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Abstract. Following the disruption to European airspace caused by theeruption of Eyjafjallajökull in 2010

there has been a move towards producing quantitative predictions of volcanic ash concentration using vol-

canic ash transport and dispersion simulators. However, there is no formal framework for determining the

uncertainties on these predictions and performing many simulations using these complex models is computa-

tionally expensive. In this paper a Bayes linear emulation approach is applied to the Numerical Atmospheric-5

dispersion Modelling Environment (NAME) to better understand the influence of source and internal model

parameters on the simulator output. Emulation is a statistical method for predicting the output of a com-

puter simulator at new parameter choices without actually running the simulator. A multi-level emulation

approach is applied using two configurations of NAME with different numbers of model particles. Infor-

mation from many evaluations of the computationally fasterconfiguration is combined with results from10

relatively few evaluations of the slower, more accurate, configuration. This approach is effective when it is

not possible to run the accurate simulator many times and when there is also little prior knowledge about

the influence of parameters. The approach is applied to the mean ash column loading in 75 geographical

regions on 14 May 2010. Through this analysis it has been found that the parameters that contribute the

most to the output uncertainty are initial plume rise height, mass eruption rate, free tropospheric turbulence15

levels and precipitation threshold for wet deposition. This information can be used to inform future model

development and observational campaigns and routine monitoring. The analysis presented here suggests the

need for further observational and theoretical research into parameterisation of atmospheric turbulence. Fur-

thermore it can also be used to inform the most important parameter perturbations for a small operational

ensemble of simulations. The use of an emulator also identifies the input and internal parameters that do not20

contribute significantly to simulator uncertainty. Finally, the analysis highlights that the faster, less accurate,

configuration of NAME can, on its own, provide useful information for the problem of predicting average

column load over large areas.

1 Introduction

Volcanic ash is a significant hazard to aircraft, and human life, by reducing visibility and causing both25

temporary engine failure and permanent engine damage (Casadevall, 1994). The presence of ash disrupts air
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traffic and can result in large financial losses to the aviation industry. The eruption of the Icelandic volcano

Eyjafjallajökull in April 2010 disrupted European airspace, the busiest airspace in the world, for thirteen

days, grounded over 95,000 flights (European Commission, 2011) and is estimated to have cost the airline

industrye3.3 billion (Mazzocchi et al., 2010).

In the event of an eruption, the decision to fly is informed by information provided by one of the nine Vol-5

canic Ash Advisory Centres (VAACs). The VAACs issue hazard maps of predicted ash cloud extents based

on forecasts from Volcanic Ash Transport and Dispersion simulators (VATDs). After the large-scale dis-

ruption caused by the 2010 Eyjafjallajökull eruption new guidelines were brought in by EUROCONTROL

(the European Organisation for the Safety of Air Navigation) which require predictions of ash concentration

values as well as ash cloud extents. However, there are largeuncertainties in the VATD ash concentration10

forecasts. These uncertainties arise from a number of sources including incomplete or inaccurate knowledge

of the specific volcanic eruption (source uncertainty) and meteorological conditions and other sources of pa-

rameter and forcing function uncertainty, as well as particular physical processes being simplified or omitted

(structural uncertainty) in any particular simulator. Currently, no systematic estimation of the resulting un-

certainty is performed. This is a major limitation of the operational system and as such there is the danger15

of making incorrect decisions due to misjudging the accuracy of the simulator predictions. Mulder et al.,

2017 showed that users of volcanic ash forecasts drew no-fly zones that were larger than areas of unsafe ash

concentrations by up to 1182% .

There have been many studies investigating the processes that control the long-range dispersion of volcanic

ash. The majority of these studies focus on a small number of simulator inputs or parameters and change the20

parameters one-at-a-time (OAT) to assess their impact on the predictions of volcanic ash transport. These

studies test the difference between the simulator output from a control or baseline case and the output from

the perturbed cases. This approach is appealing as it alwayscalculates the change in the simulator away

from a well known baseline. Examples of studies that use thisapproach are Costa et al. (2006); Witham et al.

(2007); Webley et al. (2009); Dacre et al. (2011); Devenish et al. (2012a, b); Folch et al. (2012); Grant et al.25

(2012); Witham et al. (2012b); Dacre et al. (2015). However,there are three main disadvantages of using

OAT analysis. First, the amount of parameter space that is sampled quickly reduces as the number of pa-

rameters considered is increased (Saltelli and Annoni, 2010). Secondly, OAT tests ignore any interactions
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between parameters. For example it is possible that perturbing two parameters separately in OAT tests might

lead to negligible impacts, while the impact produced by perturbing them together might be much larger.

Finally, the analysis cannot contribute to a formal overallassessment of uncertainty: uncertainty in applica-

tion of computer models includes many sources, including parameter uncertainty, measurement uncertainty,

uncertainty about missing processes or about limitations in modelled processes, and so on. OAT testing does5

not allow a formal methodology for assessing parameter uncertainty in a way that can be combined with

these other sources. The emulation method that is presentedin this paper gives assessments of uncertainty

that can be combined easily with other sources.

Performing sensitivity tests that cover a wide range of parameters and parameter values for a complex simu-

lator, such as a VATD simulator, is expensive in both time andmoney. This makes uncertainty quantification10

impractical as one can only afford a limited amount of simulator runs. Uncertainty and sensitivity analyses

as well as calibration require a large number of runs. In thisstudy we introduce the use of emulation to

understand the sensitivity of an operational VATD simulator to source and internal simulator parameters.

An emulator is a simple statistical approximation of a complicated and (typically) computationally-expensive

function, such as a computer simulator, that can be evaluated almost instantly over the whole parameter15

space. The emulator provides a prediction for the simulator’s output at any given parameter choice, and an

associated uncertainty for this prediction (this can take the form of a full probability distribution, or an ex-

pected value and variance). This enables the quantificationof the impact of each simulator parameter on the

prediction of the dispersion of volcanic ash. This approachhas been used successfully in tsunami modelling

(Sarri et al., 2012), simulating convective cloud (Johnsonet al., 2015), aerosol modelling (Lee et al., 2011,20

2012, 2013), galaxy formation (Vernon et al., 2010) and regional climate projections (Harris et al., 2010).

Emulators have several main uses in analysing computer simulators. They can be used for calibration, to

determine which parameters lead to simulator output that reasonably matches observed data. They can also

be used for forecasting the future behaviour of the system inquestion. Finally, as in this paper, they can be

used as a research tool to better understand the simulator, the role of the parameters, the interactions between25

them and to help guide future research priorities.
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Building emulators becomes more difficult when relatively few simulator evaluations (the “data” that are

used to fit emulators) are available. In many cases, however,there will be a faster and more approximate

simulator available. This is true for NAME. A large number ofruns of this more approximate simulator can

be used to build a reliable emulator (for this simulator), and then a relatively small number of evaluations

of the more accurate simulator can be used to refine this into an emulator for the accurate simulator. This5

approach, called multi-level emulation, is powerful but much less common in the literature. In this paper, the

multi-level emulation method is adopted.

The aim of this paper is to demonstrate the potential of the multi-level emulation approach applied to a VATD

simulator. We use the Numerical Atmospheric-dispersion Modelling Environment (NAME) developed at the

UK Met Office (Jones et al., 2007). This simulator is used as the operational model at the London VAAC10

and can predict the location and concentration of volcanic ash following a volcanic eruption. In this study we

focus on predicting the vertically integrated (or column) mass loadings in a particular geographical region

which occured following the 2010 Eyjafjallajökull eruption. The goal is to identify which parameters are the

principle drivers of the uncertainty in the simulator’s predictions of column loadings, and to investigate how

exactly these parameter values influence the output. The emulators used are also designed for use in history15

matching, which is a method for determining which parameters give plausible matches to observations. This

application of the emulators is deferred to a future article.

The paper is structured as follows. Section 2 describes the NAME simulator and the case study. Section 3

details the parameters that are varied in this study and the plausible ranges (as assessed by the simulator

experts) for these parameters. Section 4 describes the choice of simulator runs used to build the emulators,20

and the simulator outputs that are to be emulated. Section 5 gives an overview of the statistical methods

used in the analysis. The application of these methods to thecase study is detailed in Sec 6. It is intended

that this paper can be used as a guide for using the methodology in other applications, so significant detail

about building and validating emulators has been included.However, much of this is contained within the

Appendix, so that readers interested only in the details of the specific application can follow the account free25

of too much technical information.
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2 Description of NAME and chosen case study

2.1 Model description

NAME is the VATD simulator used by the London VAAC. It is a Lagrangian particle dispersion model

originally developed in response to the 1986 Chernobyl disaster. Particles, each representing a mass of

volcanic ash, are released from a source. These particles are advected by 3D wind fields provided by forecasts5

or analyses from a numerical weather prediction (NWP) model. The effect of turbulence is represented by

stochastic additions to the particle trajectories based onestimated turbulence levels. NAME also includes

parameterisations of sedimentation, dry deposition and wet deposition which are required to simulate the

dispersion and removal of volcanic ash. The ash concentrations are calculated by summing the mass of

particles in the model grid boxes and over a specified time period. It is important to note that some processes10

affecting the eruption plume are not represented in NAME or not included in the NAME configurations used

in this study. Missing processes include aggregation of ashparticles, near source plume rise and processes

driven by the eruption dynamics (e.g. Woodhouse et al., 2013). Note that the simulations presented in this

paper were performed using NAME version 6.1.

