribution of the coseismic displacements that occurred along the Futagawa fault during the 2016 

Kumamoto earthquake of Mw 7.0 was estimated using airborne light detection and ranging (Lidar) data. In this study, a pair 

of digital surface models (DSMs) obtained from the high-density Lidar data before and after the mainshock on April 16, 10 

2016, was used. A window matching search approach based on the correlation coefficient between the two DSMs was used 

to estimate the geodetic displacement in the near-field region. The results showed good agreements with the geodetic 

displacements calculated from strong-motion acceleration records and coincided with the fault line surveyed by the 

Geological Survey of Japan. 
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1 Introduction 

On April 14, 2016, an Mw 6.2 earthquake struck Kumamoto Prefecture, Japan, at 21:26 JST. The epicenter was located at the 

end of the Hinagu fault at a shallow depth. After approximately 28 h (at 01:25 on April 16, 2016), another earthquake of Mw 

7.0 struck the Futagawa fault, which is near the Hinagu fault. The first event was designated as the foreshock and the second 

one as the mainshock. Both the events occurred in the town of Mashiki (having a population of approximately 33,000), 20 

which is located to the east of Kumamoto City (having a population of approximately 735,000). Many aftershocks followed 

these events, and as of September 6, four months after the foreshock, the total number of aftershocks (larger than Mw 3.5) is 

272. This number is the largest among the recent inland (crustal) earthquakes in Japan (Japan Meteorological Agency, 2016). 

This Kumamoto earthquake sequence caused extensive damages such as landslides, soil liquefaction, suspension of lifeline 

systems, and the collapse of buildings, bridges, and transportation structures. A total of 8,550 buildings, mostly in 25 

Kumamoto Prefecture, were seriously damaged or collapsed, and 50 human lives were lost, mostly because of landslides or 

the collapse of buildings (Cabinet Office of Japan, 2016). 

Soon after the occurrence of the foreshock, various satellites and airborne remote sensing technologies were employed to 

monitor crustal movements and various damages (Yamazaki and Liu, 2016). Japan Aerospace Exploration Agency (JAXA) 

carried out extensive monitoring of the source area using the sensor PALSAR-2 on board ALOS-2 satellite. Interferometric 30 
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synthetic aperture radar (InSAR) analysis using a pair of data obtained from PALSAR-2 before (pre-event data) and after 

(post-event data) the mainshock showed the line-of-sight displacements to the satellite direction (Geospatial Information 

Authority of Japan, 2016). Using the pre-event data (November 30, 2015, March 07, 2016) and the co-event data (March 07, 

2016, April 18, 2016) from PALSAR-2, the authors of this paper calculated the spatial coherence values (International 

Charter, 2016), which could highlight the extensive landslides and severe damages to buildings along the Futagawa fault line. 5 

After the Kumamoto earthquake, the government agencies and aerial survey companies in Japan conducted several aerial 

surveying flights As well as high-resolution vertical and oblique aerial photography, airborne light detection and ranging 

(Lidar) surveys were also conducted (Asia Air Survey Co., Ltd., 2016; Geospatial Information Authority of Japan, 2016). 

Lidar has many applications in earthquake engineering, such as surface deformation (Muller and Harding, 2007; Nissen et 

al., 2012; Duffy et al., 2013; Oskin et al., 2012), landslide detection (Jaboyedoff et al., 2012), and extraction of building 10 

features (Vu et al., 2003; Vu et al., 2009). The airborne Lidar technology is an integrated system consisting of a Global 

Navigation Satellite System (GNSS), an Inertial Navigation System (INS) and a laser scanner, which sends pulses of laser 

light towards the ground and records the return time for calculating the distance between the sensor and the ground surface 

(Lillesand et al., 2004).  

This paper estimates the coseismic displacement due to the mainshock of the Kumamoto earthquake using the Digital 15 

Surface Models (DSMs) obtained from airborne Lidar flights (Asia Air Survey Co., Ltd., 2016). In this case study, a pair of 

DSMs, one just after the foreshock (on April 15) and another after the mainshock (April 23), corresponding to the town of 

Mashiki, which includes the causative Futagawa fault, is available. The obtained results are compared with the permanent 

ground displacements estimated using the acceleration records obtained from KiK-net, K-NET, the strong-motion 

seismograph network of Kumamoto Prefecture, and a temporary observation system (Hata et al., 2016).  20 

2 Study area and data description 

On April 15, 2016, a day after the big foreshock, a Lidar DSM was acquired to record the surface rupture and various effects 

of the earthquake (Asia Air Survey Co., Ltd., 2016). The survey generated a DSM of average point density 1.5–2 points/m
2
. 

