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Abstract. Following the disruption to European airspace caused by theeruption of Eyjafjallajökull in 2010

there has been a move towards producing quantitative predictions of volcanic ash concentration using vol-

canic ash transport and dispersion simulators. However, there is no formal framework for determining the

uncertainties on these predictions and performing many simulations using these complex models is computa-

tionally expensive. In this paper a Bayes linear emulation approach is applied to the Numerical Atmospheric-5

dispersion Modelling Environment (NAME) to better understand the influence of source and internal model

parameters on the simulator output. Emulation is a statistical method for predicting the output of a computer

simulator at new parameter choices without actually running the simulator. A multi-level emulation approach

is applied to combine information from many evaluations of acomputationally fast version of NAME with

relatively few evaluations of a slower, more accurate, version. This approach is effective when it is not10

possible to run the accurate simulator many times and when there is also little prior knowledge about the

influence of parameters. The approach is applied to the mean ash column loading in 75 geographical regions

on 14 May 2010. Through this analysis it has been found that the parameters that contribute the most to the

output uncertainty are initial plume rise height, mass eruption rate, free tropospheric turbulence levels and

precipitation threshold for wet deposition. This information can be used to inform future model development15

and observational campaigns and routine monitoring. The analysis presented here suggests the need for fur-

ther observational and theoretical research into parameterisation of atmospheric turbulence. Furthermore it

can also be used to inform the most important parameter perturbations for a small operational ensemble of

simulations. The use of an emulator also identifies the inputand internal parameters that do not contribute

significantly to simulator uncertainty. Finally, the analysis highlights that the fast, less accurate, version of20

NAME can provide useful information without needing the accurate version at all. This approach can easily

be extended to other case studies, simulators or hazards.

1 Introduction

Volcanic ash is a significant hazard to aircraft, and human life, by reducing visibility and causing both

temporary engine failure and permanent engine damage (Casadevall, 1994). The presence of ash disrupts air25

traffic and can result in large financial losses to the aviation industry. The eruption of the Icelandic volcano
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Eyjafjallajökull in April 2010 disrupted European airspace, the busiest airspace in the world, for thirteen

days, grounded over 95,000 flights (European Commission, 2011) and is estimated to have cost the airline

industrye3.3 billion (Mazzocchi et al., 2010).

In the event of an eruption, the decision to fly is informed by information provided by one of the nine Vol-

canic Ash Advisory Centres (VAACs). The VAACs issue hazard maps of predicted ash cloud extents based5

on forecasts from Volcanic Ash Transport and Dispersion simulators (VATDs). After the large-scale dis-

ruption caused by the 2010 Eyjafjallajökull eruption new guidelines were brought in by EUROCONTROL

(the European Organisation for the Safety of Air Navigation) which require predictions of ash concentration

values as well as ash cloud extents. However, there are largeuncertainties in the VATD ash concentration

forecasts. These uncertainties arise from a number of sources including incomplete or inaccurate knowledge10

of the specific volcanic eruption (source uncertainty) and meteorological conditions and other sources of pa-

rameter and forcing function uncertainty, as well as particular physical processes being simplified or omitted

(structural uncertainty) in any particular simulator. Currently, no systematic estimation of the resulting un-

certainty is performed. This is a major limitation of the operational system and as such there is the danger of

making incorrect decisions due to misjudging the accuracy of the simulator predictions.15

There have been many studies investigating the processes that control the long-range dispersion of volcanic

ash. The majority of these studies focus on a small number of simulator inputs or parameters and change the

parameters one-at-a-time (OAT) to assess their impact on the predictions of volcanic ash transport. These

studies test the difference between the simulator output from a control or baseline case and the output from

the perturbed cases. This approach is appealing as it alwayscalculates the change in the simulator away20

from a well known baseline. Examples of studies that use thisapproach are Costa et al. (2006); Witham et al.

(2007); Webley et al. (2009); Dacre et al. (2011); Devenish et al. (2012a, b); Folch et al. (2012); Grant et al.

(2012); Witham et al. (2012b); Dacre et al. (2015). However,there are three main disadvantages of using

OAT analysis. First, the amount of parameter space that is sampled quickly reduces as the number of pa-

rameters considered is increased (Saltelli and Annoni, 2010). Secondly, OAT tests ignore any interactions25

between parameters. For example it is possible that perturbing two parameters separately in OAT tests might

lead to negligible impacts, while the impact produced by perturbing them together might be much larger.

Finally, the analysis cannot provide an overall assessmentof uncertainty.
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Performing sensitivity tests that cover a wide range of parameters and parameter values for a complex simu-

lator, such as a VATD simulator, is expensive in both time andmoney. This makes uncertainty quantification

impractical as one can only afford a limited amount of simulator runs. Uncertainty and sensitivity analyses

as well as calibration require a large number of runs. In thisstudy we introduce the use of emulation to

understand the sensitivity of an operational VATD simulator to source and internal simulator parameters.5

An emulator is a simple statistical approximation of a complicated and (typically) computationally-expensive

function, such as a computer simulator, that can be evaluated almost instantly over the whole parameter

space. The emulator provides a prediction for the simulator’s output at any given parameter choice, and an

associated uncertainty for this prediction (this can take the form of a full probability distribution, or an ex-

pected value and variance). This enables the quantificationof the impact of each simulator parameter on the10

prediction of the dispersion of volcanic ash. This approachhas been used successfully in tsunami modelling

(Sarri et al., 2012), simulating convective cloud (Johnsonet al., 2015), aerosol modelling (Lee et al., 2011,

2012, 2013), galaxy formation (Vernon et al., 2010) and regional climate projections (Harris et al., 2010).

Emulators have several main uses in analysing computer simulators. They can be used for calibration, to

determine which parameters lead to simulator output that reasonably matches observed data. They can also15

be used for forecasting the future behaviour of the system inquestion. Finally, as in this paper, they can be

used as a research tool to better understand the simulator, the role of the parameters, the interactions between

them and to help guide future research priorities.

The aim of this paper is to demonstrate the potential of the emulation approach applied to a VATD simula-

tor. We use the Numerical Atmospheric-dispersion Modelling Environment (NAME) developed at the UK20

Met Office (Jones et al., 2007). This simulator is used as the operational model at the London VAAC and

can predict the location and concentration of volcanic ash following a volcanic eruption. In this study we

focus on predicting the vertically integrated (or column) mass loadings in a particular geographical region

which occured following the 2010 Eyjafjallajökull eruption. The goal is to identify which parameters are the

principle drivers of the uncertainty in the simulator’s predictions of column loadings, and to investigate how25

exactly these parameter values influence the output. The emulators used are also designed for use in history

matching, which is a method for determining which parameters give plausible matches to observations. This

application of the emulators is deferred to a future article.

4

Nat. Hazards Earth Syst. Sci. Discuss., doi:10.5194/nhess-2016-288, 2016
Manuscript under review for journal Nat. Hazards Earth Syst. Sci.
Published: 5 September 2016
c© Author(s) 2016. CC-BY 3.0 License.



The paper is structured as follows. Section 2 describes the NAME simulator and the case study. Section 3

details the parameters that are varied in this study and the plausible ranges (as assessed by the simulator

experts) for these parameters. Section 4 describes the choice of simulator runs used to build the emulators,5

and the simulator outputs that are to be emulated. Section 5 gives an overview of the statistical methods used

in the analysis. The application of these methods to the casestudy is detailed in Sec 6.

2 Description of NAME and chosen case study

2.1 Model description

NAME is the VATD simulator used by the London VAAC. It is a Lagrangian particle dispersion model10

originally developed in response to the 1986 Chernobyl disaster. Particles, each representing a mass of

volcanic ash, are released from a source. These particles are advected by 3D wind fields provided by forecasts

or analyses from a numerical weather prediction (NWP) model. The effect of turbulence is represented by

stochastic additions to the particle trajectories based onestimated turbulence levels. NAME also includes

parameterisations of sedimentation, dry deposition and wet deposition which are required to simulate the15

dispersion and removal of volcanic ash. The ash concentrations are calculated by summing the mass of

particles in the model grid boxes and over a specified time period. It is important to note that some processes

affecting the eruption plume are not represented in NAME or not included the NAME configurations used

in this study. Missing processes include aggregation of ashparticles, near source plume rise and processes

driven by the eruption dynamics (e.g. Woodhouse et al., 2013). Note that the simulations presented in this20

paper were performed using NAME version 6.1.

To predict the transport and dispersion of ash, informationabout the volcanic eruption is required. These

are known as eruption source parameters (ESPs) and include plume rise height, mass eruption rate, ver-

tical profile of the plume emissions, particle density and particle size distribution. ESPs are required to

initialise the NAME simulations. Full details of the NAME setup used by the London VAAC can be found25

in Witham et al. (2012a). The simulations used in this study have a start time of 2300 UTC on 7 May 2010.