To predict the transport and dispersion of ash, informationabout the volcanic eruption is required. These are15

known as eruption source parameters (ESPs) and include plume rise height, mass eruption rate, vertical pro-

file of the plume emissions, particle density and particle size distribution. ESPs are required to initialise the

NAME simulations. Full details of the NAME setup used by the London VAAC can be found in Witham et al.

(2012a). The simulations used in this study have a start timeof 2300 UTC on 7 May 2010. This start time

has been chosen to ensure that NAME has had sufficient time to spin up before the chosen case study. The20

details of the other model parameters is discussed in Sect. 3. The ash column loadings are calculated by

summing the mass of the ash in model grid boxes and averaging over 1 hour. Here the model grid boxes are

0.375◦ latitude by 0.5625◦ longitude (approximately 40 km x 40 km).
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2.2 Case study description

The case study chosen here is that of 14 May 2010. This is during the later phase of the Eyjafjallajökull

eruption (14 April – 23 May). Although this later phase of theeruption did not have as much impact on the

aviation industry, it is very well observed using ground-based instruments (e.g. Pappalardo, 2013), aircraft

measurements (e.g. Johnson et al., 2012) and satellites (e.g Francis et al., 2012). Due to the large amount of5

observational data it is also the focus of several modellingstudies (e.g. Grant et al., 2012; Devenish et al.,

2012a; Dacre et al., 2013). Between the 12 and 14 May, a low pressure system moved across Iceland trans-

porting ash cyclonically to the North and West of Iceland on 12 May, towards Europe on 13 May and to

the West of Iceland on 14 May. This followed a period (approximately 7 days) of relatively settled weather

dominated by a large area of high pressure in the the North Atlantic. The synoptic situation at 0000 UTC 1410

May is shown in Figure 1(a). Figure 1(b) shows a satellite infrared image taken by the AVHRR at 0613 UTC

on the 14 May. There are high level clouds ahead of the occluded front located between Ireland and England.

Behind the front there is low-level stratus cloud.

3 Choice of uncertain input parameters

Five eruption source parameters and nine internal simulator parameters were selected to represent the main15

uncertainties affecting the simulation of the dispersion of the volcanic ash in the NAME simulator. A short

description of each parameter is given below along with an associated plausible range. The range represents

our assessment of uncertainty on the value of each parameter. It is within these ranges that the training runs

of the simulator will be performed in order to build the emulators. The uncertainty assessments were found

through a small expert elicitation exercise in which information from relevant literature was combined with20

expert knowledge of NAME and its parametrisation schemes. Table 1 summarises the parameters and their

plausible ranges. In this study we do not consider the impactof the meteorological data used to drive NAME.

More detailed expert judgements on the relative plausibility of parameter choices are not required to build

an emulator, although if available they could be used to adjust the training design.
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3.1 Eruption source parameters

This section describes in detail the parameters specific to the eruption source and how they are perturbed in

the runs used to build the statistical emulator.

3.1.1 Plume height, H

Plume height governs the height at which the ash particles are emitted into the atmosphere. This can have5

a large impact on the horizontal and vertical structure of the ash cloud as atmospheric wind speed and

direction vary with height. Therefore to simulate realistic dispersion following an eruption it is necessary

to know this height as accurately as possible. During the 2010 Eyjafjallajökull eruption information about

the plume height was available from the Iceland Meteorological Office’s C-band radar based at Keflavík

Airport. However, there are time periods when no radar data was available. This was due to a variety of10

factors including the plume being obscured by meteorological cloud, missing radar scans and the fact that

when the plume height was below 2.5 km it could not be detecteddue to the orography in the local area.

When no observational plume height is available the last observed value persists until a new observation is

made. In this study we will be using the data from the Keflavík radar (Arason et al., 2011) as the control

plume height. This control height is then perturbed by an increment in each of the simulations used to build15

the emulator. The maximum and minimum increment used is±2 km. This is in line with observational error

from the radar. Note that this study mainly focusses on one type of vertical distribution for ash at the source.

This is where all ash is evenly distributed from the volcano vent to the plume height. In other studies, for

example Marenco et al. (2011); Schumann et al. (2011); Grantet al. (2012); Pappalardo (2013); Dacre et al.

(2015), a so-called "top hat" or thin-layer distribution isalso used. This is where all ash is emitted in a thin20

layer coincident with the maximum height of the plume. Emulator results for the thin-layer distribution were

also obtained but were broadly similiar to those for the evenly distributed plume presented here.
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3.1.2 Mass eruption rate, MER

Currently there is no direct method of measuring how much mass is being emitted from an erupting volcano.

Therefore many VAACs use an empirical relationship betweenthe observed plume height and the eruption

rate. There are number of relationships in the literature relating these two quantities (e.g Sparks et al., 1997;

Mastin et al., 2009). In this paper the following relationship, based on Mastin et al. (2009) is used:5

MER= 140.8H4.15, (1)

whereH is the plume height above the volcano summit in kilometers and MER represents the total mass

eruption rate in kilograms per second (Mastin et al., 2009; Webster et al., 2012). HereH is the perturbed

plume height described in Sect. 3.1.1. Due to the empirical nature of this formulation the MER also has an

associated uncertainty as the data used to form the relationship is based only on a small number of volcanoes10

of a similar nature (Mastin et al., 2009). To account for thisthe MER is perturbed by a factor between 1/3

and 3.

3.1.3 Particle size distribution, PSD

In the simulations used here, only fine ash is represented with diameters ranging from 0.1–100µm separated

into 6 size bins. The NAME default PSD (shown in Table 2) is based on observations by Hobbs et al. (1991)15

of ash from explosive eruptions of Mount Redoubt, St Augustine and Mount St Helens. The mass fraction

of dispersing material is divided over the model particles within each size range. Each model particle may

correspond to many actual particles of a certain diameter. The exact diameter allocated to each model particle

is such that the log of the diameter is uniformly distributedwithin each size range making up the PSD.

The PSDs used in the simulations to build the emulator were formulated as follows. Dacre et al. (2013)20

present several observed PSDs for the period around 14 May 2010; it was decided to choose a range for the

PSDs that included all of these. These alternatives can all be reasonably reproduced using gamma distribu-

tions with particular shape and scale parameters. Therefore, instead of specifying a range for the frequency

associated with each particle diameter bin, a range was specified for these two parameters. For any given
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pair within this range, the required PSDs can easily be computed. The range for these parameters was chosen

such that all the alternative PSDs could be reconstructed toa reasonable approximation.

3.1.4 Particle density

By default, the London VAAC modelling procedure assumes that ash particles are spherical and have a

density of 2300kg m−3 (Bonadonna and Phillips, 2003). In this study the density isperturbed in the range5

1350kg m−3 – 2700 kg m−3. This range of perturbation to the particle density is considered to include the

uncertainty attributed to the particle shape and aggregation.

3.2 Internal simulator parameters

The long-range transport of volcanic ash can be described bytwo sets of processes. The first set, advection

and dispersion, represent the motion of the particles. The second set, loss processes, model how the ash is re-10

moved from the atmosphere. This section describes in detailthe parameterisations and associated parameters

in NAME that represent the two sets of processes.

3.2.1 Advection and dispersion parameters

In NAME particles are advected in three dimensions by winds usually provided by a NWP model, with

turbulent dispersion simulated by a random walk technique which represents the turbluent velocity structures15

in the atmosphere. Particles are advected each time step with the change in position involving contributions

from the resolved wind velocity, the turbulence, and the unresolved mesoscale motions.

3.2.2 Free tropospheric turbulence

The diffusion due to free tropospheric turbulence is specified by a diffusivity,K, which is related to the turbu-

lent velocities and time scales of atmospheric motions. In NAME, the along-wind and cross-wind spread are20

assumed to be equal, and the eddy diffusivity is further assumed to take the formK = (σ2
uτu,σ

2
uτu,σ

2
wτw)
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whereσu andσw are the standard deviations of the horizontal and vertical velocity fluctuations, respectively,

andτu andτw are the corresponding horizontal and vertical Lagrangian timescales. While these quantities

are likely to vary in space and time, NAME simply assumes fixedvalues. The default values and plausi-

ble ranges for these parameters (see Table 1) are based on observations of vertical and horizontal velocity

variances and diffusivities above the atmospheric boundary layer and values used in other dispersion mod-5

els (Schumann et al., 1995; Dürbeck and Gerz, 1995, Webster and Thomson, personal communication). The

upper limits of these parameters are representing plausible extreme values of turbulence. Note that in this

study the perturbation applied to the horizontal and vertical free tropospheric turbulence parameters is pro-

portional.