Furthermore, because of an unexpected mainshock of Mw 7.0 on April 16, a second mission was set up on April 23 to 

acquire the Lidar data. The second survey was able to generate a DSM of average point density 3–4 points/m
2
. After the 25 

rasterization of the raw point clouds, the DSMs have a data spacing of 50 cm and are registered to the Japan Plane 

Rectangular Coordinate System. This data set is one of the few cases in which pre- and post-event DSMs are acquired by the 

same pilot using the same airplane and instrument. For the sake of brevity, we will call the DSMs acquired on April 15 and 

April 23 as the pre-event DSM and the post-event DSM, respectively.  

Figure 1 illustrates the extension of these two DSMs in which the pre-event DSM extends to a bigger area than the post-30 

event DSM does. The common area between both the DSMs covers most parts of the town of Mashiki and a few parts of the 

town of Kashima, the town of Mifune, and Nishihara village with elevations ranging from 1 m to 500 m (Figure 2). The 
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entire common area is composed of residential buildings, agricultural fields, forests, and a part of the Futagawa fault that 

caused the mainshock of the Kumamoto earthquake. 

The Kumamoto earthquake occurred in an area that is sufficiently equipped with several GNSS instruments that belong to 

GEONET (Sagiya, 2004) and strong-motion instruments that belong to KiK-net, K-NET (Aoi et al., 2004), the strong-

motion seismograph network of Kumamoto Prefecture, and a temporal network deployed by Hata et al. (2016). Figure 1 5 

indicates the location of all the stations within and near the study area. GEONET consists of approximately 1,300 GNSS 

control stations that cover the entire territory of Japan with an average interval of 20 km. K-NET consists of more than 1,000 

strong-motion accelerometers installed on the ground surface at every 20 km covering Japan. KiK-net consists of 

approximately 700 stations and each station has a pair of accelerometers installed on the ground surface and in a borehole in 

bedrock. The strong-motion seismograph network of Kumamoto Prefecture consists of strong-motion accelerometers 10 

installed at the municipality building sites. 

The evidence of coseismic displacements has been observed in the form of surface ruptures in agriculture fields, river 

channels, and roads along the Futagawa fault line during the Kumamoto earthquake (Figure 3). The surface ruptures were 

caused by the opposite displacements (right-lateral strike slips) between both the sides of the fault. A comparison of the pre-

event DSM with the post-event DSM gives a more clear evidence of the coseismic displacements. Figure 4 shows an overlap 15 

of the two DSMs where the pre- and post-event DSMs are represented by cyan and red colors, respectively. The gray-

colored pixels represent the locations that have the same elevation in both the pre- and post-event DSMs, whereas the cyan-

colored pixels represent the locations that have a higher elevation in the pre-event DSM and the red-colored pixels represent 

the locations that have a higher elevation in the post-event DSM. Therefore, the colors around the sides of the houses 

depicted in Figure 4b show that the coseismic displacement occurred to the northeast direction.  20 

3 Methodology 

To calculate the horizontal component of the coseismic displacement distribution in space, we introduced a maximum 

correlation search algorithm using a moving window of the post-event DSM within a corresponding larger area of the pre-

event DSM. The method is developed based on the fact that both the pre- and post-event DSMs cover the same objects, such 

as non-damaged buildings. This fact can be used most efficiently for calculating the spatial cross-correlation between the 25 

DSMs. At any location, the pixel shift necessary to match the pre-event DSM with the post-event DSM is assumed to be the 

coseismic displacement at the location. However, the coseismic displacement is variable in space and has to be calculated 

using sub-areas (windows). Figure 5 shows a scheme of the coseismic displacement search method. First, we consider a 

square sub-area of the post-event DSM and a bigger sub-area of the pre-event DSM with their centers located at the same 

coordinate (Figure 5a). Then, we reduce the pixel size using a cubic convolution method (Figure 5b). The post-event window 30 

is moved across the pre-event window, and the cross-correlation coefficient is calculated for the moving area (Figure 5c). 

