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Abstract. Following the disruption to European airspace caused bygithption of Eyjafjallajokull in 2010
there has been a move towards producing quantitative gieascof volcanic ash concentration using vol-
canic ash transport and dispersion simulators. Howeveretls no formal framework for determining the
uncertainties on these predictions and performing manulsitions using these complex models is computa-
tionally expensive. In this paper a Bayes linear emulatijpraach is applied to the Numerical Atmospheric-
dispersion Modelling Environment (NAME) to better undersd the influence of source and internal model
parameters on the simulator output. Emulation is a stedikthethod for predicting the output of a computer
simulator at new parameter choices without actually rugtire simulator. A multi-level emulation approach
is applied to combine information from many evaluations ebaputationally fast version of NAME with
relatively few evaluations of a slower, more accurate, ieersThis approach is effective when it is not
possible to run the accurate simulator many times and whexre tis also little prior knowledge about the
influence of parameters. The approach is applied to the meaoadumn loading in 75 geographical regions
on 14 May 2010. Through this analysis it has been found tleap&rameters that contribute the most to the
output uncertainty are initial plume rise height, mass gauprate, free tropospheric turbulence levels and
precipitation threshold for wet deposition. This informeatcan be used to inform future model development
and observational campaigns and routine monitoring. Tladyars presented here suggests the need for fur-
ther observational and theoretical research into paraisat®n of atmospheric turbulence. Furthermore it
can also be used to inform the most important parameterbations for a small operational ensemble of
simulations. The use of an emulator also identifies the iapdtinternal parameters that do not contribute
significantly to simulator uncertainty. Finally, the ansilyhighlights that the fast, less accurate, version of
NAME can provide useful information without needing the aate version at all. This approach can easily
be extended to other case studies, simulators or hazards.

1 Introduction

Volcanic ash is a significant hazard to aircraft, and humta) by reducing visibility and causing both
temporary engine failure and permanent engine damage ¢€eaig 1994). The presence of ash disrupts air
traffic and can result in large financial losses to the aveitimlustry. The eruption of the Icelandic volcano
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Eyjafjallajokull in April 2010 disrupted European airsgache busiest airspace in the world, for thirteen
days, grounded over 95,000 flights (European Commissioh] P8nd is estimated to have cost the airline
industry€3.3 billion (Mazzocchi et al., 2010).

In the event of an eruption, the decision to fly is informed mipimation provided by one of the nine Vol-
canic Ash Advisory Centres (VAACSs). The VAACs issue hazam@apsof predicted ash cloud extents based
on forecasts from Volcanic Ash Transport and Dispersionugtors (VATDS). After the large-scale dis-
ruption caused by the 2010 Eyjafjallajokull eruption newdglines were brought in by EUROCONTROL
(the European Organisation for the Safety of Air Navigatiwhich require predictions of ash concentration
values as well as ash cloud extents. However, there are lsrgertainties in the VATD ash concentration
forecasts. These uncertainties arise from a number of ssumcluding incomplete or inaccurate knowledge
of the specific volcanic eruption (source uncertainty) amdeurological conditions and other sources of pa-
rameter and forcing function uncertainty, as well as patéicphysical processes being simplified or omitted
(structural uncertainty) in any particular simulator. @ntly, no systematic estimation of the resulting un-
certainty is performed. This is a major limitation of the og@onal system and as such there is the danger of
making incorrect decisions due to misjudging the accurdi¢h@simulator predictions.

There have been many studies investigating the processesahitrol the long-range dispersion of volcanic

ash. The majority of these studies focus on a small numbemfiator inputs or parameters and change the
parameters one-at-a-time (OAT) to assess their impact @pitiédictions of volcanic ash transport. These
studies test the difference between the simulator output # control or baseline case and the output from
the perturbed cases. This approach is appealing as it aleagslates the change in the simulator away
from a well known baseline. Examples of studies that useathisoach are Costa et al. (2006); Witham et al.
(2007); Webley et al. (2009); Dacre et al. (2011); Devenishl.g2012a, b); Folch et al. (2012); Grant et al.

(2012); Witham et al. (2012b); Dacre et al. (2015). Howettegre are three main disadvantages of using
OAT analysis. First, the amount of parameter space thatngpkal quickly reduces as the number of pa-
rameters considered is increased (Saltelli and AnnonipR8econdly, OAT tests ignore any interactions
between parameters. For example it is possible that peénittvo parameters separately in OAT tests might
lead to negligible impacts, while the impact produced bytypbing them together might be much larger.

Finally, the analysis cannot provide an overall assessofanicertainty.
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Performing sensitivity tests that cover a wide range of peaters and parameter values for a complex simu-
lator, such as a VATD simulator, is expensive in both time mywhey. This makes uncertainty quantification
impractical as one can only afford a limited amount of sinmiauns. Uncertainty and sensitivity analyses
as well as calibration require a large number of runs. In ¢hisly we introduce the use of emulation to
understand the sensitivity of an operational VATD simulatosource and internal simulator parameters.

An emulator is a simple statistical approximation of a coicgibd and (typically) computationally-expensive
function, such as a computer simulator, that can be evaluataost instantly over the whole parameter
space. The emulator provides a prediction for the simuktartput at any given parameter choice, and an
associated uncertainty for this prediction (this can tdieeform of a full probability distribution, or an ex-
pected value and variance). This enables the quantificafithre impact of each simulator parameter on the
prediction of the dispersion of volcanic ash. This apprdaafibeen used successfully in tsunami modelling
(Sarri et al., 2012), simulating convective cloud (Johnsbal., 2015), aerosol modelling (Lee et al., 2011,
2012, 2013), galaxy formation (Vernon et al., 2010) andargl climate projections (Harris et al., 2010).

Emulators have several main uses in analysing computeraions. They can be used for calibration, to
determine which parameters lead to simulator output thegarably matches observed data. They can also
be used for forecasting the future behaviour of the systequastion. Finally, as in this paper, they can be
used as aresearch tool to better understand the simuleangle of the parameters, the interactions between
them and to help guide future research priorities.

The aim of this paper is to demonstrate the potential of thelation approach applied to a VATD simula-
tor. We use the Numerical Atmospheric-dispersion ModglEnvironment (NAME) developed at the UK
Met Office (Jones et al., 2007). This simulator is used as gegational model at the London VAAC and
can predict the location and concentration of volcanic adlowing a volcanic eruption. In this study we
focus on predicting the vertically integrated (or columrgsa loadings in a particular geographical region
which occured following the 2010 Eyjafjallajokull eruptioThe goal is to identify which parameters are the
principle drivers of the uncertainty in the simulator’s gietions of column loadings, and to investigate how
exactly these parameter values influence the output. Théatonsiused are also designed for use in history
matching, which is a method for determining which paranseg@re plausible matches to observations. This
application of the emulators is deferred to a future article
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The paper is structured as follows. Section 2 describes tiéBsimulator and the case study. Section 3
details the parameters that are varied in this study and lthesible ranges (as assessed by the simulator
experts) for these parameters. Section 4 describes theechbsimulator runs used to build the emulators,
and the simulator outputs that are to be emulated. SectioreS gn overview of the statistical methods used
in the analysis. The application of these methods to the stasky is detailed in Sec 6.

2 Description of NAME and chosen case study
2.1 Model description

NAME is the VATD simulator used by the London VAAC. It is a Lagmian particle dispersion model
originally developed in response to the 1986 Chernobylsiésa Particles, each representing a mass of
volcanic ash, are released from a source. These partideslaected by 3D wind fields provided by forecasts
or analyses from a numerical weather prediction (NWP) motle¢ effect of turbulence is represented by
stochastic additions to the particle trajectories basedstimated turbulence levels. NAME also includes
parameterisations of sedimentation, dry deposition anddeposition which are required to simulate the
dispersion and removal of volcanic ash. The ash conceotr®tre calculated by summing the mass of
particles in the model grid boxes and over a specified timmgelt is important to note that some processes
affecting the eruption plume are not represented in NAMEarincluded the NAME configurations used
in this study. Missing processes include aggregation ofpasticles, near source plume rise and processes
driven by the eruption dynamics (e.g. Woodhouse et al., R(NGte that the simulations presented in this
paper were performed using NAME version 6.1.

To predict the transport and dispersion of ash, informagéibaout the volcanic eruption is required. These
are known as eruption source parameters (ESPs) and includepise height, mass eruption rate, ver-
tical profile of the plume emissions, particle density andipl@ size distribution. ESPs are required to
initialise the NAME simulations. Full details of the NAMEtsg@ used by the London VAAC can be found
in Witham et al. (2012a). The simulations used in this stualyeha start time of 2300 UTC on 7 May 2010.
This start time has been chosen to ensure that NAME has hédieoif time to spin up before the chosen
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case study. The details of the other model parameters igstisd in Sect. 3. The ash column loadings are
calculated by summing the mass of the ash in model grid boxéseeraged over 1 hour. Here model grid
boxes are 0.375latitude by 0.5625longitude (approximately 40 km x 40 km).