3.2.3 Unresolved mesoscale motions10

Low frequency horizontal eddies with scales that lie between the resolved motions of the input meteorolog-

ical data and the small three-dimensional turbulent motions represented in the turbulence parameterisation

scheme are parameterised separately by the unresolved mesoscale motion scheme (Webster et al., 2015). As

in the free tropospheric turbulence scheme the parameters governing the unresolved mesoscale motions are

fixed in time and space. It is assumed that the impact of the unresolved mesoscale motions is the same in15

both components of the horizontal motion. The default values appropriate to the global NWP data used in

this study areσm= 0.8 m s−1 andτm = 14400 s. These default parameters are derived from the spectral

characteristics of the input meteorological data (Websterand Thomson, 2005). At long range, only the dif-

fusivity σ2
mτm matters and so, to simplify the experimental design, we seekto perturb this without worrying

about the values ofσm andτm separately. To achieve a diffusivity range of 0.05 and 2 times the default20

value, we keptτm constant at 6120 s and variedσm from 0.27 – 1.74m s−1 as in Table 1.

3.2.4 Loss process parameters

This section describes the parameters associated with the processes that remove ash from the atmosphere.

The loss processes represented in NAME are wet deposition and dry deposition (including sedimentation).
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Within NAME these losses are applied on a particle basis (i.e. the mass of each particle is reduced each time

step).

3.2.5 Wet deposition

Wet deposition is the process of ash depletion by precipitation in the atmosphere. Two main processes are

involved: washout, where material is “swept out” by fallingprecipitation, and rainout, where ash is absorbed5

directly into cloud droplets as they form by acting as cloud condensation nuclei. Both of these processes

are parameterised in NAME using a bulk parameterisation. The removal of ash from the atmosphere by wet

deposition processes is based on the depletion equation

dC

dt
= −ΛC, (2)

whereC is the ash concentration,t is time andΛ is a scavenging coefficient. The scavenging coefficient,Λ,10

is given by

Λ =ArB , (3)

wherer is the precipitation rate inmm hr−1 and A and B are parameters which vary for different types

of precipitation (e.g. rain or snow) and which process is being represented (e.g. washout or rainout). The

values for A and B are based on observations and detailed cloud modelling (Maryon et al., 1999). Note that15

a review of the literature highlighted that the range of experimental values for snow is much more uncertain

than for rain. This translates into a larger range of possible values of A and B for snow than rain.

In NAME the wet deposition scheme is only used if the prepitation rate is greater than a threshold value,

ppt_crit. This acts as a filter to light drizzle. The reason for applying this threshold is that historically

there has been an excessive light drizzle issue in the globalversion of the UK Met Office NWP model20

(Webster and Thomson, 2014). Applying this threshold ensures that there is not an artifical over prediction

of wet deposition. The default value for ppt_crit is 0.03mm hr−1. In this study this threshold is varied

between 0 and 0.1mm hr−1.
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3.2.6 Dry deposition

Dry deposition is the process by which material is removed from the atmosphere by transport to, and sub-

sequent uptake by, the ground in the absence of precipitation. Dry deposition in NAME is parameterised

through a deposition velocity,vd. The flux of ash to the ground,F is proportional to the near-surface con-

centration of ash,C, and is given by5

F = vdC (4)

wherevd is determined using a resistance analogy.

vd =
1

Ra +Rb +Rc

, (5)

whereRa is the aerodynamic resistance,Rb is the laminar sublayer resistance andRc is the surface resistance

(taken to be zero for particulates such as ash) (Webster and Thomson, 2011). The aerodynamic resistance,10

Ra, is used to specify the efficiency with which the ash is transported to the ground by turbulence. It is pa-

rameterised using a flux gradient approach and similarity theory (Maryon et al., 1999). This means that the

parameterisation is strongly influenced by the prevailing meteorological conditions, and thusRa is perturbed

using a scaling factor between 0.5 and 2. The laminar sublayer resistance,Rb, represents the resistance to

transport across the thin quasi-laminar layer adjacent to the surface. It is determined by both the meteoro-15

logical situation and particle size. The parameterisationfollows the work of Underwood (2011). For small

particles, smaller than 1µm,

Rb =
300

u∗
, (6)

whereu∗ is the friction velocity and for larger particles

Rb =
300

u∗D2
, (7)20

whereD is the particle diameter inµm. In this study the numerator of Eq 6 and Eq 7 is varied between 0-

300 to represent the range of uncertainty in the value ofRb.
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3.2.7 Sedimentation

Sedimentation of ash is represented in NAME using a sedimentation velocity,wsed. This velocity is cal-

culated using the particle diameter (D), particle density (ρp) and ambient meteorological variables at the

particle location (see Maryon, 1997; Webster and Thomson, 2011). In this study,wsed is not perturbed as it

is assumed that changes in PSD and particle density cover therange of plausible sedimentation velocities.5

3.2.8 Distal fine ash fraction

The true particle size distribution of ash particles emitted during an eruption includes extremely large par-

ticles that fall to the ground very quickly. For forecastingthe effects of the eruption on aviation only the

particles that will be transported large distances need to be considered. These particles form the distal ash

cloud. The fraction of the total emitted ash that remains in this cloud is defined as the distal fine ash fraction10

(DFAF). DFAF is difficult to determine as it requires accurate measurements of the particle size distribution

and understanding of any aggregation processes occurring.It is also possible for DFAF to vary over time

and in different parts of the ash cloud. Estimates of DFAF forthe 2010 Eyjafjallajökull eruption range from

0.7 – 18.5% (Dacre et al., 2011; Grant et al., 2012; Devenish et al., 2012b; Dacre et al., 2013). The default

DFAF assumed by the London VAAC is 5% (Witham et al., 2012b). DFAF simply scales the modelled ash15

concentration and therefore does not need to be included in the analysis in this paper as the impact on the

simulator output is understood perfectly.

4 Simulator runs and simulator outputs

In this study attention is focused on the ash cloud on 14 May 2010. The simulator has been set up to provide

ash predictions every hour at a resolution of 0.375◦ latitude by 0.5625◦ longitude (approximately 40 km x20

40 km). Fig. 2(a) shows the simulated ash column loading at 0000 UTC on 14 May 2010 for a choice of

parameters near the default values. High column loadings are found near, and to south east of the volcano.

The main plume extends towards the United Kingdom with an area of relatively low column loading in the
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Atlantic west of Ireland. Rather than attempt to model the entire ash cloud, it was decided to restrict attention

to a small number of summaries, specifically the average ash column loading predicted over up to four large

areas for each hour across a total of 24 hours. The number and location of these areas changed each hour

(to capture the movement of the ash cloud) with several largeareas in each hour. There were a total of 75

areas analysed. These areas were chosen to cover the geographical regions where large amounts of ash were5

detected by satellite observations on this day. The ash column loadings retrieved using SEVIRI satellite data

at 0000 UTC on 14 May 2010 are shown in Fig. 2(b). The regions used for the first hour are marked by the

black boxes. The list of all regions used in the calculationscan be found in Table 3.

NAME is not a fast simulator (each run of the simulator for this study took between half an hour and an hour),

so it is not possible to evaluate it for very many different parameter sets. The number of NAME runs that were10

feasible was potentially insufficient to build the statistical models of interest. However, a fast approximation

of the standard NAME output could be constructed by reducingthe number of particles released in the

simulator from 10,000 per hour to 1,000 per hour. This reduction means that "fast" simulations take between

10 and 20 minutes to complete. This is a significant decrease in running time but still not quick enough to

apply standard global sensitivity analysis techniques such as the Morris method (e.g. Girard et al., 2014), or15

regional sensitivity analysis. We expect the effect of this10-fold reduction in particle numbers to increase

the particle-sampling noise in the simulations by a factor of
√

10. This can provide many approximate runs

to complement the relatively few standard simulator runs. Henceforth, the fast approximation is referred to

as “the fast simulator” and the standard version is referredto as “the slow simulator”.

