
We cordially thank the anonymous referee #2 for the detailed and constructive comments on our 

paper. We are delighted that our paper was perceived as “an interesting well-structured and well-

written manuscript that addresses relevant scientific and technical questions which are within the 

scope of NHESS”. We followed the referee’s suggestions (“moderate revisions prior to be published”) 

and revised the paper accordingly. For details, please follow our point-by-point replies: 

 

 RC2: Original comment of referee #2 

 AR: Response of the authors (black) and changes/changed text segments (blue) 

 Page and line numbers  refer to the revised version of the manuscript (e.g. p.2 line 8) 

 

1 RC2: Although it is reasonable to model landslide susceptibility using points (centroids), namely 

when landslides are small in size, in the opinion of the reviewer, the validation of predictive models 

should be made with landslide areas (polygons), because a landslide is not a point. 

1 AR: The referee addresses a very important issue within the field of statistical landslide susceptibility 

modelling, namely the sampling of landslides observations. It was pointed out by the referee (as well 

as by the already cited studies Atkinson et al., 1998; Goetz et al., 2015a; Petschko et al., 2014a; Van 

Den Eeckhaut et al., 2006 cf. p.4 line 18f) that statistical landslide susceptibility models are regularly 

constructed by using one point per landslide observation (i.e. preferably in the landslide initiation 

area), even though landslides are spatial phenomena with a certain spatial extent. The expected 

median landslide sizes of the study area are described in p.4 line 6f (787 m² (Flysch); 1,189 m² 

(Molasse); 1,260 m² (Quaternary)). 

In this context, we want to emphasize that the points used within this study solely refer to landslide 

scarp locations. Thus, the respective landslide susceptibility maps solely provide information on where 

landslides of the slide-type movement are more likely to be initiated. To make this explicit, we added 

the following sentence to p.4 line 19f: “Since the respective points stand representative for the main 

scarp location (cf. Petschko et al., 2016), subsequent landslide susceptibility maps provide an 

estimate on where landslides are more likely to be initiated.” 

In case the referee’s comment referred to polygons that represent the area of landslide initiation, we 

want to explain why we believe that the decision to model and validate with one point per landslide 

observation is straightforward in the context of statistical landslide susceptibility modelling: Using one 

point per observation guarantees an equal treatment of small and large landslides. For validation, 

usage of a polygon (represented by multiple pixels or points) is expected to introduce the undesired 

effect that the respective validation results would heavily rely on a small number of large landslides. 

We believe that weighting for size should be avoided when modelling and validating the models in 

order to be consistent with the landslide susceptibility definition, which formally excludes landslide 

magnitude. To clarify, we rephrased the definition given in p.2 line 6f which now reads as follow: “The 

term landslide susceptibility refers to the likelihood of a certain location to be affected by upcoming 

landslides without taking into account the potential temporal occurrence or magnitude of landslide 

events (Brabb, 1984; Corominas et al., 2013; Fell et al., 2008; Guzzetti et al., 1999, 2005).”  

We also want to emphasize that we are aware that the present point-based landslide information is 

not perfect (as presumably every historic landslide inventory). Therefore, we highlighted that the 

results obtained by the “real data set” should be interpreted with caution (p.8 line 14f): “especially due 

to the unavailability of perfect and accurate spatial information (i.e. landslide data and predictors) and 

the inherent subjectivity involved during model construction (e.g. predictor and classifier selection).” 

This was one major reason why we decided to validate our results with “unbiased” synthetic data sets 

(cf. 4.6 Generation of synthetic data; 6.1 Usefulness of an additional modelling with synthetic data).  

 

2 RC2: Additional information should be given regarding landslide inventory and sources used to 

construct it, namely: 

a) Dates of airborne laser scanning and ortophotos used for landslide inventorying;  

2a AR: We added this information (p.4 line 15f): “[…] of a 1 m x 1 m airborne laser scanning (ALS) 

digital terrain model (DTM; flight campaign: 2006-2009), supported by interpreting two orthophotos 

(flight campaigns: 2000-2004 and 2007-2008).” To ensure conciseness of the paper and to avoid 



repetitions with earlier studies (i.e. Petschko et al., 2016), we opted to keep the inventory chapter (3.1) 

rather compact (180 words). However, the final sentence of this section points to the previously 

mentioned study, which thoroughly describes the generation of the inventory used (p.4 line 21f): 

“Further information on the mapping of this inventory and its related advantages and disadvantages 

are described by Petschko et al. (2016).” 