2.2 Case study description

The case study chosen here is that of 14 May 2010. This is gltine later phase of the Eyjafjallajokull
eruption (14 April — 23 May). Although this later phase of #reiption did not have as much impact on the
aviation industry, it is very well observed using groundséa instruments (e.g. Pappalardo, 2013), aircraft
measurements (e.g. Johnson et al., 2012) and satelligeBrgncis et al., 2012). Due to the large amount of
observational data it is also the focus of several modebinglies (e.g. Grant et al., 2012; Devenish et al.,
2012a; Dacre et al., 2013). Between the 12 and 14 May, a logspre system moved across Iceland trans-
porting ash cyclonically to the North and West of Iceland @May, towards Europe on 13 May and to
the West of Iceland on 14 May. This followed a period (appneediely 7 days) of relatively settled weather
dominated by a large area of high pressure in the the Nor#m#it. The synoptic situation at 0000 UTC 14
May is shown in Figure la. Figure 1b shows a satellite infltameage taken by the AVHRR at 0613 UTC on
the 14 May. There are high level clouds ahead of the occluded focated between Ireland and England.
Behind the front there is low-level stratus cloud.

3 Choice of uncertain input parameters

Five eruption source parameters and nine internal simupgtameters were selected to represent the main
uncertainties affecting the simulation of the dispersibthe volcanic ash in the NAME simulator. A short
description of each parameter is given below along with aoeiated plausible range. The range represents
our assessment of uncertainty on the value of each pararttésawnithin these ranges that the training runs
of the simulator will be performed in order to build the emols. The uncertainty assessments were found
through a small expert elicitation exercise in which infation from relevant literature was combined with
expert knowledge of NAME and its parametrisation schemableTl summarises the parameters and their
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plausible ranges. In this study we do not consider the impfabe meteorological data used to drive NAME.
More detailed expert judgements on the relative plausjbdf parameter choices are not required to build
an emulator, although if available could be used to adjwestréining design.

3.1 Eruption source parameters

This section describes in detail the parameters specifleet@tuption source and how they are perturbed in
the runs used to build the statistical emulator.

3.1.1 Plume height, H

Plume height governs the height at which the ash particleemanitted into the atmosphere. This can have
a large impact on the horizontal and vertical structure @f éish cloud as atmospheric wind speed and
direction vary with height. Therefore to simulate reatistiispersion following an eruption it is necessary
to know this height as accurately as possible. During thedZB\jjafjallajokull eruption information about
the plume height was available from the Iceland MeteoraalgDffice’s C-band radar based at Keflavik
Airport. However, there are time periods when no radar dada available. This was due to a variety of
factors including the plume being obscured by meteoroklgitoud, missing radar scans and the fact that
when the plume height was below 2.5 km it could not be detedtedlto the orography in the local area.
When no observational plume height is available the las¢ées value persists until a new observation is
made. In this study we will be using the data from the Keflaai#tar (Arason et al., 2011) as the control
plume height. This control height is then perturbed by amenment in each of the simulations used to build
the emulator. The maximum and minimum increment usegli&m. This is in line with observational error

from the radar.
3.1.2 Vertical distribution of ash

In this study there are two possible vertical profiles of dali:depth source and thin layer source (referred
to in Grant et al. (2012) as "uniform™ and "top hat"). In thdl flepth case all the ash is evenly distributed
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from the volcano vent to the plume height. In the thin layesecall of the ash is emitted uniformly in a
thin layer, with thicknesglz. The middle of this thin layer is coincident with the maximingight of the
plume. In this study 1700 full depth runs and 1700 thin layersrhave been performed. In the thin-layer
caseslz has been determined by perturbing a control valu&:aéqual to 1 km. The minimum/maximudz
possible is 0.1 km/2 km. This range spans the observed ashdaypths in the literature for our case study
(e.g. Marenco et al., 2011; Schumann et al., 2011; Grant,&2Gl2; Pappalardo, 2013; Dacre et al., 2015).

3.1.3 Mass eruption rate, MER

Currently there is no direct method of measuring how muchsisbleing emitted from an erupting volcano.
Therefore many VAACs use an empirical relationship betwibenobserved plume height and the eruption
rate. There are number of relationships in the literatulatireg these two quantities (e.g Sparks et al., 1997;
Mastin et al., 2009). In this paper the following relatiomstbased on Mastin et al. (2009) is used:

MER =140.8 H*15, 1)

where H is the plume height above the volcano summit in kilometers MER represents the total mass
eruption rate in kilograms per second (Mastin et al., 2008p%¥er et al., 2012). HerH is the perturbed
plume height described in Sect. 3.1.2. Due to the empirialne of this formulation the MER also has an
associated uncertainty as the data used to form the reshiipis based only on a small number of volcanoes
of a similar nature (Mastin et al., 2009). To account for this MER is perturbed by a factor between 1/3
and 3.

3.1.4 Particle size distribution, PSD

In the simulations used here, only fine ash is representéddidgmeters ranging from 0.1-1@6nh separated

into 6 size bins. The NAME default PSD (shown in Table 2) isdabsn observations by Hobbs et al. (1991)
of ash from explosive eruptions of Mount Redoubt, St Augwestind Mount St Helens. The mass fraction
of dispersing material is divided over the model particléthin each size range. Each model particle may
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correspond to many actual particles of a certain diameter.ekact diameter allocated to each model particle
is such that the log of the diameter is uniformly distributeithin each size range making up the PSD.

The PSDs used in the runs to build the emulator were formdilagefollows. Dacre et al. (2013) present
several observed PSDs for the period around 14 May 2010;s5tdeaided to choose a range for the PSDs
thatincluded all of these. These alternatives can all beomegbly reproduced using gamma distributions with
particular shape and scale parameters. Therefore, inefegukcifying a range for the frequency associated
with each particle diameter bin, a range was specified faeheo parameters. For any given pair within
this range, the required PSDs can easily be computed. Tige fanthese parameters was chosen such that
all the alternative PSDs could be reconstructed to a reééeapproximation.

3.1.5 Particle density

By default, the London VAAC modelling procedure assumeg #sh particles are spherical and have a
density of 230%g m 3 (Bonadonna and Phillips, 2003). In this study the densipeigurbed in the range
1350kg m~2 — 2700 kg m 2. This range of perturbation to the particle density is cdegd to include the
uncertainty attributed to the particle shape and aggreqati

3.2 Internal simulator parameters

The long-range transport of volcanic ash can be describadidgets of processes. The first set, advection
and dispersion, represent the motion of the particles. €hersd set, loss processes, model how the ash is re-
moved from the atmosphere. This section describes in detagjarameterisations and associated parameters
in NAME that represent the two sets of processes.

3.2.1 Advection and dispersion parameters

In NAME particles are advected in three dimensions by winsigally provided by a NWP model, with
turbulent dispersion simulated by a random walk technighielvrepresents the turbluent velocity structures
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in the atmosphere. Particles are advected each time steghegithange in position involving contributions
from the resolved wind velocity, the turbulence, and theegntved mesoscale motions.

3.2.2 Free tropospheric turbulence

The diffusion due to free tropospheric turbulence is spedifiy a diffusivity,/’, which is related to the turbu-
lent velocities and time scales of atmospheric motions. AME, the along-wind and cross-wind spread are
assumed to be equal, and the eddy diffusivity is furthermsslito take the fornk = (027,,027,,02 Tw)
whereo,, ando,, are the standard deviations of the horizontal and vertielloity fluctuations, respectively,
andr, andr, are the corresponding horizontal and vertical Lagrangiaescales. While these quantities
are likely to vary in space and time, NAME simply assumes fixaldies. The default values and plausible
ranges for these parameters (see Table 1) are based onatimeswf vertical and velocity variances and dif-
fusivities above the atmospheric boundary layer and valged in other dispersion models (Schumann et al.,
1995; Dirbeck and Gerz, 1995, Webster and Thomson, persomahunication). The upper limits of these
parameters are representing plausible extreme valueghefiéince. Note that in this study the horizontal and
vertical free tropospheric turbulence parameters areedary the same proportion.