1500 parameter sets were chosen for the fast simulator runs,using a maximin Latin hypercube design20

(Urban and Fricker, 2010), a method of generating multidimensional parameter sets designed to ensure good

coverage of the overall parameter space. 200 different parameter sets were chosen for the slow simulator runs

in the same way. Finally, the fast simulator was also run at the same 200 points as the slow simulator, so

the difference between the two simulators could be assessed. Each of the 75 regions exhibits one of three

types of difference between the two simulators. In some regions, the two simulators gave almost identical25

results. In some regions, the two simulators gave very highly-correlated results, but not identical (i.e. one

simulator’s output is close to simply being a multiple of theother’s). In the remaining regions (typically

those with relatively little ash predicted) the output of the two simulators is positively correlated, but not
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nearly so similar. Examples of the first and third relationships can be seen in Fig. 3. In all regions there was

strong correlation between the output of the fast simulatorwith the output of the slow simulator, with many

correlations being0.99, and none lower than0.7.

Before proceeding, some notation should be introduced. A particular parameter set is denoted byx, and

the ith parameter within this set isxi. Collections of parameter sets are denoted byx1, . . . , xn. The 2005

parameter sets at which the slow simulator is evaluated are denoted byx1, . . . , x200. and the remaining 1500

parameter sets are denoted byx201, . . . , x1700. The sets of parameter sets are labelled

XS = {x1, . . . ,x200}

XF = {x201, . . .x1700}.

Finally, each parameter setx is normalised so that each individual parameter value lies between0 and1.10

The slow simulator is denoted byf and the fast simulator byf ′. f(x) andf ′(x) can be seen as vectors of

length 75 (the total number of geographical regions) withfi(x) being the value of the average ash column

load in theith region (for example, region 6 is the third region at 0100 UTC 14 May 2010—see Table 3).

If X is a set of parameter sets, thenf(X ) is the set of simulator outputs generated by applyingf to each

element ofX . The set of simulated outputsf(XS) (that is, the set of all slow simulator outpust) is denoted15

byD, andf ′(XS ∪XF ) (the set of all fast simulator output) is denoted byD′.

In this notation, the goal is then to use the evaluationsD andD′ to make inferences about the value of

f(x) for any other parameter setx, and in particular to understand which parameters influencef(x) and in

what way. This will involve building a statistical approximation forf , termed anemulator. The next section

describes the general form of such a model, and the statistical framework used to make inferences from the20

simulator outputsD andD′.
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5 Statistical methods

5.1 Emulation

An emulator is a simple statistical approximation of an expensive functionf(x), built using a (often small)

collection of simulator runsf(xi), which can be thought of as “data” or “observations”. There are several

desirable properties of an emulator:5

– It evaluates quickly.

– It is expressive enough to provide good approximations to the simulator and to allow meaningful prior

judgements.

– It predicts thatf(x) andf(x′) are very close whenx andx
′ are very close.

A typical choice to satisfy these requirements for a scalar-valuedf(x) is10

f(x) =
∑

βigi(x)+ u(x), (8)

or for a vector-valuedf(x)

fi(x) =
∑

j

βijgij(x)+ ui(x).

Note thatgi(x) are simple functions hosen through exploration. For the rest of this section, attention is

restricted to scalar-valuedf for simplicity of notation.15

Here,gi(x) are chosen to be simple functions (for instance polynomials), and theβi are unknown coeffi-

cients. These terms control the global trend of the model. The functionu(x) controls the local variation

of the model. Typically, it is supposed that the expected value ofu is zero, i.e. E(u(x)) = 0, and that the

correlation, Corr(u(x),u(x′)), is some function of the distance betweenx andx
′, such that the correlation

falls as parameters get further apart. For example, a popular choice and the one used for this application is20

Corr(u(x1),u(x2)) = exp

(

−
(

d(x1,x2)

δ

)2
)

,
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whered(x1,x2) is the Euclidean distance between the parameters, andδ is thecorrelation length, a param-

eter that determines how quickly correlation falls with distance. Finally, it is commonly assumed that the

variance ofu, Var(u(x)), equalsσ2 for all x, so the variance of the local term is constant across the param-

eter space. Conceptually, the expectation, variance, and correlation area priori uncertainty judgements.

Building an emulator therefore involves using a collectionof simulator runsf(x1), . . . , f(xn) to5

– identify the basis functionsgi;

– estimate theβi;

– fit the residual functionu(x).

Such an emulator then provides predictions forf(x) at a newx. Since it is a statistical model, this prediction

also comes with an associated uncertainty, which will be lownear observed simulator runs and higher away10

from them. Fig. 4 shows an emulator for a scalar-valued function of one variable.

Computer simulator applications often involve a mixture ofobserved simulator runs and expert knowledge,

making a Bayesian framework a natural choice to build emulators. However, specification of a full joint

probability distribution for the problem is difficult and often leads to computational challenges. With enough

simulator evaluations, a successful method for fitting emulators has been to use a standard (non-Bayesian)15

least-squares regression (that is, with no prior) to estimate theβ, and use the residual variance from the

regression forσ2. This is then used in a Bayesian analysis ofu. These results should be very similar to a

Bayesian analysis of bothβ andu, without needing to worry about the prior judgements forβ.

In this application, there are enough evaluations to build an emulator for thefast simulator by this method.

However, It is the slow simulator that is really of interest.A method proposed in Cumming and Goldstein,20

2009 is applied, in which the emulators for the fast and slow simulators are linked through a simple Bayesian

model, in which theform of the emulators are the same but the coefficients and parameters are different. Even

in this approach, a full Bayes calculation is computationally demanding, and in high dimensions can be very

sensitive to the initial prior specifications. Further, specifying the full high-dimensional probability distribu-

tions that properly reflect expert judgements is an extremely difficult task. In the paper, the alternativeBayes25

linear approach (Goldstein and Wooff, 2007) is used instead, in theanalysis of the residual function for the
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fast simulator, and also the analysis of the link between thefast and slow emulators. The next section gives

a brief description of the Bayes linear approach, before thespecific model used to link the two emulators in

introduced.

5.2 Bayes linear methods

As with a full Bayes analysis, the Bayes linear analysis combines prior judgements with observations through5

simple equations. Bayes linear analysis does not, however,require expert judgements to be specified as a

full joint prior probability distribution for all variables. Rather, the experts need only to specify expectations,

variances, and covariances for a few relevant quantities. Similarly, rather than a joint posterior probability

distribution, Bayes linear analysis leads to adjusted expectations, variances, and covariances for relevant

quantities. Given a vector of dataD (for example, simulator runsf(x1), . . . ,f(xn) that have been evaluated),10

the representation off in Eq. (8), and a vector of quantities of interestB (for example, the value of the

simulatorf(x) at some newx at which the simulator has not yet been evaluated), the adjusted expectation

and variance forB are given by

ED(B) = E(B)+ Cov(B,D)Var(D)
−1

(D−E(D)) (9)

VarD(B) = Var(B)−Cov(B,D)Var(D)
−1 Cov(D,B) . (10)15

Note that these equations hold for arbitraryD, not just theD defined in the previous section (the set of slow

simulator outputs). In particular, we will often replacedD withD′ (the set of fast simulator outputs) in these

equations.

5.3 Linking fast and slow simulators

An emulator can be built for the fast simulator:20

f ′(x) =

p
∑

i=1

β′
igi(x)+ u′(x), (11)

as described above. The final component needed for the linearBayes determination ofu′, the correlation

Corr(u′(x1),u
′(x2)), can be fit using various methods; more details of this can be found in Appendix A1.1.

19



The next step is to link this to an emulator forf(x) from Eq. (8). Notice that in Eqs. (8) and (11), the

basis functionsgi(x) are the same in both emulators. That is, it is supposed that the mean trend of the fast

simulatorf ′ has the same form (but different coefficients) as the simulator of interestf . If f ′ is a reasonable

approximation forf (for instance, an older version off or a version off run at lower resolution) this

supposition will usually be valid.5

Further, the coefficientsβi andβ′
i will often be similar. A model linking these coefficients will allow the fast

simulator runs to provide information about theβi. At the same time, this model must be flexible enough

that it does not impose a strong link where none exists. The same can be said of the link betweenu(x) and

u′(x). A simple model is

βi = ρiβ
′
i + ci10

u(x) = ρ0u
′(x)+w(x),

whereρ0, ρi are unknown multipliers andci are unknown scalars. If the two simulators are very similar,

then mostρi will be near1 and mostci will be near0. If the value ofgi(x) has a much smaller effect on

the fast emulator that on the slow emulator,ρi will be much larger than1. Where the value ofgi(x) has

a much large effect on the fast emulator that on the slow emulator, ρi will be near zero. Ifgi(x) has an15

opposite effect on the fast emulator and the slow emulator, thenρi will be negative. The emulation process

therefore involves using the fast simulator to work out the form of the emulator, to estimate theβ′
i, and make

inferences aboutu′, and then using the slow simulator to make inferences about the ρi andw. Note that

underlying this approach is the assumption that the slow simulator runs do not provide any more information

about the fast simulator.20

In this application, it turned out that this could be furthersimplified to

βi = ρiβ
′
i

u(x) = ρ0u
′(x)+w(x) (12)

without noticeably reducing the effectiveness of the emulators.

