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Abstract. The main shock of the 2015 Gorkha Earthquake in Nepal induced numerous avalanches, rockfalls, and landslides 

in Himalayan mountain regions. A major village in the Langtang valley was destroyed with numerous victims by a 

catastrophic avalanche event, which consists of snow, ice, rock, and blast wind. The hazard process is understood mainly 

depending on limited witness, interview, and an in-situ survey after a monsoon season. To record immediate situation and to 15 

understand deposition process, we performed an assessment by means of satellite-based observations carried out in no later 

than two weeks after the event. The avalanche-induced sediment deposition was delineated with calculation of decreasing 

coherence and visual interpretation of amplitude images acquired from the Phased Array-type L-band Synthetic Aperture 

Radar-2 (PALSAR-2). These outlines area highly consistent with that delineated from a high-resolution optical image of 

WorldView-3 (WV-3). The delineated sediment areas were estimated as 0.63 km2 (PALSAR-2 coherence calculation), 0.73 20 

km2 (PALSAR-2 visual interpretation), and 0.88 km2 (WV-3), respectively. In the WV-3 image, surface features were 

classified into 10 groups. Our analysis suggests that the avalanche event contains a sequence of (1) fast splashing body with 

air blast, (2) muddy huge mass flowing, (3) less mass flowing from another source, (4) smaller amount of splashing and 

flowing mass, and (5) splashing mass without flowing at the east and west sides. By means of satellite-derived pre- and post-

event digital surface models, differences in the surface altitudes of the collapse events estimated the total volume of the 25 

sediments as 5.51±0.09×106 m3, most mass of which are distributed along the river floor and a tributary water stream. 

These findings contributes for detail numerical simulation of the avalanche sequences as well as source identification, and 

furthermore, altitude measurements after ice/snow melting would reveal a contained volume of melting ice and snow. 
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1 Introduction 30 

A great earthquake of 7.8 Mw, namely the 2015 Gorkha Earthquake, occurred in the district of Lamjung, central Nepal on 

April 25, 2015 (Ge et al. 2015; Parameswara et al. 2015), which caused more than 9,000 deaths and 23,000 people to be 

injured (e.g., Roy et al. 2015). Damages in urban areas were especially caused on stone/brick masonry structures (Goda et al. 

2015), whereas numerous landslides were induced in rural/mountain areas (ICIMOD 2015a; Kargel et al. 2015). 

The most catastrophic collapse in the mountainside was reported in the Langtang valley, located 70 km north of Kathmandu 35 

(ICIMOD 2015b; Kargel et al. 2015). Landslides, avalanches, and sudden air pressure wave traveled from a south-facing 

steep slope to the bottom of a U-shaped valley. The fallen materials, i.e., a mass of boulders, snow, and ice, covered the 

valley bottom involving almost all the buildings in Langtang Village. At the opposite side of the valley, trees were prostrated 

and lost their leaves by the sudden air pressure wave. More than 170 villagers (reaching its double including trekkers and 

porters) were killed (or left missed) in this event. 40 
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Generally, damage detection through Synthetic Aperture Radar (SAR) technique has ever been applied for urban damaged 

areas (e.g., Kobayashi et al, 2011; Yonezawa and Takeuchi, 2001; Tamura and El-Gharbawi, 2015; Watanabe et al., 2016), 

but almost no case for a large-scale mountain hazard was studied. Therefore we apply SAR damage detection for this event. 

Fragmentary information from witness, interview, and in-situ survey after a monsoon season give some clues, however 

scientific understanding of the avalanche process is still poor. Detailed interpretation of the sediment deposition by means of 5 

immediately-observed high-resolution optical satellite imagery coupled with sediment volume estimation would provide 

comprehensive spatial and volumetric distribution and a temporal sequence of material deposition. In this study, therefore, 

we carry out (1) the identification with SAR for urgent response, (2) the mapping and interpretation of the deposition 

sequence with high-resolution optical imagery, and (3) the volume estimation using the difference between pre- and post-

event digital surface models (DSMs). These results lead to evaluate SAR application for mountain hazard response and to 10 

discuss the overall picture of the avalanche. 

2 Data set and Processing 

2.1 Study site 

The catastrophic collapse was caused in the middle of Langtang Valley (28º12’50”N, 85º30’5”E), one of the national parks 

in Nepal (Fig. 1). The main river in this valley, the Langtang Khola, flows from the east to the west, and joins the main 15 

stream, Bote Kosi (Trisuli Gandaki), at the end of the valley near a village, Syabru Bensi (Ono and Sadakane 1986). The 

length of the valley is approximately 50 km, and the width ranges from 1 to 2 km. A typical U-shaped valley formed by 

glaciation. The Lirung, Khyimjung, Yala, Shalbachum, Langtang, and Langshisa glaciers are located 4100 m above sea level 

(a.s.l.). In addition, several unnamed glaciers are distributed along both the ridges of the U-shaped valley (Shiraiwa and 