 

b) What is the typical depth of the shallow landslides? 

2b AC: Precise information on the depth of the landslides cannot be given, due to an absence of such 

information and the fact that just a part of the mapped landslides were validated in the field (cf. 

Petschko et al., 2016). However, we addressed landslide size, which is regularly considered as a 

proxy for landslide magnitude in p.4 line 6f: “The majority of landslides in the area are relatively small 

and shallow. Petschko et al. (2016) investigated landslide sizes for the districts Amstetten, 

Waidhofen/Ybbs and Baden and found a median size of landslides of the slide-type movement of 787 

m² for the Rheno-Danubian Flysch Zone, 1,189 m² for the Molasse Zone and 1,260 m² for Quaternary 

sediments.” 

We now added new information on the expected landslide-depths to p.4 line 8f: “Based on an analysis 

of landslide archive entries (i.e. Building Ground Registry), Bell et al. (2014a) estimated a median 

landslide depth of 1.7 m (mean 2.2 m) for 142 landslides recorded for the district Waidhofen/Ybbs.” 

We added this new reference to the paper: 

Bell, R., Petschko, H., Proske, H., Leopold, P., Heiss, G., Bauer, C., Goetz, J., Granica, K. and Glade 

T.: Methodenentwicklung zur Gefährdungsmodellierung von Massenbewegungen in Niederösterreich 

– MoNOE, Final project report, pp. 224, Vienna., 2014a. 
We believe that more information on landslide magnitude (or landslide depth) would not contribute 

substantially to the objectives of the study, especially because landslide magnitude is not accounted 

for in conventional statistical landslide susceptibility models (as explained before). 
 

c) Do authors have any idea about the permanence time of landslides in the landscape? What is the 

possible range of age of inventoried landslides? 

2c AR: These are very interesting questions that were previously tackled by the co-authors, also for 

parts of the study area (compare the already cited papers Bell et al. (2012) and Petschko et al. 

(2014b)). In summary, those studies conclude that a specific age of the respective landslides cannot 

be deduced by interpreting its geomorphic footprint, while relative age approximations should as well 

be treated with caution, especially because of an intensive anthropogenic impact which varies 

between land cover units (e.g. regular land levelling on pastures). We are convinced that the present 

inventory contains both, recent events (before 2009) as well as older ones (e.g. few hundred years). At 

the same time, we also assume that especially larger events may be overrepresented within the 

present inventory because smaller features are expected to be eroded more quickly and therefore not 

visible on recent remote sensing data. This is another reason why we believe that, in our case, 

modelling and validating with polygons (which may emphasize such a size-bias) should be avoided. 

The modified definition of landslide susceptibility should further clarify that the time component is not 

accounted for within this study (p.2 line 6f): “The term landslide susceptibility refers to the likelihood of 

a certain location to be affected by upcoming landslides without taking into account the potential 

temporal occurrence or magnitude of landslide events (Brabb, 1984; Corominas et al., 2013; Fell et al., 

2008; Guzzetti et al., 1999, 2005).” However, the mentioned land cover related bias was one reason 

why we excluded land cover from the analysis within the real data set (for more details refer to “8 AR” 

below). 

 

d) What is the scale of the digital geological map used to derive lithological units? 

2d AR: The scale of the available digital geological map is 1:200,000 (the inserted abbreviation 

“GK200” stands for “Geologische Karte 1:200 000”). We made this information explicit by rephrasing 

the respective text passage (p.5 line 6f) to “This information was obtained from a digital geological 

map of Lower Austria (GK200) available at a scale of 1:200,000 and resampled to the modelling 

resolution of 10 m x 10 m.” 

 



3 RC2: The landslide susceptibility was assessed using only 4 predictor themes: slope, 

lithology and aspect (two themes). In the opinion of the reviewer this is too restrict. 

3 AR: The first sentence of Sect. 3.2 (predictor variables) reads as follows: “The number and type of 

predictors used within statistical landslide susceptibility analyses varies greatly depending on the 

scope of the study, the type of the investigated landslides, the characteristics of the area and data 

availability (Guzzetti et al., 1999; Van Westen et al., 2008).” As formulated in the introduction (Sect. 1), 

the main scope of this study was to thoroughly investigate the propagation of inventory-based 

positional errors into the final results from a variety of perspectives (e.g. relationship of each variable 

to the response, importance of each variable, applying three ‘types’ of quantitative validation 

techniques, spatial pattern of maps) in a tangible and transparent way.  