This model requires prior expectations, variances, and covariances for theρi andρ0, as well as forw(x). In25

Appendix A1.2, more details of these prior requirements areprovided.
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With these choices, the Bayes linear adjustment for a newf(x) can now be performed. This calculation and

the resulting equations are somewhat technical, so are given in Appendix A1.3; in particular the adjusted

expectation and variance forf can be found in Eqs. (A2) and (A3).

5.4 Diagnostics and validation

It is important to check that an emulator is performing well before using it to make predictions. There5

are several possible reasons an emulator would be poor. The form of the mean function could be missing an

important term or even be totally misguided. The form of the correlation function might be inappropriate. The

parameters in the correlation function (in this application, the correlation length) could be set at inappropriate

values. Finally, some other assumptions, such as the assumption that Var(u(x)) is the same for allx, could

be seriously misleading.10

The mean function plays a large role in these emulators. The usual diagnostics from linear models can be

valuable in assessing the adequacy of the chosen mean function. The coefficient of determination,R2, a

statistic that represents the proportion of variation explained by the parameters in the linear model, is a

useful number to check first. If this is low, then the mean function is not explaining much of the variation

in the simulator output, and adding new terms or changing theform of the mean function entirely should be15

considered. Examining the residuals can also be useful in this process, in particular whether there are regions

of the parameter space where the residuals are systematically large in one direction.

A simple and effective method of validation is leave-one-out validation. In this procedure, all but one of the

observed simulator runs are used to build an emulator, and this emulator is used to predict the one run that

was left out. Forn simulator runs, this givesn emulators and predictions. If the emulators frequently predict20

the left-out values to be far from the observed simulator run, this suggests a problem with the emulator. Here,

“far from” means relative to the variance of the emulator—a useful rule of thumb is that about 95% of the

validation runs should be within three standard deviationsof the prediction.

If this proportion of successful prediction is much lower than 95%, this might signal a fundamental problem

with the mean function and/or the form of the correlation function, but it can often simply signal a poor25

choice of correlation length. If the correlation length is too high, then the emulator variance will be too low
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and hence many observations will be judged “too far” from theemulator predictions. On the other hand, if

the correlation length is too low, then the emulator will notbe able to capture many patterns of local variation

from the mean function that may be present (specifically, anysuch patterns that exist over distances much

higher than the correlation length). It is often possible totune the correlation length so that the proportion of

successful validations is around 95%.5

6 Application to NAME

6.1 Choosing basis functions and eliminating inactive parameters

We first consider the choice of basis functionsgi(x). This involves choosing the form of the functions and

also which parameters are even used. Often, some parametershave negligible impact on some simulator

outputs and therefore removing them from the emulator entirely is advisable.10

The details for this stage are included in Appendix A2.1. Theresult was that the chosengi were quadratic

and lower-order terms, i.e.

f ′(x) =
∑

i

aix
2
i +
∑

i

∑

j 6=i

bijxixj +
∑

i

cixi + u′(x).

For most output quantities, this led to the emulators with four active variables, with more in a few of the 75

output areas. Parametersx1 (plume height) andx3 (mass eruption rate) were active in all models, withx715

(standard deviation of free tropospheric turbulence) andx12 (precipitation rate required for wet deposition)

active in most. Parametersx6 (ash density),x13 (scavenging coefficient parameterA for rain), andx15–x18

(scavenging coefficient B and dry deposition resistances) were active in no emulators. A summary of the

number of times each parameter was active is shown in Table 4.

6.2 Emulating the fast simulator20

Each of these linear models now gives an estimate forβ′
i and a residual variance that can be used for

Var(u′(x)). This was used to build emulators for the fast simulator, again using standard methods. Details
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of the choices made and justifications for these can be found in Appendix A2.2. Validation was performed

by attempting to predict the 200 observations fromXS using the remaining 1500; the proportion off ′(XS)

predicted reliably (that is, within three standard deviations of the emulator variance) for each output ranged

from 94.5% to 99%. An example of validation can be seen in Fig.5 This suggests that the emulator is a

useful tool for prediction.5

The next step is to link the fast simulator to the slow simulator and use the runsf(XS) to make predictions

for the slow simulator.

6.3 Emulating the slow simulator

The emulator for the fast simulator is linked to that of the slow simulator through Eqs. (12) (recall that

the emulators for the slow and fast simulators are given by Eqs. (8) and (11) respectively). This requires10

prior judgements forρi andw(x). For the latter, the judgements used were that E(w(x)) = 0, Var(w(x)) =

Var(u′(x)), and the correlation structure is the same form as that ofu′(x). This correlation structure was

tuned in the same way as for the fast emulator (see Appendix A2.2). Expectations, variances and covariances

for ρi were specified using the least-squares method in Appendix A1.2.

With this model, the adjusted expectation and variance ED(f(x)) and VarD(f(x)) can be computed for15

any newx using Eqs. (A2) and (A3) in Appendix A1.3. Note that this calculation includes the adjusted

expectation and variance of theρi. Examining these quantities shows which regions and for which gi the

differences between the fast and slow simulators are most pronounced. In conjunction with theβ′
i, they also

give more insight into how the active parameters drive the simulator output.

Validation followed a similar method to that for the fast emulator. In this case, over the75 regions, the20

proportion of successful predictions from the validation again ranged from94.5% to 99%.

For most emulators, theρi were close to 1 (typically between0.95 and1.05) for all βi. With the difference

between the fast and slow simulators being only a factor of
√

10 in the simulation noise and with the simu-

lation noise being kept low by averaging over large regions,this is perhaps expected. The main exceptions

were regions where the fast simulator predicted relativelylittle ash compared with the slow simulator—in25
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these cases theρi were typically between0.5 and0.75 systematically (that is, no particular parameter was

affected more than others). In no case did aρi approach0 (which would indicate a parameter becoming inac-

tive in the slow emulator) or change sign. The only multiplier that was frequently low wasρ0, the multiplier

for the residual process. In conclusion, the link between mean functions of the two emulators is strong and

consistent, in the sense that either theρ are all near1, or they are all near someα so that the difference is5

mostly a rescaling. The local variations, on the other hand,are usually unrelated, withρ0 near zero. This

suggests that the fast simulator could be used more extensively in future applications significantly reducing

simulation run times.

6.4 Implications for NAME case study

The adjustedβi confirm that the simulator behaves broadly as one would expect. As mass eruption rate10

increases (either due to its dependence on the plume rise height,x1 via Eq. (1) or alterations in (1) caused

by x3) the quantity of ash in the atmosphere increases. When the precipitation threshold is higher, higher

values of ash in the atmosphere are also predicted. This is due to less ash being deposited to the surface

as only precipitation rates above the threshold lead to wet deposition. When the particle size distribution

favours large particles, predicted airborne ash reduces because these heavy particles sediment much more15

quickly than small particles and therefore are removed fromthe atmosphere and not available for long-range

transport. The parameterx7 governing free tropospheric turbulence is more interesting: low and high values

lead to relatively less ash predicted than values towards the middle of the range. This is because at the

extremes the ash has either been widely spread and diluted orit has not spread enough to reach the region

being considered in significant quantities. Sincex9 was rarely active and is related tox7 physically (through20

diffusivities σ2
uτu andσ2

wτw) this suggests a possible renement of forcingx9 to be active wheneverx7 is,

since there is a strong relationship between them. Notex7 represents both horizontal and vertical turbulence

because it is linked tox8.

Of all the parameters, the plume height drives the output most strongly, followed by the mass eruption rate

and the precipitation threshold. In all cases, theβi with the highest adjusted expectation corresponded to a25

function of the plume height,x1 (either thex1 term or thex2
1 term). Despite this, the impact of some of

the other parameters are not negligible. Table 5 contains averages of the expected values of some of theβi
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across all the regions in which the corresponding parameters were active. The terms chosen for this table

were those with the largest expected values. It can be seen that x1 is certainly the dominant parameter but

others are still influential. Note that the appearance ofx11 in this table should be viewed with caution: it was

only active in a few regions, and one of those (region 63) had avery unusual emulator with particularly high

βi. It is also interesting to note thatx4 andx5 do not appear in this table: although active parameters in many5

regions, their effects are consistently small. These parameters refine the emulator slightly, but not nearly as

much as the main ones.

Interactions between the parameters (that is, the terms of the formβijxixj ) were small for mosti, j pairs,

but as can be seen in Table 5, there are some notable exceptions. Each pair ofx1, x7, andx12 (plume height,

turbulence in the free troposphere, and precipitation threshold respectively) have negative interactions, with10

all such interactions relatively strong except for thex7x12 pair. This means that, for example, although in-

creasing plume height increases column loading, and increasing the precipitation threshold increases column

loading, increasing both parameters at the same time does not increase column loading as much as would be

expected looking only at the individual parameters. Finally, whenever bothx7 andx9 (standard deviation of

turbulence, and Lagrangian timescale for turbulence) wereactive together, they exhibited very strong nega-15

tive interactions (the highest interactions seen anywherein the analysis, apart from the spuriourx11 ones).