This start time has been chosen to ensure that NAME has had sufficient time to spin up before the chosen
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case study. The details of the other model parameters is discussed in Sect. 3. The ash column loadings are

calculated by summing the mass of the ash in model grid boxes and averaged over 1 hour. Here model grid

boxes are 0.375◦ latitude by 0.5625◦ longitude (approximately 40 km x 40 km).5

2.2 Case study description

The case study chosen here is that of 14 May 2010. This is during the later phase of the Eyjafjallajökull

eruption (14 April – 23 May). Although this later phase of theeruption did not have as much impact on the

aviation industry, it is very well observed using ground-based instruments (e.g. Pappalardo, 2013), aircraft

measurements (e.g. Johnson et al., 2012) and satellites (e.g Francis et al., 2012). Due to the large amount of10

observational data it is also the focus of several modellingstudies (e.g. Grant et al., 2012; Devenish et al.,

2012a; Dacre et al., 2013). Between the 12 and 14 May, a low pressure system moved across Iceland trans-

porting ash cyclonically to the North and West of Iceland on 12 May, towards Europe on 13 May and to

the West of Iceland on 14 May. This followed a period (approximately 7 days) of relatively settled weather

dominated by a large area of high pressure in the the North Atlantic. The synoptic situation at 0000 UTC 1415

May is shown in Figure 1a. Figure 1b shows a satellite infrared image taken by the AVHRR at 0613 UTC on

the 14 May. There are high level clouds ahead of the occluded front located between Ireland and England.

Behind the front there is low-level stratus cloud.

3 Choice of uncertain input parameters

Five eruption source parameters and nine internal simulator parameters were selected to represent the main20

uncertainties affecting the simulation of the dispersion of the volcanic ash in the NAME simulator. A short

description of each parameter is given below along with an associated plausible range. The range represents

our assessment of uncertainty on the value of each parameter. It is within these ranges that the training runs

of the simulator will be performed in order to build the emulators. The uncertainty assessments were found

through a small expert elicitation exercise in which information from relevant literature was combined with

expert knowledge of NAME and its parametrisation schemes. Table 1 summarises the parameters and their
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plausible ranges. In this study we do not consider the impactof the meteorological data used to drive NAME.

More detailed expert judgements on the relative plausibility of parameter choices are not required to build

an emulator, although if available could be used to adjust the training design.5

3.1 Eruption source parameters

This section describes in detail the parameters specific to the eruption source and how they are perturbed in

the runs used to build the statistical emulator.

3.1.1 Plume height, H

Plume height governs the height at which the ash particles are emitted into the atmosphere. This can have10

a large impact on the horizontal and vertical structure of the ash cloud as atmospheric wind speed and

direction vary with height. Therefore to simulate realistic dispersion following an eruption it is necessary

to know this height as accurately as possible. During the 2010 Eyjafjallajökull eruption information about

the plume height was available from the Iceland Meteorological Office’s C-band radar based at Keflavík

Airport. However, there are time periods when no radar data was available. This was due to a variety of15

factors including the plume being obscured by meteorological cloud, missing radar scans and the fact that

when the plume height was below 2.5 km it could not be detecteddue to the orography in the local area.

When no observational plume height is available the last observed value persists until a new observation is

made. In this study we will be using the data from the Keflavík radar (Arason et al., 2011) as the control

plume height. This control height is then perturbed by an increment in each of the simulations used to build20

the emulator. The maximum and minimum increment used is±2 km. This is in line with observational error

from the radar.

3.1.2 Vertical distribution of ash

In this study there are two possible vertical profiles of ash:full depth source and thin layer source (referred

to in Grant et al. (2012) as "uniform" and "top hat"). In the full depth case all the ash is evenly distributed
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from the volcano vent to the plume height. In the thin layer case all of the ash is emitted uniformly in a

thin layer, with thicknessdz. The middle of this thin layer is coincident with the maximumheight of the

plume. In this study 1700 full depth runs and 1700 thin layer runs have been performed. In the thin-layer5

casesdz has been determined by perturbing a control value ofdz equal to 1 km. The minimum/maximumdz

possible is 0.1 km/2 km. This range spans the observed ash layer depths in the literature for our case study

(e.g. Marenco et al., 2011; Schumann et al., 2011; Grant et al., 2012; Pappalardo, 2013; Dacre et al., 2015).

3.1.3 Mass eruption rate, MER

Currently there is no direct method of measuring how much mass is being emitted from an erupting volcano.10

Therefore many VAACs use an empirical relationship betweenthe observed plume height and the eruption

rate. There are number of relationships in the literature relating these two quantities (e.g Sparks et al., 1997;

Mastin et al., 2009). In this paper the following relationship, based on Mastin et al. (2009) is used:

MER= 140.8H4.15, (1)

whereH is the plume height above the volcano summit in kilometers and MER represents the total mass15

eruption rate in kilograms per second (Mastin et al., 2009; Webster et al., 2012). HereH is the perturbed

plume height described in Sect. 3.1.2. Due to the empirical nature of this formulation the MER also has an

associated uncertainty as the data used to form the relationship is based only on a small number of volcanoes

of a similar nature (Mastin et al., 2009). To account for thisthe MER is perturbed by a factor between 1/3

and 3.20

3.1.4 Particle size distribution, PSD

In the simulations used here, only fine ash is represented with diameters ranging from 0.1–100µm separated

into 6 size bins. The NAME default PSD (shown in Table 2) is based on observations by Hobbs et al. (1991)

of ash from explosive eruptions of Mount Redoubt, St Augustine and Mount St Helens. The mass fraction

of dispersing material is divided over the model particles within each size range. Each model particle may
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correspond to many actual particles of a certain diameter. The exact diameter allocated to each model particle

is such that the log of the diameter is uniformly distributedwithin each size range making up the PSD.

The PSDs used in the runs to build the emulator were formulated as follows. Dacre et al. (2013) present

several observed PSDs for the period around 14 May 2010; it was decided to choose a range for the PSDs5

that included all of these. These alternatives can all be reasonably reproduced using gamma distributions with

particular shape and scale parameters. Therefore, insteadof specifying a range for the frequency associated

with each particle diameter bin, a range was specified for these two parameters. For any given pair within

this range, the required PSDs can easily be computed. The range for these parameters was chosen such that

all the alternative PSDs could be reconstructed to a reasonable approximation.10

3.1.5 Particle density

By default, the London VAAC modelling procedure assumes that ash particles are spherical and have a

density of 2300kg m−3 (Bonadonna and Phillips, 2003). In this study the density isperturbed in the range

1350kg m−3 – 2700 kg m−3. This range of perturbation to the particle density is considered to include the

uncertainty attributed to the particle shape and aggregation.15

3.2 Internal simulator parameters

The long-range transport of volcanic ash can be described bytwo sets of processes. The first set, advection

and dispersion, represent the motion of the particles. The second set, loss processes, model how the ash is re-

moved from the atmosphere. This section describes in detailthe parameterisations and associated parameters

in NAME that represent the two sets of processes.

3.2.1 Advection and dispersion parameters

In NAME particles are advected in three dimensions by winds usually provided by a NWP model, with

turbulent dispersion simulated by a random walk technique which represents the turbluent velocity structures

9
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in the atmosphere. Particles are advected each time step with the change in position involving contributions5

from the resolved wind velocity, the turbulence, and the unresolved mesoscale motions.

3.2.2 Free tropospheric turbulence

The diffusion due to free tropospheric turbulence is specified by a diffusivity,K, which is related to the turbu-

lent velocities and time scales of atmospheric motions. In NAME, the along-wind and cross-wind spread are

assumed to be equal, and the eddy diffusivity is further assumed to take the formK = (σ2
uτu,σ

2
uτu,σ

2
wτw)10

whereσu andσw are the standard deviations of the horizontal and vertical velocity fluctuations, respectively,

andτu andτw are the corresponding horizontal and vertical Lagrangian timescales. While these quantities

are likely to vary in space and time, NAME simply assumes fixedvalues. The default values and plausible

ranges for these parameters (see Table 1) are based on observations of vertical and velocity variances and dif-

fusivities above the atmospheric boundary layer and valuesused in other dispersion models (Schumann et al.,15

1995; Dürbeck and Gerz, 1995, Webster and Thomson, personalcommunication). The upper limits of these

parameters are representing plausible extreme values of turbulence. Note that in this study the horizontal and

vertical free tropospheric turbulence parameters are varied by the same proportion.