3.2.3 Unresolved mesoscale motions

Low frequency horizontal eddies with scales that lie betwtbe resolved motions of the input meteorolog-
ical data and the small three-dimensional turbulent mati@presented in the turbulence parameterisation
scheme are parameterised separately by the unresolvedoaésmotion scheme (Webster et al., 2015). As
in the free tropospheric turbulence scheme the paramete@esriging the unresolved mesoscale motions are
fixed in time and space. It is assumed that the impact of thesotved mesoscale motions is the same in
both components of the horizontal motion. The default v&laepropriate to the global NWP data used in
this study arer,,,= 0.8 ms~! andr,, = 14400 s. These default parameters are derived from therapec
characteristics of the input meteorological data (Wehsitef Thomson, 2005). At long range, only the dif-
fusivity o2, 7,,, matters and so, to simplify the experimental design, we sepkrturb this without worrying

10



5

10

15

20

Nat. Hazards Earth Syst. Sci. Discuss., doi:10.5194/nhess-2016-288, 2016
Manuscript under review for journal Nat. Hazards Earth Syst. Sci.
Published: 5 September 2016

(© Author(s) 2016. CC-BY 3.0 License.

about the values of,,, andr,, separately. To achieve this diffusivity range, betweerb@Ad 2 times the
default value, we kept,, constant at 6120 s and varieg, from 0.27 — 1.74n s~ ! as in Table 1.

3.2.4 Loss process parameters

This section describes the parameters associated withrttvegses that remove ash from the atmosphere.
The loss processes represented in NAME are wet depositibiigndeposition (including sedimentation).
Within NAME these losses are applied on a particle basistfigemass of each particle is reduced each time
step).

3.2.5 Wet deposition

Wet deposition is the process of ash depletion by precipitah the atmosphere. Two main processes are
involved: washout, where material is “swept out” by fallipgecipitation, and rainout, where ash is absorbed
directly into cloud droplets as they form by acting as cloath@ensation nuclei. Both of these processes
are parameterised in NAME using a bulk parameterisatioe.f€moval of ash from the atmosphere by wet
deposition processes is based on the depletion equation

ac
— =-AC 2
dt ’ (2)
whereC' is the ash concentratiohis time andA is a scavenging coefficient. The scavenging coefficiént,
is given by

A= ArB, (3)

wherer is the precipitation rate imum hr—! and A and B are parameters which vary for different types
of precipitation (e.g. rain or snow) and which process imbeepresented (e.g. washout or rainout). The
values for A and B are based on observations and detailed ctmdelling (Maryon et al., 1999). Note that
a review of the literature highlighted that the range of ekpental values for snow is much more uncertain
than for rain. This translates into a larger range of possilalues of A and B for snow than rain.

11
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In NAME the wet deposition scheme is only used if the prejatatate is greater than a threshold value,
ppt_crit. This acts as a filter to light drizzle. The reason dpplying this threshold is that historically
there has been an excessive light drizzle issue in the ghadralon of the UK Met Office NWP model
(Webster and Thomson, 2014). Applying this threshold essstirat there is not an artifical over prediction
of wet deposition. The default value for ppt_crit is 0.83n hr—'. In this study this threshold is varied
between 0 and 0.iam hr—!.

3.2.6 Dry deposition

Dry deposition is the process by which material is removedhfthe atmosphere by transport to, and sub-
sequent uptake by, the ground in the absence of precipitdfioy deposition in NAME is parameterised
through a deposition velocity,. The flux of ash to the ground; is proportional to the near-surface con-
centration of ash(’, and is given by

F= de (4)

wherev, is determined using a resistance analogy.

1

- - @ 5
Ra+Rb+RC’ ()

Vq

whereR, is the aerodynamic resistand®, is the laminar sublayer resistance ardis the surface resistance
(taken to be zero for particulates such as ash) (Webster hath3on, 2011). The aerodynamic resistance,
R,, is used to specify the efficiency with which the ash is tramga to the ground by turbulence. It is
parameterised using a flux gradient approach and similtrégry (Maryon et al., 1999). This means that
the parameterisation is strongly influenced by the prevgineteorological conditions, and thig is per-
turbed using a scaling factor between 0 and 2. The lamindagebresistanceRy,, represents the resistance
to transport across the thin quasi-laminar layer adjaceitité surface. It is determined by both the meteo-
rological situation and particle size. The parameterisafdllows the work of Underwood (2011). For small
particles, smaller than fm,

300
Ry = , (6)

U

12
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5 whereu, is the friction velocity and for larger particles
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20

300
Rb - U*D2 Y (7)

whereD is the particle diameter ipm. In this study the numerator of Eq 6 and Eq 7 is varied between 0
300 to represent the range of uncertainty in the valug;pf

3.2.7 Sedimentation

Sedimentation of ash is represented in NAME using a seditientvelocity,w,.q. This velocity is cal-
culated using the particle diameted), particle density 4,) and ambient meteorological variables at the
particle location (see Maryon, 1997; Webster and Thoms0hl1 In this studyjus.q iS not perturbed as it
is assumed that changes in PSD and particle density coveaige of plausible sedimentation velocities.

3.2.8 Distal fine ash fraction

The true particle size distribution of ash particles endittieiring an eruption includes extremely large par-
ticles that fall to the ground very quickly. For forecastithg effects of the eruption on aviation only the
particles that will be transported large distances neecetodnsidered. These particles form the distal ash
cloud. The fraction of the total emitted ash that remaingis tloud is defined as the distal fine ash fraction
(DFAF). DFAF is difficult to determine as it requires accerateasurements of the particle size distribution
and understanding of any aggregation processes occulttiisgalso possible for DFAF to vary over time
and in different parts of the ash cloud. Estimates of DFARHer2010 Eyjafjallajokull eruption range from
0.7 — 18.5% (Dacre et al., 2011; Grant et al., 2012; Devertigh,e2012b; Dacre et al., 2013). The default
DFAF assumed by the London VAAC is 5% (Witham et al., 2012BJAB simply scales the modelled ash
concentration and therefore does not need to be includdtkianalysis in this paper as the impact on the
simulator output is understood perfectly.

13
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4 Simulator runs and simulator outputs

In this study attention is focused on the ash cloud on 14 Mdp2The simulator has been set up to provide
ash predictions every hour at a resolution of 0.3l&itude by 0.5625 longitude (approximately 40 km x
40 km). Fig. 2(a) shows the simulated ash column loading @0Q0TC on 14 May 2010 for a choice of
parameters near the default values. High column loading$oamd near, and to south east of the volcano.
The main plume extends towards the United Kingdom with aa afeelatively low column loading in the
Atlantic west of Ireland. Rather than attempt to model thiremash cloud, it was decided to restrict attention
to a small number of summaries, specifically the average alsimn loading predicted ovéis large areas
(up to four regions per hour for a total of 24 hours). Thesesneere chosen to cover the geographical
regions where large amounts of ash were detected by satebigervations on this day. The ash column
loadings retrieved using SEVIRI satellite data at 0000 UTCld May 2010 are shown in Fig. 2(b). The
regions used for the first hour are marked by the black boxes.li§t of all regions used in the calculations
can be found in Table 3.

NAME is not a fast simulator (each run of the simulator forstetudy took between half an hour and an
hour), so it is not possible to evaluate it for very many difet parameter sets. The number of NAME
runs that were feasible was potentially insufficient to thdfile statistical models of interest. However, a fast
approximation of the standard NAME output could be generatereducing the number of particles used
in the simulator from 10,000 per hour to 1,000 per hour. Weeexphe effect of this 10-fold reduction in
particle numbers to increase the partcile-sampling naiséaé simulations by a factor af/10. This can
provide many approximate runs to complement the relatif@ly standard simulator runs. Henceforth, the
fast approximation is referred to as “the fast simulatord éime standard version is referred to as “the slow

simulator”.

1500 parameter sets were chosen for the fast simulator usisg a maximin Latin hypercube design
(Urban and Fricker, 2010). A Latin hypercube design is a methf generating multidimensional param-
eter sets, designed to ensure good coverage of the overathpter space. For generating a sample size
1500 from a hypercube, the range of each individual paranetivided into 1500 segments. Then, a ran-
dom sample of size 1500 is generated such that, for each pgggreach of its 1500 segments includes
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exactly one simulated value. A maximin Latin hypercubemafits to build such a hypercube with the largest
minimum distance between any two generated parameteridessmethod is used rather than simply gen-
erating 1500 random parameter sets independently to ettgirthe chosen points are more evenly spaced
throughout the parameter space.

200 different parameter sets were chosen for the slow stmutans in the same way. Finally, the fast

simulator was also run at the same 200 points as the slow &iaruko the difference between the two

simulators could be assessed. For some regions, there vasast complete agreement between the two
simulators, whereas for other regions, the two were relateaot in agreement. Examples of these different
relationships can be seen in Fig. 3. In all regions there was g correlation between the two simulators,

with many correlations bein@.99, and none lower tha®.7.