Sincex9 was rarely active and is related tox7 physically, this suggests a possible refinement of forcingx9

to be active wheneverx7 is, since there is a strong relationship between them.

The emulators provide insight into which areas of the parameter space will lead to high values of simulated

ash column loading and which areas will lead to low values of ash column loading. As an extreme case, the20

parameters giving the lowest and highest predictions of ashcolumn loading can be identified. This was done

for the first hour of 14 May, giving two parameter sets at whichthe simulator was evaluated. The results of

these simulator evaluations can be seen in Fig. 6. This givesan idea of the range of possibilities admitted

by the expert judgements from Sect. 3. As can be seen, these two plots are very different; that is, the ranges

in Table 1 cover a broad range of simulator behaviour. Note however that our choice of parameter ranges25

has deliberately tried to cover the whole range of possible values and that, for the parameters relating to

turbulence, it is not plausible that the maximum values could be present throughout the whole atmosphere.
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This is a function of the current NAME parameterisation of free tropospheric turbulence(i.e. the fact that

NAME uses the same parameter everywhere).

Now, only a small region of this parameter space will lead to simulations that resemble the observations

on this day. The emulators can be used to identify this regionof parameter space. Since emulators can be

evaluated very quickly, predictions and their associated uncertainty can be generated for very many candidate5

parameters, and all predictions that are very far from the observations can be rejected. This procedure, called

history matching, focuses on the plausible regions of parameter space and allows more accurate emulators to

be built within them. This is because in a reduced parameter space, the form of the emulator can be changed

to better model the behaviour in that subspace, without being concerned about global behaviour. In such a

region, previously inactive parameters may once again become active, and more illuminating insights can be10

found. Performing this analysis for NAME is beyond the scopeof this paper, but will be covered in a second

study.

7 Conclusions

In this paper it has been shown that a Bayes linear emulation approach can be used to identify source and

internal model parameters that contribute most to the uncertainty in the long-range transport of volcanic15

ash in a complex VATD simulator. The approach presented is applicable to other complex simulators that

have long computation times and many parameters contributing to the overall prediction uncertainty. This

approach uses latin hypercube sampling of the plausible parameter ranges determined through expert elici-

tation. All parameters are varied in each simulator run and therefore information about the importance of the

parameters and their interaction can be investigated simultaneously. This gives a much more realistic esti-20

mate of the uncertainty than using one-at-a-time tests and provides much more useful information to model

developers and those planning observational campaigns.

Here 1700 simulator runs have been used to build 75 emulatorsrepresenting the average ash column loading

in regions on 14 May 2010. These simulator evaluations comprised 1500 fast simulator runs and 200 slow

simulator runs. The analysis demonstrated the strength of using approximate simulators to determine the25

general trend of a simulator and provide plausible priors, before using a relatively small number of accurate
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simulator runs to refine the emulator. Bayes linear methods were used to reduce computational complexity

and the need for detailed prior judgements that we may not believe.

For this case the most important parameters are plume height, mass eruption rate, free troposphere turbulence

levels and precipitation threshold for wet deposition. There is also a strong negative relationship between

each pair of the first three of these (except for the latter two). This means that, for example, although increas-5

ing these parameters individually typically increases column loading, increasing both parameters at the same

time does not increase column loading as much as would be expected looking only at the individual param-

eters. These conclusions should be tested in other situations to assess how widely they hold. An assessment

of the impact of meteorological uncertainty is also required but this is beyond the scope of this study. This

information can be used to inform future research priorities (e.g. the addition of a more complex free tropo-10

spheric turbulence scheme which varies spatially and temporally (see Dacre et al. (2015)) and investigating

the importance of the precipitation threshold within the NAME simulator) and observational capabilities

(e.g. a mobile radar to observe plume height) and measurement campaigns (e.g. insitu observations of ash

particle size distribution). Furthermore, this analysis can be used to prioritise variables to perturb in a small

operational ensemble.15

This study has shown the range of possible ash column loadingdistributions possible from sampling the

parameter space determined by the ranges elicited from simulator experts. Only a small region of this pa-

rameter space will lead to simulations that resemble the observations on this day. Emulators can be used to

identify this region of parameter space as they can be evaluated very quickly. The resulting predictions and

their associated uncertainty can be generated for very manycandidate parameters, and all predictions that20

are very far from the observations can be rejected. This procedure, known ashistory matching, focuses on

the plausible regions and allows more accurate emulators tobe built within them. This analysis is beyond the

scope of this paper. This will form the basis of a future studybut could further inform the parameter pertur-

bations used in an operational ensemble. The approach presented here could be easily applied to other case

studies, simulators or hazards. Furthermore, an ensemble of emulator evaluations could be used to produce25

probabilistic hazard forecasts.
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Appendix A: Appendix

A1 Adjusting slow emulators using fast emulators

A1.1 Fitting the fast emulator

Recall that for a Bayes linear calculation, one needs prior specifications of expectations, variances, and

correlations of all unknown quantities. For the fast emulator, theβ′
i are fixed at their least squares estimates,5

E(u′(x)) is taken to be zero, and Var(u′(x)) is set to the residual standard deviation. This leaves only

Corr(u′(x1),u
′(x2)) to be estimated. A typical approach is to specify a correlation function that depends

only ond(x1,x2), the distance betweenx1 andx2. A common choice, used in this study, is

Corr(u′(x1),u
′(x2)) = exp

(

−
(

d(x1,x2)

δ′

)2
)

,

although other choices are possible; in particular using a different correlation lengthδ′ for each direction10

would often be useful, although did not prove necessary in this application.

The parameterδ′ governs the strength of the correlation, and must be estimated from the observed resid-

uals by some method. A formal estimation can be performed using the variogram methods in, for in-

stance, Cressie, 1993, applied, for instance, in Cumming and Goldstein, 2009. A more heuristic approach has

been successful in many other applications (Vernon et al., 2010; Goldstein et al., 2010; Goldstein and Huntley,15

2016). This involved the argument that, for a polynomial mean function, a plausible value ofδ′ is 1

p+1
where

p is the highest-order term in the polynomial fit. This starting value can then be explored and adjusted “by

hand”. A popular strategy is a leave-one-out exploration: for each parameterxi, calculate the adjusted ex-

pectation and variance forf(xi) using all the otherxj and a trial value ofδ′. The observed value off(xi)

can then be used to see whether the prediction was accurate ornot. The value ofδ′ used can be adjusted to20

balance two competing requirements: that most of the predictions are close (relative to the adjusted variance)

to the observed values, and that the variances are small. Forexample, if many more than 5% of predictions

are more than three standard deviations away from the observation,δ′ is unlikely to be a good choice, so a

good value ofδ′ should satisfy this requirement while keeping the variances as low as possible.
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A1.2 Prior judgements for linked emulators

Using the linking model in Eq. (12), an adjustment of the slowemulator involves prior expectations, vari-

ances, and covariances forρi, ρ0, andw(x). A simple approach is to use

E(ρi) = 1

Var(ρi) = σ2
ρ5

Cov(ρi,ρj) = r,

reducing the specification for the multiplier to two numbersσ2
ρ andr. Note thatρ0 is included in the above

specifications. This leaves onlyw(x) to consider. A natural choice is to use the same form as is usedfor

u′(x), including the same variance and the same correlation length δ. Another option is to use the same

correlation structure, but allow Var(w(x)) = σ2
w to be different from Var(u′(x)). Finally, a very useful10

simplification is to take Corr(w(x),ρi) = 0 for all i (including0).

Thus, the link betweenf ′ andf is provided byτ = {σ2
ρ,r,σ

2
w}—only these three values need to be specified

now (or only the first two, depending on earlier choices). Were it possible to specify values forτ , this would

provide all the ingredients to perform a Bayes linear calculation to learn about the slow simulator using the

(adjusted) fast emulator and the evaluationsf(XS). However, the quantities inτ are difficult to think about,15

so expecting an expert to be able to specify them is unrealistic.

Instead, plausible values forτ can be generated using the differencesd(x) = f(x)−f ′(x) for eachx ∈ XS .

As calculated in Cumming and Goldstein, 2009,

Var(d(x)) = σ2
ρφ(x)+ σ2

ρrψ(x)+ σ2
w , (A1)

where20

φ(x) =

p+1
∑

i=1

bi(x)2

ψ(x) =
∑

i6=j

bi(x)bj(x),

with

b(x) = (β′
1g1(x), . . . ,β′

p(x)gp(x),u′(x)),
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noting thatu′(x) is known for eachx ∈ XS because the fast simulator was evaluated at each such point.