3.2.3 Unresolved mesoscale motions

Low frequency horizontal eddies with scales that lie between the resolved motions of the input meteorolog-20

ical data and the small three-dimensional turbulent motions represented in the turbulence parameterisation

scheme are parameterised separately by the unresolved mesoscale motion scheme (Webster et al., 2015). As

in the free tropospheric turbulence scheme the parameters governing the unresolved mesoscale motions are

fixed in time and space. It is assumed that the impact of the unresolved mesoscale motions is the same in

both components of the horizontal motion. The default values appropriate to the global NWP data used in

this study areσm= 0.8 m s−1 andτm = 14400 s. These default parameters are derived from the spectral

characteristics of the input meteorological data (Websterand Thomson, 2005). At long range, only the dif-

fusivity σ2
mτm matters and so, to simplify the experimental design, we seekto perturb this without worrying
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about the values ofσm andτm separately. To achieve this diffusivity range, between 0.05 and 2 times the5

default value, we keptτm constant at 6120 s and variedσm from 0.27 – 1.74m s−1 as in Table 1.

3.2.4 Loss process parameters

This section describes the parameters associated with the processes that remove ash from the atmosphere.

The loss processes represented in NAME are wet deposition and dry deposition (including sedimentation).

Within NAME these losses are applied on a particle basis (i.e. the mass of each particle is reduced each time10

step).

3.2.5 Wet deposition

Wet deposition is the process of ash depletion by precipitation in the atmosphere. Two main processes are

involved: washout, where material is “swept out” by fallingprecipitation, and rainout, where ash is absorbed

directly into cloud droplets as they form by acting as cloud condensation nuclei. Both of these processes15

are parameterised in NAME using a bulk parameterisation. The removal of ash from the atmosphere by wet

deposition processes is based on the depletion equation

dC

dt
=−ΛC, (2)

whereC is the ash concentration,t is time andΛ is a scavenging coefficient. The scavenging coefficient,Λ,

is given by20

Λ =ArB , (3)

wherer is the precipitation rate inmm hr−1 and A and B are parameters which vary for different types

of precipitation (e.g. rain or snow) and which process is being represented (e.g. washout or rainout). The

values for A and B are based on observations and detailed cloud modelling (Maryon et al., 1999). Note that

a review of the literature highlighted that the range of experimental values for snow is much more uncertain

than for rain. This translates into a larger range of possible values of A and B for snow than rain.
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In NAME the wet deposition scheme is only used if the prepitation rate is greater than a threshold value,

ppt_crit. This acts as a filter to light drizzle. The reason for applying this threshold is that historically5

there has been an excessive light drizzle issue in the globalversion of the UK Met Office NWP model

(Webster and Thomson, 2014). Applying this threshold ensures that there is not an artifical over prediction

of wet deposition. The default value for ppt_crit is 0.03mm hr−1. In this study this threshold is varied

between 0 and 0.1mm hr−1.

3.2.6 Dry deposition10

Dry deposition is the process by which material is removed from the atmosphere by transport to, and sub-

sequent uptake by, the ground in the absence of precipitation. Dry deposition in NAME is parameterised

through a deposition velocity,vd. The flux of ash to the ground,F is proportional to the near-surface con-

centration of ash,C, and is given by

F = vdC (4)15

wherevd is determined using a resistance analogy.

vd =
1

Ra +Rb +Rc
, (5)

whereRa is the aerodynamic resistance,Rb is the laminar sublayer resistance andRc is the surface resistance

(taken to be zero for particulates such as ash) (Webster and Thomson, 2011). The aerodynamic resistance,

Ra, is used to specify the efficiency with which the ash is transported to the ground by turbulence. It is20

parameterised using a flux gradient approach and similaritytheory (Maryon et al., 1999). This means that

the parameterisation is strongly influenced by the prevailing meteorological conditions, and thusRa is per-

turbed using a scaling factor between 0 and 2. The laminar sublayer resistance,Rb, represents the resistance

to transport across the thin quasi-laminar layer adjacent to the surface. It is determined by both the meteo-

rological situation and particle size. The parameterisation follows the work of Underwood (2011). For small

particles, smaller than 1µm,

Rb =
300
u∗

, (6)

12
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whereu∗ is the friction velocity and for larger particles5

Rb =
300
u∗D2

, (7)

whereD is the particle diameter inµm. In this study the numerator of Eq 6 and Eq 7 is varied between 0-

300 to represent the range of uncertainty in the value ofRb.

3.2.7 Sedimentation

Sedimentation of ash is represented in NAME using a sedimentation velocity,wsed. This velocity is cal-10

culated using the particle diameter (D), particle density (ρp) and ambient meteorological variables at the

particle location (see Maryon, 1997; Webster and Thomson, 2011). In this study,wsed is not perturbed as it

is assumed that changes in PSD and particle density cover therange of plausible sedimentation velocities.

3.2.8 Distal fine ash fraction

The true particle size distribution of ash particles emitted during an eruption includes extremely large par-15

ticles that fall to the ground very quickly. For forecastingthe effects of the eruption on aviation only the

particles that will be transported large distances need to be considered. These particles form the distal ash

cloud. The fraction of the total emitted ash that remains in this cloud is defined as the distal fine ash fraction

(DFAF). DFAF is difficult to determine as it requires accurate measurements of the particle size distribution

and understanding of any aggregation processes occurring.It is also possible for DFAF to vary over time20

and in different parts of the ash cloud. Estimates of DFAF forthe 2010 Eyjafjallajökull eruption range from

0.7 – 18.5% (Dacre et al., 2011; Grant et al., 2012; Devenish et al., 2012b; Dacre et al., 2013). The default

DFAF assumed by the London VAAC is 5% (Witham et al., 2012b). DFAF simply scales the modelled ash

concentration and therefore does not need to be included in the analysis in this paper as the impact on the

simulator output is understood perfectly.
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4 Simulator runs and simulator outputs

In this study attention is focused on the ash cloud on 14 May 2010. The simulator has been set up to provide

ash predictions every hour at a resolution of 0.375◦ latitude by 0.5625◦ longitude (approximately 40 km x5

40 km). Fig. 2(a) shows the simulated ash column loading at 0000 UTC on 14 May 2010 for a choice of

parameters near the default values. High column loadings are found near, and to south east of the volcano.

The main plume extends towards the United Kingdom with an area of relatively low column loading in the

Atlantic west of Ireland. Rather than attempt to model the entire ash cloud, it was decided to restrict attention

to a small number of summaries, specifically the average ash column loading predicted over75 large areas10

(up to four regions per hour for a total of 24 hours). These areas were chosen to cover the geographical

regions where large amounts of ash were detected by satellite observations on this day. The ash column

loadings retrieved using SEVIRI satellite data at 0000 UTC on 14 May 2010 are shown in Fig. 2(b). The

regions used for the first hour are marked by the black boxes. The list of all regions used in the calculations

can be found in Table 3.15

NAME is not a fast simulator (each run of the simulator for this study took between half an hour and an

hour), so it is not possible to evaluate it for very many different parameter sets. The number of NAME

runs that were feasible was potentially insufficient to build the statistical models of interest. However, a fast

approximation of the standard NAME output could be generated by reducing the number of particles used

in the simulator from 10,000 per hour to 1,000 per hour. We expect the effect of this 10-fold reduction in20

particle numbers to increase the partcile-sampling noise in the simulations by a factor of
√

10. This can

provide many approximate runs to complement the relativelyfew standard simulator runs. Henceforth, the

fast approximation is referred to as “the fast simulator” and the standard version is referred to as “the slow

simulator”.

1500 parameter sets were chosen for the fast simulator runs,using a maximin Latin hypercube design25

(Urban and Fricker, 2010). A Latin hypercube design is a method of generating multidimensional param-

eter sets, designed to ensure good coverage of the overall parameter space. For generating a sample size

1500 from a hypercube, the range of each individual parameter is divided into 1500 segments. Then, a ran-

dom sample of size 1500 is generated such that, for each parameter, each of its 1500 segments includes

14
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exactly one simulated value. A maximin Latin hypercube attempts to build such a hypercube with the largest

minimum distance between any two generated parameter sets.This method is used rather than simply gen-

erating 1500 random parameter sets independently to ensurethat the chosen points are more evenly spaced5

throughout the parameter space.

200 different parameter sets were chosen for the slow simulator runs in the same way. Finally, the fast

simulator was also run at the same 200 points as the slow simulator, so the difference between the two

simulators could be assessed. For some regions, there was analmost complete agreement between the two

simulators, whereas for other regions, the two were relatedbut not in agreement. Examples of these different10

relationships can be seen in Fig. 3. In all regions there was strong correlation between the two simulators,

with many correlations being0.99, and none lower than0.7.

Before proceeding, some notation should be introduced. A particular parameter set is denoted byx, and

the ith parameter within this set isxi. Collections of parameter sets are denoted byx1, . . . , xn. The 200

parameter sets at which the slow simulator is evaluated are denoted byx1, . . . , x200. and the remaining 150015

parameter sets are denoted byx201, . . . , x1700. The sets of parameter sets are labelled

XS = {x1, . . . ,x200}

XF = {x201, . . .x1700}.