Thus, we decided to keep the models simple and justified this decision in p.4 line 26f: “To enhance 

traceability of modelling results, we opted to include only few but widely used predictors within the 

analyses. All models were generated with […]”. We further explained our decision a second time in p.5 

line 17f: “In this study we aimed to analyze all data in a tangible and traceable way. Therefore, we 

avoided using less interpretable classifiers or a high number of predictors.”  

We are fully aware that the decision to generate and/or select a specific predictor set is subjective 

and influences modeling outcomes. We now re-phrased the text as follows (p.8 line 13f): “None of the 

susceptibility models generated for the present study area can be considered to reflect a true and 

unbiased relation between landslides and environmental conditions, especially due to the 

unavailability of perfect and accurate spatial information (i.e. landslide data and predictors) and the 

inherent subjectivity involved during model construction (e.g. predictor and classifier selection).” In our 

opinion, this statement well summarizes the reasons why we decided to additionally validate all 

analyses made within this study with synthetic data. We also discussed later (p.12 line 19f) that the 

“available environmental data was not expected to represent the full spectrum of landslide 

predisposing factors for the area”. With the synthetic data sets we were able to counteract this issue 

as described thoroughly within Sect. 4.6. 

 

4 RC2: The authors used a test site with 100 km2 where 591 landslides were inventoried as point. 

These landslides are mostly concentrated over the Flysch lithologic unit that spreads over the major 

part of the study area (81%). So, in this case, in the opinion of the reviewer, the lithological layer is not 

a good theme to discriminate between stable and unstable areas. This should be discussed in the 

manuscript.  

4 AR: We appreciate the referee’s comment and point out that it is true that landslide densities differ 

among the lithological units (as described in Sect. 5): Flysch Zone (7.2 landslides/km²), Molasse (1), 

Quaternary (0.4). From a quantitative point of view, lithology might therefore be highly suitable to 

discriminate potential landslide prone regions from less stable areas, because the substantial 

variations described are well describable by the lithologic layer within a statistical model. This might 

especially be the case when bivariate models are applied. However, our multiple variable models 

showed (from our perspective) interesting tendencies that are directly related to the referee’s 

comments. We dedicated a full discussion chapter (“6.5 Considerations of an interplay of predictors 

within multiple variable models”) to explain this issue. In summary, this chapter highlights that the 

models produced with an unbiased inventory (p.15 line 14f) “[…] did not strongly accentuate 

differences in landslide susceptibility (cf. OR in Fig. 4b) between the Flysch (7.2 landslides per km²) 

and the Molasse (1 landslide per km²) since the respective models accounted for the fact that the 

Flysch Zone is considerably steeper (mean slope 12.3°) compared to the Molasse (5.1°).” 

Interestingly, this tendency changed as soon as the inventory-based error was high as described in 

p.15 line 17f: “Even though landslide densities observed for those units remained nearly unchanged 

when simulating an inventory-based-error […], modelled relationships increasingly emphasized 

differences between those units (Fig. 4b).” Ultimately, this is the reason why the maps (e.g. Fig. 5f) 

generated with the most inaccurate inventory strongly accentuated the (p.11 line 3) “the silhouettes of 

the Flysch Zone (cf. Fig. 1c).” The synthetic area was not affected by such an evident spatial 

distribution of lithological units, but confirmed the results previously discussed. 

 



5 RC: In addition, the spatial relationship between slope aspect and landslide distribution seems to be 

weak (i.e. the aspect is not very sensitive to positional errors of landslide points), which turns the 

landslide susceptibility mostly dependent on the variable Slope. Why did not you use other variables 

extracted from the DTM like slope curvature or the Slope over Area 

Ratio? 

5 AR: The referee is correct that the relationship between slope aspect and landslide occurrence is 

relatively weak in comparison to the association observed with slope angle (especially for the 

reference models). This is reflected by modelled relationships (i.e. OR) as well as by variable 

importance estimates. We re-checked the paper and found that the relationship between slope aspect 

and landslide occurrence was explicitly mentioned just once in the results section (Sect. 5.1)), but 

several times summarized by the terms “topographic variations” or “topography” (i.e. these terms were 

meant to refer to slope angle and slope aspect). 