Before proceeding, some notation should be introduced. #icpdar parameter set is denoted ky and
theith parameter within this set is;. Collections of parameter sets are denotedkby..., x,. The 200
parameter sets at which the slow simulator is evaluatedemwetdd by, ..., x200. and the remaining 1500
parameter sets are denotedsby1, ..., X1700. The sets of parameter sets are labelled

Xg={x1,...,X200}

Xp = {x201,...X1700 }-
Finally, each parameter setis normalised so that each individual parameter value lk&&er) and1.

The slow simulator is denoted hfyand the fast simulator by’. f(x) and f'(x) can be seen as vectors of
length 75 (the total number of geographical regions) wittx) being the value of the average ash column
load in theith region (for example, region 6 is the third region at 01003JT4 May 2010—see Table 3).
If X is a set of parameter sets, th¢(t) is the set of simulator outputs generated by applyfrig each
element ofX. The set of simulated outpuf§ Xs) (that is, the set of all slow simulator outpust) is denoted
by D, andf’(Xs U Xr) (the set of all fast simulator output) is denotedB¥

In this notation, the goal is then to use the evaluatibhand D’ to make inferences about the value of
f(x) for any other parameter s&t This will involve building a statistical approximationrfg, termed an
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emulator. The next section describes the general form of such a madelhe statistical framework used to
make inferences from the simulator outplitandD’.

5 Statistical methods
5.1 Emulation

An emulator is a simple statistical approximation of an exgdee functionf (x), built using a (often small)
collection of simulator rung'(x;), which can be thought of as “data” or “observations”. There several
desirable properties of an emulator:

— It must evaluate quickly.

— It must be expressive enough to provide good approximat@tiee simulator and to allow meaningful
prior judgements.

— It should predict thaf (x) and f (x’) should be very close whenandx’ are very close.

A typical choice to satisfy these requirements for a sceddred f (x) is

Fx) =" Bigi(x) +u(x), ®)

or for a vector-valued'(x)

Fi(%) = Bijgi5 (%) + ().

J

For the rest of this section, attention is restricted toaeaalued/ for simplicity of notation.

Here, g;(x) are known simple functions (for instance polynomials), #mel3; are unknown coefficients.
These terms control the global trend of the model. The fancti(x) controls the local variation of the
model. Typically, it is supposed thaik(x)) = 0 and that Corfu(x),u(x")) is some function of the distance
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betweenx andx’, such that the correlation falls as parameters get furthartaFor example, a popular
choices and the one used for this application is

Corr(u(x), u(xz)) = exp (— (@)) |

whered(x1,x2) is the Euclidean distance between the parametersgasdhe correlation length, a pa-
rameter that determines how quickly correlation falls wdiktance. Finally, it is commonly assumed that
Var(u(x)) = o for all x, so the variance of the local term is constant across thexpetea space. Concep-
tually, the expectation, variance, and correlationaapeiori uncertainty judgements.

Building an emulator therefore involves using a collectidsimulator runsf(x1), ..., f(x,) to

— identify the basis functiong;;
— estimate they;;
— fit the residual function(x).
Such an emulator then provides predictionsf@x) at a newx. Since it is a statistical model, this prediction

also comes with an associated uncertainty, which will berear observed simulator runs and higher away
from them. Fig. 4 shows an emulator for a scalar-valued fonaif one variable.

There are many approaches to fitting such a model. Computetatior applications often involve a mixture
of observed simulator runs and expert knowledge, makingye&ian framework a natural choice. However,
specification of a full joint probability distribution foht problem is difficult and often leads to computa-
tional challenges. In the next section, some of these pmobkre summarised, and an alternative approach,
Bayeslinear, is described.

5.2 Bayes linear methods

Statistical analysis of computer simulators involves conimy observations (for instance, simulator output
and real-world observations) and expert judgements (fstaimce, accuracy of simulator and accuracy of
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observations). Such a problem naturally lies within thepgcof Bayesian statistics, a popular and powerful
tool for combining data with expert judgements, using Batyemrem. A brief summary of the necessary
components of such an analysis are as follows. From expggejments, a joint probability distribution is
constructed forf (x) over the parameter space (for instance, through a jointghitity distribution for the

B andu in Eq. (8)). A collection of simulator rung(x;), ..., f(x,) would be made, and Bayes theorem
used to calculate a posterior distribution ffx) at all values ofx. For calibration and forecasting, this
would then be combined with a probability distribution assahe parameter space (representing the relative
plausibility of eachx to experts), a distribution for the observation error, amtistribution representing the
likely discrepancy between simulator output and realititis-step is outside the scope of this paper but will

be examined in a later article.

Such an approach has been successful in many applicatioosniplicated problems in high dimension,
however, it has some drawbacks. A full Bayes calculatiomimputationally demanding and in high dimen-
sions can be very sensitive to the initial prior specificasioFurther, specifying the full high-dimensional
probability distributions that properly reflect expert ggments is an extremely difficult task. Worse, the
complexity of the calculations makes it very hard to perfaaneful analysis to the sensitivity of the con-
clusions to these prior judgements. Often, these calanatill necessarily make use of computationally-
convenient prior forms that do not correspond well with exjpeliefs. Thus, the analysis will be sensitive
to prior distributions that do not properly reflect our judgents, and the scale and nature of this sensitivity
will be mostly unknown.

In this paper, the alternativBayes linear approach is used (Goldstein and Wooff, 2007). As with a full
Bayes analysis, the method combines prior judgements wiskerwations through simple equations. Bayes
linear analysis does not, however, require a full joint ppmbability distribution specified for all variables.
Rather, the experts need only to specify expectationsanegis, and covariances for a few relevant quanti-
ties. Similarly, rather than a joint posterior probabildistribution, Bayes linear analysis leads to adjusted
expectations, variances, and covariances for relevamttigies. Given a vector of dat® (for example, sim-
ulator runsf(x1),..., f(x,) that have been evaluated), the representatiofiiof Eq. (8), and a vector of
quantities of interesB (for example, the value of the simulatfifx) at some new at which the simulator
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has not yet been evaluated), the adjusted expectation siate@ forB are given by

Ep(B) = E(B) + Cov(B,D)Var(D)™ " (D —E(D)) (9)
Varp (B) = Var(B) — Cov(B, D) Var(D) ' Cov(D, B). (10)

Note that these equations hold for arbitrddynot just theD defined in the previous section (the set of slow
simulator outputs). In particular, we will often replacBdwith D’ (the set of fast simulator outputs) in these
equations.

By so reducing the complexity of the required prior judgetseit is easier to accurately represent these
beliefs while retaining computational feasibility. Fueththe relative simplicity of the adjustment process
allows more convenient analysis of sensitivity to thesggmdents. On the other hand, the inferences from a
Bayes linear analysis are not as expressive (expectatiohgaiances, rather than a full probability distribu-
tion). Thus, a Bayes linear analysis is not simply an upgoade Bayesian analysis, but rather an alternative
whose benefits and shortcomings must be carefully considestore deciding which to use, or whether to
use a combination of the two.

The application of Bayes linear methods to an emulator requdrior judgements of expectations, variances,
and covariances of the components of Eq. (8), that is, thatdies 3; andu(x). It is common to choose
E(u(x)) =0 and Varu(x)) = o2 for all x, and CoV(3;,u(x)) = 0 for all i andx. Thus, the total required
specifications are

— Expectation and variance matrix fGr

— Correlation function Corfu(x1),u(x2));

— Avalue (or prior judgements) far2.
These components are sufficient to apply Egs. (9) and (1€),Bvbeing f (x) at some new, andD being

the observed simulator runs. Examples of this approactgtmiccessfully applied to computer simulators
can be found in Craig et al. (1997); Vernon et al. (2010); Cungnand Goldstein (2009).

Even in this simplified form, it is often difficult to providexpert judgements about these quantities. With
sufficient simulator runs, such as in the case of the fastlsimiuf’, the weight of the “observations” (that
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is, the simulator output that has been seen so far) will behngeater than the prior judgements, so the
adjusted expected valuegE3) will be driven primarily by the data, and their varianceslié low. In such

a case, a successful method has been to use a standard (yesialBd least-squares regression to estimate
the 3, and use the residual variance from the regressiowfoiThese results should be very similar to a
Bayesian analysis, without needing to worry about the gudgements fof5.