Finally, each parameter setx is normalised so that each individual parameter value lies between0 and1.

The slow simulator is denoted byf and the fast simulator byf ′. f(x) andf ′(x) can be seen as vectors of

length 75 (the total number of geographical regions) withfi(x) being the value of the average ash column

load in theith region (for example, region 6 is the third region at 0100 UTC 14 May 2010—see Table 3).

If X is a set of parameter sets, thenf(X ) is the set of simulator outputs generated by applyingf to each

element ofX . The set of simulated outputsf(XS) (that is, the set of all slow simulator outpust) is denoted5

byD, andf ′(XS ∪XF ) (the set of all fast simulator output) is denoted byD′.

In this notation, the goal is then to use the evaluationsD andD′ to make inferences about the value of

f(x) for any other parameter setx. This will involve building a statistical approximation for f , termed an

15
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emulator. The next section describes the general form of such a model,and the statistical framework used to

make inferences from the simulator outputsD andD′.10

5 Statistical methods

5.1 Emulation

An emulator is a simple statistical approximation of an expensive functionf(x), built using a (often small)

collection of simulator runsf(xi), which can be thought of as “data” or “observations”. There are several

desirable properties of an emulator:15

– It must evaluate quickly.

– It must be expressive enough to provide good approximationsto the simulator and to allow meaningful

prior judgements.

– It should predict thatf(x) andf(x′) should be very close whenx andx′ are very close.

A typical choice to satisfy these requirements for a scalar-valuedf(x) is20

f(x) =
∑

βigi(x)+ u(x), (8)

or for a vector-valuedf(x)

fi(x) =
∑

j

βijgij(x)+ ui(x).

For the rest of this section, attention is restricted to scalar-valuedf for simplicity of notation.

Here,gi(x) are known simple functions (for instance polynomials), andtheβi are unknown coefficients.5

These terms control the global trend of the model. The function u(x) controls the local variation of the

model. Typically, it is supposed that E(u(x)) = 0 and that Corr(u(x),u(x′)) is some function of the distance

16
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betweenx andx′, such that the correlation falls as parameters get further apart. For example, a popular

choices and the one used for this application is

Corr(u(x1),u(x2)) = exp

(
−
(
d(x1,x2)

δ

)2
)
,10

whered(x1,x2) is the Euclidean distance between the parameters, andδ is thecorrelation length, a pa-

rameter that determines how quickly correlation falls withdistance. Finally, it is commonly assumed that

Var(u(x)) = σ2 for all x, so the variance of the local term is constant across the parameter space. Concep-

tually, the expectation, variance, and correlation area priori uncertainty judgements.

Building an emulator therefore involves using a collectionof simulator runsf(x1), . . . , f(xn) to15

– identify the basis functionsgi;

– estimate theβi;

– fit the residual functionu(x).

Such an emulator then provides predictions forf(x) at a newx. Since it is a statistical model, this prediction

also comes with an associated uncertainty, which will be lownear observed simulator runs and higher away20

from them. Fig. 4 shows an emulator for a scalar-valued function of one variable.

There are many approaches to fitting such a model. Computer simulator applications often involve a mixture

of observed simulator runs and expert knowledge, making a Bayesian framework a natural choice. However,

specification of a full joint probability distribution for the problem is difficult and often leads to computa-

tional challenges. In the next section, some of these problems are summarised, and an alternative approach,

Bayes linear, is described.

5.2 Bayes linear methods

Statistical analysis of computer simulators involves combining observations (for instance, simulator output

and real-world observations) and expert judgements (for instance, accuracy of simulator and accuracy of5
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observations). Such a problem naturally lies within the scope of Bayesian statistics, a popular and powerful

tool for combining data with expert judgements, using Bayestheorem. A brief summary of the necessary

components of such an analysis are as follows. From expert judgements, a joint probability distribution is

constructed forf(x) over the parameter space (for instance, through a joint probability distribution for the

β andu in Eq. (8)). A collection of simulator runsf(x1), . . . , f(xn) would be made, and Bayes theorem10

used to calculate a posterior distribution forf(x) at all values ofx. For calibration and forecasting, this

would then be combined with a probability distribution across the parameter space (representing the relative

plausibility of eachx to experts), a distribution for the observation error, and adistribution representing the

likely discrepancy between simulator output and reality—this step is outside the scope of this paper but will

be examined in a later article.15

Such an approach has been successful in many applications. In complicated problems in high dimension,

however, it has some drawbacks. A full Bayes calculation is computationally demanding and in high dimen-

sions can be very sensitive to the initial prior specifications. Further, specifying the full high-dimensional

probability distributions that properly reflect expert judgements is an extremely difficult task. Worse, the

complexity of the calculations makes it very hard to performcareful analysis to the sensitivity of the con-20

clusions to these prior judgements. Often, these calculations will necessarily make use of computationally-

convenient prior forms that do not correspond well with expert beliefs. Thus, the analysis will be sensitive

to prior distributions that do not properly reflect our judgements, and the scale and nature of this sensitivity

will be mostly unknown.

In this paper, the alternativeBayes linear approach is used (Goldstein and Wooff, 2007). As with a full25

Bayes analysis, the method combines prior judgements with observations through simple equations. Bayes

linear analysis does not, however, require a full joint prior probability distribution specified for all variables.

Rather, the experts need only to specify expectations, variances, and covariances for a few relevant quanti-

ties. Similarly, rather than a joint posterior probabilitydistribution, Bayes linear analysis leads to adjusted

expectations, variances, and covariances for relevant quantities. Given a vector of dataD (for example, sim-5

ulator runsf(x1), . . . ,f(xn) that have been evaluated), the representation off in Eq. (8), and a vector of

quantities of interestB (for example, the value of the simulatorf(x) at some newx at which the simulator
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has not yet been evaluated), the adjusted expectation and variance forB are given by

ED(B) = E(B)+ Cov(B,D)Var(D)−1 (D−E(D)) (9)

VarD(B) = Var(B)−Cov(B,D)Var(D)−1 Cov(D,B) . (10)10

Note that these equations hold for arbitraryD, not just theD defined in the previous section (the set of slow

simulator outputs). In particular, we will often replacedD withD′ (the set of fast simulator outputs) in these

equations.

By so reducing the complexity of the required prior judgements, it is easier to accurately represent these

beliefs while retaining computational feasibility. Further, the relative simplicity of the adjustment process15

allows more convenient analysis of sensitivity to these judgements. On the other hand, the inferences from a

Bayes linear analysis are not as expressive (expectations and variances, rather than a full probability distribu-

tion). Thus, a Bayes linear analysis is not simply an upgradeon a Bayesian analysis, but rather an alternative

whose benefits and shortcomings must be carefully considered before deciding which to use, or whether to

use a combination of the two.20

The application of Bayes linear methods to an emulator requires prior judgements of expectations, variances,

and covariances of the components of Eq. (8), that is, the quantitiesβi andu(x). It is common to choose

E(u(x)) = 0 and Var(u(x)) = σ2 for all x, and Cov(βi,u(x)) = 0 for all i andx. Thus, the total required

specifications are

– Expectation and variance matrix forβ;25

– Correlation function Corr(u(x1),u(x2));

– A value (or prior judgements) forσ2.

These components are sufficient to apply Eqs. (9) and (10), withB beingf(x) at some newx, andD being

the observed simulator runs. Examples of this approach being successfully applied to computer simulators

can be found in Craig et al. (1997); Vernon et al. (2010); Cumming and Goldstein (2009).5

Even in this simplified form, it is often difficult to provide expert judgements about these quantities. With

sufficient simulator runs, such as in the case of the fast simulator f ′, the weight of the “observations” (that
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is, the simulator output that has been seen so far) will be much greater than the prior judgements, so the

adjusted expected values ED(β) will be driven primarily by the data, and their variances will be low. In such

a case, a successful method has been to use a standard (non-Bayesian) least-squares regression to estimate10

theβ, and use the residual variance from the regression forσ2. These results should be very similar to a

Bayesian analysis, without needing to worry about the priorjudgements forβ.

The 200 runs of the slow simulator is on the borderline for such a method to work. The 1700 runs of the fast

simulator should be enough to apply this simplification to anemulator for the fast simulator. Of course, the

fast simulator is not the simulator of true interest. However, it is likely that the fast simulator can provide15

useful information about the slow simulator. Hence, a method proposed in Cumming and Goldstein, 2009 is

applied, in which the fast and slow simulators are linked through a simple model.