Watanabe 1991), where Mt. Langtang Lirung is the highest peak (7239 m a.s.l.).  20 

The Lantang valley consists of the Gosainkund gneiss zone (various gneisses and granitic migmatite) and the Langtang 

Himal migmatite zone (medium-grained garnet-mica-gneiss of granitic composition and coarse-grained augen-gneiss) (Arita 

et al. 1973; Shiraiwa and Watanabe 1991). Six successive glacial stages were recognized from an in-situ dating survey on 

moraine compositions (Shiraiwa and Watanabe 1991; Shiraiwa, 1994). Relatively extensive glaciation in the Langtang Stage 

(3650–3000 yr BP) is suggested in the late Quaternary. Permafrost is not highly expected in this valley because of the large 25 

amount of winter snow, which prevents deep freezing in winter (Shiraiwa, 1994).  

The Langtang Valley is a famous trekking course for tourists, and it has been called “one of the most beautiful valleys in the 

world.” The village of Langtang was called “Yul” by the villagers (Ono and Sadakane 1986). The main local occupations are 

farming and tourism. Many temporary houses called “Kalkha” were built around the village for livestock farming, i.e., for 

the transhumance of yaks. 30 

2.2 Avalanche event  

In this catastrophic event, co-seismic snow-and-ice avalanches and rockfalls with concurrent air blasts (Cadwalladr 2015). 

This contains multiple phenomena as described as “disaster-within-a-disaster” (Kargel, 2015). The sediment deposition is 

consists mostly of accumulated snow and less dominantly of glacier ice (Fujita et al. 2016). Satellite-based thermal infrared 

observation on 5 days after the quake denoted the deposition has 10-20 K lower surface temperature than surrounding 35 

terrains (Kargel et al. 2016). Water stream of the Langtang river was blocked once by the deposition but quickly recovered 

as the ice-and-snow deposition was melted (Kargel et al. 2016). The materials near the river bed had less boulder and sand-

rich deposition, suggesting that they are originated from snow avalanche (Fujita et al. 2016). From the sediment volume and 

catchment area on the mountain hill, original snow depth before the avalanche occurrence was estimated at 1.82 m in the 

catchment hillslopes (Fujita et al. 2016). A meteorological observation at a neighbouring glacier suggested four major 40 
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snowfall events since Oct 2014 and an anomalous large amount of snow was charged before the quake. An interview 

reported that many hanging glaciers were cracked and huge pieces of ice falling occurred forming a cloud gathering snow 

and rocks with air blast (Cadwalladr 2015). However an in-situ survey suggested that detached glacier ice was less dominant 

than involved snow, represented by observed clear ice balls in the deposition (Fujita et al. 2016). After an following mas 

movement between 8 and 10 May, ice-and-snow melting decrease the sediment volume by 40% until Oct, 2015 (Fujita et al. 5 

2016). 

Multiple landslides was also reported (Cadwalladr 2015). Ice cliffs, exposure of ice-rich thick layer under a bolder-rich 

debris layer, are identified near the Langtang river, suggesting different timing of avalanche and subsequent rockfalls (Fujita 

et al. 2016). In the opposite-side north-facing steep slopes, debris materials were found at 200-m higher places above the 

deposition bottom, which suggested that they travelled at 63 m s-1 (Kargel et al. 2016). On the other hand, avalanche 10 

entraining sand and silt was reported as “black avalanches” (Fujita et al. 2016). Post-event photographs and satellite images 

suggested debris materials originated from rockfall and landslide were not dominant in the deposition (Fujita et al. 2016; 

Kargel et al. 2016). 

The related articles all reported trees fallen down to uniformed directions at the opposite-side north-facing slope (Cadwalladr 

2015; Fujita et al. 2016; ICIMOD 2015; Kargel et al. 2016). This was caused by catastrophic air blast reaching 332 km h-1 15 

travelled up to neighbouring villages of Singdum and Mundu (Kargel et al. 2016). Location change of a boulder over the 

event suggest that it received a blast exceeding 50 m s-1 (Fujita et al. 2016).  

In terms of collapse trigger, three separated main sources were suggested around the mountain peaks at 7000 m a.s.l. by 

snow cover thinning (~20 m) between April 2014 and May 2015 (Lacroix 2016). Hanging glacier detachment was 

considered by another study (Fujita et al. 2016). As described above, furthermore, anomalous winter snow seemed to 20 

amplify the sediment mass (Fujita et al. 2016). Topographic comparisons over the event revealed that the total mass of the 

sediment deposition was 6.81±1.54×106 m3 before the second mass movement caused in 8-10 May (Fujita et al. 2016) and 

6.95×106 m3 including the second mass deposition (Lacroix 2016)  

2.2 Synthetic aperture radar imagery 

In order to estimate the damages after the earthquake on April 25, the Japan Aerospace Exploration Agency carried out an 25 

emergency observation with the Phased Array type L-band Synthetic Aperture Radar-2 (PALSAR-2) onboard the Advanced 