The 200 runs of the slow simulator is on the borderline folhsaenethod to work. The 1700 runs of the fast
simulator should be enough to apply this simplification teearulator for the fast simulator. Of course, the
fast simulator is not the simulator of true interest. Howrgites likely that the fast simulator can provide
useful information about the slow simulator. Hence, a metti@posed in Cumming and Goldstein, 2009 is
applied, in which the fast and slow simulators are linkedtigh a simple model.

5.3 Linking fast and slow simulators

Recall that the fast simulator j§(x) and the slow simulator ig(x). An emulator can be built for the fast

simulator:
P
F1(x) =" Bigi(x) + ' (x), (11)
=1

as follows. They; are chosen by the analyst through exploration. Bhare fixed by a least squares method,
for instance theR functionl m to their least squares estimaté;s Var(u/(x)) is taken to be the same for
all x and is given by the residual variance from this least squiéizeghe final component, the correlation
Corr(u’(x1),u'(x2)), can be fit using various methods; more details of this cambed in Appendix Al.1.

The next step is to link this to an emulator fé(x) from Eq. (8). Notice that in Egs. (8) and (11), the
basis functiong;(x) are the same in both emulators. That is, it is supposed thah#an trend of the fast
simulatorf’ has the same form (but different coefficients) as the siroulatinterestf. If f’ is a reasonable
approximation forf (for instance, an older version gf or a version off run at lower resolution) this
supposition will usually be valid.

Further, the coefficients; andg; will often be similar. A model linking these coefficients tallow the fast
simulator runs to provide information about thg At the same time, this model must be flexible enough
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that it does not impose a strong link where none exists. Thresaan be said of the link betweefix) and
u’(x). A simple model is

Bi = Pqﬂg + ¢

u(x) = pout' (x) + w(x),

wherepg, p; are unknown multipliers and; are unknown scalars. If the two simulators are very similar,
then mostp; will be nearl and most; will be near0. If the value ofg;(x) has a much smaller effect on
the fast emulator that on the slow emulaterwill be much larger than. Where the value of;(x) has

a much large effect on the fast emulator that on the slow et lg; will be near zero. Ifg;(x) has an
opposite effect on the fast emulator and the slow emuldienp; will be negative. The emulation process
therefore involves using the fast simulator to work out thef of the emulator, to estimate ti#g and make
inferences about’, and then using the slow simulator to make inferences alimyt;tandw. Note that
underlying this approach is the assumption that the slowlsitar runs do not provide any more information
about the fast simulator.

In this application, it turned out that this could be furtlsemplified to

Bi = pil3;
u(x) = pou' (x) + w(x) (12)
without noticeably reducing the effectiveness of the ertauta

This model requires prior expectations, variances, anditances for the; andpy, as well as forw(x). In
Appendix A1.2, more details of these prior requirementsmovided.

With such a model and the relevant judgements, includingadsaimption that thg. can be taken to be
the least squares estimat,é/ﬁ the Bayes linear adjustment for a ngifx) can now be performed. This
calculation and the resulting equations are somewhat teahso are given in Appendix A1.3; in particular
the adjusted expectation and variance can be found in EG3.a/Ad (A3).
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5.4 Diagnostics and validation

It is important to check that an emulator is performing wedfdre using it to make predictions. There
are several possible reasons an emulator would be poor.ofiredf the mean function could be missing an
important term or even be totally misguided. The form of theelation function might be inappropriate. The
parameters in the correlation function (in this applicatite correlation length) could be set at inappropriate
values. Finally, some other assumptions, such as the asisuntipat Var(«(x)) is the same for akk, could

be seriously misleading.

The mean function plays a large role in these emulators. Bualudiagnostics from linear models can
be valuable in assessing the adequacy of the chosen mediofurithe R?, a statistic that represents the
proportion of variation explained by the parameters in thedr model, is a useful number to check first.
If this is low, then the mean function is not explaining mudhtee variation in the simulator output, and
adding new terms or changing the form of the mean functiomadntshould be considered. Examining the
residuals can also be useful in this process, in particukeather there are regions of the parameter space
where the residuals are systematically large in one doacti

A simple and effective method of validation is leave-onéa@lidation. In this procedure, all but one of the
observed simulator runs are used to build an emulator, asckthulator is used to predict the one run that
was left out. Fom simulator runs, this gives emulators and predictions. If the emulators frequentlyljote
the left-out values to be far from the observed simulator this suggests a problem with the emulator. Here,
“far from” means relative to the variance of the emulator—saful rule of thumb is that about 95% of the
validation runs should be within three standard deviatwitbe prediction.

If this proportion of successful prediction is far from 95%is might signal a fundamental problem with
the mean function and/or the form of the correlation funttiout it can often simply signal a poor choice
of correlation length. If the correlation length is too hjghen the emulator variance will be too low and
hence many observations will be judged “too far” from the &tar predictions. On the other hand, if the
correlation length is too low, then the emulator will not d#eato capture many patterns of local variation
from the mean function that may be present (specifically,sarch patterns that exist over distances much
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higher than the correlation length). It is often possibléutee the correlation length so that the proportion of
successful validations is around 95%.

6 Application to NAME

Throughout this section, unless otherwise specified, ttamftiy f1, the average ash in the first region for
15 the first hour, is being considered, and the full depth versioNAME is being used. The analysis was also
run for the thin layer simulator, with similar results (adtigh the emulators are slightly worse for this case).

6.1 Choosing basis functions and eliminating inactive panaeters

The first stage of building an emulator is to choose the fomstj; (x) in the mean trend. From experience,
polynomial terms are often suitable choices. For each offreutputs, linear models were built with i) first-

order (linear) terms only; ii) second-order (quadratic)l &inst-order terms, with interactions; iii) third-order

(cubic) and lower-order terms, with first-order interaato Explicitly, these are the models

fl(x) = Zam +u/(x)
f(x)= Zaix? + Zzbijxixj + Zcixi + /(%)

i g i

5 fl(x)= Zaixf + Zblzf + chijxiwj + Zdixi + ' (x),

i j#i i
where theu;, b;, ¢;, d; collectively form thes! in Eq. (11) (and, are of course, different values in the three

different models). Note that “linear” in “linear model” rexfs to the linearity of the formy . 5;¢;(x), not the
linearity of theg;, so all three models here are linear models.

The adjusted?? was examined for each model. The findings of this procedungmapplied to the fast
10 simulator runs for the full depth simulator, can be sumneatias follows.
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— The models with only first-order terms were inadequate inyrzases, leading to lowi?? and high
residual variance. For some of the outputs they did provimeddits (adjusted?? between).9 and
0.95).

— The second-order models were very godtf (over 0.95) for almost every region, and good for all
regions (with the lowesk? of 0.89).

— The third-order models provide no noticeable improvemenes second-order models.

As a result of this, the chosegp were second-order and lower terms for all outputs.

The second stage of emulation is the removal of inactiverpaters. In the linear model for any given
output quantity, most of the parameters have little impBeotulators can be improved by focusing on a
few important parameters and leaving the rest out of the niregal entirely. This involves adding a small
“nugget” of variance into the emulator, uncorrelated witkerything else. This nugget represents the fact
that now the emulator does not exactly predict the simulatdput even at parameters already sampled,
because some parameters have been ignored. For examphty fbarameters:;; andz, are active, then
the emulator will give the same prediction whatever the galtizs, ..., whereas of course the simulator
will give slightly different output in each case. The nuggetounts for this uncertainty. An estimate for the
size of the nugget was derived by running the simulator wiffieent values of the inactive parameters and
observing the impact. This is a rather crude approach, baeshe observed variation was several orders of
magnitude lower than the other variances in the emulatergtis little benefit to a more careful analysis.
Formally, the emulator becomes

) =3 Bigi(xa) +ulxa) + v(x),

wherex 4 are the active parameters, angk) represents the nugget, with expectation zero, low variance
and zero correlation with everything else.

A policy of stepwise elimination was followed for each outpat each step, each parameter was removed
in turn, and the change iR? was calculated. The parameter whose removal caused théesheiange

in this was removed. This process was continued for eachubuwtptil either 4 parameters were left or
the removal of a single parameter would reduce Rfeby more thar).03. A third criterion, that theRr?
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should not be allowed to fall below some critical value, wassidered but turned out to be unnecessary.
For most output quantities, this led to the emulators witlr factive variables, with more in a few of the 75
output areas. Parameters (plume height) and:; (mass eruption rate) were active in all models, with
(standard deviation of free tropospheric turbulence) and(precipitation rate required for wet deposition)
active in most. Parameterg (ash density)z3 (scavenging coefficient parametéffor rain), andr;5—x1s
(scavenging coefficient B and dry deposition resistancesg\active in no emulators.