5.3 Linking fast and slow simulators

Recall that the fast simulator isf ′(x) and the slow simulator isf(x). An emulator can be built for the fast

simulator:20

f ′(x) =
p∑

i=1

β′igi(x)+ u′(x), (11)

as follows. Thegi are chosen by the analyst through exploration. Theβ′i are fixed by a least squares method,

for instance theR functionlm, to their least squares estimatesβ̂
′
i. Var(u′(x)) is taken to be the same for

all x and is given by the residual variance from this least squaresfit. The final component, the correlation

Corr(u′(x1),u′(x2)), can be fit using various methods; more details of this can be found in Appendix A1.1.

The next step is to link this to an emulator forf(x) from Eq. (8). Notice that in Eqs. (8) and (11), the

basis functionsgi(x) are the same in both emulators. That is, it is supposed that the mean trend of the fast

simulatorf ′ has the same form (but different coefficients) as the simulator of interestf . If f ′ is a reasonable5

approximation forf (for instance, an older version off or a version off run at lower resolution) this

supposition will usually be valid.

Further, the coefficientsβi andβ′i will often be similar. A model linking these coefficients will allow the fast

simulator runs to provide information about theβi. At the same time, this model must be flexible enough

20
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that it does not impose a strong link where none exists. The same can be said of the link betweenu(x) and10

u′(x). A simple model is

βi = ρiβ
′
i + ci

u(x) = ρ0u
′(x)+w(x),

whereρ0, ρi are unknown multipliers andci are unknown scalars. If the two simulators are very similar,

then mostρi will be near1 and mostci will be near0. If the value ofgi(x) has a much smaller effect on15

the fast emulator that on the slow emulator,ρi will be much larger than1. Where the value ofgi(x) has

a much large effect on the fast emulator that on the slow emulator, ρi will be near zero. Ifgi(x) has an

opposite effect on the fast emulator and the slow emulator, thenρi will be negative. The emulation process

therefore involves using the fast simulator to work out the form of the emulator, to estimate theβ′i, and make

inferences aboutu′, and then using the slow simulator to make inferences about the ρi andw. Note that20

underlying this approach is the assumption that the slow simulator runs do not provide any more information

about the fast simulator.

In this application, it turned out that this could be furthersimplified to

βi = ρiβ
′
i

u(x) = ρ0u
′(x)+w(x) (12)

without noticeably reducing the effectiveness of the emulators.

This model requires prior expectations, variances, and covariances for theρi andρ0, as well as forw(x). In5

Appendix A1.2, more details of these prior requirements areprovided.

With such a model and the relevant judgements, including theassumption that theβ′i can be taken to be

the least squares estimatesβ̂
′
i, the Bayes linear adjustment for a newf(x) can now be performed. This

calculation and the resulting equations are somewhat technical, so are given in Appendix A1.3; in particular

the adjusted expectation and variance can be found in Eqs. (A2) and (A3).10
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5.4 Diagnostics and validation

It is important to check that an emulator is performing well before using it to make predictions. There

are several possible reasons an emulator would be poor. The form of the mean function could be missing an

important term or even be totally misguided. The form of the correlation function might be inappropriate. The

parameters in the correlation function (in this application, the correlation length) could be set at inappropriate15

values. Finally, some other assumptions, such as the assumption that Var(u(x)) is the same for allx, could

be seriously misleading.

The mean function plays a large role in these emulators. The usual diagnostics from linear models can

be valuable in assessing the adequacy of the chosen mean function. TheR2, a statistic that represents the

proportion of variation explained by the parameters in the linear model, is a useful number to check first.20

If this is low, then the mean function is not explaining much of the variation in the simulator output, and

adding new terms or changing the form of the mean function entirely should be considered. Examining the

residuals can also be useful in this process, in particular whether there are regions of the parameter space

where the residuals are systematically large in one direction.

A simple and effective method of validation is leave-one-out validation. In this procedure, all but one of the25

observed simulator runs are used to build an emulator, and this emulator is used to predict the one run that

was left out. Forn simulator runs, this givesn emulators and predictions. If the emulators frequently predict

the left-out values to be far from the observed simulator run, this suggests a problem with the emulator. Here,

“far from” means relative to the variance of the emulator—a useful rule of thumb is that about 95% of the

validation runs should be within three standard deviationsof the prediction.

If this proportion of successful prediction is far from 95%,this might signal a fundamental problem with5

the mean function and/or the form of the correlation function, but it can often simply signal a poor choice

of correlation length. If the correlation length is too high, then the emulator variance will be too low and

hence many observations will be judged “too far” from the emulator predictions. On the other hand, if the

correlation length is too low, then the emulator will not be able to capture many patterns of local variation

from the mean function that may be present (specifically, anysuch patterns that exist over distances much10
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higher than the correlation length). It is often possible totune the correlation length so that the proportion of

successful validations is around 95%.

6 Application to NAME

Throughout this section, unless otherwise specified, the quantity f1, the average ash in the first region for

the first hour, is being considered, and the full depth version of NAME is being used. The analysis was also15

run for the thin layer simulator, with similar results (although the emulators are slightly worse for this case).

6.1 Choosing basis functions and eliminating inactive parameters

The first stage of building an emulator is to choose the functionsgi(x) in the mean trend. From experience,

polynomial terms are often suitable choices. For each of the75 outputs, linear models were built with i) first-

order (linear) terms only; ii) second-order (quadratic) and first-order terms, with interactions; iii) third-order

(cubic) and lower-order terms, with first-order interactions. Explicitly, these are the models

f ′(x) =
∑

i

aixi + u′(x)

f ′(x) =
∑

i

aix
2
i +
∑

i

∑

j 6=i

bijxixj +
∑

i

cixi + u′(x)

f ′(x) =
∑

i

aix
3
i +
∑

i

bix
2
i +
∑

i

∑

j 6=i

cijxixj +
∑

i

dixi + u′(x),5

where theai, bi, ci, di collectively form theβ′i in Eq. (11) (and, are of course, different values in the three

different models). Note that “linear” in “linear model” refers to the linearity of the form
∑

iβigi(x), not the

linearity of thegi, so all three models here are linear models.

The adjustedR2 was examined for each model. The findings of this procedure, when applied to the fast

simulator runs for the full depth simulator, can be summarised as follows.10
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– The models with only first-order terms were inadequate in many cases, leading to lowR2 and high

residual variance. For some of the outputs they did provide good fits (adjustedR2 between0.9 and

0.95).

– The second-order models were very good (R2 over0.95) for almost every region, and good for all

regions (with the lowestR2 of 0.89).15

– The third-order models provide no noticeable improvementsover second-order models.

As a result of this, the chosengi were second-order and lower terms for all outputs.

The second stage of emulation is the removal of inactive parameters. In the linear model for any given

output quantity, most of the parameters have little impact.Emulators can be improved by focusing on a

few important parameters and leaving the rest out of the meantrend entirely. This involves adding a small20

“nugget” of variance into the emulator, uncorrelated with everything else. This nugget represents the fact

that now the emulator does not exactly predict the simulatoroutput even at parameters already sampled,

because some parameters have been ignored. For example, if only parametersx1 andx2 are active, then

the emulator will give the same prediction whatever the value of x3, . . . , whereas of course the simulator

will give slightly different output in each case. The nuggetaccounts for this uncertainty. An estimate for the25

size of the nugget was derived by running the simulator with different values of the inactive parameters and

observing the impact. This is a rather crude approach, but since the observed variation was several orders of

magnitude lower than the other variances in the emulator, there is little benefit to a more careful analysis.

Formally, the emulator becomes

f(x) =
∑

βigi(xA)+ u(xA)+ v(x),

wherexA are the active parameters, andv(x) represents the nugget, with expectation zero, low variance,5

and zero correlation with everything else.

A policy of stepwise elimination was followed for each output: at each step, each parameter was removed

in turn, and the change inR2 was calculated. The parameter whose removal caused the smallest change

in this was removed. This process was continued for each output until either 4 parameters were left or

the removal of a single parameter would reduce theR2 by more than0.03. A third criterion, that theR210
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should not be allowed to fall below some critical value, was considered but turned out to be unnecessary.

For most output quantities, this led to the emulators with four active variables, with more in a few of the 75

output areas. Parametersx1 (plume height) andx3 (mass eruption rate) were active in all models, withx7

(standard deviation of free tropospheric turbulence) andx12 (precipitation rate required for wet deposition)

active in most. Parametersx6 (ash density),x13 (scavenging coefficient parameterA for rain), andx15–x1815

(scavenging coefficient B and dry deposition resistances) were active in no emulators.

In a standard emulation this would conclude the removal of inactive parameters, but since in this case the

fast emulator is to be linked to the slow emulator, it is important to check that there are no parameters being

removed that are much more important for the slow emulator. For this reason, the same stepwise selection

was performed using the 200 runs of the slow simulator (ignoring the link with the fast emulator). This20

procedure selected the same parameters in most cases, occasionally with one difference. It is likely this is

caused by small quasi-random differences in theR2, but for safety these parameters were also added back

into the emulators. This led to an extra parameter being activated for four of the outputs.