The location of the pixel that has the largest correlation value is considered as the coseismic displacement for that window. 
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A similar cross-correlation approach was employed for matching vehicle locations using optical satellite images (Liu et al., 

2011) and for matching building locations using SAR intensity data (Liu and Yamazaki, 2013). The horizontal component of 

the coseismic displacement was applied to the post-event DSM to cancel it, and then the vertical displacement between the 

two DSMs was calculated. It is worth mentioning that the cross-correlation was chosen among other candidates, such as a 

least-square difference or convolution, mainly because the peak value was located in a narrower area. 5 

It is not necessary to calculate the correlation for all the locations because it requires unnecessary computational efforts. A 

better procedure is to move the post-event window along the direction in which the cross-correlation is increasing faster until 

the peak is reached. This approach, well known as the steepest method, was applied to calculate the coseismic displacement 

for all the study areas. Thus, in this approach, only the size of the post-event window has to be defined and the rest are done 

automatically. However, selecting the size of the post-event window is crucial because the window should be large enough 10 

to include several distinct objects. For instance, if a post-event window of 1.5 m x 1.5 m (3 x 3 pixels) is chosen, the peak 

value of cross-correlation might not be obtained when the window is located in the middle of a flat building roof or a big 

bare land. Therefore, it is recommended to define a window that includes some buildings or different topography. However, 

there exists a trade-off between the  size of the window and resolution because the resolution of the spatial variation of the 

coseismic displacement decreases with the increase in the size of the window.  15 

The code for implementing the method was written in Python, an open-source programming language, in order to use the 

large collection of scientific open-source modules. Numpy, a numerical array-programming module, was used to calculate 

the cross-correlation. Open-CV (Open Source Computer Vision Library) was used to reduce the resolution of pixels using 

the cubic convolution method. GDAL (Geospatial Data Abstraction Library) was used to georeferenciate all the inputs and 

outputs. 20 

4 Result of analysis 

Using the methodology explained above, we estimated the coseismic displacements in the common area between the pre- 

and post-event DSMs, which is approximately 80 km
2
. The pixel resolution was reduced from 50 cm to 10 cm by using the 

cubic convolution method. The size of the window was decided based on the area required to cover several objects in the 

DSMs. Figure 6 compares the east-west coseismic displacement obtained using a window of size 201 x 201 pixels with that 25 

obtained using a window of 101 x 101 pixels. The results obtained using a window of size 101 x 101 pixels indicate 

increased noise level in the areas of large agricultural fields because the peak of the correlation coefficient cannot be 

identified clearly. On the other hand, a window of size 201 x 201 pixels covers an area large enough to reduce the noise 

substantially. Thus, a window of size 201 x 201 pixels (100.5 m x 100.5 m) was selected for the overall study area. Another 

issue is to evaluate the magnitude of the maximum correlation coefficient, which is used to identify the coseismic 30 

displacement. Figure 7 illustrates the histogram of the maximum correlation coefficients detected for each window. The left 

vertical axis shows is used for the number of observations per 0.01 intervals of the correlation coefficient and the right 
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vertical axis is for the cumulative frequency. The figure indicates that most of the results produced a large correlation 

coefficient and a closer look revealed that the areas with a correlation coefficient less than 0.6 showed the results not 

consistent with the surrounded areas; however, only 14 cases out of 9,195 windows produced a correlation coefficient less 

than 0.6. 

Figure 8 shows the east-west and north-south components of the coseismic displacement with a certain level of noise, which 5 

is mainly because some objects are not exactly the same after the earthquake. Several buildings collapsed and landslides 

occurred because of the mainshock. Besides, the post-event DSM contains certain objects that were not present in the pre-

event DSM, such as the vehicles and tents used as shelters. However, the general trend of spatial variation of the coseismic 

displacement could be depicted adequately. The spatial distribution of the three-dimensional (3D) coseismic displacement is 

shown in Figure 9. The black arrows indicate the 2D horizontal component and the color shading indicates the vertical 10 

displacement. In order to show only the vertical coseismic displacement and remove the effect of the collapsed buildings and 

landslides, a median filter with a window of the same size (201 x 201 pixels) as the one used for the matching method was 

applied. Thus, the resolution of the horizontal displacement is the same as that of the vertical displacement. Although the 

output provided coseismic displacements in a 100.5-m grid, the black arrows show the displacements only at every 500 m in 

order to visualize the orientation of the coseismic displacement efficiently. The change of direction of the coseismic 15 

displacements in both the horizontal and vertical planes delineates the Futagawa fault line, which is consistent with the 

surveyed active faults in Japan and the results of the field investigations conducted by the Geological Survey of Japan 

(2016). The observed coseismic displacement shows eastward movements of up to 2.0 m in the northern area and 1.2 m in 

the southern area of the fault line. The legend of the vertical displacement shows a vertical displacement of up to ˗3 m; 

however, this value corresponds to a narrow area where a large landslide occurred and the median filter could not remove it 20 

completely.  