Land Observing Satellite-2 (ALOS-2, "DAICHI-2") aiming central Nepal at 7:02 on April 26 (GMT). This image was taken 

on the left-looking strip-map mode with a 3-m spatial resolution along the descending orbit of Path 55. Visual interpretation 

of the orthorectified backscatter amplitude image of HH polarization (product level 2.1) was performed. A pre-event 

PALSAR-2 image taken at 6:13 on December 28, 2014 was used for comparison. This image was taken in a right-looking 30 

strip-map mode with a 3-m spatial resolution along the descending orbit of Path 48. Visual interpretation of the 

orthorectified backscatter amplitude image of HH polarization (product level 2.1) was simultaneously performed. 

Not only the amplitude imagery but also the phase information emitted and received by the synthetic aperture radar (SAR) 

contributes to the situational awareness. We performed coherence calculation using interferometric phase information of 

SAR, which was explained by Plank (2014) in detail. Coherence can be calculated from two SAR images observing an 35 

identical place twice from the same orbit and incidence angle, thereby achieving similar phase and intensity information of 

the receiving microwave, which is calculated for a pair of SAR images by 
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where c1 and c2 are the corresponding complex-valued pixels of the two images, c* is the complex conjugate of c, and ܧ 

indicates the expected value. The detailed mathematical procedure is described in Touzi et al. (1999) and López-Martínez 40 

and Pottier (2007). A significant change in surface feature between two observations results in lower coherence (in other 
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words, lower similarity). Other noisy influences, including vegetation growth, can be reduced by calculating normalized 

differences with a coherence calculated from two pre-hazard images. The normalized coherence decrease (NCD) is 

calculated as 

int
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where pre  is the coherence value between two images before the earthquake (October 4, 2014 and February 21, 2015), and 5 

int  is the coherence value between the two images over the earthquake (February 21 and May 2, 2015). These data were 

acquired from a same orbit with a spatial resolution of 10 m. When γint is calculated for images over a hazard, higher-valued 

pixels of γdiff indicate the reduction of the similarity, which has high potential of hazard-induced deformation or destruction. 

Several previous studies applied this method using L-band SAR for damage detection in urban areas (e.g., Kobayashi et al., 

2011; Yonezawa and Takeuchi, 2001; Tamura and El-Gharbawi, 2015; Watanabe et al., 2016), but no such study applied this 10 

method for mountain hazard. Throughout this study, we aim to emphasize the possibility of normalized conference 

difference by using L-band SAR for damage detection in mountain regions. 

Numerous noises are removed by focal statistics. In the NCD raw image, all pixel values are overwritten by the mean values 

within 15-pixel circles around each pixel (Fig. 2). This filter emphasizes the concentration of high values, whereas the 

homogeneously scattered high values are de-emphasized. The detailed steps are as follows: 15 

1. The radius of a window circle is set as 15 pixels. 

2. A mean value of the pixels in a circle is calculated. 

3. The mean value is placed in the center pixel of the circle. 

4. Moving the circle, every pixel on the output image is filled with the mean values in the same way. 

2.3 Pre-event optical imagery and DSM 20 

Pre-event optical satellite imagery and its three-dimensional view were generated to grasp the previous situation in further 

details. Images of the Panchromatic Remote-sensing Instrument for Stereo Mapping (PRISM) and the Advanced Visible and 

Near Infrared Radiometer type 2 (AVNIR-2) onboard the Advanced Land Observing Satellite (ALOS) were acquired at 5:02 

on October 12, 2008, which were combined into a orthorectified pan-sharpened image. It is a visible color image with a 

spatial resolution of 2.5 m. A DSM dataset “ALOS World 3D (AW3D)” was used for this study. AW3D was generated from 25 

numerous (>3 million scenes) PRISM nadir, forward, and backward images, which were taken through ALOS operation 

period (2006 to 2011), automatically stacked, and synthesized into a global DSM dataset with a horizontal spacing of 5 m 

(Tadono et al., 2015). In addition to its finer resolution than existing datasets such of the Suttle Radar Topography Mission 

(SRTM) and the Global Digital Elevation Model by Advanced Spaceborne Thermal Emission and Reflection Radiometer 

(ASTER GDEM) (larger than 30 m), occasional anomaly values was excluded in the generation process as well as 30 

occasional cloud cover filled with other scenes. As a result, an accuracy of 4.10 m root mean square for the vertical 

component versus globally distributed ground control points (4622 points) was reported (Tadono et al., 2015). The 

orthorectified pan-sharpened image was overlain on the AW3D DSM with a pixel spacing of 5 m to show a three-

dimensional view for interpretation. 

2.4 Post-event optical imagery and DSM 35 

Post-event optical satellite imagery and DSM were used to recognize the damaged situation in detail. A DigitalGlobe’s 

satellite, WorldView-3 (WV-3) observed the Langtang valley on May 8, 2015, with a panchromatic sensor of 0.31 m spatial 

resolution and a multispectral sensor of 1.24 m spatial resolution to generate a set of pan-sharpened stereo pair imagery (Fig. 