We now re-phrased several text segments to further clarify the relations observed between slope 

aspect and landslide occurrence:  

 p.10 line 29f: “Thus, a high positional error of the inventory (mean error: 120 m) was observed  to 

result in susceptibility maps that were less influenced by local slope angle and slope aspect 

variations” 

 p.13 line 18f: “A very high mean positional error […] may require a correspondingly higher 

generalization of the topographic variables, such as slope angle or slope aspect, to enhance the 

chances that the respective landslide observation is still represented by an identical respectively 

similar grid cell.” 

However, we want to stress that we found it particularly valuable to focus our discussion on the 

predictors slope and lithology, because (i) those predictors showed the most distinct sensitivity to 

landslide inventory-based errors and (ii) revealed (from our perspective) important effects in the 

context of the study’s objective. These effects (profoundly discussed in Sect. 6.5) are primarily related 

to the spatial interrelation between the mentioned predictors (i.e. steepness varies between lithological 

units). In summary, the results highlight that the reference models were highly dependent on slope 

angle, while the mentioned interrelation between lithology and slope angle caused the effect that the 

models generated with inaccurate inventories were much less depended on topographic variations 

(and more reliant on lithology). 

Our previous reply to the referee (cf. 3 AR) further justifies the conducted predictor selection. We 

agree that using a larger set of predictors (e.g. including the mentioned variables curvature, slope over 

area ratio) may be especially straightforward whenever a pure prediction is envisaged. However, to 

ensure interpretability and an in-depth evaluation of the results (i.e. permutation-based variable 

importance is computational intensive), we opted for a smaller predictor set. Again, we want to point 

out that the synthetic data was expected to represent the full spectrum of predictors for the respective 

inventory and thus proved useful to cross-check our results. 

 

6 RC2: Regarding the predictive performance, it is not clear which data was used to validate the 

predictive models. Apparently, the points with errors were used to validate, but this should be clearly 

stated. 

6 AR: We thank the referee for this comment and agree that additional information is required to clarify 

our “three-fold” quantitative validation strategy. We thoroughly revised the respective method section 

(Sect. 4.4) which now reads as follows:  

“The prediction skills of the models were estimated by calculating the AUROC by applying two 

partitioning techniques, implemented in the R package “sperrorest” (Brenning, 2012b), namely k-fold 

cross validation (CV) and k-fold spatial cross validation (SCV). In contrast to single hold-out validation, 

CV and SCV are not based on one single split of the training and test sample (e.g. 80% for calibration 

and 20% for validation), but on a repeated partitioning of the original sample into k subsamples. In 

each iteration, a performance measure (e.g. AUROC) is estimated for one of the k subsamples, while 

the remaining (k-1) subsamples are combined into a training set that is used to calibrate the model. 

Thus, validation results that are based on CV and SCV are not dependent on one specific sample 

split. In fact, CV as well as SCV allow that all available data can be used to validate and to calibrate 

the final models. CV is based on a repeated non-spatial random splitting, whereas SCV is performed 



spatially and consists of a repeated spatial partitioning of the training sample and test sample 

(Brenning, 2012b; Ruß and Brenning, 2010). In this study, the predictive performance of all models 

was estimated by repeating CV and SCV 50 times with 10 folds per repetition. More specifically, within 

each of the 50 repetitions, each observation of the response variable was applied nine times to 

calibrate the model and once to test the predictive performance. The presented AUROC values refer 

to the median of these 500 estimates. Previous studies emphasized the suitability of CV and SCV in 

the context of landslide susceptibility modelling (Goetz et al., 2015a; Petschko et al., 2014a; Steger et 

al. 2016).  

Furthermore, an additional validation strategy was applied in order to quantitatively evaluate and 

compare the ability of all models to “predict” landslide presences and landslide absences of the 

unmodified response variable. For this purpose, the AUROC was used to compare the predictions of 

each model with the unmodified landslide inventory (i.e. unaffected by an artificially introduced 

positional error). This metric relates to the goodness of model fit, whenever the respective models 

were calibrated with an unmodified data set.” 

 

We slightly changed the legend within Figure 6 to further clarify that the respective numbers relate to 

repeated measurements “Median AUROC decrease by repeatedly permuting a predictor” 

7 RC2: In section 4.3 authors state that “An expert-based evaluation of the final results was conducted 

by comparing all modelled relationships and maps with the results of those models that were assumed 

to be less affected: : :” In the opinion of the reviewer, this statement is not enough clear and needs to 

be better described. 