A closer look at the general trend shows that a subsidence of up to 2 m occurred in the northern area and an uplift of up to 

0.7 m in the southern area. Our results are consistent with the coseismic displacement estimated by using SAR 

interferometry using ALOS-2 PALSAR-2 imagery (Geospatial Information Authority of Japan, 2016). Figure 10 shows the 

coseismic displacement profiles corresponding to the eight dashed lines that are drawn uniformly along the Futagawa fault 25 

(see the locations in Figure 9). The changes in the direction of the displacement for all the components are located almost at 

the same point, the surveyed Futagawa fault line. However, the change of sign occurs gradually because the applied window 

contained points from the both sides of the fault line and consequently produced small coseismic displacements. The main 

deformation was caused by the slip at the main Futagawa fault line; however, the profiles GH and IJ show smaller slips 

caused by the secondary Futagawa fault line.   30 

Lidar data are capable of extracting other types of information. Figure 11 shows two areas: one with collapsed buildings and 

the other where a landslide occurred. The figure also shows the change in elevations between the DSMs after removing the 

horizontal coseismic displacement. As can be observed, the large change in elevations implies that a building collapsed or a 
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landslide occurred. Therefore, with proper thresholds, these phenomena can be detected automatically. This issue will be 

discussed in a future publication. 

5 Validation of results 

The coseismic displacements obtained from the Lidar DSMs were compared with that obtained from the other sources of 

information. Currently, the GNSS technology is used to monitor crustal deformation within a centimeter-level accuracy. 5 

Unfortunately, there are no GEONET stations in this study area. However, several strong-motion instruments whose results 

can be used to compare with that of the Lidar data are available. The distribution of six strong-motion stations located within 

the study area is shown in Figure 9. One station, with code KMMH16, belongs to KiK-net and two stations belong to the 

strong-motion seismograph network of the prefecture: one located at the Mashiki town office (MTO as referred by Hata et 

al., 2016) and the other at the Nishihara village office (hereafter, NVO). Three stations, TMP1, TMP2, and TMP3, belong to 10 

a temporary network deployed by Hata et al. (2016) with the objective of monitoring the aftershocks following the event on 

April 14. The mainshock of Mw 7.0 occurred after the deployment of the temporary network, and the acceleration records 

from the stations in this network were acquired successfully. Furthermore, a K-NET Kumamoto station, with code 

KMM006, is located 1 km from the closest point of the study area. Digital acceleration records obtained from these seven 

stations could be used to estimate the coseismic displacement caused by the mainshock. 15 

The displacement time history can be calculated precisely if the six components, three translational and three rotational, are 

recorded (Graizer, 2010). However, the displacement time history is often estimated by a double integration of only the 

translational components with respect to time. In most cases, it is necessary to perform a baseline correction before 

estimating the correct displacement time history because the baseline is shifted because of several factors such as ground 

rotation and rocking movements of the instrument. Up to now the source of errors and the rotation components cannot be 20 

quantified and only empirical methods have been proposed in the past to reduce the effect of the baseline shift and retrieve a 

reliable displacement time history (Wu and Wu, 2007; Wang et al., 2011; Moya et al., 2016).  

The method proposed by Wang et al. (2011) was applied to the acceleration records obtained from the seven strong-motion 

stations mentioned above. The baseline correction procedure estimates two linear segments from the uncorrected velocity 

time history, which is obtained by integrating the acceleration with respect to time. For instance, Figure 12 shows the 25 

baseline correction estimated using the uncorrected velocity obtained from the NVO station. The two linear segments were 

calculated using an iterative procedure so that the corrected displacement time history takes the shape of a step function. The 

coseismic displacement calculated from the Lidar data, shown as a black thick line, is very close to the permanent 

displacement observed from the displacement time history. Figure 13 depicts the coseismic displacements at the MTO, 

KMMH16, and KMM006 stations obtained from the acceleration records and the Lidar data. The figure reveals that the 30 

coseismic displacements derived from the DSMs are consistent with those obtained from the strong-motion acceleration 

records. However, they are not exactly the same because of the fact that the double integration of acceleration is empirical 
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and it can provide only an approximation. In the case of the K-NET Kumamoto station, the results are compared with that 

obtained from the closest DSM, which is approximately 1 km away. There were two accelerometers at the KiK-net 

KMMH16 station, one on the ground surface and the other in a borehole (˗252 m below the surface). Although the two 

permanent displacements were calculated independently, both the results were similar to that obtained from the Lidar data. 