3). First, Area of Interest (AOI) is defined as that includes all sediment depositions. The complicated sediment outlines are 
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delineated from the WV-3 near-infrared band, which appears the best clear contrast between the sediment depositions and 

the surface terrain, by means of a segmentation function of Iterative Self Organizing (ISO) cluster classifier in ArcGIS (e.g. 

Ball and Hall, 1965; Richards and Richards) (Fig. 4a). Other multispectral band images (Red, Green, and Blue) and the 

panchromatic image are synthesized into a pan-sharpened image (i.e. color imagery with 0.3-m spatial resolution). Using this 

image, the sediment depositions are divided into several groups based on visible characteristics of colors (dark or light) and 5 

deposition features (splashing, muddy, and flowing) (Figs. 4b-4f). After all the steps these images and delineated polygon 

layers are orthorectified with 174 tie points onto the ALOS pan-sharpened image taken on October 12, 2008. 

Using the set of pan-sharpened stereo pair imagery, on the other hand, a post-event DSM in a pixel spacing of 2 m was 

produced by NTT DATA as its commercial service. The DSM is generated by stereo photogrammetric method using two 

WV-3 images acquired on May 8, 2015 using stereo-area-collect mode (26.2 km swath, 112 km path). Two images that are 10 

(1) forward looking with cross-track tilting to the west hand (i.e., average off-nadir angle: 27º, average target azimuth: 245º 

/scene id: 104001000BA62E00) and (2) backward looking with cross-track tilting to the west hand (i.e., average off-nadir 

angle: 27º, average target azimuth: 319º /scene id: 104001000B3B2300) were acquired. Spatial resolution after cross-track 

tilt was 0.38 m, coarsened from 0.31 m because of tilting. DSM generation flow (i.e., stereo matching, RPC ortho-

rectification, pixel resampling, and DSM data output) was performed by NTT DATA with their original software, where the 15 

geo-referencing process was supported by WV-3 accurate orbit information without any in-situ ground control point and a 

resampled pixel spacing of 2 m. Officially announced specification shows a vertical accuracy of 4 m and a horizontal 

accuracy of 5 m as root mean square errors. In two sites that are neighboring the sediment surface, relative 

calibration/validation of this DSM and the AW3D DSM was performed and summarized in a supplementary material, in 

which a standard deviation error of 1.5 m between WV-3 and AW3D DSM is reported.  20 

3 Results 

3.1 SAR amplitude imagery 

A post-event PALSAR-2 backscatter amplitude image is shown in Fig. 5a, and a pre-event image is shown in Fig. 5b. The 

brightness of these images corresponds to the amplitude of microwave signal reflected to the PALSAR-2 antenna. The 

difference between the two represents a completely modified surface feature. The mass of the sediment is identifiable only in 25 

the post-event image within an area of 0.73 km2 (centroid: 28º12’54”N, 85º30’14”E), ranging approximately 1500 m from 

the upstream to the downstream of the Langtang Khola and 700 m from the upper to the bottom part of the U-shaped valley.  

Comparing the pre-event PALSAR-2 backscatter amplitude image (Fig. 5b) and an ALOS PRISM/AVNIR-2 pan-sharpened 

image taken on October 12, 2008 (Fig. 5c), bright points and a valley-shaped feature correspond to buildings and water 

streams, respectively. These features completely disappear in Fig. 5a, which means that they have been filled by the 30 

sediment mass after the quake. A three-dimensional view of the ALOS PRISM/AVNIR-2 image overlaid on the AW3D 

DSM is shown in Fig. 5d. This sediment area is located below the terminus of a glacier on the north-facing slope. Another 

glacier flows toward the debris-covered area of the former glacier. This geography suggests a possibility that a large volume 

of materials travelled from these glaciers with an extremely high potential energy. 

3.2 SAR coherence decrease 35 

NCD is calculated from the PALSAR-2 images (Fig. 6a). NCD values greater than 0.2 are reclassified into multiple colours 

with 0.05 steps, in which scattered NDC dots are difficult to be identified. After a focal statistics process with the 15-pixel 

circle, noisy pixels were moderated and several parts with a high NCD appeared (Fig. 6b). One of the high-value areas (>0.2) 

correspond to the sediment outline delineated from the PALSAR-2 amplitude image (p in Fig. 6b). Separated from a 

connecting upper outline at the narrowest part (< 5-pixel width), this part has an area of 0.63 km2 with a centroid of 40 
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[28º12’57”N; 85º30’14”E]. Visual interpretation of the amplitude images (Fig. 5) and NCD calculation (Fig. 6) yield a 

similar result for the collapsed sediments (Fig. 6b). Moreover, the both methods are not hindered by the cloudy weather, and 

hence, have a great potential to immediately indicate a catastrophic collapse and contribute to decision-making for such 

hazards in the monsoon season. 