Finally, since parametersx4 andx5 were closely related (the parameters governing the gamma distribution

from which the particle size distribution was calculated),it was decided that an activex5 should lead to an25

activex4 as well. A summary of the number of times each parameter was active is shown in Table 4.

6.2 Emulating the fast simulator

Each of these linear models now gives an estimate forβ′i and a residual variance that can be used for

Var(u′(x)). Since 1700 is a large number of runs, it is reasonable to makethe simplification that these

quantities are now known values. The only remaining task forthe fast simulator’s emulator is to specify the5

correlation. A squared correlation is used, that is,

Corr(u′(x1),u′(x2)) = exp

(
−
(
d(x1,x2)

δ′

)2
)
,

whereδ′, the correlation length, is to be set, andd(x1,x2) is the distance betweenx1 and x2. In Ap-

pendix A1.1, some possibilities for choosingδ′ are provided. Note that using a different scaling parameter

for each dimension of the parameter space can be necessary inmany cases, but for this application a single10
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value proved sufficient (recall that all parameters have been normalised so they are all in[0,1], otherwise

different δ′ would be needed for each dimension). The approach used in this application is to begin with

δ′ = 1/3, then use leave-one-out validation usingf ′(XF ) to tuneδ′, and finally predictf ′(XS) usingf ′(XF )

and thisδ′ to check that the method has been successful.

This strategy suggested rather small values for the correlation lengths, between0.1 and0.15. Predictions15

of the remaining200 runs using the emulator built from the first1500 were accurate for all the outputs: an

example can be seen in Fig. 5, for the case of the first output inthe first hour. The emulator predictions

are close to the observed output (that is,f ′(XS)) relative to the emulator variances in most cases, and the

emulator variances are small relative to the overall variability of simulator output across the parameter space.

This suggests that the emulator is a useful tool for prediction. The proportion off ′(XS) predicted reliably20

(that is, within three standard deviations of the emulator variance) for each output ranged from 94.5% to

99%.

This analysis suggests that the emulator and the choices ofδ′ are appropriate. A final fast emulator was then

built using all the runs (f ′(XS ∪XF )) and the values ofδ′ calculated by the above method. The next step

is to link the fast simulator to the slow simulator and use therunsf(XS) to make predictions for the slow25

simulator.

6.3 Emulating the slow simulator

The emulator for the fast simulator is linked to that of the slow simulator through Eqs. (12) (recall that

the emulators for the slow and fast simulators are given by Eqs. (8) and (11) respectively). This requires

prior judgements forρi andw(x). For the latter, the judgements used were that E(w(x)) = 0, Var(w(x)) =

Var(u′(x)), and the correlation structure is the same as that ofu′(x), with correlation lengthδ initially set5

to δ′ but explored later in the same way. Expectations, variancesand covariances forρi were specified using

the least-squares method in Appendix A1.2.

With these priors, and for a given value ofδ, the adjusted expectation and variance ED(f(x)) and VarD(f(x))

can be computed for any newx using Eqs. (A2) and (A3) in Appendix A1.3. Note that this calculation in-

cludes the adjusted expectation and variance of theρi. Examining these quantities shows which regions and10
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for which gi the differences between the fast and slow simulators are most pronounced. In conjunction with

theβ′i, they also give more insight into how the active parameters drive the simulator output.

As before, the correlation lengthsδ are tuned using leave-one-out validation. For the slow simulator, it

was found that longer correlations lengths were more appropriate, with values ranging from0.2 to 0.4. An

example of the predictions of this validation, compared with the observed slow simulator output, can be15

found in Fig. 6. Over the75 regions, the proportion of successful predictions from thevalidation ranged

from 94.5% to 99%.

For most emulators, theρi were close to 1 (typically between0.95 and1.05) for all βi. With the difference

between the fast and slow simulators being only a factor of
√

10 in the simulation noise and with the simu-

lation noise being kept low by averaging over large regions,this is perhaps expected. The main exceptions20

were regions where the fast simulator predicted relativelylittle ash compared with the slow simulator—in

these cases theρi were typically between0.5 and0.75 systematically (that is, no particular parameter was

affected more than others). In no case did aρi approach0 (which would indicate a parameter becoming inac-

tive in the slow emulator) or change sign. The only multiplier that was frequently low wasρ0, the multiplier

for the residual process. In conclusion, the link between mean functions of the two emulators is strong and25

consistent, in the sense that either theρ are all near1, or they are all near someα so that the difference is

mostly a rescaling. The local variations, on the other hand,are usually unrelated, withρ0 near zero. This

suggests that the fast simulator could be used more extensively in future applications significantly reducing

simulation run times.

6.4 Implications for NAME case study

The adjustedβi confirm that the simulator behaves broadly as one would expect. As mass eruption rate5

increases (either due to its dependence on the plume rise height,x3 via Eq. (1) or alerations in (1) caused

by x3) the quantity of ash in the atmosphere increases. When the precipitation threshold is higher, higher

values of ash in the atmosphere are also predicted. This is due to less ash being deposited to the surface

as only precipitation rates above the threshold lead to wet deposition. When the particle size distribution

favours large particles, predicted airborne ash reduces because these heavy particles sediment much more10
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quickly than small particles and therefore are removed fromthe atmosphere and not available for long-

range transport. The parameterx7 governing free tropospheric turbulence is more interesting: low and high

values lead to relatively less ash predicted than values towards the middle of the range. This is because at

the extremes the ash has either been widely spread and diluted or it has not spread enough to reach the

region being considered in significant quantities. Notex7 represents both horizontal and vertical turbulence15

because it is linked tox9. Also becasue the effect in NAME is primarily through diffusivities σ2
uτu and

σ2
wτw, sensitivity tox7 implies sensitivity toτu andτw too, although at a lower level.

Of all the parameters, the plume height drives the output most strongly, followed by the mass eruption rate

and the precipitation threshold. In all cases, theβi with the highest adjusted expectation corresponded to a

function of the plume height,x1 (either thex1 term or thex2
1 term). As a proportion of this, the adjusted20

expectations forβi corresponding to function of mass eruption rate, precipitation threshold, and turbulence

were around0.3, 0.25, and0.1 respectively. Adjusted expectations forβi corresponding to other parameters

were typically lower than0.1 of that for plume height.

Interactions between the parameters (that is, the terms of the formβijxixj ) are mostly relatively small,

although each pair ofx1, x7, andx12 (plume height, turbulence in the free troposphere, and precipitation25

threshold respectively) have strong negative interactions. This means that, for example, although increasing

plume height increases column loading, and increasing the precipitation threshold increases column loading,

increasing both parameters at the same time does not increase column loading as much as would be expected

looking only at the individual parameters.

The emulators provide insight into which areas of the parameter space will lead to high values of simulated

ash column loading and which areas will lead to low values of ash column loading. As an extreme case, the

parameters giving the lowest and highest predictions of ashcolumn loading can be identified. This was done

for the first hour of 14 May, giving two parameter sets at whichthe simulator was evaluated. The results of5

these simulator evaluations can be seen in Fig. 7. This givesan idea of the range of possibilities admitted by

the expert judgements from Sect. 3. As can be seen, these two plots are very different; that is, the ranges in

Table 1 cover a broad range of simulator behaviour. Note however that our choice of parameter ranges has

deliberately tried to cover the whole range of possible values and that, for some parameters such as those

relating to turbulence, it is not plausible that the extremes could be present throughout the simulation region.10
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Now, only a small region of this parameter space will lead to simulations that resemble the observations

on this day. The emulators can be used to identify this regionof parameter space. Since emulators can be

evaluated very quickly, predictions and their associated uncertainty can be generated for very many candidate

parameters, and all predictions that are very far from the observations can be rejected. This procedure, called

history matching, focuses on the plausible regions of parameter space and allows more accurate emulators15

to be built within them. Performing this analysis for NAME isbeyond the scope of this paper, but will be

covered in a second study.

It is worth considering what advantages this analysis givesover a traditional one-at-a-time approach. There

are three main benefits. The first is a quantitative assessment of the influence of changing each parameter

to any new value. The second is an associated uncertainty forthis assessment. The third is the treatment of20

interactions between parameters, which cannot be present in a one-at-a-time analysis. For instance, the ap-

proach used in this study can identify when there is a pair of parameters such that increasing either separately

increases output, but increasing both simultaneously decreases output.