7 AR: We understand that this relatively short subchapter, and probably the expression “expert-based 

evaluation” may confuse the reader. In fact, the final results were not judged by external experts, as 

the expression “expert-based” might suggest. This evaluation “solely” related to internal comparisons 

among the models. We revised the text and left out the expression “expert-based” (which originally 

should solely point out that this evaluation was not purely number-driven). The thoroughly revised 

subsection reads as follows (Sect. 4.3): 

“An additional evaluation of the final results was conducted by comparing all modelled relationships 

and maps with the results obtained by the reference models that were generated with the original (i.e. 

unmodified) inventory. These references were assumed to be less affected (i.e. reference model for 

the real data) or unaffected (i.e. reference for the synthetic data) by inventory-based positional errors. 

We considered a model or map to be strongly affected by an inventory-based positional inaccuracy if 

the modelled relationships (i.e. OR of predictors) respectively the spatial pattern of the maps differed 

substantially from their previously defined references. We therefore considered the respective 

positional error to have little effect in all cases where the estimated OR and the susceptibility maps 

were similar to their references.” 

 

8 RC2: Authors developed “synthetic data” that is a virtual terrain, whose construction and justification 

needs to be improved. In particular, it should be explained the reason to use the land cover for the 

synthetic data while this theme was refused for the model with “real data”.  

8 AR: As several previous replies to the referee (i.e. 1 AR, 3 AR, 4 AR, 5 AR) highlight, using 

synthetic data proved highly useful to validate the results under controlled conditions. We recognized 

during literature review that sensitivity analyses of landslide susceptibility models (e.g. varying data 

qualities, varying predictors) are usually conduced solely on the basis of real world data sets, even 

though spatial information (i.e. predictors, inventories) available for large study areas can be 

considered as imperfect (as pointed out in Sect. 6.1 “Usefulness of an additional modeling with 

synthetic data”). We believe that our approach can thus be considered as innovative and highly useful 

in the context of the scope of the study. Since we recognized that a thorough justification of the 

construction of the synthetic data set is needed, we devoted the most extensive method chapter for 

explaining its generation (cf. Sect. 4.6) and discussed its usefulness within an own discussion section 

(cf. Sect. 6.1). Furthermore, Figure 3, its caption and the excerpts are expected to further enhance 

traceability. As described and shown in Fig. 3a, a topographically diverse terrain was generated by 

strongly generalizing (i.e. smoothing) an available DTM. We expanded our justification to smooth the 



DTM (p.8 line 27f): “[...] which was expected to be unaffected by local data noise and to represent 

undisturbed pre-failure conditions (cf. Van Den Eeckhaut et al., 2006).” 

The referee also asked why we decided to use land cover for the synthetic data, and omitted this 

predictor within the real data set. We are aware that land cover is regularly used within statistical 

landslide susceptibility models, especially to represent hydrological (e.g. evapotranspiration, 

interception) or geomechanical (e.g. roots cohesion) effects. Since land cover is regularly used in 

statistical models and we also believe that it influences slope stability in our area, we originally 

planned to introduce this predictor in the real data set. However, we finally decided that, in our specific 

case, introducing land cover may not be straightforward due to a high potential of obtaining spurious 

correlations. We now revised the text part which justifies our decision to be more clear (p.5 line 8f): 

“We decided to exclude land cover from the analysis for two reasons. Firstly, the available recent land 

cover data does not necessarily correspond to the land cover present at the time of landslide 

occurrence, due to constantly ongoing land use changes and the fact that landslide age is expected to 

vary substantially within the present inventory (Petschko et al., 2014b; van Westen et al., 2008). 

Secondly, an omission of land cover as a predictor was expected to reduce the chances that the 

suspected land cover related-bias (e.g. overrepresentation of landslides in forested areas, cf. Bell et 

al., 2012; Petschko et al., 2016) is directly propagated into the final results (cf. Steger et al., 2016)”.  

Both previously mentioned reasons do not apply for the synthetic data set (this is another benefit of 

modeling with synthetic data). Thus, we decided to include land cover and now made this decision 

explicit (p.5 line 13f). “However, land cover was introduced as a predictor within the synthetic data set, 

because the respective landslide data set was not defined to be affected by a systematic error, while 

land cover was specified to be static in time (cf. Sect. 4.6).” 