Furthermore, above the sediment mass, two parts on the south-facing slope show high-NCD concentrations in (q) 0.22 km2 5 

and (r) 0.07 km2 areas (Fig. 6b). They are located at the downstream periphery of the Glacier Termini, suggesting the 

consequent collapse from the tributary glacier to the main glacier. High NCD does not appear on the glacier surfaces 

possibly because frequent avalanches and glacier flows cause regular changes in the surface. For such surfaces, the changes 

uniquely caused by an earthquake could be identified by NCD calculation. 

3.3 Collapse mapping with a post-event optical imagery 10 

Visual identification and mapping of the sediment depositions from the very-high-resolution WV-3 image resulted in 0.88 

km2 covering which was classified into 10 groups (A-J) (Fig. 3; Table 1). The group (A) (area: 0.16 km2) is characterized by 

dark muddy bottom to splashing uphill parts (Fig. 4b) where numerous trees fallen to the splashing direction are identified as 

previous studies reported (Fig. 4c) (e.g. Kargel et al. 2015). The group (B) (area: 0.25 km2) begins from the headwall just 

under a glacier with relatively lighter colour than (A) (Figs. 4b; 4d). It flows to the river floor with curved streaks (Figs. 3; 15 

4d; 4e). In the river flow, it shows more mud-like feature with visible wrinkles as group (C) (area: 0.13 km2), accumulating 

to the downstream and slightly to the upstream, maintaining the same colour (Fig. 4b). The group (D) (area: 0.14 km2) 

basically has clearly darker surface than (B) and (C) with less streaks and several splashed patches (Fig. 4e). Simultaneously 

gradual colour transition is seen from (D) to (B) (Fig. 4e). The group (E) (area: 0.02 km2) is located at the lower side of (D) 

with the same colour and rather muddy feature quite like (C) (Fig. 4e). Gradual colour transition is also seen from (D) to (B). 20 

On the east side, very dark-colour patches of (F) (area: 0.02 km2) and detached parts (G) (area: 0.01 km2) are found (Figs. 3). 

They seem splashing, but have relatively muddy feature and not so homogeneous directivity compared to (A). Dark aperture 

deposition of (H) (area: 0.07 km2) begins from another headwalls which is wider than and is independent from that for (B) 

(Fig. 4f). The splashing parts are blocked by (B) and (C), whereas the western part starts flowing along a narrow path to the 

river floor grouped as (I) (area: 0.02 km2) (Fig. 3). This flow is finally connected to and covers (C) (Fig. 4c). The group (J) 25 

(area: 0.05 km2) is a parallel and more aperture/splashing deposition compared to (H) (Fig. 4f). The surface colour varies 

from lighter to darker than (J), not related to the flow path. 

3.4 Surface elevation changes 

According to the relative calibration/validation of the AW3D and WV-3 DSMs (see the Supplementary material), A 

horizontal offset of 5 m (1 pixel) to the east and an altitude offset of –27.0 m were added to the WV-3 DSM to meet the 30 

AW3D DSM with the best consistency. Possible altitude error of 1.5 m was given to calculate uncertain volumes. After the 

calibration, the difference between the post-event WV-3 DSM and the pre-event AW3D DSM was calculated and illustrated 

(Fig. 7a; Table1). An example of vertical profile shows sediment deposition in entire surface terrain from the foot of the head 

wall to the river floor, followed by altitude decrease on the steep vegetated slope (Fig. 7b), whereas another profile shows 

main deposition most mainly at the river floor (Fig. 7c). 35 

The spatial distribution of altitude change classified into the 10 sediment groups revealed an increase in surface altitude in 

the collapse site reaching a maximum of 46.4 m in the group (C) (Table 1). The increase in the altitude was especially 

pronounced in the groups (C) (mean: 17.8 m) and (E) (mean: 19.7 m), which are muddy depositions located along the river 

bed. Altitude decreasing was denoted in the groups (A), (F), and (G), where dominance of surface erosion and DSM error are 

considered. Mean altitude changes in the groups (D), (H), and (J) are smaller than the defined uncertainty level, 1.5 m. 40 
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Calculating the altitude change and surface area, a total deposition volume of 5.51±0.09×106 m3 was estimated, which is 

included within the estimated volume range by Fujita et al. (2016) (6.81±1.54×106 m3) and not larger than the volume 

including the second mass movement (6.95×106 m3) (Lacroix 2016). In addition, total eroded volume of 1.64±0.06×106 m3 

was estimated, most of which belongs to the group (A). In addition to the effect of the fallen trees, fundamental bias error 

induced by WV-3 DSM generation is considered for this extremely steep slope, because splashed patches and muddy 5 

deposition both denotes negative values. As well, groups (F) and (G) have negative net volume difference, possibly because 

of building collapse and slightly negative DSM bias larger than the deposition volume of the dark-colour materials.   