This fact validates the method proposed by Wang et al. and the accuracy of the results obtained from the Lidar DSMs. 5 

On the contrary, the coseismic displacements obtained from the acceleration records at TMP1, TMP2, and TMP3 were 

different from those obtained from the Lidar data (Figure 14). This large discrepancy is because the instruments at TMP1, 

TMP2, and TMP3 were placed on the ground surface without foundation. Thus, they did not have sufficient confinement to 

avoid movements relative to the ground, such as rocking or rotation around the vertical axis. Therefore, the displacements 

obtained from the temporary network could not be estimated using just two linear segments in the uncorrected velocity, 10 

which is the method proposed by Wang et al. (2011). These additional distortions can be easily observed in the north-south 

component at the three stations. 

Another source of information that can be used to compare our results is the report of field surveys performed by the 

Geological Survey of Japan (GSJ). In Figure 15, red lines indicate the surface ruptures surveyed by the GSJ and the black 

arrows indicate the direction of displacement together with the amplitude range of the slip. Figure 6a illustrates the surface 15 

rupture lines together with our results for the east-west component. Ten profiles, in which the displacements were measured 

by the GSJ, were used to calculate the displacements parallel to the fault lines (Figure 16). The slips calculated from our 

results are very close to that obtained from the field observation for most cases. It is observed that in the majority of the 

cases our results are greater than the measured ones. We believe that the main reason for this is that the type of soil is 

cohesive in this area. Cohesive soils have the ability to exhibit large plastic deformation that depends on the water content 20 

and, as can be seen, the area is mostly used for agricultural purposes where the soil has high water content. Thus, the surface 

slip measured in the field might not be the total slip. The largest differences between the GSJ survey and the results from 

Lidar are observed in the profiles ‘op’ and ‘qr’. 

6 Conclusions 

The coseismic displacements produced during the mainshock of Mw 7.1 of the 2016 Kumamoto earthquake were estimated 25 

using two DSMs acquired by high-resolution Lidar flights before and after the mainshock on April 16. The common area 

between the DSMs covers approximately 80 km
2
 including the Mashiki town section of the known Futagawa fault line. The 

maximum cross-correlation coefficient was used with a window matching technique between the two DSMs to calculate the 

coseismic displacement. With a window of size 100 m x 100 m, the maximum cross-correlation value reached more than 0.6 

for more than 99.8% of the all 100-m grid points. Coseismic horizontal displacements of up to 2 m and subsidence of up to 2 30 

m were observed in the study area. These values are the largest coseismic displacements produced during the Kumamoto 

earthquake, which were not recorded at any GEONET stations. The results showed good agreement with the permanent 
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displacements calculated from the double integration of the strong-motion accelerations at the seven seismic stations. The 

results were further compared with the surface ruptures observed by the GSJ, and a reasonable level of agreement was 

reached in terms of location and slip amplitude along the Futagawa fault.  

7 Data and Resources 

Strong-motion data collected from KiK-net and K-NET can be accessed online at http://www.kyoshin.bosai.go.jp/ (last 5 

accessed August 2016) and strong-motion data from the strong-motion seismograph network of Kumamoto Prefecture were 

released via the Japan Meteorological Agency (JMA) at 

http://www.data.jma.go.jp/svd/eqev/data/kyoshin/jishin/1604160125_kumamoto/index2.html (last accessed August 2016). 

The temporary observation records in the town of Mashiki were obtained from the works of Hata et al. (2016) at 

http://wwwcatfish.dpri.kyoto-u.ac.jp/~kumaq/ (last accessed August 2016). The Numpy library can be accessed at 10 

http://www.numpy.org/# (last accessed August 2016), the OpenCV library can be accessed at http://opencv.org/ (last 

accessed 2016), and the GDAL library can be accessed at http://www.gdal.org/index.html (last accessed August 2016).  
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Figure 1. Map of the near-source area of the 2016 Kumamoto earthquake, showing the areas of the pre-event DSM (black solid 

polygon) and the post-event DSM (black dashed polygon), the distribution of the GNSS and seismic stations, active fault lines in 

Japan (red lines), and epicenters (Mw 6.2 April 14, 2016; Mw 7.1 April 16, 2016).   
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Figure 2. DSMs acquired by Asia Air Survey Co., Ltd. (2016) on April 15, 2016 (pre-event DSM) and April 23, 2016 (post-event 

DSM). 