 

9 RC2: Furthermore, authors state that “A spatially balanced landslide data set was generated 

according to Theobald et al. (2007)”. Please, provide more information about this procedure. Also, 

authors generate a sample containing 2000 “landslide points” which apparently is a very large number 

when compared with the 591 landslides inventoried in an area equivalent in size with the “virtual study 

area”. 

9 AR: The mentioned sampling approach developed by Theobald et al. (2007) was adopted to 

“spread” the 2000 landslide points across the study area on the basis of the previously generated 

probability raster (which stands representative for the true landslide susceptibility). We revised the 

respective text to further explain this approach (p.9 line 15f): “A sampling approach developed by 

Theobald et al. (2007) was adopted to spatially distribute landslide initiation zones (i.e. represented by 

points) according to the predefined relationships. More precisely, the mentioned probability raster was 

used to control sampling intensity during the generation of 2000 spatially balanced landslide initiation 

points (i.e. raster cells with high probabilities are more likely selected as landslide location) (Theobald 

et al., 2007). This comparably high number of landslide points was chosen to assure a high 

explanatory power of the empirical results while simultaneously assuring computational feasibility.” 

Again, this paragraph (implicitly) emphasizes the usefulness of the synthetic data set (i.e. very high 

sample size). 

 

 

Technical corrections  

 

RC: Page 11 – line 16 “(iv) the selection respectively parameterization of a classification method“ 

Something is missing in this peace of text. 

AR: We agree that this formulation might confuse the reader at this stage of the paper. Changed to 

“(iv) the selection of a classification method” 

 

RC: Page 17 – line 24 Brenning, A.: Spatial cross-validation and bootstrap for the assessment of 

prediction rules in remote sensing: The R package sperrorest, in Geoscience and Remote Sensing 

Symposium (IGARSS), 2012 IEEE International, pp. 5372–5375. Available from: 



http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6352393 (last access 22 April 2016), 2012. 

2012b instead of 2012 

AR: We thank the referee for highlighting this error. Corrected.  

 

RC: Page 19 – line 4 Petschko, H., Bell, R. and Glade, T.: Relative Age Estimation at Landslide 

Mapping on LiDAR Derivatives: Revealing the Applicability of Land Cover Data in Statistical 

Susceptibility Modelling, in Landslide Science for a Safer Geoenvironment, edited by K. Sassa, P. 

Canuti, and Y. Yin, pp. 337–343, Springer International Publishing. Available from: 

http://link.springer.com/chapter/10.1007/978-3-319-05050-8_53 (last access 26 July 2016), 2014. 

2014b instead of 2014 

AR: Corrected. 

 

RC: Page 19 This reference is not used in the text? Tien Bui, D., Pradhan, B., Lofman, O. and 

Revhaug, I.: Landslide Susceptibility Assessment in Vietnam Using Support Vector Machines, 

Decision Tree, and Naive Bayes Models, Mathematical Problems in Engineering, 2012, e974638, 45 

doi:10.1155/2012/974638, 2012 

AR: Thank you for this comment. This citation got lost during internal revision. Now added within p.14 

line 29: “(Ballabio and Sterlacchini, 2012; Catani et al., 2013; Felicísimo et al., 2013; Tien Bui et al., 

2012)”. 

Furthermore, we changed the reference “Petschko et al., 2015” to “Petschko et al., (2016)”, because 

this reference was recently updated (i.e. the paper got a new release year, volume number, page 

numbers) 

 

RC: Figure 5 The color palette is not easy to distinguish landslide susceptibility in the maps. Please, 

use a more contrasting color palette. 

AR: The contrast of the color palette is already high as the respective colors range from “white” 

(susceptibility of 0) to “black” (susceptibility of 1). Within the revised figure, we further enhanced the 

contrast by reducing the transparency of the maps (overlaid on a shaded relief image). 

Sect. 5.2 provides an explanation on why some susceptibility maps appear uniform at slope scale 

(page 10, line 29) “[…].Thus, a high positional error of the inventory (mean error: 120 m) was observed 

to result in susceptibility maps that were less influenced by local slope angle and slope aspect 

variations. Ultimately, this led to more uniformly appearing susceptibility patterns at slope scale (e.g. 

Fig. 5f). […]” 

 

RC: Figure 6 Indicate what is A,B,C and D in figure caption. 

AR: Done: “[…] for the real data sets (a, c) and the synthetic data (b, d) obtained by CV (a, b) and 

SCV (c, d).” 