7 Conclusions

In this paper it has been shown that a Bayes linear emulation approach can be used to identify source and25

internal model parameters that contribute most to the uncertainty in the long-range transport of volcanic

ash in a complex VATD simulator. The approach presented is applicable to other complex simulators that

have long computation times and many parameters contributing to the overall prediction uncertainty. This

approach uses latin hypercube sampling of the plausible parameter ranges determined through expert elici-

tation. All parameters are varied in each simulator run and therefore information about the importance of the

parameters and their interaction can be investigated simultaneously. This gives a much more realistic esti-5

mate of the uncertainty than using one-at-a-time tests and provides much more useful information to model

developers and those planning observational campaigns.

Here 1700 simulator runs have been used to build 75 emulatorsrepresenting the average ash column loading

in regions on 14 May 2010. These simulator evaluations comprised 1500 fast simulator runs and 200 slow

simulator runs. The analysis demonstrated the strength of using approximate simulators to determine the10
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general trend of a simulator and provide plausible priors, before using a relatively small number of accurate

simulator runs to refine the emulator. Bayes linear methods were used to reduce computational complexity

and the need for detailed prior judgements that we may not believe.

For this case the most important parameters are plume height, mass eruption rate, free troposphere turbulence

levels and precipitation threshold for wet deposition. There is also a strong negative relationship between15

each pair of the first three of these. These conclusions should be tested in other situations to assess how

widely they hold. This information can be used to inform future research priorities (e.g. the addition of a

more complex free tropospheric turbulence scheme which varies spatially and temporally (see Dacre et al.

(2015)) and investigating the importance of the precipitation threshold within the NAME simulator) and

observational capabilities (e.g. a mobile radar to observeplume height) and measurement campaigns (e.g.20

insitu observations of ash particle size distribution). Furthermore, this analysis can be used to prioritise

variables to perturb in a small operational ensemble.

This study has shown the range of possible ash column loadingdistributions possible from sampling the

parameter space determined by the ranges elicited from simulator experts. Only a small region of this pa-

rameter space will lead to simulations that resemble the observations on this day. Emulators can be used to

identify this region of parameter space as they can be evaluated very quickly. The resulting predictions and

their associated uncertainty can be generated for very manycandidate parameters, and all predictions that

are very far from the observations can be rejected. This procedure, known ashistory matching, focuses on5

the plausible regions and allows more accurate emulators tobe built within them. This analysis is beyond the

scope of this paper. This will form the basis of a future studybut could further inform the parameter pertur-

bations used in an operational ensemble. The approach presented here could be easily applied to other case

studies, simulators or hazards. Furthermore, an ensemble of emulator evaluations could be used to produce

probabilistic hazard forecasts.10
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Appendix A: Appendix

A1 Adjusting slow emulators using fast emulators

A1.1 Fitting the fast emulator

For the fast emulator, theβ′i are fixed at their least squares estimates, and Var(u′(x)) is set to the residual

standard deviation. This leaves only Corr(u′(x1),u′(x2)) to be determined. A typical approach is to specify15

a correlation function that depends only ond(x1,x2), the distance betweenx1 andx2. A common choice,

used in this study, is

Corr(u′(x1),u′(x2)) = exp

(
−
(
d(x1,x2)

δ′

)2
)
,

although other choices are possible; in particular using a different correlation lengthδ′ for each direction

would often be useful, although did not prove necessary in this application.20

The parameterδ′ governs the strength of the correlation, and must be estimated from the observed resid-

uals by some method. A formal estimation can be performed using the variogram methods in, for in-

stance, Cressie, 1993, applied, for instance, in Cumming and Goldstein, 2009. A more heuristic approach has

been successful in many other applications (Vernon et al., 2010; Goldstein et al., 2010; Goldstein and Huntley,

2016). This involved the argument that, for a polynomial mean function, a plausible value ofδ′ is 1
p+1 where

p is the highest-order term in the polynomial fit. This starting value can then be explored and adjusted “by

hand”. A popular strategy is a leave-one-out exploration: for each parameterxi, calculate the adjusted ex-5

pectation and variance forf(xi) using all the otherxj and a trial value ofδ′. The observed value off(xi)

can then be used to see whether the prediction was accurate ornot. The value ofδ′ used can be adjusted to

balance two competing requirements: that most of the predictions are close (relative to the adjusted variance)

to the observed values, and that the variances are small. Forexample, if many more than 5% of predictions

are more than three standard deviations away from the observation,δ′ is unlikely to be a good choice, so a10

good value ofδ′ should satisfy this requirement while keeping the variances as low as possible.
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A1.2 Prior judgements for linked emulators

Using the linking model in Eq. (12), an adjustment of the slowemulator involves prior expectations, vari-

ances, and covariances forρi, ρ0, andw(x). A simple approach is to use

E(ρi) = 115

Var(ρi) = σ2
ρ

Cov(ρi,ρj) = r,

reducing the specification for the multiplier to two numbersσ2
ρ andr. Note thatρ0 is included in the above

specifications. This leaves onlyw(x) to consider. A natural choice is to use the same form as is usedfor

u′(x), including the same variance and the same correlation length δ. Another option is to use the same20

correlation structure, but allow Var(w(x)) = σ2
w to be different from Var(u′(x)). Finally, a very useful

simplification is to take Corr(w(x),ρi) = 0 for all i (including0).

Thus, the link betweenf ′ andf is provided byτ = {σ2
ρ,r,σ

2
w}—only these three values need to be specified

now (or only the first two, depending on earlier choices). Were it possible to specify values forτ , this would

provide all the ingredients to perform a Bayes linear calculation to learn about the slow simulator using the

(adjusted) fast emulator and the evaluationsf(XS). However, the quantities inτ are difficult to think about,

so expecting an expert to be able to specify them is unrealistic.

Instead, plausible values forτ can be generated using the differencesd(x) = f(x)−f ′(x) for eachx ∈ XS .

As calculated in Cumming and Goldstein, 2009,5

Var(d(x)) = σ2
ρφ(x)+ σ2

ρrψ(x)+ σ2
w , (A1)

where

φ(x) =
p+1∑

i=1

bi(x)2

ψ(x) =
∑

i6=j

bi(x)bj(x),

with10

b(x) = (β′1g1(x), . . . ,β′p(x)gp(x),u′(x)),
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noting thatu′(x) is known for eachx ∈ XS because the fast simulator was evaluated at each such point.

Further, E(d(x)) = 0, and hence Var(d(x)) = E
(
d(x)2

)
and so from Eq. (A1),

E
(
d(x)2

)
= σ2

ρφ(x)+ σ2
ρrψ(x)+ σ2

w ,

and forx ∈ XS everything on the right-hand side of this equation is known except forτ . Replacing E
(
d(x)2

)
15

with the observedd(x)2, this gives|XS | (in our application, 200) linear equations in 3 unknowns, and a least-

squares fit can be used to estimate these three unknowns and henceτ̂ . This τ̂ can then be used as the prior

judgements for the link between the emulators. Note that this approach works only because both fast and

slow simulators are evaluated atXS .

A1.3 Adjusting the slow emulator20

Suppose an emulatorf ′ has been constructed as in Eq. (11) by usingD′; in particular we suppose that the

beta′i are known and thatu′ has had its mean and variance adjusted using (9) and (10) (withD replaced by

D′). We also assume the link (12) between the fast and slow emulators and that priors have been specified for

ρi andw, for instance by the methods in Appendix A1.2. The adjusted fast emulator and the slow simulator

runsD are available to be used in the adjustment ofρ andw, and hence the adjustment off(x) for any new

x.

First, we have5

ED(ρi) = 1 + Cov(ρi,D)Var(D)−1 (D−E(D)).

The prior expectation for each element ofD is simply the value observed for the corresponding element of

D′. Also,

Cov(ρi,Dj) = Cov

(
ρi,
∑

k

ρkβ
′
kgk(xj)+ ρ0u

′(xj)+w(xj)

)

=
∑

k

Cov(ρi,ρk)β′kgk(xj)+ Cov(ρi,ρ0)u′(xj)10

=
p+1∑

k=1

Cov(ρi,ρk)b(xj)k.
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Finally, the variance matrix Var(D) is built from elements of the form

Cov(D1,D2) = Cov

(∑

i

ρiβ
′
igi(x1)+ ρ0u

′(x1)+w(x1),
∑

i

ρiβ
′
igi(x2)+ ρ0u

′(x2)+w(x2)

)

=
∑

i,j

Cov(ρi,ρj)b(x1)b(x2)+ Cov(w(x1),w(x2)) .

This is all that is needed to calculate ED(ρi).15

The adjusted variance forρ is given by

VarD(ρ) = Var(ρ)−Cov(ρ,D)Var(D)−1 Cov(D,ρ) ,

which can be calculated from the expressions above.

The adjustment for the residualw(x) is simpler:

ED(w(x)) = Cov(w(x),D)Var(D)−1 (D−E(D))20

VarD(w(x)) = Var(w(x))−Cov(w(x),D)Var(D)−1 Cov(D,w(x))

where

Cov(w(x),Di) = Cov(w(x),w(xi)) .