In a standard emulation this would conclude the removal attive parameters, but since in this case the
fast emulator is to be linked to the slow emulator, it is intpat to check that there are no parameters being
removed that are much more important for the slow emulataritfis reason, the same stepwise selection
was performed using the 200 runs of the slow simulator (igmgothe link with the fast emulator). This
procedure selected the same parameters in most casespoatigsvith one difference. It is likely this is
caused by small quasi-random differences in R¥e but for safety these parameters were also added back
into the emulators. This led to an extra parameter beingatetl for four of the outputs.

Finally, since parameters, andxs were closely related (the parameters governing the gamstalxdition
from which the particle size distribution was calculatdtljyas decided that an activg should lead to an
activex, as well. A summary of the number of times each parameter wasas shown in Table 4.

6.2 Emulating the fast simulator

Each of these linear models now gives an estimatesfoand a residual variance that can be used for
Var(u'(x)). Since 1700 is a large number of runs, it is reasonable to rttakesimplification that these
quantities are now known values. The only remaining taskherfast simulator’'s emulator is to specify the
correlation. A squared correlation is used, that is,

2

whered’, the correlation length, is to be set, ad(x;,x3) is the distance betweex; andx,. In Ap-
pendix Al.1, some possibilities for choosifigare provided. Note that using a different scaling parameter
for each dimension of the parameter space can be necessagniycases, but for this application a single
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value proved sufficient (recall that all parameters havenbe@malised so they are all i0, 1], otherwise
different o’ would be needed for each dimension). The approach usedsraghlication is to begin with
0’ =1/3, then use leave-one-out validation usjfigX’) to tuned’, and finally predictf’ (Xs) usingf’ (Xr)
and thisé’ to check that the method has been successful.

This strategy suggested rather small values for the cdiweléengths, betweef..1 and0.15. Predictions

of the remaining@00 runs using the emulator built from the firs500 were accurate for all the outputs: an
example can be seen in Fig. 5, for the case of the first outpthtarfirst hour. The emulator predictions
are close to the observed output (thatfi§,Xs)) relative to the emulator variances in most cases, and the
emulator variances are small relative to the overall vdlitstof simulator output across the parameter space.
This suggests that the emulator is a useful tool for presfictThe proportion off’(Xs) predicted reliably
(that is, within three standard deviations of the emulatmiance) for each output ranged from 94.5% to
99%.

This analysis suggests that the emulator and the choicEsaoé appropriate. A final fast emulator was then
built using all the runs{’(Xs U X)) and the values of’ calculated by the above method. The next step
is to link the fast simulator to the slow simulator and usertlgs f(X's) to make predictions for the slow

simulator.
6.3 Emulating the slow simulator

The emulator for the fast simulator is linked to that of thewslsimulator through Egs. (12) (recall that
the emulators for the slow and fast simulators are given by. ) and (11) respectively). This requires
prior judgements fop; andw(x). For the latter, the judgements used were thabE)) = 0, Var(w(x)) =
Var(u'(x)), and the correlation structure is the same as that ©f), with correlation length initially set

to ¢’ but explored later in the same way. Expectations, variaandscovariances fgr; were specified using
the least-squares method in Appendix Al1.2.

With these priors, and for a given value®@the adjusted expectation and variangg F(x)) and Van, (f(x))
can be computed for any newusing Eqgs. (A2) and (A3) in Appendix A1.3. Note that this caddion in-
cludes the adjusted expectation and variance opthExamining these quantities shows which regions and
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for which g; the differences between the fast and slow simulators ar¢ pnosounced. In conjunction with
the 3., they also give more insight into how the active parametgvedhe simulator output.

As before, the correlation lengthsare tuned using leave-one-out validation. For the slow kitoy it
was found that longer correlations lengths were more apjatey with values ranging frori.2 to 0.4. An
example of the predictions of this validation, comparechvitite observed slow simulator output, can be
found in Fig. 6. Over th&'’5 regions, the proportion of successful predictions fromhkdation ranged
from 94.5% to 99%.

For most emulators, the; were close to 1 (typically betweén95 and1.05) for all ;. With the difference
between the fast and slow simulators being only a factaytd in the simulation noise and with the simu-
lation noise being kept low by averaging over large regitinis, is perhaps expected. The main exceptions
were regions where the fast simulator predicted relatiVithg ash compared with the slow simulator—in
these cases thg were typically betwee.5 and0.75 systematically (that is, no particular parameter was
affected more than others). In no case djg approach) (which would indicate a parameter becoming inac-
tive in the slow emulator) or change sign. The only multiptreat was frequently low wag,, the multiplier

for the residual process. In conclusion, the link betweeamfenctions of the two emulators is strong and
consistent, in the sense that either thare all nearl, or they are all near some so that the difference is
mostly a rescaling. The local variations, on the other hane,usually unrelated, withy near zero. This
suggests that the fast simulator could be used more ex@ngivfuture applications significantly reducing
simulation run times.

6.4 Implications for NAME case study

The adjusteds; confirm that the simulator behaves broadly as one would éxpecmass eruption rate
increases (either due to its dependence on the plume rigbthei via Eq. (1) or alerations in (1) caused
by x3) the quantity of ash in the atmosphere increases. When #wpitation threshold is higher, higher
values of ash in the atmosphere are also predicted. Thisedalless ash being deposited to the surface
as only precipitation rates above the threshold lead to wpbsdition. When the particle size distribution
favours large particles, predicted airborne ash reduceause these heavy particles sediment much more
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quickly than small particles and therefore are removed ftm atmosphere and not available for long-
range transport. The parametergoverning free tropospheric turbulence is more intergstiow and high
values lead to relatively less ash predicted than valueartisvthe middle of the range. This is because at
the extremes the ash has either been widely spread andddduti has not spread enough to reach the
region being considered in significant quantities. Noteepresents both horizontal and vertical turbulence
because it is linked tay. Also becasue the effect in NAME is primarily through diffdiies 027, and

o2 1., Sensitivity toz- implies sensitivity tor,, andr,, too, although at a lower level.

w

Of all the parameters, the plume height drives the output stosngly, followed by the mass eruption rate
and the precipitation threshold. In all cases, thevith the highest adjusted expectation corresponded to a
function of the plume height;; (either thez; term or thexz? term). As a proportion of this, the adjusted
expectations fop; corresponding to function of mass eruption rate, predipitethreshold, and turbulence
were around).3, 0.25, and0.1 respectively. Adjusted expectations feircorresponding to other parameters
were typically lower thar).1 of that for plume height.

Interactions between the parameters (that is, the termbeofdrm j;;2;2;) are mostly relatively small,
although each pair aofy, z7, andx1o (plume height, turbulence in the free troposphere, andipitation
threshold respectively) have strong negative interastidihis means that, for example, although increasing
plume height increases column loading, and increasingrir@patation threshold increases column loading,
increasing both parameters at the same time does not ieaceasnn loading as much as would be expected
looking only at the individual parameters.

The emulators provide insight into which areas of the patamspace will lead to high values of simulated
ash column loading and which areas will lead to low valuessbf@lumn loading. As an extreme case, the
parameters giving the lowest and highest predictions otaihmn loading can be identified. This was done
for the first hour of 14 May, giving two parameter sets at witioé simulator was evaluated. The results of
these simulator evaluations can be seen in Fig. 7. This givédea of the range of possibilities admitted by
the expert judgements from Sect. 3. As can be seen, theseadtgogpe very different; that is, the ranges in
Table 1 cover a broad range of simulator behaviour. Note kem#at our choice of parameter ranges has
deliberately tried to cover the whole range of possible @aland that, for some parameters such as those
relating to turbulence, it is not plausible that the extresroeuld be present throughout the simulation region.
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Now, only a small region of this parameter space will leaditouations that resemble the observations
on this day. The emulators can be used to identify this regfgmarameter space. Since emulators can be
evaluated very quickly, predictions and their associatezbutainty can be generated for very many candidate
parameters, and all predictions that are very far from treeolations can be rejected. This procedure, called
history matching, focuses on the plausible regions of parameter space anwdsathore accurate emulators
to be built within them. Performing this analysis for NAMEgyond the scope of this paper, but will be
covered in a second study.

It is worth considering what advantages this analysis ghwes a traditional one-at-a-time approach. There

are three main benefits. The first is a quantitative assegsmhéime influence of changing each parameter

to any new value. The second is an associated uncertaintizifoassessment. The third is the treatment of

interactions between parameters, which cannot be presenthe-at-a-time analysis. For instance, the ap-
proach used in this study can identify when there is a paiacdmeters such that increasing either separately
increases output, but increasing both simultaneouslyedesers output.