 

 5 

Nat. Hazards Earth Syst. Sci. Discuss., doi:10.5194/nhess-2016-315, 2016
Manuscript under review for journal Nat. Hazards Earth Syst. Sci.
Published: 30 September 2016
c© Author(s) 2016. CC-BY 3.0 License.



 

12 

 

 

Figure 3. Examples of surface ruptures caused by the 2016 Kumamoto earthquake. Paddy field (P1), river channel (P2), road 

crossing in Kamijin and Shimojin districts of the town of Mashiki observed on April 17, 2016 (P3), and crop field in Dozono 

district of the town of Mashiki observed on June 7, 2016 (P4). The locations of the photographs are shown in Figure 1. 
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Figure 4. Example of coseismic displacement extracted from Lidar data: (a) Aerial image of buildings near the Mashiki KiK-net 

station acquired on April 15, 2016, and (b) color composite of the post-event (red) and pre-event (cyan) DSMs for the same area 

where the yellow arrows depict the direction and amplitude of the coseismic displacement. 
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Figure 5. Schematic image of the maximum correlation search algorithm. Selection of the pre-event DSM (blue) and post-event 

DSM (red) windows (a), sub-pixel discretization of the DSMs (b), and calculation of correlation coefficient by moving the window 

of the post-event DSM over the pre-event one (c). 

 10 

 

 

Nat. Hazards Earth Syst. Sci. Discuss., doi:10.5194/nhess-2016-315, 2016
Manuscript under review for journal Nat. Hazards Earth Syst. Sci.
Published: 30 September 2016
c© Author(s) 2016. CC-BY 3.0 License.

Comment on Text
Please add the North direction.



 

14 

 

 

Figure 6. Illustration of noise generated in the coseismic displacement for a window of size 201 x 201 pixels (a) and 101 x 101 pixels 

(b). The black square in the inset map shows the area of the main figure. 

 

 5 

Figure 7. Histogram and cumulative distribution of the correlation coefficient. Only 14 pixels out of 9,195 have a correlation 

coefficient less than 0.6. 

 

 

Figure 8. East-west (a) and north-south (b) components of the coseismic displacement obtained from the maximum cross-10 
correlation search of the Lidar DSMs. 
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Figure 9. Estimated three-dimentional coseismic displacement produced by the mainshock of the 2016 Kumamoto earthquake. 

The arrows indicate the amplitude and direction of the horizontal displacement at 500-m grid points. 5 
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Figure 10. Estimated three-dimentional coseismic displacements estimated along the eight profile lines in Figure 9. Vertical break 

lines show the location of the known main Futagawa fault line by the GSJ. The location of the secondary fault line is indicated 

using dotted lines.  
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Figure 11. Illustration of collapsed buildings and landslide along with the difference between the Lidar DSMs: location of the 

sample sites (a), a heavily damaged residential area (b), and forest including landslide (c). The top figures in (b) and (c) show aerial 

images taken on April 23 while the bottom figures show the differences between the two DSMs. 
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Figure 12. Example of baseline correction procedure for the acceleration recorded at the Nishihara station. The trend of the 

uncorrected velocity was modeled by two straight lines based on the method by Wang et al. (2011) and was removed from the 

record. Then, the corrected displacement was calculated by integrating the acceleration with respect to time. The thick black line 

in the displacement time history represents the coseismic displacement calculated from the Lidar DSMs. 5 
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Figure 13. Comparison of three-dimentional coseismic displacement obtained from Lidar DSMs (thick black line) and those 

obtained from the acceleration records at MTO station (a), KMMH16 KiK-net station (b), and KMM006 K-NET station (c). Red 

lines in KMMH16 KiK-net station show displacements at the bedrock (Ground level: ˗252 m). KMM006 K-NET station is located 

at 1 km from the nearest Lidar DSM point.   5 
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Figure 14. Comparison of three-dimentional coseismic displacement obtained from Lidar DSMs (thick black line) with those 

obtained from the acceleration records at TMP1 (a), TMP2 (b), and TMP3 (c) stations. 
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Figure 15. Location of surface ruptures (red lines) observed during the field surveys of the GSJ (2016) and plotted on aerial images 

acquired by the Asia Air Co. on April 23. The black arrow represents the direction and amplitude of the observed strike slip at 

each location. 
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Figure 16. Estimated coseismic displacement parallel to the fault lines along the ten profile lines including the locations of the field 

observation by the GSJ shown in Figure 15. 
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