Then, for anyx such thatx ∈ XF (the parameters used for the fast but not slow simulator runs), Cumming and Goldstein,

2009 showed that the Bayes linear adjustment forf(x) is given by5

ED(f(x)) = b(x)T ED(ρ)+ ED(w(x)) (A2)

VarD(f(x)) = b(x)T VarD(ρ)b(x)+ VarD(w(x))+ 2b(x)CovD(ρ,w(x)), (A3)

where

CovD(ρ,w(x)) = Cov(ρ,w(x))−Cov(ρ,D)Var(D)−1 Cov(D,w(x))

=−Cov(ρ,D)Var(D)−1 Cov(D,w(x)) ,

recalling that Cov(ρ,w(x)) was assumed to be zero.
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For newx for which the fast simulator has not been evaluated, the equations remain almost identical, but

there is the added complication thatu′(x), the residual in the fast emulator, is not known. Since this appears5

in the final element ofb(x), the above equations cannot be evaluated. Under the assumption that the slow

simulator runsD provide no further information about the fast simulator, the final element ofb(x) in these

equations can be treated as fixed at the adjusted expectationED′(u′(x)).
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Key Parameter name Default value Minimum

value

Maximum

value

x1 Height of plume at release (m) Taken from

Arason et al.

(2011)

default−
2000m

default+

2000m

x2 Thin layer depth (m) 1000m 100m 2000m

x3 Mass eruption rate (kg s−1) As per Mastin et al.

(2009)

default/3 default× 3

x4 Shape parameter for the Gamma distribution for particle

sizes

NA 3 10

x5 Scale parameter for the Gamma distribution for particle

sizes (µm)

NA 1 10

x6 Density of the ash (kg m−3) 2300 1350 2700

x7 Standard deviation of horizontal velocity for free tropo-

spheric turbulence (m s−1). Varied in proportion tox8.

0.25 0.0025 2.5

x8 Standard deviation of vertical velocity for free tropo-

spheric turbulence (m s−1). Varied in proportion tox7.

0.1 0.001 1

x9 Horizontal Lagrangian timescale for free tropospheric

turbulence (s). Varied in proportion tox10.

300 100 900

x10 Vertical Lagrangian timescale for free tropospheric tur-

bulence (s). Varied in proportion tox9.

100 20 300

x11 Standard deviation of horizontal velocity for unresolved

mesoscale motions (m s−1)

0.8 0.27 1.74

x12 Precipitation rate required for wet deposition to occur

(mm hr−1)

0.03 0 0.1

x13 Scavenging coefficient parameter A for rain (s−1)
Below cloud:

8.4×10−5
0.000001 0.01

In cloud:

3.36×10−4

x14 Scavenging coefficient parameter A for snow (s−1)
Below cloud:

8.0×10−5
0.000001 0.1

In cloud:

5.2×10−5

x15 Scavenging coefficient parameter B for rain 0.790 0.4 1.1

x16 Scavenging coefficient parameter B for snow
Below cloud: 0.305

0.2 1.2

In cloud: 0.790

x17 Dry deposition aerodynamic resistance perturbation

factor

1 0.5 2

x18 Dry deposition Laminar sublayer resistance numerator300 0 300
Table 1.Summary of the parameters, default values and ranges used in this study.
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Particle Diameter (µm) Mass Fraction

0.1 - 0.3 0.001

0.3 - 1.0 0.005

1.0 - 3.0 0.05

3.0 - 10.0 0.2

10.0 - 30.0 0.7

30.0 - 100.0 0.044
Table 2.The default input source PSD used in NAME by the London VAAC.
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First region Second region Third region Fourth region

0000 UTC (−13,61):(−5,69) (−13,55):(−6,61) (−22,59):(−13,65)

0100 UTC (−14,62):(−6,69) (−14,55):(−6,62) (−22,60):(−14,65)

0200 UTC (−14,61):(−6,69) (−14,54):(−6,61)

0300 UTC (−14.5,61.5):(−6.5,69.5) (−14.5,54):(−4,61.5)

0400 UTC (−15,62):(−6,70) (−15,54):(−5,62)

0500 UTC (−15.5,61):(−6,70) (−15,53):(−3,61)

0600 UTC (−15.5,61):(−6,70) (−15,53):(−3,61)

0700 UTC (−17,63.5):(−9,70) (−14.5,59):(−6,63.5) (−11,53):(−2,59.5)

0800 UTC (−18,64):(−9,70) (−15,61):(−8,64) (−11,53):(−1,61) (−27,63):(−19,66)

0900 UTC (−20.5,64):(−9,71) (−15,61):(−8,64) (−11,53):(−1,61) (−28,63):(−20,66)

1000 UTC (−21,64.5):(−9,71) (−15,61):(−8,64.5) (−11,53):(−1,61) (−30,63):(−21,66)

1100 UTC (−21,63):(−9,71) (−12,53):(−1,62) (−30,63):(−21,66)

1200 UTC (−22,63.5):(−9,71) (−12,53):(−1,62) (−31,63):(−23,66)

1300 UTC (−23,63):(−10,71) (−12,53):(−1,62) (−32,63):(−23,66)

1400 UTC (−24,65):(−17,71) (−17,63):(−12,67) (−12,52):(0,62) (−33,62.5):(−22,66.5)

1500 UTC (−24,65):(−18,71) (−18,63):(−12,67) (−8,53):(0,59) (−33,62.5):(−22,65.5)

1600 UTC (−25,64):(−20,71) (−20,62):(−12,66) (−8,52):(0,58) (−33,62.5):(−24,66)

1700 UTC (−26,65):(−19,71) (−20,62):(−15,65) (−8,52):(0,58) (−34,62.5):(−24,66)

1800 UTC (−28,66):(−19,71) (−27,62):(−14,66) (−7,52):(1,58) (−34,62.5):(−27,66)

1900 UTC (−27,62):(−14,67) (−7,52):(1,57) (−34,62.5):(−27,66)

2000 UTC (−27,62):(−14,67) (−7,52):(1,57) (−36,62.5):(−27,66.5)

2100 UTC (−27.5,61.5):(−18,67) (−7,52):(1,57) (−37,62):(−27.5,66.5)

2200 UTC (−28,63.5):(−18,67) (−7,51.5):(1,55.5) (−37,62):(−28,66.5)

2300 UTC (−30,63.5):(−18,66.5) (−7,51.5):(1,55.5) (−37,62):(−30,66.5)

Table 3. Location of geographical regions used for comparision for each hour by longitude and latitude of the region

corners.
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Parameter x1 x3 x4 x5 x6 x7 x9 x11 x12 x13 x14 x15 x16 x17 x18

Times active 75 75 18 18 0 61 15 4 58 0 1 0 0 0 0
Table 4. Number of outputs for which each parameter was judged active(and hence included in the emulator for that

output). Recall thatx7 andx8 are linked, and sox8 is not present in the table, and similarly forx10 which is linked to

x9 .
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Figure 1. (a) UK Met Office surface analysis chart at 0000 UTC on 14 May 2010. Mean sea level pressure isobars

overlaid with surface fronts.(b) AVHRR infrared satelliteimage at 0613 UTC on the 14 May 2010 provided by the

Dundee satellite receiving station.
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Figure 2. (a) Simulated ash column loading at 0000 UTC 14 May 2010 usingparameters near the default values. (b)

SEVIRI satellite retrieved ash column loading also at 0000 UTC 14 May 2010. The black boxes denote the regions

over which average ash column loading is being emulated for this hour. In (a) column loading of 20000µg/m2 and

2000µg/m2 are shown by the green and grey contours respectively.
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Figure 3.Relationship between the slow simulator and fast simulatoroutput forXS at (a) the first region and (b) the 63rd

region (third region at 1900 UTC). The 63rd region has the lowest correlation between fast and slow simulator output.
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Figure 4. One-dimensional example of an emulator. The points represent the six evaluations off(x), the black line is

the emulator’s prediction, and the red lines give two standard deviations. The blue dashed line is the true value off(x).
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Figure 5. Validation plot for the emulator of the first output. Emulator expected value for the parameter sets inXS

is shown in black, with an interval of three standard deviations each side shown in blue. The red line shows the true

simulator output at each parameter set. The parameters havebeen ordered from lowest to highest emulator prediction.
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Figure 6. Leave-one-out validation plot for the emulator of the slow simulator. Emulator expected value is shown in

black, with an interval of three standard deviations each side shown in blue. The red line shows the true simulator output

at each parameter set. The parameters have been ordered fromlowest to highest emulator prediction.
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Figure 7. NAME ash column loading for parameter choices with the highest and lowest expected ash column loadings

in the first geographical region at 0000 UTC 14 May. The contours are as in Figure 2.
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