7 Conclusions

In this paper it has been shown that a Bayes linear emulaiproach can be used to identify source and
internal model parameters that contribute most to the daicgy in the long-range transport of volcanic
ash in a complex VATD simulator. The approach presented dicable to other complex simulators that
have long computation times and many parameters contndptiti the overall prediction uncertainty. This
approach uses latin hypercube sampling of the plausibknpetier ranges determined through expert elici-
tation. All parameters are varied in each simulator run &edefore information about the importance of the
parameters and their interaction can be investigated smebusly. This gives a much more realistic esti-
mate of the uncertainty than using one-at-a-time tests emddges much more useful information to model
developers and those planning observational campaigns.

Here 1700 simulator runs have been used to build 75 emuliagpresenting the average ash column loading
in regions on 14 May 2010. These simulator evaluations ce®@rl500 fast simulator runs and 200 slow
simulator runs. The analysis demonstrated the strengttsiofuapproximate simulators to determine the
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general trend of a simulator and provide plausible prioegoke using a relatively small number of accurate
simulator runs to refine the emulator. Bayes linear methogi®wsed to reduce computational complexity
and the need for detailed prior judgements that we may nagveel

For this case the mostimportant parameters are plume heigiss eruption rate, free troposphere turbulence
levels and precipitation threshold for wet deposition. fEhis also a strong negative relationship between
each pair of the first three of these. These conclusions dhmitested in other situations to assess how
widely they hold. This information can be used to inform fetwesearch priorities (e.g. the addition of a
more complex free tropospheric turbulence scheme whiclesapatially and temporally (see Dacre et al.
(2015)) and investigating the importance of the precijgtathreshold within the NAME simulator) and
observational capabilities (e.g. a mobile radar to obsplume height) and measurement campaigns (e.g.
insitu observations of ash particle size distribution)rtRermore, this analysis can be used to prioritise
variables to perturb in a small operational ensemble.

This study has shown the range of possible ash column loatigtdgbutions possible from sampling the
parameter space determined by the ranges elicited fromlaionexperts. Only a small region of this pa-
rameter space will lead to simulations that resemble therhsions on this day. Emulators can be used to
identify this region of parameter space as they can be etelueery quickly. The resulting predictions and
their associated uncertainty can be generated for very roanglidate parameters, and all predictions that
are very far from the observations can be rejected. Thisq@ore, known akistory matching, focuses on
the plausible regions and allows more accurate emulatdrs bwilt within them. This analysis is beyond the
scope of this paper. This will form the basis of a future stbdycould further inform the parameter pertur-
bations used in an operational ensemble. The approachnpeedeere could be easily applied to other case
studies, simulators or hazards. Furthermore, an ensemblawator evaluations could be used to produce
probabilistic hazard forecasts.
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Appendix A: Appendix
Al Adjusting slow emulators using fast emulators
Al.1 Fitting the fast emulator

For the fast emulator, the! are fixed at their least squares estimates, andw/éx)) is set to the residual
standard deviation. This leaves only Corf(x; ),u'(x2)) to be determined. A typical approach is to specify
a correlation function that depends only éfx;,x2), the distance betweety andx,. A common choice,
used in this study, is

Corr(u (1), (x2)) = exp (— (@)) ,

although other choices are possible; in particular usingffardnt correlation length’ for each direction
would often be useful, although did not prove necessaryigapplication.

The parametes’ governs the strength of the correlation, and must be estunfiom the observed resid-
uals by some method. A formal estimation can be performedgusie variogram methods in, for in-
stance, Cressie, 1993, applied, for instance, in Cummiddaoidstein, 2009. A more heuristic approach has
been successful in many other applications (Vernon et@L02Goldstein et al., 2010; Goldstein and Huntley,
2016). This involved the argument that, for a polynomial maction, a plausible value éf is Zﬁ where

p is the highest-order term in the polynomial fit. This stagtiralue can then be explored and adjusted “by
hand”. A popular strategy is a leave-one-out exploration:eflach paramete;, calculate the adjusted ex-
pectation and variance fgf(x;) using all the othex; and a trial value ob’. The observed value of(x;)

can then be used to see whether the prediction was accurate. drhe value ob’ used can be adjusted to
balance two competing requirements: that most of the ptiedigare close (relative to the adjusted variance)
to the observed values, and that the variances are smakxaonple, if many more than 5% of predictions
are more than three standard deviations away from the olts@nys’ is unlikely to be a good choice, so a
good value ob’ should satisfy this requirement while keeping the variareelow as possible.
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Al1.2 Prior judgements for linked emulators

Using the linking model in Eq. (12), an adjustment of the skwulator involves prior expectations, vari-
ances, and covariances for, po, andw(x). A simple approach is to use

E(pi)=1

Var(p;) = o

P
Cov(pi,p;) =,

reducing the specification for the multiplier to two numbeﬁsandr. Note thatp, is included in the above

specifications. This leaves only(x) to consider. A natural choice is to use the same form as is imed
u/(x), including the same variance and the same correlation hehgAnother option is to use the same
correlation structure, but allow Véw(x)) = o2 to be different from Vatu'(x)). Finally, a very useful

- Yw

simplification is to take Coifw(x), p;) = 0 for all ¢ (including0).

Thus, the link betweeyf’ andf is provided byr = {o7, 7,07, }—only these three values need to be specified
now (or only the first two, depending on earlier choices). 8\lepossible to specify values fer this would
provide all the ingredients to perform a Bayes linear caltioh to learn about the slow simulator using the
(adjusted) fast emulator and the evaluatig(&’s). However, the quantities in are difficult to think about,

S0 expecting an expert to be able to specify them is unrialist

Instead, plausible values forcan be generated using the differendges) = f(x) — f’(x) for eachx € Xs.
As calculated in Cumming and Goldstein, 2009,

Var(d(x)) = o2p(x) + oorip(x) + o, (A1)

where
p+1

$(x) =Y _bi(x)*
i=1

Y(x) =Y bi(x)b;(x),
i#j

with

b(x) = (B191(x),---, B, (x)gp(x),u' (%)),
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noting thatu’(x) is known for eachx € X5 because the fast simulator was evaluated at each such point.
Further, Ed(x)) = 0, and hence Ve((x)) = E (d(x)?) and so from Eq. (A1),

E (d(X)Q) = aqu(x) + aimﬁ(x) + 02,

and forx € Xs everything on the right-hand side of this equation is knowegt forr. Replacing Ed(x)?)
with the observed(x)?, this gives Xs| (in our application, 200) linear equations in 3 unknownsl atteast-
squares fit can be used to estimate these three unknowns acetthé& his 7 can then be used as the prior
judgements for the link between the emulators. Note thatadpproach works only because both fast and
slow simulators are evaluated.&t.

Al1.3 Adjusting the slow emulator

Suppose an emulatg? has been constructed as in Eq. (11) by usitgin particular we suppose that the
beta are known and that’ has had its mean and variance adjusted using (9) and (1) {wieplaced by
D’). We also assume the link (12) between the fast and slow eansiiand that priors have been specified for
p; andw, for instance by the methods in Appendix A1.2. The adjuststiémulator and the slow simulator
runsD are available to be used in the adjustment ahdw, and hence the adjustment ffx) for any new

X.
First, we have
Ep(p;) = 14 Cov(p;, D)Var(D) ™" (D —E(D)).

The prior expectation for each elementfis simply the value observed for the corresponding elemént o
D’. Also,

Cov(p;, D;) = Cov (Pm > orBrgr(x;) + pou’ (x;) + w(Xj))
k

=Y CoV(pi,pr) Brgr(x;) + Cov(pi, po) v’ (x;)
k
pt1

=) " Cov(pi, i) b(x;)k-

k=1
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Finally, the variance matrix V4ID) is built from elements of the form

Cov(Dy, D2) = Cov (Z piBigi(x1) + pou/ (x1) + w(x1), Z pifigi(x2) + pou/ (x2) + w(X2)>

(2 (2

— 3" Covlpi,py) blx1)b(xa) + Covlw(xi ), w(xa))

,J
This is all that is needed to calculate B; ).
The adjusted variance foris given by
Varp (p) = Var(p) — Cov(p, D) Var(D) ' Cov(D, p),
which can be calculated from the expressions above.

The adjustment for the residualx) is simpler:

Ep(w(x)) = Cov(w(x), D) Var(D) ' (D — E(D))
Varp (w(x)) = Var(w(x)) — Cov(w(x), D) Var(D) ™" Cov(D,w(x))

where

Cov(w(x),D;) = Cov(w(x),w(x;)).