Further, E(d(x)) = 0, and hence Var(d(x)) = E
(

d(x)2
)

and so from Eq. (A1),

E
(

d(x)2
)

= σ2
ρφ(x)+ σ2

ρrψ(x)+ σ2
w ,

and forx ∈ XS everything on the right-hand side of this equation is known except forτ . Replacing E
(

d(x)2
)

with the observedd(x)2, this gives|XS | (in our application, 200) linear equations in 3 unknowns, and a least-5

squares fit can be used to estimate these three unknowns and henceτ̂ . This τ̂ can then be used as the prior

judgements for the link between the emulators. Note that this approach works only because both fast and

slow simulators are evaluated atXS .

A1.3 Adjusting the slow emulator

Suppose an emulatorf ′ has been constructed as in Eq. (11) by usingD′; in particular we suppose that the10

β′
i are known and thatu′ has had its mean and variance adjusted using (9) and (10) (withD replaced byD′).

We also assume the link (12) between the fast and slow emulators and that priors have been specified forρi

andw, for instance by the methods in Appendix A1.2. The adjusted fast emulator and the slow simulator

runsD are available to be used in the adjustment ofρ andw, and hence the adjustment off(x) for any new

x.15

First, we have

ED(ρi) = 1 + Cov(ρi,D)Var(D)
−1

(D−E(D)).

The prior expectation for each element ofD is simply the value observed for the corresponding element of

D′. Also,

Cov(ρi,Dj) = Cov

(

ρi,
∑

k

ρkβ
′
kgk(xj)+ ρ0u

′(xj)+w(xj)

)

20

=
∑

k

Cov(ρi,ρk)β′
kgk(xj)+ Cov(ρi,ρ0)u

′(xj)

=

p+1
∑

k=1

Cov(ρi,ρk)b(xj)k.
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Finally, the variance matrix Var(D) is built from elements of the form

Cov(D1,D2) = Cov

(

∑

i

ρiβ
′
igi(x1)+ ρ0u

′(x1)+w(x1),
∑

i

ρiβ
′
igi(x2)+ ρ0u

′(x2)+w(x2)

)

=
∑

i,j

Cov(ρi,ρj)b(x1)b(x2)+ Cov(w(x1),w(x2)) .

Recall in the above thatx1 andx2 have all been evaluated using the fast simulator, so in particularu′(xi)

are known. This is all that is needed to calculate ED(ρi).5

The adjusted variance forρ is given by

VarD(ρ) = Var(ρ)−Cov(ρ,D)Var(D)
−1 Cov(D,ρ) ,

which can be calculated from the expressions above.

The adjustment for the residualw(x) is simpler:

ED(w(x)) = Cov(w(x),D)Var(D)
−1

(D−E(D))10

VarD(w(x)) = Var(w(x))−Cov(w(x),D)Var(D)−1 Cov(D,w(x))

where

Cov(w(x),Di) = Cov(w(x),w(xi)) .

Then, for anyx such thatx ∈ XF (the parameters used for the fast but not slow simulator runs), Cumming and Goldstein,

2009 showed that the Bayes linear adjustment forf(x) is given by15

ED(f(x)) = b(x)T ED(ρ)+ ED(w(x)) (A2)

VarD(f(x)) = b(x)T VarD(ρ)b(x)+ VarD(w(x))+ 2b(x)CovD(ρ,w(x)), (A3)

where

CovD(ρ,w(x)) = Cov(ρ,w(x))−Cov(ρ,D)Var(D)
−1 Cov(D,w(x))

= −Cov(ρ,D)Var(D)
−1 Cov(D,w(x)) ,20

31



recalling that Cov(ρ,w(x)) was assumed to be zero.

For newx for which the fast simulator has not been evaluated, the equations remain almost identical, but

there is the added complication thatu′(x), the residual in the fast emulator, is not known. Since this appears

in the final element ofb(x), the above equations cannot be evaluated. Under the assumption that the slow

simulator runsD provide no further information about the fast simulator, the final element ofb(x) in these5

equations can be treated as fixed at the adjusted expectationED′(u′(x)).

A2 Building the emulators

A2.1 Choosing basis functions and removing inactive parameters

From experience, polynomial terms are often suitable choices. For each of the75 outputs, linear models

were built with i) first-order (linear) terms only; ii) second-order (quadratic) and first-order terms, with10

interactions; iii) third-order (cubic) and lower-order terms, with first-order interactions. Explicitly, these are

the models

f ′(x) =
∑

i

aixi + u′(x)

f ′(x) =
∑

i

aix
2
i +
∑

i

∑

j 6=i

bijxixj +
∑

i

cixi + u′(x)

f ′(x) =
∑

i

aix
3
i +
∑

i

bix
2
i +
∑

i

∑

j 6=i

cijxixj +
∑

i

dixi + u′(x),15

where theai, bi, ci, di collectively form theβ′
i in Eq. (11) (and, are of course, different values in the three

different models). Note that “linear” in “linear model” refers to the linearity of the form
∑

iβigi(x), not the

linearity of thegi, so all three models here are linear models.

The adjustedR2 was examined for each model. The findings of this procedure, when applied to the fast

simulator runs , can be summarised as follows.20
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– The models with only first-order terms were inadequate in many cases, leading to lowR2 and high

residual variance. For some of the outputs they did provide good fits (adjustedR2 between0.9 and

0.95).

– The second-order models were very good (R2 over0.95) for almost every region, and good for all

regions (with the lowestR2 of 0.89).5

– The third-order models provide no noticeable improvementsover second-order models.

As a result of this, the chosengi were second-order and lower terms for all outputs.

The second stage of emulation is the removal of inactive parameters. In the linear model for any given

output quantity, most of the parameters have little impact.Emulators can be improved by focusing on a

few important parameters and leaving the rest out of the meantrend entirely. This involves adding a small10

“nugget” of variance into the emulator, uncorrelated with everything else. This nugget represents the fact

that now the emulator does not exactly predict the simulatoroutput even at parameters already sampled,

because some parameters have been ignored. For example, if only parametersx1 andx2 are active, then the

emulator will give the same prediction whatever the value ofx3, . . . , even though the simulator will give

slightly different output in each case. The nugget accountsfor this uncertainty. An estimate for the size of the15

nugget was derived by running the simulator with different values of the inactive parameters and observing

the impact. This is a rather crude approach, but since the observed variation was several orders of magnitude

lower than the other variances in the emulator, there is little benefit to a more careful analysis. Formally, the

emulator becomes

f(x) =
∑

βigi(xA)+ u(xA)+ v(x),20

wherexA are the active parameters, andv(x) represents the nugget, with expectation zero, low variance,

and zero correlation with everything else.

A policy of stepwise elimination was followed for each output: at each step, each parameter was removed

in turn, and the change inR2 was calculated. The parameter whose removal caused the smallest change

in this was removed. This process was continued for each output until either 4 parameters were left or the25

removal of a single parameter would reduce theR2 by more than0.03. A third criterion, that theR2 should
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not be allowed to fall below some critical value, was considered but turned out to be unnecessary. The choice

to require at least 4 parameters was made after observing that emulators with fewer parameters tended to

perform poorly in validation.

In a standard emulation this would conclude the removal of inactive parameters, but since in this case the

fast emulator is to be linked to the slow emulator, it is important to check that there are no parameters being5

removed that are much more important for the slow emulator. For this reason, the same stepwise selection

was performed using the 200 runs of the slow simulator (ignoring the link with the fast emulator). This

procedure selected the same parameters in most cases, occasionally with one difference. It is likely this is

caused by small quasi-random differences in theR2, but for safety these parameters were also added back

into the emulators. This led to an extra parameter being activated for four of the outputs.10

Finally, since parametersx4 andx5 were closely related (the parameters governing the gamma distribution

from which the particle size distribution was calculated),it was decided that an activex5 should lead to an

activex4 as well.

A2.2 Emulating the fast simulator

Since 1700 is a large number of runs, it is reasonable to make the simplification that the least-squared15

estimates forβ′
i are known quantities, and that the residual variance can be used for Var(u′(x)). The only

remaining task for the fast simulator’s emulator is to specify the correlation. A squared correlation is used,

that is,

Corr(u′(x1),u
′(x2)) = exp

(

−
(

d(x1,x2)

δ′

)2
)

,

whereδ′, the correlation length, is to be set, andd(x1,x2) is the distance betweenx1 and x2. In Ap-20

pendix A1.1, some possibilities for choosingδ′ are provided. Note that using a different scaling parameter

for each dimension of the parameter space can be necessary inmany cases, but for this application a single

value proved sufficient (recall that all parameters have been normalised so they are all in[0,1], otherwise

different δ′ would be needed for each dimension). The approach used in this application is to begin with

δ′ = 1/3, then use leave-one-out validation usingf ′(XF ) to tuneδ′, and finally predictf ′(XS) usingf ′(XF )25
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and thisδ′ to check that the method has been successful. This strategy suggested rather small values for the

correlations lengths in all the regions, between0.1 and0.15.