4 Discussion 

4.1 SAR-derived surface changes 

The sediment outline delineated from the PALSAR-2 amplitude image has an area of 0.73 km2, which is very close (i.e. 10 

contained area difference smaller than 5%) to what Kargel et al. (2015) measured, which slightly underestimates what the 

WV-3 high-resolution image suggested (0.88 km2). Hazard scale is thus able to be known similarly by the methods. The 

outline delineated from the PALSAR-2 image (0.63 km2) reaches 86% of the area obtained from the WV-3 image (Fig. 8). 

Its spatial coverage corresponds to the groups (B) to (F) and parts of (G) and (J). Most of the flowing parts are included in 

that coverage, whereas splashed parts beside the central body are excluded (Fig. 8). It suggests that splashed materials are 15 

difficult to be recognized with a 3-m spatial resolution of PALSAR-2 imagery. Furthermore, the group (A) on the north-

facing slopes is also ignored. Possibly, the microwave reflection from/to PALSAR-2 was hindered by the very steep 

mountain hillslope. 

The sediment outline extracted by NCD calculation has an area of 0.63 km2, which is 72% of that from the WV-3 image. Its 

spatial coverage corresponds to the groups (B), (D), (F), (G) and small parts of (A) and (H). NCD indication on the coverage 20 

between (F) and (G) can be explained if the surface materials before the avalanche were extensively blown away (e.g., from 

vegetation or buildings to bare terrain). No NCD indication along the riverbed is explainable by the geomorphic alternation 

constitutively caused by the river erosion, which de-emphasizes the avalanche-caused change in the NCD index. North-

facing slopes were covered by forestry, where little NCD is explainable owing to growing trees and seasonal defoliation. 

Two extra parts of high NCD value caused on the valley bottom (i.e. villages of Chyamki and Singdum) ((s) in Fig. 6b) are 25 

corresponding to other collapse occurrences which were identifiable with an optical image shown in Fig. S6c of Kargel et al. 

(2015). 

The geospatial information derived from PALSAR-2 is, thus, usable for disaster response with some inconsistencies which 

are explainable with the microwave characteristics. A post-event backscatter amplitude image is to be interpreted visually 

with assistance of other satellite images, if interferometric SAR technique cannot be used due to lack of pre-event archived 30 

data from the same orbit,. The visual interpretation needs careful examination by changing the brightness and contrast of the 

image, because microwave reflection is influenced simultaneously by both the physical properties and the geomorphic shape 

of the target area. Through this observation, we have recognized that the visual identification of an unknown hazard only 

using images is difficult. Therefore, we needed some information about the place and the type of hazard being investigated 

before interpretation so far. Nevertheless, the approximate scale of the collapse was successfully recognized and provided to 35 

the related authorities for emergency response. 

Accumulation of the archived data more than once from each orbit enables the coherence normalization to emphasize the 

unusual coherence decrease by a hazard. Furthermore, removing the small patches by means of focal statistics successfully 

resulted in sediment extraction, which is reasonably consistent with that from a high-resolution satellite image. For other 

kind and scale of hazards, the parameter settings (i.e., circle size to obtain a mean value) needs to be assessed and validated 40 
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through several case studies. The NCD calculation cannot be used for slightly, but constitutively changing terrains, such as 

river banks and vegetation. 

In terms of the avalanche source, we found two parts of high NCD values above the collapse sediment on the hillslope ((q) 

and (r) in Fig. 6b). On the glacier surfaces, regular flowing could de-emphasize the unusual change caused by the avalanche 

or other collapse events, even if they had happened. The two parts suggest that the falling materials went through these parts 5 

and altered their surface features. We could not detect the drastic surface changes in the uphill between AW3D (pre-event) 

and WV-3 (post-event) images, but Lacroix (2016) supported our suggestion by comparison of DSMs generated from 

Satellite Pour l'Observation de la Terre (SPOT). Such an extremely-steep slope is difficult to obtain an accurate DSM from 

most of satellite images, therefore NCD would be preferable focus to be coupled with DSM comparison. 

4.2 Validation of volume estimation 10 

Kargel et al. (2015) estimated total mass of this sediment as ~3.3×109 kg, assuming homogeneous thickness of 2 m on its 

entire surface. Our study revealed heterogeneous volume distribution, which is especially concentrated along the water 

streams. According to the assumed density of 2200 kg m–3 (Kargel et al., 2015), our estimated volume (5.51×106 m3) turns 

out to be 12.1×109 kg, reaching 3.7 times of the former (Kargels’) estimation. Our volume estimation is smaller than that by 

Lacroix (2016) through a comparison of SPOT-derived DSMs (6.95 × 106 m3), possibly because the second avalanche was 15 

caused between 8 and 10 May (e.g. Fujita et al. 2016). Furthermore, Fujita et al. (2016) performed an in-situ survey from 

which they estimated the total volume of the first avalanche sediment as 6.81±1.54×106 m3, covering our estimation value 

in the possible range. 