Then, for any such thak € X (the parameters used for the fast but not slow simulatopru@smming and Goldstein,
2009 showed that the Bayes linear adjustmen{for) is given by

Ep(f(x)) =b(x)"Ep(p) +Ep(w(x)) (A2)
Varp (f(x)) = b(x)T Varp (p)b(x) + Varp (w(x)) 4 2b(x)Covp (p, w(x)), (A3)
where

Covp (p,w(x)) = Cov(p,w(x)) — Cov(p, D) Var(D) ™' Cov(D,w(x))
= —Cov(p,D)Var(D) ™" Cov(D,w(x)),

recalling that Covyp,w(x)) was assumed to be zero.
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For newx for which the fast simulator has not been evaluated, thet@msaremain almost identical, but
there is the added complication thétx), the residual in the fast emulator, is not known. Since thisears
in the final element 0b(x), the above equations cannot be evaluated. Under the ageurtt the slow
simulator runsD provide no further information about the fast simulatog fimal element 0b(x) in these
equations can be treated as fixed at the adjusted expediidn’ (x)).
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Key Parameter name Default value Minimum Maximum
value value
1 Height of plume at release (m) Taken from | default— default+
Arason et al. 2000m 2000m
(2011)
T2 Thin layer depth (m) 1000m 100m 2000m
T3 Mass eruption rate (kgs) As per Mastin et al.| defauly/3 defaultx 3
(2009)
T4 Shape parameter for the Gamma distribution for particlBA 3 10
sizes
s Scale parameter for the Gamma distribution for particl&A 1 10
sizes {um)
Te Density of the ashig m~?) 2300 1350 2700
r7 Standard deviation of horizontal velocity for free tropp-0.25 0.0025 2.5
spheric turbulencenf s—1). Varied in proportion tars.
s Standard deviation of vertical velocity for free tropp-0.1 0.001 1

spheric turbulenceng s—'). Varied in proportion ta;.

T9 Horizontal Lagrangian timescale for free troposphefi@00 100 900

turbulence (s). Varied in proportion too.

10 Vertical Lagrangian timescale for free tropospheric turd00 20 300
bulence (s). Varied in proportion tey.

T11 Standard deviation of horizontal velocity for unresolved.8 0.27 1.74

mesoscale motionsi(s 1)

T12 Precipitation rate required for wet deposition to ocquf.03 0 0.1

(mm hr—1)

. . . Below cloud:
Ti3 Scavenging coefficient parameter A for rasﬁ() 8 45 10-5 0.000001 0.01
4
In cloud:
3.36x10"*
) N Below cloud:
T14 Scavenging coefficient parameter A for snow {) 8.0x10-5 0.000001 0.1
.UX
In cloud:
5.2x107°
15 Scavenging coefficient parameter B for rain 0.790 0.4 1.1
) N Below cloud: 0.305
Ti6 Scavenging coefficient parameter B for snow 0.2 1.2
In cloud: 0.790
T17 Dry deposition aerodynamic resistance perturbatjoh 0.5 2
factor
T1s Dry deposition Laminar sublayer resistance numerafo800 0 300

Table 1. Summary of the parameters, default values and ranges used in this study.
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Particle Diameter (um) | Mass Fraction
0.1-0.3 0.001
0.3-1.0 0.005
1.0-3.0 0.05
3.0-10.0 0.2

10.0 - 30.0 0.7
30.0-100.0 0.044

Table 2. The default input source PSD used in NAME by the London VAAC.
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First region Second region Third region Fourth region
0000 UTC (—13,61):(—5,69) (—13,55):(—6,61) (—22,59):(—13,65)
0100 UTC (—14,62):(—6,69) (—14,55):(—6,62) (—22,60):(—14,65)
0200 UTC (—14,61):(—6,69) (—14,54):(—6,61)
0300 UTC | (—14.5,61.5):(—6.5,69.5) | (—14.5,54):(—4,61.5)
0400 UTC (—15,62):(—6,70) (—15,54):(—5,62)
0500 UTC (—15.5,61):(—6,70) (—15,53):(—3,61)
0600 UTC (—15.5,61):(—6,70) (—15,53):(—3,61)
0700 UTC (—17,63.5):(—9,70) (—14.5,59):(—6,63.5) | (—11,53):(—2,59.5)
0800 UTC (—18,64):(—9,70) (—15,61):(—8,64) (—11,53):(—1,61) (—27,63):(—19,66)
0900 UTC (—20.5,64):(—9,71) (—15,61):(—8,64) (—11,53):(—1,61) (—28,63):(—20,66)
1000 UTC | (—21,64.5):(—9,71) (—15,61):(—8,64.5) (—11,53):(—1,61) (—30,63):(—21,66)
1100 UTC (—21,63):(—9,71) (—12,53):(—1,62) (—30,63):(—21,66)
1200 UTC (—22,63.5):(—9,71) (—12,53):(—1,62) (—31,63):(—23,66)
1300 UTC (—23,63):(—10,71) (—12,53):(—1,62) (—32,63):(—23,66)
1400 UTC (—24,65):(—17,71) (—17,63):(—12,67) (—12,52):(0,62) (—33,62.5):(—22,66.5)
1500 UTC (—24,65):(—18,71) (—18,63):(—12,67) (—8,53):(0,59) (—33,62.5):(—22,65.5)
1600 UTC (—25,64):(—20,71) (—20,62):(—12,66) (—8,52):(0,58) (—33,62.5):(—24,66)
1700 UTC (—26,65):(—19,71) (—20,62):(—15,65) (—8,52):(0,58) (—34,62.5):(—24,66)
1800 UTC (—28,66):(—19,71) (—27,62):(—14,66) (=7,52):(1,58) (—34,62.5):(—27,66)
1900 UTC (—27,62):(—14,67) (=7,52):(1,57) (—34,62.5):(—27,66)
2000 UTC (—27,62):(—14,67) (=7,52):(1,57) (—36,62.5):(—27,66.5)
2100 UTC | (—27.5,61.5):(—18,67) (=7,52):(1,57) (—37,62):(—27.5,66.5)
2200 UTC |  (—28,63.5):(—18,67) (=7,51.5):(1,55.5) (—37,62):(—28,66.5)
2300 UTC | (—30,63.5):(—18,66.5) (=7,51.5):(1,55.5) (—37,62):(—30,66.5)

Table 3. Location of geographical regions used for comparision frehour by longitude and latitude of the region

corners.
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Parameter

z1

&3

T4

5 Te idrd

T9

T11

T12

13

T14

T1

5

T1e

17

x18

Times active

75

75

18

18| 0 | 61

15

4

58

0

1

0

0

0

0

Table 4. Number of outputs for w

hich each parameter was judged a¢tind hence included in the emu

ator for that

output). Recall that7 andxs are linked, and sas is not present in the table, and similarly fero which is linked to

X9 .
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Discussions

Figure 1. (a) UK Met Office surface analysis chart at 0000 UTC on 14 May®Mean sea level pressure isobars
overlaid with surface fronts.(b) AVHRR infrared satellitmage at 0613 UTC on the 14 May 2010 provided by the
Dundee satellite receiving station.
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Figure 2. (a) Simulated ash column loading at 0000 UTC 14 May 2010 ugargmeters near the default values. (b)

50°N

Natural Hazards
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Discussions
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SEVIRI satellite retrieved ash column loading also at 0000CUL4 May 2010. The black boxes denote the regions

over which average ash column loading is being emulatedhisrtiour. In (a) column loading of 200Q@y/m? and

2000,g/m? are shown by the green and grey contours respectively.
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Figure 3. Relationship between the slow simulator and fast simulatigput forX’s at (a) the first region and (b) the 63rd
region (third region at 1900 UTC). The 63rd region has thedstorrelation between fast and slow simulator output.
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Figure 4. One-dimensional example of an emulator. The points repteke six evaluations of (x), the black line is
the emulator’s prediction, and the red lines give two stathd@viations. The blue dashed line is the true valug(sf).
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Log ash in region 1
2
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X_i (reordered by prediction)

Figure 5. Validation plot for the emulator of the first output. Emulatxpected value for the parameter setsiin
is shown in black, with an interval of three standard dewiadi each side shown in blue. The red line shows the true

simulator output at each parameter set. The parametersieaveordered from lowest to highest emulator prediction.
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Figure 6. Leave-one-out validation plot for the emulator of the slamdator. Emulator expected value is shown in
black, with an interval of three standard deviations eadk shown in blue. The red line shows the true simulator output

at each parameter set. The parameters have been orderelbivest to highest emulator prediction.
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Figure 7. NAME ash column loading for parameter choices with the higlaad lowest expected ash column loadings

in the first geographical region at 0000 UTC 14 May. The corg@ue as in Figure 2.
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