Predictions of the remaining200 runs using the emulator built from the first1500 were accurate for all the

outputs: an example can be seen in Fig. 5, for the case of the first output in the first hour. The emulator

predictions are close to the observed output (that is,f ′(XS)) relative to the emulator variances in most5

cases, and the emulator variances are small relative to the overall variability of simulator output across the

parameter space. This analysis suggests that the emulator and the choices ofδ′ are appropriate. A final fast

emulator was then built using all the runs (f ′(XS∪XF )) and the values ofδ′ calculated by the above method.
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Key Parameter name Default value Minimum

value

Maximum

value

x1 H : Height of plume at release (m) Taken from

Arason et al.

(2011)

Arason et al.

−2000m

Arason et al.

+2000m

x2 Source layer depth for the thin-layer source simulations

(m)

1000m 100m 2000m

x3 MER: Mass eruption rate (kg s−1) As per Mastin et al.

(2009)

Mastin et

al./3

Mastin et al

×3

x4 Shape parameter for the Gamma distribution for particle

sizes

Not Applicable 3 10

x5 Scale parameter for the Gamma distribution for particle

sizes (µm)

Not Applicable 1 10

x6 Density of the ash (kg m−3) 2300 1350 2700

x7 σu: Standard deviation of horizontal velocity for free

tropospheric turbulence (m s−1).

0.25 0.0025 2.5

x8 σw: Standard deviation of vertical velocity for free tro-

pospheric turbulence (m s−1).

0.1 0.001 1

x9 τu: Horizontal Lagrangian timescale for free tropo-

spheric turbulence (s).

300 100 900

x10 τw: Vertical Lagrangian timescale for free tropospheric

turbulence (s).

100 20 300

x11 σm: Standard deviation of horizontal velocity for unre-

solved mesoscale motions (m s−1)

0.8 0.27 1.74

x12 ppt_crit: Precipitation rate required for wet deposition

to occur (mm hr−1)

0.03 0 0.1

x13 Scavenging coefficient parameter A for rain (s−1)
Below cloud:

8.4×10−5
0.000001 0.01

In cloud:

3.36×10−4

x14 Scavenging coefficient parameter A for snow (s−1)
Below cloud:

8.0×10−5
0.000001 0.1

In cloud:

5.2×10−5

x15 Scavenging coefficient parameter B for rain 0.790 0.4 1.1

x16 Scavenging coefficient parameter B for snow
Below cloud: 0.305

0.2 1.2

In cloud: 0.790

x17 Ra: Dry deposition aerodynamic resistance perturba-

tion factor

1 0.5 2

x18 Rb: Dry deposition Laminar sublayer resistance numer-

ator

300 0 300

Table 1.Summary of the parameters, default values and ranges used inthis study.
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Particle Diameter (µm) Mass Fraction

0.1 - 0.3 0.001

0.3 - 1.0 0.005

1.0 - 3.0 0.05

3.0 - 10.0 0.2

10.0 - 30.0 0.7

30.0 - 100.0 0.044
Table 2.The default input source PSD used in NAME by the London VAAC.
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First region Second region Third region Fourth region

0000 UTC (−13,61):(−5,69) (−13,55):(−6,61) (−22,59):(−13,65)

0100 UTC (−14,62):(−6,69) (−14,55):(−6,62) (−22,60):(−14,65)

0200 UTC (−14,61):(−6,69) (−14,54):(−6,61)

0300 UTC (−14.5,61.5):(−6.5,69.5) (−14.5,54):(−4,61.5)

0400 UTC (−15,62):(−6,70) (−15,54):(−5,62)

0500 UTC (−15.5,61):(−6,70) (−15,53):(−3,61)

0600 UTC (−15.5,61):(−6,70) (−15,53):(−3,61)

0700 UTC (−17,63.5):(−9,70) (−14.5,59):(−6,63.5) (−11,53):(−2,59.5)

0800 UTC (−18,64):(−9,70) (−15,61):(−8,64) (−11,53):(−1,61) (−27,63):(−19,66)

0900 UTC (−20.5,64):(−9,71) (−15,61):(−8,64) (−11,53):(−1,61) (−28,63):(−20,66)

1000 UTC (−21,64.5):(−9,71) (−15,61):(−8,64.5) (−11,53):(−1,61) (−30,63):(−21,66)

1100 UTC (−21,63):(−9,71) (−12,53):(−1,62) (−30,63):(−21,66)

1200 UTC (−22,63.5):(−9,71) (−12,53):(−1,62) (−31,63):(−23,66)

1300 UTC (−23,63):(−10,71) (−12,53):(−1,62) (−32,63):(−23,66)

1400 UTC (−24,65):(−17,71) (−17,63):(−12,67) (−12,52):(0,62) (−33,62.5):(−22,66.5)

1500 UTC (−24,65):(−18,71) (−18,63):(−12,67) (−8,53):(0,59) (−33,62.5):(−22,65.5)

1600 UTC (−25,64):(−20,71) (−20,62):(−12,66) (−8,52):(0,58) (−33,62.5):(−24,66)

1700 UTC (−26,65):(−19,71) (−20,62):(−15,65) (−8,52):(0,58) (−34,62.5):(−24,66)

1800 UTC (−28,66):(−19,71) (−27,62):(−14,66) (−7,52):(1,58) (−34,62.5):(−27,66)

1900 UTC (−27,62):(−14,67) (−7,52):(1,57) (−34,62.5):(−27,66)

2000 UTC (−27,62):(−14,67) (−7,52):(1,57) (−36,62.5):(−27,66.5)

2100 UTC (−27.5,61.5):(−18,67) (−7,52):(1,57) (−37,62):(−27.5,66.5)

2200 UTC (−28,63.5):(−18,67) (−7,51.5):(1,55.5) (−37,62):(−28,66.5)

2300 UTC (−30,63.5):(−18,66.5) (−7,51.5):(1,55.5) (−37,62):(−30,66.5)

Table 3. Location of geographical regions used for comparision for each hour by longitude and latitude of the region

corners.

43



Parameter x1 x3 x4 x5 x6 x7 x9 x11 x12 x13 x14 x15 x16 x17 x18

Times active 75 75 18 18 0 61 15 4 58 0 1 0 0 0 0
Table 4. Number of outputs for which each parameter was judged active(and hence included in the emulator for that

output). Recall thatx7 andx8 are linked, and sox8 is not present in the table, and similarly forx10 which is linked to

x9 .
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Linear model term Average

x2

1 -2.26

x2

7 0.55

x2

11 -1.45

x2

12 -0.73

x1 8.05

x3 2.21

x11 8.25

x12 2.11

x1x7 -0.93

x1x11 -3.73

x1x12 -0.91

x7x9 -1.05

x7x11 -3.55

x7x12 -0.12

Table 5. Average of the expected values of selectedβ coefficients across all regions. Any term not present has small

coefficients in all regions, or was inactive in all regions. Note that the sensitivity tox11 is overstated because it was

active only in a few regions, and one of those regions exhibited unusual behaviour.
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Figure 1. (a) UK Met Office surface analysis chart at 0000 UTC on 14 May 2010. Mean sea level pressure isobars

overlaid with surface fronts.(b) AVHRR infrared satelliteimage at 0613 UTC on the 14 May 2010 provided by the

Dundee satellite receiving station.
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Figure 2. (a) Simulated ash column loading at 0000 UTC 14 May 2010 usingparameters near the default values. (b)

SEVIRI satellite retrieved ash column loading also at 0000 UTC 14 May 2010. The black boxes denote the regions

over which average ash column loading is being emulated for this hour. In (a) column loading of 20000µg/m2 and

2000µg/m2 are shown by the green and grey contours respectively.
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Figure 3. Relationship between the slow simulator and fast simulatoroutput forXS at (first graph) the first region and

(second graph) the 63rd region (third region at 1900 UTC). The 63rd region has the lowest correlation between fast and

slow simulator output.
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Figure 4. One-dimensional example of an emulator. The points represent the six evaluations off(x), the black line is

the emulator’s prediction, and the red lines give two standard deviations. The blue dashed line is the true value off(x).
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Figure 5. Validation plot for the emulator (for the fast simulator) ofthe first output. Emulator expected value for the

parameter sets inXS is shown in black, with an interval of three standard deviations each side shown in blue. The red

line shows the true simulator output at each parameter set. The parameters have been ordered from lowest to highest

emulator prediction.
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Figure 6. NAME ash column loading for parameter choices with the highest and lowest expected ash column loadings

in the first geographical region at 0000 UTC 14 May. The contours are as in Figure 2.
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