4.3 Temporal sequence of the avalanche event 

Identification of sediment deposition layers from the interpretation of a high-resolution WV-3 image suggests that different 20 

sources provided various types of deposition continuously in a short period (Fig. 3). Splashing feature of the group (A) 

denotes a uniformed scattering direction along lines (x) to (y), suggesting an origin around the cross point of the lines (Fig. 

4a). The group (B) and (C) has a lighter similar color than that of (A) and range wider coverage along the line (z) without 

splashing (Fig. 4a). Thus a border between (A) and (C) is visually identifiable (p1 in Fig. 4b). Huge mass of (B) and (C) 

denoted in Fig. 6a implies slower continuous flowing, whereas negative altitude change on (A) implies fast scattering with 25 

air blast which mowed trees down with less mass deposited on the steep slope. These conclude that the group (B) was 

provided after deposition of (A) with slower speed and larger volume from a different source, which was terminated filling 

the riverbed in (C) at the end.  

Closing up, the west side of the group (D) has a similar surface feature and gradual color similarity to (B) (p2 in Fig. 4e). In 

addition, the group (E) has a similar surface feature to that of (C) with some wrinkles with a different surface color. These 30 

suggests that the layers of (D) and (E) are much thinner layer than those of (B) and (C), and they rode the formerly deposited 

(B) and (C). 

The group (F) is connecting to (D) and similar darker color to the detached group of (G) (Fig. 3). They seem to have smaller 

amount of mass deposition than (D) at the same or later time from different sources. There are distributed with many 

ununiformed apertures, implying vertical dropping from the source (possibly after hitting some headwall surfaces), rather 35 

than the fast second scattering after once hitting the ground terrain as seen on (A). 

The group (H) is distinguished from (B) by its darker color (Fig. 4d) and the beginning headwall foot at the west side (Figs. 

3; 4f). The group (I) have a narrow flow with a certain thickness (~10 m) (Table 1) originated from the westernmost part of 

(H). It is terminated at the river floor, where it  pushes and displaces the snout of (C) (p3 in Fig. 4c). They suggest that (H) 

and (I) are accumulated later than (B) and (C) from another source. 40 



9 
 

The group (J) has many apertures with slight flowing (fig. 4f). Its lighter and darker colors than (H) is not related to the flow 

direction, that implies heterogeneous mixture of materials were supplied, possibly hitting and involving several origins along 

the headwall. 

Consequently, these considerations give a perspective of temporal sequence that avalanche event provided multiple types of 

depositions in order of, 5 

(A) with extremely fast speed with air blast,  

(B) with less flowing speed which covers the entire surface from the hoot of the headwall to the river floor,  

(C) as a stacking part of (B) with the least flowing speed along the river flow to the downstream and partially upstream, 

depositing huge mass,  

(D) which covers the eastern part of (B) after its deposition with some splashing,  10 

(E) as a terminal part of (D) which covers the eastern part of (C) with thin layer,  

(F) and (G) with a relation to (D), with which splashing in a larger area implies dropping from relatively higher position,  

(G) with which splashing feature implies experience of hitting the headwall before deposition,  

(H) as the terminal part of (H), riding the terminus of (C) with muddy flowing.  

The group (J) is an independent deposition from neighboring (H), however the deposition timing in the above sequence is 15 

unknown. In addition, the group (H) has a possibility of earlier deposition than (D) to (G), because the groups of (D) and (H) 

has no direct relationships in evidence.  

The suggested sequence is applied on the vertical profiles of Figs. 6b and 6c, schematically illustrated in Figs. 6d and 6e. 

Multiple types of avalanche-induced sediments are deposited in layers. The initial sediment, (A) will exist under the 

following sediment of (B) to (C) along A-A’, and additionally (D) to (E) along B-B’. An in-situ survey with boring core 20 

and/or ground penetration radar might give some supporting findings. Realistic numerical simulation of avalanche collapse 

and analysis of heat balance related to the melting process would need the consideration of multiple layers precisely mapped 

by our study. The muddy features interpreted in some layers imply high ice and snow content which are confirmed in an in-

situ survey after the monsoon season (Fig. 9). Coupling further altitude measurements with temporal intervals would clarify 

the surface lowering by ice/snow melting, for which the water content estimation is invaluable as one of the input data for 25 

avalanche simulation and source consideration. 

5 Conclusion 

Initial multi-satellite observation and assessment were carried out for the catastrophic avalanche induced by the 2015 Gorkha 

Earthquake in Nepal on April 25. Radar observation by means of PALSAR-2 resulted in two successful ways of backscatter 

amplitude image and coherence analysis, which are both usable for urgent hazard response to acquire quantitative 30 

information, not hindered by frequent cloud cover in those regions during monsoon. Detailed visual interpretation and 

classification of the sediments with a WV-3 pan-sharpened image suggested multiple sediment layers, which suggest 

sequential failure of materials from different sources. The difference between the pre- and post-event DSMs estimated a total 

sediment volume of 5.51 ×106 m3 (12.1×109 kg as weight), of which the dominant mass is accumulated along the river 

streams. Negative altitude change suggests erosion and denudation of surface objects and measurement error in difficult 35 

topography for DSM generation. Quantitative spatial and volumetric assessments and classification derived from this study 

would contribute for further studies such as avalanche simulation and melting process estimation, e.t.c. 
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Figure 1: Location of the study site. Topography obtained from NASA/USGS SRTM3v4, glacier outlines obtained from ICIMOD 

Mountain Geoportal, rivers and roads obtained from DIVA-GIS, and country borders obtained from ThematicMapping.org are 

illustrated.  

 5 

Figure 2: Concept of focal statistics filter to reduce noises. 
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Figure 3: Avalanche-induced sediment deposition observed with World View-3. A dot rectangle is the area of interest (AOI) of this 

study, within which sediment depositions are classified from (A) to (J). Squares are corresponding to the closed-up view in Fig. 4. 
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Figure 4: Details of sediment mapping. (a) Un-supervised classification was initially applied on the WV-3 thermal infrared image. 

(b-f) detail interpretation and classification was carried out comparing the differences of sediment colors and physical 

characteristics. 



15 
 

 

Figure 5: Identified collapsed sediment by ALOS/ALOS-2 images. Difference between PALSAR-2 images of (a) post-quake (April 
26, 2015) and (b) pre-quake (December 28, 2014) denotes that the buildings and water stream identifiable by (c) a pre-quake 
ALOS pan-sharpened image (October 12, 2008) has been covered by the sediments. (d) A three-dimensional view of the ALOS 
pan-sharpened image overlaid on ALOS World 3D digital surface model. 5 
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Figure 6: Normalized coherence decrease around the collapsed area in Langtang Valley. (a) Original output image is processed 
into two images of focal statistics with (b) 15-m circles for calculating the mean values. High-value parts are denoted on (p) the 
collapse area, (q) a glacier moraine, and (r) that of a tributary glacier, as well as (s) two places in the valley bottom. The 
background is an ALOS pan-sharpened image observed on October 12, 2008. 5 
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Figure 7: (a) Estimation of the sediment volume from the altitude difference between pre-event ALOS World 3D DSM and post-
event WV-3 DSM. Vertical profiles along (b) A-A’ and (c) B-B’ are used respectively for (d) (e) schematic illustration of avalanche 
sequences. 
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Figure 8: Sediment outlines delineated from PALSAR-2 data and WorldView-3 (WV-3) imagery. The background is hill-shade 
imagery generated from the AW3D DSM. 
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Figure 9. (a) A picture on the avalanche-induced sediment surface taken in an in-situ survey carried out for/by Fujita et al. (2016). 

(b) A closed-up picture showing exposed and melting ice. [Date: Oct. 21, 2015]  
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Table 1: Identifiable surface color-and-physical features, area, thickness, and volume changes for the 10 classified deposition 
groups. 

 

Average Mean

(A) Dark Muddy to splash 0.16 28.1 -9.3 0.09 ± 0.02 1.14 ± 0.15 -1.05 ± 0.15

(B) Light
Flowing

with streaks
0.25 42.9 7.5 1.99 ± 0.23 0.11 ± 0.05 1.88 ± 0.24

(C) Light Muddy 0.13 46.4 17.8 2.53 ± 0.15 0.17 ± 0.03 2.36 ± 0.16

(D)
Dark,

gradually light
Less flowing and

few streaks
0.14 23.8 0.5 0.13 ± 0.06 0.07 ± 0.04 0.06 ± 0.07

(E)
Dark,

gradually light
Muddy 0.02 41.7 19.7 0.30 ± 0.02 0.00 ± 0.00 0.30 ± 0.02

(F) Very dark Muddy and splash 0.02 3.7 -1.8 0.00 ± 0.00 0.03 ± 0.02 -0.03 ± 0.02

(G) Very dark
Detached, muddy

and splash
0.01 1.4 -1.7 0.00 ± 0.00 0.01 ± 0.01 -0.01 ± 0.01

(H) Dark Muddy and splash 0.07 39.2 1.3 0.09 ± 0.04 0.04 ± 0.02 0.06 ± 0.04

(I) Dark Muddy 0.02 30.6 10.5 0.21 ± 0.03 0.00 ± 0.00 0.20 ± 0.03

(J) Light to dark
Muddy

and splash
0.05 13.2 1.4 0.05 ± 0.02 0.01 ± 0.00 0.04 ± 0.02

Total 0 .88 46.4 4.0 5.51 ± 0.09 1.64 ± 0.06 3.87 ± 0.11

Deposi tion Erosion Net

Al ti tude change (m ) Volum e change (106 m 3)
Group Colour Surface feature

Area
 (km 2)


